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We find new relations in the mapping class group of a genus 2 surface with
n boundary components for n = 1, . . . , 8 that induce a genus 2 Lefschetz
fibration CP2 # 13 CP2

→ S2 with n disjoint sections. As a consequence,
we show any holomorphic genus 2 Lefschetz fibration without separating
singular fibers admits a section.

1. Introduction

The study of Lefschetz fibrations is important in low-dimensional topology because
of a close relationship between symplectic 4-manifolds and Lefschetz fibrations,
[Donaldson 1999; Gompf and Stipsicz 1999]. Sections of Lefschetz fibrations
play an important role in the theory. For example, in the presence of a section,
the fundamental group and the signature of a Lefschetz fibration can be easily
computed.

Here, we provide sections for genus 2 Lefschetz fibrations CP2 # 13CP2
→

S2, with global monodromy given by the relation (tc1 tc2 tc3 tc4 t2
c5

tc4 tc3 tc2 tc1)
2
= 1

in the mapping class group 02 of a closed genus 2 surface, where each ci is a
simple closed curve as in Figure 3, and tci is a right-handed Dehn twist about ci

for i = 1, . . . , 5. In [Korkmaz and Ozbagci 2008], similar relations were found in
the mapping class group 01,n of a genus 1 surface with n boundary components
for n = 4, . . . , 9, giving an elliptic Lefschetz fibration CP2 # 9CP2

→ S2 with n
disjoint sections.

In Section 2, we recall definitions and relations in the mapping class group to
be used in our computations, and we fix notation. In Section 3, we give brief
background information on Lefschetz fibrations. In Section 4, we provide the nec-
essary relations in the mapping class group 02,n for a genus 2 Lefschetz fibration
CP2 # 13CP2

→ S2 with n disjoint sections for n = 1, . . . , 6. In Section 5 we list
several observations and open problems related to sections of Lefschetz fibrations.
We show that a genus 2 Lefschetz fibration CP2 # 13CP2

→ S2 may admit at
most 12 disjoint sections. We provide relations in the corresponding mapping class
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group that give n = 7 and n = 8 disjoint sections for genus 2 Lefschetz fibrations
CP2#13CP2

→ S2. We conclude that any holomorphic genus 2 Lefschetz fibration
without separating singular fibers admits a section.

2. Mapping class groups

Let 6k
g,n denote an oriented, connected, genus g surface, with n boundary com-

ponents and k marked points. The mapping class group of 6k
g,n is defined as the

isotopy classes of orientation-preserving self-diffeomorphisms of 6k
g,n that fix the

marked points and the points on the boundary. Denote the mapping class group of
6k

g,n by 0k
g,n . When k = 0, denote the mapping class group of 6g,n by 0g,n .

Let a be a simple closed curve on 6k
g,n . A right-handed Dehn twist ta about a is

the isotopy class of a self-diffeomorphism of 6k
g,n obtained by cutting 6k

g,n along
a and gluing it back after twisting one side by 2π to the right. The inverse of a
right-handed Dehn twist is a left-handed Dehn twist, denoted by t−1

a .
We now briefly mention the facts and relations to be used in our computations;

for the proofs, see [Farb and Margalit 2005; Ivanov 2002]. If f :6k
g,n→6k

g,n is an
orientation-preserving diffeomorphism, then f ta f −1

= t f (a) for a a simple closed
curve on 6k

g,n .
For simplicity, we will denote a right-handed Dehn twist ta along a by a, and

a left-handed Dehn twist t−1
a by a. The product ab means that we first apply the

Dehn twist b, then the Dehn twist a. A simple closed curve parallel to a boundary
component of a given surface will be called a boundary curve of the surface.

The following relations will be useful:

The commutativity relation. If a and b are two disjoint simple closed curves
on 6k

g,n , then the Dehn twists along a and b commute: ab = ba.

The braid relation. If a and b are two simple closed curves on 6k
g,n intersecting

transversely at a single point, then their Dehn twists satisfy aba = bab.

The lantern relation. Consider a sphere with four holes, the boundary curves
δ1, δ2, δ3, δ4, and the simple closed curves α, γ, σ , as shown in Figure 1. We have
δ1δ2δ3δ4=γσα. Dehn discovered this relation; it was then rediscovered and named
by D. Johnson.

The star relation [Gervais 2001]. Let 61,3 be a torus with three boundary curves
δ1, δ2, δ3. In 01,3 we have δ1δ2δ3 = (a1a2a3b)3 for the simple closed curves
a1, a2, a3, b from Figure 1.

The chain relation for a two-holed torus. Consider a torus 61,2 with two boundary
curves δ1, δ2, and the simple closed curves c1, c2, b, as shown in Figure 1. We have
δ1δ2 = (c1bc2)

4.
The chain relations for the genus 2 case: If c1, c2, c3, c4, c5 is the chain of curves
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Figure 1. Counterclockwise from the top: The lantern relation,
δ1δ2δ3δ4 = γσα, the star relation, δ1δ2δ3 = (a1a2a3b)3, and the
two-holed torus relation, δ1δ2 = (c1bc2)

4.

shown in Figure 2, then for a genus 2 surface 62,1 with one boundary curve
δ1 we have δ1 = (c1c2c3c4)

10, while for a genus 2 surface 62,2 with two boundary
curves δ1, δ2 we have δ1δ2 = (c1c2c3c4c5)

6.

3. Lefschetz fibrations

A Lefschetz fibration on a closed, connected, oriented smooth 4-manifold X is a
map f : X → 6, where 6 is a closed, connected, oriented smooth surface, such
that f is surjective, has isolated critical points, and for each critical point p there
is an orientation-preserving local complex coordinate chart on which f takes the
form f (z1, z2)= z2

1+ z2
2.

The Lefschetz fibration f is a smooth fiber bundle away from critical points. A
regular fiber of f is diffeomorphic to a closed, oriented smooth genus g surface.
We define the genus of the Lefschetz fibration to be the genus of a regular fiber.

A singular fiber is a fiber containing a critical point. We assume that each
singular fiber contains only one critical point. The singular fiber can be obtained
by taking a simple closed curve on a regular fiber and shrinking it to a point. This
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Figure 2. The chain relations: δ1 = (c1c2c3c4)
10 and δ1δ2 = (c1c2c3c4c5)

6.
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Figure 3. 62.

simple closed curve describing the singular fiber is called a vanishing cycle. If
this curve is a nonseparating curve, then the singular fiber is called nonseparating;
otherwise it is called separating. For a genus g Lefschetz fibration over S2, the
product of Dehn twists along the vanishing cycles gives us the global monodromy
of the Lefschetz fibration.

On a closed surface6g, the right-handed Dehn twists ci along the simple closed
curves ci for i = 1, . . . , s, with the relation c1c2 · · · cs = 1, define a genus g
Lefschetz fibration over S2 with vanishing cycles c1, . . . , cs . In particular, in 02

we have
(c1c2c3c4c2

5c4c3c2c1)
2
= 1,

(c1c2c3c4c5)
6
= 1,

(c1c2c3c4)
10
= 1,

where c1, . . . , c5 are simple closed curves as in Figure 3. For each relation above,
we have genus 2 Lefschetz fibrations over S2 with total spaces CP2 # 13CP2,
K3 # 2CP2, and the Horikawa surface H , respectively. For more on Lefschetz
fibrations, see [Auroux 2003; Gompf and Stipsicz 1999].

A section of a Lefschetz fibration is a map σ : 6 → X such that f σ = id6 .
Consider a collection of simple closed curves c1, . . . , cs on a genus g surface 6g,n

with the relation
c1 · · · cs = δ

k1
1 · · · δ

kn
n

in 0g,n , where δ1, . . . , δn are boundary curves, and k1, . . . , kn are positive integers.
This relation defines a genus g Lefschetz fibration over S2 admitting n disjoint
sections, with global monodromy c1 · · · cs = 1. Moreover, the self-intersection of
the i-th section is−ki . To see this, note that after gluing a disk along each boundary
curve one gets the relation c1 · · · cs = 1 in 0g. Thus, this relation will give us a
genus g Lefschetz fibration over S2 as before. One can then use the centers of the
capping disks to construct sections. For details, see [Gompf and Stipsicz 1999];
for more on self-intersection of sections, see [Smith 1998].

In the following sections, we will find relations of the above type, c1 · · · cs =

δ1 · · · δn , in the mapping class group 02,n for n = 1, . . . , 8.
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4. Relations in 02,n

For each n = 1, . . . , 6, we write the product of right-handed Dehn twists along the
boundary curves δ1, . . . , δn as a product of twenty right-handed Dehn twists along
nonboundary parallel simple closed curves on a genus 2 surface 62,n . Namely,
we provide relations of the form δ1 · · · δn = β1 · · ·β20, where β1, . . . , β20 are
nonboundary parallel simple closed curves on 62,n . After gluing disks along the
boundary curves δ1, . . . , δn , we get the relation 1= β1 · · ·β20 in the mapping class
group 02. By using the commutativity relation and the braid relation, one can sim-
plify the right-hand side of the equation 1= β1 · · ·β20 so that it gives us the global
monodromy (c1c2c3c4c2

5c4c3c2c1)
2
=1 of a Lefschetz fibration CP2#13CP2

→ S2.
For the simple closed curves c1, . . . , c5, see Figure 3. Here, twenty right-handed
Dehn twists along nonboundary parallel, nonseparating simple closed curves ci

correspond to twenty nonseparating singular fibers. The consecutive simple closed
curves ci are the vanishing cycles.

In the following subsections, the relations we find in 02,n will give us a genus
2 Lefschetz fibration CP2 # 13CP2

→ S2 admitting n disjoint sections of self-
intersection −1, for n = 1, . . . , 6.

4.1. Genus two surface with one hole. Consider the genus 2 surface 62,1 with
one boundary curve δ1, as in Figure 4. We have

δ1 = (a1b1a2b2)
10
= (a1b1a2b2)

5(a1b1a2b2)
5.

Using the commutativity and braid relations, one can show

(a1b1a2b2)
5
= (a1b1a2)

4(b2a2b1a2
1b1a2b2).

(For the proof, see the appendix.) Notice the two-holed torus embedded in 62,1

with two boundary curves a3, a4; then, by the chain relation for this torus, we have
(a1b1a2)

4
= a3a4.

δ1
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2

Figure 4. 62,1.
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Figure 5. 62,2.

By combining the relations above, we get

δ1 = (a1b1a2)
4 (b2a2b1a2

1b1a2b2)(a1b1a2)
4 (b2a2b1a2

1b1a2b2)

= a3a4(b2a2b1a2
1b1a2b2)a3a4(b2a2b1a2

1b1a2b2)

= (a3a4b2a2b1a2
1b1a2b2)

2.

4.2. Genus two surface with two holes. Consider the genus 2 surface 62,2 with
two boundary curves δ1, δ2 from Figure 5, and notice the embedded sphere em-
bedded in 62,2 with four boundary curves δ1, δ2, a3, a4. Then, using the lantern
relation, we have

a3a4δ1δ2 = γσa5.

Notice in Figure 5 the genus 2 surface with one boundary curve γ; we thus have
the chain relation γ = (a1b1a2b2)

10. Substituting γ in the lantern relation and then
using the two-holed torus relation (a1b1a2)

4
= a3a4 in the equation, we get

a3a4δ1δ2 = γσa5

= (a1b1a2b2)
10σa5

= (a1b1a2b2)
5 (a1b1a2b2)

5σa5

= (a1b1a2)
4 (b2a2b1a2

1b1a2b2)(a1b1a2)
4 (b2a2b1a2

1b1a2b2)σa5

= a3a4(b2a2b1a2
1b1a2b2)a3a4(b2a2b1a2

1b1a2b2)σa5.

We simplify this equation to

δ1δ2 = b2a2b1a2
1b1a2b2a3a4(b2a2b1a2

1b1a2b2)σa5.

4.3. Genus two surface with three holes. First, the lantern relation for the sphere
with four boundary curves δ1, δ2, a4, a5 in 62,3 from Figure 6 is a4a5δ1δ2 = γσa6.
For the three-holed torus with boundary curves γ, a1, a2, we have the star rela-
tion γa1a2 = (a4a5a3b2)

3, while for the three-holed torus with boundary curves
δ3, a4, a5, we have δ3a4a5 = (a1a2a3b1)

3.
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Figure 6. 62,3.

Now, combine these relations, substitute δ3 and γ, then simplify by using the
commutativity and braid relations. Note that all the ai commute for i = 1, . . . , 6.
The simple closed curves a1, a2, a3 intersect b1 transversely at a single point, and
a4, a5, a3 intersect b2 transversely at a single point. Thus, with β = a5a4b2a4a5,

δ1δ2 = a4a5γσa6,

δ1δ2δ3 = δ3a4a5γσa6

= δ3a4a5a1a2(a4a5a3b2)
3σa6

= a1a2(δ3)a4a5(a4a5a3b2)(a4a5a3b2)
2σa6

= a1a2((a1a2a3b1)
3a4a5)a3b2(a4a5a3b2)

2σa6

= a3b1(a1a2a3b1)
2a3(a4a5b2a4a5)a3b2a4a5a3b2σa6

= a3b1(a1a2a3b1)
2a3βa3b2a4a5a3b2σa6.

4.4. Genus two surface with four holes. We will use the three-holed genus two
relation we found in Section 4.3. Notice in Figure 7 the genus 2 surface with three
boundary curves δ3, δ4, γ. Then

δ3δ4γ = a3b2 (a5a4a3b2)
2a3β1a3b1a2a1a3b1σ1a7

= a3β1a3b1a2a1a3b1σ1a7a3b2 (a5a4a3b2)
2.
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where β1 = a1a2b1a2a1. Note that we identify the curves (a1, a2, a3, a4, a5, a6) in
62,3 from Figure 6 with the curves (a5, a4, a3, a2, a1, a7) in 62,4 from Figure 7.

By the lantern relation for the sphere with four boundary curves δ1, δ2, a4, a5,
we have

a4a5δ1δ2 = γσa6.

Now, combine the above relations to get

δ1δ2δ3δ4 = a3β1a3b1a2a1a3b1σ1a7a3b2(a5a4a3b2)
2γa4a5γσa6

= a3β1a3b1a2a1a3b1σ1a7a3b2(a5a4a3b2)a3a5a4b2(a4a5σa6)

= a3β1a3b1a2a1a3b1σ1a7a3b2(a5a4a3b2)a3β2σa6,

where β1 = a1a2b1a2a1 and β2 = a5a4b2a4a5.

4.5. Genus two surface with five holes. The lantern relation for the sphere with
four boundary curves δ1, δ2, a4, a5 in 62,5 from Figure 8 is a4a5δ1δ2 = γσa6. In
Figure 8, notice the genus 2 surface with four boundary curves δ3, δ4, δ5, γ. Identify
the curves (δ1, δ2, a5, a6, σ ) in 62,4 from Figure 7 with (δ5, γ, a8, a5, σ2) in 62,5

from Figure 8. Then, by the relation given in Section 4.4, we have

δ3δ4δ5γ = a3β1a3b1a2a1a3b1σ1a7a3b2(a8a4a3b2)a3β2σ2a5,

where β1 = a1a2b1a2a1 and β2 = a8a4b2a4a8.
Now, combine the above relations and simplify the equation as

δ1δ2δ3δ4δ5 = a3β1a3b1a2a1a3b1σ1a7a3b2(a8a4a3b2)a3β2σ2a5γa4a5γσa6

= a3β1a3b1a2a1a3b1σ1a7a3b2(a8a4a3b2)a3β2σ2a4σa6

= a3β1a3b1a2a1a3b1σ1a7a3(a4)b2(a4a8a3b2)a3β2σ2σa6

= a3β1a3b1a2a1a3b1σ1a7a3β3(a8a3b2)a3β2σ2σa6,

where β1 = a1a2b1a1a2, β2 = a8a4b2a4a8, and β3 = a4b2a4.
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Figure 8. 62,5.
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4.6. Genus two surface with six holes. The lantern relation for the sphere with
four boundary curves δ1, δ2, a4, a5 in62,6 from Figure 9 is a4a5δ1δ2= γσa6. Now,
identify the curves (δ1, δ2, a6, a8, σ, σ2) in 62,5 from Figure 8 with the curves
(δ6, γ, a5, a9, σ2, σ3) in 62,6 from Figure 9. By the relation given in Section 4.5
for the genus 2 surface with five boundary curves δ3, δ4, δ5, δ6, γ, we have

δ6γδ3δ4δ5 = a3β1a3b1a2a1a3b1σ1a7a3β3a9a3b2a3β2σ3σ2a5.

where β1 = a1a2b1a2a1, β2 = a9a4b2a4a9, and β3 = a4b2a4.
Now, combine the above relations to get

δ1δ2δ3δ4δ5δ6 = a3β1a3b1a2a1a3b1σ1a7a3β3a9a3b2a3β2σ3σ2a5γa4a5γσa6

= a3β1a3b1a2a1a3b1σ1a7a3β3a9a3b2a3β2σ3σ2(a4)σa6

= a3β1a3b1a2a1a3b1σ1a7a3(a4)(β3)a9a3b2a3β2σ3σ2σa6

= a3β1a3b1a2a1a3b1σ1a7a3(a4)(a4b2a4)a9(a3b2a3)β2σ3σ2σa6

= a3β1a3b1a2a1a3b1σ1a7a3(a4)(b2a4b2)a9(b2a3b2)β2σ3σ2σa6

= a3β1a3b1a2a1a3b1σ1a7a3β3β4a3b2β2σ3σ2σa6

where β1=a1a2b1a2a1, β2=a5a4b2a4a5, β3=a4b2a4=b2a4b2, and β4=b2a9b2.

5. Final remarks

Lemma 5.1. A genus 2 Lefschetz fibration CP2 # 13CP2
→ S2 admits at most 12

disjoint sections.

Proof. Suppose that CP2 # 13CP2
→ S2 admits 13 disjoint sections. Each section

is a sphere with self-intersection−1. Furthermore, each section intersects a regular
fiber, a genus 2 surface 62 with self-intersection 0, at one point. Now, by blowing
down all −1 spheres, we get a genus 2 surface 6̃2 with self-intersection 13, which
cannot exist in a manifold with second homology Z. �
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In Section 4, we found relations giving n disjoint sections for genus 2 Lefschetz
fibration CP2 # 13CP2

→ S2 for n = 1, . . . , 6. The technique applied in Section 4
stops at n = 6. However, by using results from [Korkmaz and Ozbagci 2008], we
can find relations in the corresponding mapping class group that give n = 7 and
n = 8 disjoint sections for genus 2 Lefschetz fibration CP2 # 13CP2

→ S2. We
will next show how to derive these relations. This method does not go further, and
it remains unknown whether there are more than eight sections.

The seven-holed torus relation from [Korkmaz and Ozbagci 2008] sits in 62,7:

δ1δ2δ3δ4δ5δ6δ7 = α3α4α1b1σ5α2β5σ3σ6α6β3σ4,

where β3 = α3b1α3 and β5 = α5b1α5 in 62,7; see Figure 10. We identify the
boundary curves (δ1, δ2, δ3, δ4, δ5, δ6, δ7) in 61,7 from Figure 10 with the curves
(δ6, δ5, a2, a1, δ2, δ1, δ7) in 62,7. The seven-holed torus relation gives

a1a2δ1δ2δ5δ6δ7 = a3a4a9b2σ5a10β5σ3σ6a5β3σ4

where β3 = a3b2a3 and β5 = a6b2a6.
Next, we combine this with the lantern relation a1a2δ3δ4 = γσa7 for the sphere

with four boundary curves δ3, δ4, a1, a2 in 62,7. The star relation for the torus
with three boundary curves γ, a4, a10 is a4a10γ = (a1a2a3b1)

3. We now substitute
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Figure 10. Seven-holed torus relation.
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γ = a4a10(a1a2a3b1)
3 into the lantern relation; then we simplify the equation and

write the product of right-handed Dehn twists along the boundary curves δ1, . . . , δ7

as a product of twenty right-handed Dehn twists along nonboundary parallel simple
closed curves on 62,7:

δ1δ2δ3δ4δ5δ6δ7

= a3a4a9b2σ5a10β5σ3σ6a5β3σ4a1a2a1a2γσa7

= a3a9b2σ5a10β5σ3σ6a5β3σ4(a4)a1a2a1a2a4a10(a1a2a3b1)
3σa7

= a3a9b2σ5a10β5σ3σ6a5β3σ4a1a2a3b1(a1a2a3b1)
2(a10)σa7

= a3a9(a10)b2σ5a10β5σ3σ6a5β3σ4a3(a1a2b1a1a2)a3b1(a1a2a3b1)σa7

= a3a9(a10b2a10)(a10σ5a10)β5σ3σ6a5β3σ4a3β̃a3b1(a1a2a3b1)σa7

= a3a9β̃1β̃2β5σ3σ6a5β3σ4a3β̃a3b1(a1a2a3b1)σa7,

where β̃1 = a10b2a10, β̃2 = a10σ5a10, β5 = a6b2a6, β3 = a3b2a3, and β̃ =
a1a2b1a1a2. Note that the simple closed curves σ5 and a10 intersect at 2 points.

Similarly, the eight-holed torus relation from [Korkmaz and Ozbagci 2008] sits
in 62,8 (see Figure 11):

δ1δ2δ3δ4δ5δ6δ7δ8 = α4α5β1σ3σ6α2β6σ4σ7α7β4σ5 = α4b1σ5α5β1σ3σ6α2β6σ4σ7α7,

where β1=α1b1α1, β4=α4b1α4, and β6=α6b1α6 in62,8. We identify the curves
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(δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8) in 61,8 with (δ1, δ8, δ7, δ6, δ5, a2, a1, δ2) in 62,8.
By applying the same technique, we also get the necessary relation for n = 8.

The eight-holed torus relation gives

a1a2δ1δ2δ5δ6δ7δ8 = a10b2σ5a11β1σ3σ6a8β6σ4σ7a4,

where β1 = a5b2a5 and β6 = a3b2a3. We combine this with the lantern relation
a1a2δ3δ4 = γσa7 for the sphere with four boundary curves δ3, δ4, a1, a2 in 62,8.
Using the star relation a4a11γ = (a1a2a3b1)

3 for the torus with three boundary
curves γ, a4, a11, we substitute γ = a4a11(a1a2a3b1)

3 in the lantern relation. We
simplify the equation as

δ1δ2δ3δ4δ5δ6δ7δ8

= a10b2σ5a11β1σ3σ6a8β6σ4σ7a4a1a2a1a2γσa7

= a10b2σ5a11β1σ3σ6a8β6σ4σ7a4a1a2a1a2a4a11(a1a2a3b1)
3σa7

= a10b2σ5a11β1σ3σ6a8β6σ4σ7a1a2a3b1(a1a2a3b1)
2(a11)σa7

= a10(a11)b2σ5a11β1σ3σ6a8β6σ4σ7a3(a1a2b1a1a2)a3b1(a1a2a3b1)σa7

= a10(a11b2a11)(a11σ5a11)β1σ3σ6a8β6σ4σ7a3β̃a3b1(a1a2a3b1)σa7

= a10β̃1β̃2β1σ3σ6a8β6σ4σ7a3β̃a3b1(a1a2a3b1)σa7,

where β1 = a5b2a5, β6 = a3b2a3, β̃ = a1a2b1a1a2, β̃1 = a11β2a11 and β̃2 =

a11σ5a11. Note that the simple closed curves σ5 and a11 intersect at 2 points.
By Lemma 5.1, for n > 12 there is no relation in the mapping class group

02,n inducing a genus 2 Lefschetz fibration CP2 # 13CP2
→ S2 with n disjoint

sections. For n = 1, . . . , 8, we did find relations giving n disjoint sections for
genus 2 Lefschetz fibration CP2 # 13CP2

→ S2. As a consequence, by using a
result of K. Chakiris, we observe:

Corollary 5.2. Any genus 2 holomorphic Lefschetz fibration without separating
singular fibers admits a section.

Proof. Chakiris [1978] showed that any genus 2 holomorphic Lefschetz fibration
without separating singular fibers is obtained by fiber-summing the three genus 2
Lefschetz fibrations given by the relations

(c1c2c3c4c2
5c4c3c2c1)

2
= 1, (c1c2c3c4c5)

6
= 1, and (c1c2c3c4)

10
= 1

in 02, where c1, . . . , c5 are the simple closed curves shown in Figure 3. As noted
in Section 2, each relation gives us a genus 2 Lefschetz fibration with total spaces
CP2 # 13CP2, K3 # 2CP2, and the Horikawa surface H , respectively.

For the Lefschetz fibrations with total spaces K3 # 2CP2 and H , it is known
that they have sections: The relation (c1c2c3c4c5)

6
= δ1δ2 in 02,2 gives 2 disjoint
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sections for the Lefschetz fibration K3#2CP2
→ S2, and (c1c2c3c4)

10
= δ1 in 02,1

gives a section for the Lefschetz fibration H → S2; see Figure 2.
Earlier, we found sections for the genus 2 Lefschetz fibration CP2#13CP2

→ S2.
By sewing the sections during the fiber-sum operation, we get a section for any
genus 2 holomorphic Lefschetz fibration without separating singular fibers. �

Remark 5.3. One may continue and try to write similar relations for 9≤ n≤ 12 to
see the exact number of disjoint sections that CP2 # 13CP2

→ S2 can admit. One
can also try to find the exact number of disjoint sections of the genus 2 Lefschetz
fibrations with total spaces K3 # 2CP2 and H , respectively. It is still not known
whether every genus g Lefschetz fibration over S2 admits a section.

Appendix

In this appendix, we deduce the relation

(a1b1a2b2)
5
= (a1b1a2)

4(b2a2b1a2
1b1a2b2),

used in Section 4.1; for the corresponding curves, see Figure 4.
Note that a1 intersects b1 transversely at a single point, and commutes with a2

and b2. Also note that a2 intersects b1 and b2 transversely at a single point, and
the simple closed curves b1 and b2 commute. By the commutativity and braid
relations, we have

(a1b1a2b2)
5
= (a1b1a2(b2))(a1b1a2b2)(a1b1a2b2)

3

= (a1b1a2)a1b1(b2a2b2)(a1b1a2b2)
3

= (a1b1a2)a1b1(a2b2a2)(a1b1a2b2)
3

= (a1b1a2)
2b2a2((a1)b1a2b2)(a1b1a2b2)

2

= (a1b1a2)
2a1b2(a2b1a2)b2(a1b1a2b2)

2

= (a1b1a2)
2a1b2((b1)a2(b1))b2(a1b1a2b2)

2

= (a1b1a2)
2a1b1(b2a2b2)(b1a1b1)a2b2(a1b1a2b2)

= (a1b1a2)
2a1b1(a2b2a2)(a1b1a1)a2b2(a1b1a2b2)

= (a1b1a2)
3b2a2((a1)b1a1)(a2)b2(a1b1a2b2)

= (a1b1a2)
3a1b2(a2b1a2)a1b2(a1b1a2b2)

= (a1b1a2)
3a1b2((b1)a2b1)a1(b2)(a1b1a2b2)

= (a1b1a2)
3a1b1(b2a2b2)b1a1(a1b1a2b2)

= (a1b1a2)
3a1b1(a2b2a2)b1a1(a1b1a2b2)

= (a1b1a2)
4(b2a2b1a2

1b1a2b2).
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