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We study biharmonic hypersurfaces in a generic Riemannian manifold. We
first derive an invariant equation for such hypersurfaces generalizing the
biharmonic hypersurface equation in space forms studied by Jiang, Chen,
Caddeo, Montaldo, and Oniciuc. We then apply the equation to show that
the generalized Chen conjecture is true for totally umbilical biharmonic
hypersurfaces in an Einstein space, and construct a 2-parameter family
of conformally flat metrics and a 4-parameter family of multiply warped
product metrics, each of which turns the foliation of an upper-half space of
R™ by parallel hyperplanes into a foliation with each leaf a proper bihar-
monic hypersurface. We also study the biharmonicity of Hopf cylinders of
a Riemannian submersion.

1. Biharmonic maps and submanifolds

All manifolds, maps, and tensor fields that appear in this paper are assumed to be
smooth unless stated otherwise.

A biharmonic map is amap ¢ : (M, g) — (N, h) between Riemannian manifolds
that is a critical point of the bienergy functional

Ep.2) =} [ leo)Px
Q

for every compact subset €2 of M, where 7(¢) = Trace, Vdg is the tension field
of ¢. The Euler-Lagrange equation of this functional gives the biharmonic map
equation [Jiang 1986b]

(D) ‘[2((p) := Trace, (V¥V¥ — VgM)T(QD) — Trace, RN (dg, t(¢))de =0,

which states that ¢ is biharmonic if and only if its bitension field 7%(¢) vanishes
identically. In this equation we used R" to denote the curvature operator of (N, h)
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defined by
RYX,V)Z=[V¥,V1Z — V% 2.

Clearly, it follows from (1) that any harmonic map is biharmonic and we call the
nonharmonic biharmonic maps proper biharmonic maps.

Let M™ be a submanifold of Euclidean space R" with the mean curvature vector
H viewed as amap H : M — R". B. Y. Chen [1991] called M™ a biharmonic
submanifold if AH = (AH L ..,AH ") = 0, where A is the Beltrami—Laplace
operator of the induced metric on M™. If we use i : M — R" to denote the
inclusion map of the submanifold, then the tension field of the inclusion map i is
given by t(i) = Ai = mH, and hence the submanifold M" C R”" is biharmonic if
and only if AH = A(%Ai) = %Azi = %‘L’z(i) = 0, that is, the inclusion map is
a biharmonic map. In general, a submanifold M of (N, k) is called a biharmonic
submanifold if the inclusion map i : (M, i*h) — (N, h) is a biharmonic isometric
immersion. It is well known that an isometric immersion is minimal if and only
if it is harmonic. So a minimal submanifold is trivially biharmonic, and we call a
nonminimal biharmonic submanifold a proper biharmonic submanifold.

Here are some known facts about biharmonic submanifolds:

Biharmonic submanifolds in Euclidean spaces. Jiang [1987] and then Chen and
Ishikawa [1998] proved that any biharmonic submanifold in R3 is minimal. In
[1992], Dimitri¢ showed that any biharmonic curve in R" is a part of a straight line,
any biharmonic submanifold of finite type in R" is minimal, any pseudoumbilical
submanifolds M™ C R" with m # 4 is minimal, and any biharmonic hypersurface
in R" with at most two distinct principal curvatures is minimal. Hasanis and Vla-
chos [1995] proved that any biharmonic hypersurface in R* is minimal. Based on
these results, B. Y. Chen [1991] made the still-open conjecture that any biharmonic
submanifold of Euclidean space is minimal.

Biharmonic submanifolds in hyperbolic space forms. Caddeo, Montaldo and Oni-
ciuc [2002] showed that any biharmonic submanifold in hyperbolic 3-space is
minimal, and that any m-dimensional pseudoumbilical biharmonic submanifold of
hyperbolic n-space is minimal if m # 4. It is shown in [Balmus et al. 2008] that any
biharmonic hypersurface of hyperbolic n-space with at most two distinct principal
curvatures is minimal. Based on these, Caddeo, Montaldo and Oniciuc [2001]
extended Chen’s conjecture to the generalized Chen conjecture: any biharmonic
submanifold in (N, &) is minimal if Riem” < 0.

Biharmonic submanifolds in spheres. The first example of a proper biharmonic
submanifold in $"*! was found in [Jiang 1986a] to be the generalized Clifford
torus S”(1/4/2) x S9(1/+/2) with p # ¢ and p + g = n. Caddeo, Montaldo, and
Oniciuc [2001] found a second type of proper biharmonic submanifolds in §"*+!
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to be the hypersphere $"(1/+/2), and also gave a complete classification of bi-
harmonic submanifolds in S3. Balmusg, Montaldo, and Oniciuc [2008] proved that
any pseudoumbilical biharmonic submanifold M™ C §"*! with m # 4 has constant
mean curvature, and also showed that if a hypersurface M" C §"*! with at most two
distinct principal curvatures (which by [Nishikawa and Maeda 1974] is equivalent
for n > 3 to saying that M is a quasiumbilical or conformally flat hypersurface in
§"*1) is biharmonic, then M is an open part of the hypersphere S”(1/+/2) or the
generalized Clifford torus S (1/ V2) x 89(1/+/2) with p #q and p+q =n. Zhang
[2008] found some examples of proper biharmonic real hypersurfaces in CP" and
determined all proper biharmonic tori 7" = S'(r) x S'(rp) x --- x S 1(r,,H)
in $2"*1. All known examples of biharmonic submanifolds in spheres are consis-
tent with the conjecture of [Balmus et al. 2008] that any biharmonic submanifold
in sphere has constant mean curvature, and any proper biharmonic hypersurface
in $"*! is an open part of the hypersphere S”(1/+/2) or the generalized Clifford
torus S”(1/+/2) x $9(1/+/2) with p # ¢ and p +¢q = n.

Biharmonic submanifolds in other model spaces. The survey article [Montaldo
and Oniciuc 2006] contains an account of the study of biharmonic curves in various
models. See [Arslan et al. 2005; Inoguchi 2004; Fetcu and Oniciuc 2009a; 2009b;
Sasahara 2005; 2008] for special biharmonic submanifolds in contact manifolds or
Sasakian space forms.

Biharmonic submanifolds in other senses. Some authors, for example, Javaloyes
and Merofo [2003], use the condition A H =0 to define a biharmonic submanifold
of a Riemannian manifold; this definition agrees with ours only if the ambient space
is flat. For conformal biharmonic submanifolds (that is, conformal biharmonic
immersions), see [Ou 2009].

This paper studies biharmonic hypersurfaces in a generic Riemannian mani-
fold. In Section 2, we derive an invariant equation for such hypersurfaces that
involves the mean curvature function, the norm of the second fundamental form,
the shape operator of the hypersurface, and the Ricci curvature of the ambient
space. We prove that the generalized Chen conjecture holds for totally umbilical
hypersurfaces in an Einstein space. Section 3 is devoted to constructing a family of
conformally flat metrics and a family of multiply warped product metrics, each of
which turns the foliation of an upper-half space of R™ by parallel hyperplanes into
a foliation with each leaf a proper biharmonic hypersurface. We accomplish these
by starting with hyperplanes in Euclidean space and then looking for a type of
conformally flat or multiply warped product metric on the ambient space that will
reduce the biharmonic hypersurface equation into ordinary differential equations
whose solutions give the metrics that render the inclusion maps proper biharmonic
isometric immersions. In Section 4, we study biharmonicity of Hopf cylinders
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given by a Riemannian submersion from a complete 3-manifold. Our method
shows that there is no proper biharmonic Hopf cylinder in S3, thus recovering
[Inoguchi 2004, Proposition 3.1].

2. The equations of biharmonic hypersurfaces

Recall that if ¢ : M — (N, h) is the inclusion map of a submanifold, or more
generally, an isometric immersion, then we have an orthogonal decomposition of
the vector bundle ¢ ~'TN = tM @ vM into the tangent and normal bundles. We
use dg to identify T M with its image T M in ¢ ~'TN. Then, for any X, Y € I'(T M)
we have V;/; (de((Y)) = V;}’ Y, whereas d(p(Vﬁ” Y) equals the tangential component
of VY. It follows that

2) Vde(X,Y) = V4(de(Y)) —de(VyY) = B(X, Y),

that is, the second fundamental form Vdg(X, Y) of the isometric immersion ¢
agrees with the second fundamental form B(X, Y) of the immersed submanifold
@(M) in N; for details see [Kobayashi and Nomizu 1969, Chapter 7] and [Baird
and Wood 2003, Example 3.2.3]. From (2) we see that the tension field 7 () of an
isometric immersion and the mean curvature vector field n of the submanifold are
related by

T(p) = mn.

For a hypersurface, that is, a codimension one isometric immersion ¢ of M™
into N1, we can choose a local unit vector field & normal to ¢(M) C N. Then
n = HE& for H the mean curvature function, and we can write B(X, Y) =b(X, Y)E&,
where b : TM x TM — C*°(M) is the second fundamental form. The relationship
between the shape operator A of the hypersurface with respect to the unit normal
vector field £ and the second fundamental form is given by

3) B(X.Y) =(V{Y,§)§ = —(Y, V¥§)§ = (AX, Y)§,
4) (AX,Y)=(B(X,Y),§) = (b(X,Y)§,8) =b(X,Y).
Theorem 2.1. Let ¢ : M™ — N+ be an isometric immersion of codimension one
with mean curvature vector n = HE. Then ¢ is biharmonic if and only if
AH — H|A> + HRicV(£,£) =0,

®) 1 2 . N T_
2A(grad H) + s;m grad H” —2H (Ric™ (§)) =0,

where Ric" : T,N — T, N denotes the Ricci operator of the ambient space, defined
by (Ric (Z), W) =Ric" (Z, W), and A is the shape operator of the hypersurface
with respect to the unit normal vector §.



BIHARMONIC HYPERSURFACES IN RIEMANNIAN MANIFOLDS 221

Proof. First choose a local orthonormal frame {e;};=1, ., on M such that the

orthonormal frame {dg(ey), ..., dg(e,), £} is adapted to the ambient space defined
on the hypersurface. Identifying dg(X) = X and V;’}W = V;}’ W and noting that
the tension field of ¢ is 7(¢) = mHE, we can compute the bitension field of ¢ as

m

() =) VEVEmHE) =V, (mHE) — RN (dg(er), mHE)dg(e:)
i=1

—mZ(elel(H)s+2e,(H)st+HvaNs (Veer)(H)s—HVy, )
i=1

—mH Z RY (dg(e;), £)dg(e;)

i=1

=m(AH)¢ —2mA(grad H) —mHAYE —mH Z RN(dgo(ei), E)dop(e;).
i=1

To find the tangential and normal parts of the bitension field, we first compute the
tangential and normal components of the curvature term, getting

D (RN (dg(e), )dg(ei), ex)er = —(Ric" (€, e))ex = —(Ric()) T,

i,k=1

D RV (dg(ei), T(9)dp(e;), &) = —mH Ric" (£, &).
i=1
To find the normal part of A&, we compute
6) (A%, 8) =) (-VIVNE+ VY &8 =) (V)E VNE).
i=1 i=1
On the other hand, using (3) and (4), we have

AP =Y (e e))? =Y (Ve )’ =S (VVE, S (Ve €j)e))

1 ij=1 i=1 j=1

IMS

<
Il

|
.ME

(Vg VDE),
1

which, together with (6), implies that

(AE)" = (AYE, £)E =) (VNE VIEE = AP
i=1
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A straightforward computation gives the tangential part of AY£ as

NE

(M%) = ) (=VIViE+Vy & eer

ik

Il
-

(N

m
(VY Aei — A(Veen), ex)ex =Y (Veb)(ex, e))ex.
i,k=1

NE

*»
Il
Z

i
Substituting the Codazzi—Mainardi equation for a hypersurface, namely,
(Ve,b)(ex, e) = (Ve,b)(er, i) = (RY (er, en)en) ™ = (RN (e, ex)e;, &),

into (7) and using normal coordinates at a point, we have

(A%E)" =D ((Veb)(exen))ex

i,k=1

m m
= Z(Z(v@bxei, 1) = Ric(€, ) )ex = m grad(H) — (Ric(§, ex))e.
k=1 i=1
Therefore, by collecting all the tangent and normal parts of the bitension field
separately, we finally have

()" = (t*(p), §)¢ =m(AH — H|A|* + HRic" (¢, §))E,
@) T =) (TX@), e
k:l
= —m(2A(grad H) + Sm(grad H*) — 2H (Ric(¢))"). a

As an immediate consequence of Theorem 2.1 is this:

Corollary 2.2. A constant mean curvature hypersurface in a Riemannian manifold
is biharmonic if and only if it is minimal or Ric" (£,6)=1|A> and (Ric" ENT=o0.
In particular, we recover [Oniciuc 2002, Proposition 2.4], which states that a
constant mean curvature hypersurface in a Riemannian manifold (N™*1, h) with
nonpositive Ricci curvature is biharmonic if and only if it is minimal.

Corollary 2.3. A hypersurface in an Einstein space (N, h) is biharmonic if
and only if its mean curvature function H is a solution of the PDEs

AH— HIAP + T

(8) m+1

2A(grad H) + tm grad H* =0,

=0,

where r is the scalar curvature of the ambient space. In particular, a hypersur-
face ¢ - (M™, g) — (N"TI(C), h) in a space of constant sectional curvature C is
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biharmonic if and only if its mean curvature function H is a solution of the PDEs
[Jiang 1987; Chen 1991; Caddeo et al. 2002]

AH — H|A>+mCH =0,

) | 5
2A(grad H) + sm grad H” = 0.

Proof. Tt is well known that if (N"*!, h) is an Einstein manifold, then

r

+1

and hence (Ric" (£))T = 0 and Ric" (¢, £) = r/(m + 1). From these and (5) we
obtain (8). When (N"*1(C), h) is a space of constant sectional curvature C, it is
an Einstein space with scalar curvature r = m(m + 1)C. Substituting this into (8)
we obtain (9). O

RicV(Z, W) = ——h(Z, W) forany Z, W € TN

Theorem 2.4. A totally umbilical hypersurface in an Einstein space with non-
positive scalar curvature is biharmonic if and only if it is minimal.

Proof. Take an orthonormal frame {ey, ..., ey, £} of (N1 h) adapted to the
hypersurface M so that Ae; = A;e;, where A is the Weingarten map of the hyper-
surface and A; is the principal curvature in the direction ¢;. Since M is assumed to
be totally umbilical, all principal normal curvatures at any point p € M are equal
to the same number A(p). It follows that

m

1
H:EE l<Ael-,e,‘>=x, |A)? = ma?,
1=

m
A(grad H) = A(Z(eik)ei) =1 grad?,
i=1

The biharmonic hypersurface equations (8) become

AL —mA + rh =0 and 2+m) gradk2 =0.
m+1
Solving these, we have either A = 0 and hence H = 0, or A = £+/r/(m(m + 1))
is a constant. The latter happens only if the scalar curvature is nonnegative, from

which we obtain the theorem. O

Remark 2.5. Theorem 2.4 generalizes the results of [Balmus et al. 2008; Caddeo
et al. 2002; Dimitri¢ 1992] about totally umbilical biharmonic hypersurfaces in a
space form. It also implies that the generalized Chen conjecture is true for totally
umbilical hypersurfaces in an Einstein space with nonpositive scalar curvature.
Note that nonpositive scalar curvature is a much weaker condition than nonpositive
sectional curvature.
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Corollary 2.6. Any totally umbilical biharmonic hypersurface in a Ricci flat man-
ifold is minimal.

Proof. This follows from Theorem 2.4 and the fact that a Ricci flat manifold is an
Einstein space with zero scalar curvature. ([

3. Proper biharmonic foliations of codimension one

In general, proper biharmonic maps as local solutions of a system of fourth order
PDEs are extremely difficult to unearth. Even in the case of biharmonic submani-
folds (viewed as biharmonic maps with geometric constraints), few examples have
been found. In this section, we construct families of metrics that turn some folia-
tions of hypersurfaces into proper biharmonic foliations, thus providing infinitely
many proper biharmonic hypersurfaces.

Theorem 3.1. For any constant C, let N = {(x1, ..., Xy, 2) € R | z > —C}
denote the upper half space. Then, the conformally flat space

_ 2 - 2 2
(N,h—f (z)(l;:dx, +dz ))

is foliated by proper biharmonic hyperplanes 7 = k, where k € R and k > —C, if
and only if f(z) = D/(z+ E), where E > C and D € R\ {0}.

Proof. Consider the isometric immersion
m
0@ 9~ (R h= @)Y dn?+d?))
i=1

with ¢(x1, ..., xm) = (X1, ..., Xy, k) and k being a constant, where the induced
metric g with respect to the natural frame d; = d/dx; fori = 1,2,...,m and
Om+1 = 0/0z has components

f2k) ifi=j,
0 ifi #j.
One can check that eq = f(z)04, where A = 1,2,...,m,m + 1, constitutes a
local orthonormal frame on R"*! adapted to the hypersurface z =k with & =e¢,, 1

being the unit normal vector field. A straightforward computation using Koszul’s
formula gives the coefficients of the Levi-Civita connection of the ambient space:

gij = 8(3;,0;) =h(dg(9;),dp(d))) o = {

femat 0 0 —f'e;
0 flemsr -+ 0 —fle

(Vesen) = P :
0 0 oo flema1 —fem

0 0 0 0

(m+1)x (m+1)
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Noting that & = e, is the unit normal vector field, we can easily compute the
components of the second fundamental form as

foifi=j=1,2,....m,

hiei, ej) = (Veej, - i
(ei,ej) =(Veej, emy1) {() otherwise,

from which we conclude that each of the hyperplanes z = k& is a totally umbilical
hypersurface in the conformally flat space.

We compute the mean curvature of the hypersurface and the norm of the second
fundamental form to be

m m
1
H=- D heie=f" and AP = |h(e;, e =mf”.
i=1 i=1
Since H depends only on z, we have grad, H = Y i ei(H)e; = 0 and hence
AgH =div(grad, H) =0. Therefore, by Theorem 2.1, the biharmonic equation of
the isometric immersion reduces to the system

m
(10) —AP+Ric"(£,6)=0 and ) (Ric" (€, en)e; = 0.

i=1

We can compute the Ricci curvature of the ambient space:
m
Ric(e;, &) = Ric(e;, emy1) = Y _(R(emi1.¢j)ej ei) =0 foralli=1,2,....m,
j=1
m

Ric(§, &) =Ric(ent1, emt1) = Z(R(€m+1, ej)ej, emi1) =mff" —mf>.
j=1

Substituting these into the system (10), we conclude that all isometric immer-
sions ¢ : R" — R™ h = f2(z)(Q1", dx;? + dz?)) with (x1, ..., xn) =
(X1, ..., Xm, k) are biharmonic if and only if ff” —2f">=0. This equation can be
written as (f'/f) — (f’/f)? = 0. This ordinary differential equation has solution
f(z)=D/(z+C), where C and D are constants. Since the mean curvature of the
hypersurface H = f'(k) is never zero, we conclude that each of the hyperplanes
7=k for k # —C is a proper biharmonic hypersurface in the conformally flat space
(N, h=((z+C)/D)* (XL, dx;* +dz?)). O

Theorem 3.2. The isometric immersion
¢ R?— (R, h = e?PDdx? + e2Ddy? 4+ dz?)
with ¢(x,y) = (x, y, c¢) is biharmonic if and only if

(11) p//+2p/2+q//+2q/2=0‘
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. IR 3 _
In particular, for any positive constants A, B, C, D, the upper half space R =
{(x,y,2) | z> 0} with metric h = (Az + B)dx? + (Cz + D)dy?* + dz? is foliated
by proper biharmonic planes 7 = constant.

Proof. Let ¢ be as stated, with ¢ being a positive constant. Using the notation
01 = 0d/dx, 9, =0/0dy and d3 = d/dz we can easily check that the induced metric
is given by

g1 = g1, 31) = h(dp(d), dp(d1)) o p = e*7,

g12 = g(91, 32) = h(dp(d1),dg(d2)) o9 =0,

g22= 8(32, 92) = h(d9(3), dp(3) 0 ¢ = ¥
One can also check that e; = e ?@9;, ey = ¢ 993, and e3 = 33 constitute an

orthonormal frame on Ri adapted to the surface z = ¢, with & = e3 being the unit
normal vector field. A further computation gives the Lie brackets

(12) [e1,e21 =0, [er,es]l=pler, [er, e31=¢qer,

and the coefficients of the Levi-Civita connection:

v€1el - _p/e3a velez - Oa Vele3 = p/el’
(13) Ve,e1 =0, Ve,e20=—q'es, Veez3=q'es,
Ve,e1 =0, Ve,e0 =0, Ve,e3 =0.

Since that § = e3 is the unit normal vector field, the components of the second
fundamental form are

h(ei, er) = (Veer,e3) =—p',

h(el’ 32) = <V€|627 e3> Oa

h(ey, e2) = (Ve,e2,€3) = —¢q'.
From these, the mean curvature of the isometric immersion is
(14) H=1(h(er, e1) +hier, e2) =—(p'+4')/2,

and the norm of the second fundamental form is
2
AP =) Ihei, en* = p*+4>.
i=1

Since H depends only on z we have gradg H =e;(H)e; +ey(H)ey =0 and hence
AgH =div(grad, H) = 0. Therefore, by Theorem 2.1, the biharmonic equation
of the isometric immersion reduces to (10) with m = 2. To compute the Ricci
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curvature of the ambient space we can use (12) and (13) to get

’

Ric(ey, &) = Ric(er, e3) = (R(e3, e2)ez, 1) =0
Ric(ez, §) = Ric(ez, e3) = (R(e3, e1)er, e3) =0,
Ric(§, §) = Ric(es, e3) = (R(e3, e1)ey, e3) + (R(e3, e2)ea, e3)
_ ” 2 " 2
=—p —pPp —q —q .
Substituting these into (10) with m = 2, we conclude that ¢ is biharmonic if and
only if (11) holds, which gives the theorem’s first statement. The second is obtained
by looking for the solutions of (11) satisfying p” +2p"> =0 and g” +2¢’> =0. In
fact, we have special solutions p(z) = % In(Az+ B) and ¢(z) = % In(Cz+ D) with
positive constants A, B, C, D. By (14) and the choice of these constants, we see
that the mean curvature of the surface z = c is
2ACz+AD+BC
2(Az+B)(Cz+D)

and hence each such surface is a nonminimal biharmonic surface. |

H=-

# 0,

Remark 3.3. Theorem 3.2 has a generalization to a higher dimensional space R}
for m > 3.
Example 3.4. Let A(t) = /At + B, where A and B are positive constants. Then
the warped product space N = (§? x R*, h = AZ(t)gS2 + dt?) is foliated by the
spheres (S%x {1}, A2(t) gSz), each of which is a totally umbilical proper biharmonic
surface.

To see what is claimed in Example 3.4, we parametrize the unit sphere S by
spherical polar coordinates:

RxR>(p,0) — (cosp,sinpcosb,sinpsinb)) € R3.

Then, the standard metric can be written as gS2 =dp*+ sin? p d6?, and the warped
product metric on N takes the form h = A2(H)dp>+2%() sin’ p d0?+dr?. Consider
the isometric immersion ¢ : S2 — (R* x S2, dt2+12(1)g5") with ¢ (p, 6) = (p, 0, c)
and ¢ being a positive constant. Using the notation d; = d/dp, 9 = 9/06 and
d3 = d/0t, we can easily check that the induced metric is given by

g11 = g1, 91) = h(de(d1), dp(d1)) 0 ¢ = 1>(c),
g12=g(01, 32) = h(de(d1), dp(d2)) o9 =0,
82 = g(92, 02) = h(dp(D2), dp(32)) 0 9 = A*(c) sin” p.
Using the orthonormal frame e; =A=' ()9, ez = (A(¢) sin p)~'9, and e3 = 33, we

have the Lie brackets

[e1,ex] = —(cotp/A)er, [e1,e3]l= fer, lez,e3]= fey,
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where here and in the sequel we use the notation f = (In1)’ =1'/A. Clearly, ey, e>
and £ = e3 = 03 constitute a local orthonormal frame of N adapted to the surface
with & being the unit vector field normal to the surface. We can use the Kozsul
formula to compute the components of the second fundamental form as

h(ey, e1) = (Ve e, §) = (Ve e, €3)
= L(—(e1. [e1, e3]) — (e1, [e1, e3]) + (e3. [e1, e11)) = — f.
h(ela 62) = <v€]€25 S) = <v61627 e3> = 07

h(627 62) = <v€2827 S) = <v€2627 €3> = _fv

from which we conclude that each such sphere is a totally umbilical surface in N.
The mean curvature of the isometric immersion and the norm of the second

fundamental form are
2

H=j(h(er,e1)+hlez, e)=—f and [AP =) |h(e;, e)]> =21,
i=1
which depend only on 7. It follows that grad, H =0 and A, H = 0. Therefore, by
Theorem 2.1, the proper biharmonic equation of ¢ reduces to (10) with m = 2.
On the other hand, using the Ricci curvature formula (for example [Besse 2008])
of the warped product M = B x; F, we have

Ric(eq, &) =Ric(eq, e3) =0, Ric(es, &) = Ric(ep, e3) =0,
Ric(&, &) = Ric(es, e3) = RicR(e3, e3) — (2/A) Hess; (e3, €3)
= —(2/0)(e3(e31) — dA(Vee3)) = =217 /4.

Substituting these into (10) with m = 2 we conclude that the isometric immersion
Q: 2 (§2xRT, kz(t)g52+dt2) with ¢(p, ) =(p, 6, ¢) is biharmonic if and only
if —2(3’/A)% —21" /1 = 0. Solving this final equation, we have A(r) = «/Ar + B,
proving the claim in Example 3.4.

Remark 3.5. The referee points out that the biharmonicity of the inclusion maps
in Example 3.4 is in fact a special case of [Balmus et al. 2007, Corollary 3.4],
which was proved by a different method.

4. Biharmonic cylinders of a Riemannian submersion

Let 7 : (M3, g) — (N2, h) be a Riemannian submersion with totally geodesic
fibers from a complete manifold. Let @ : I — (N 2 h) be an immersed regular
curve parametrized by arclength. Then ¥ = |J,, 7 N a(r)) is a surface in M
that can be viewed as a disjoint union of all horizontal lifts of the curve «. Let
{X = o', £} be a Frenet frame along «, and let i be the geodesic curvature of the
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curve. Then the Frenet formula for « is given by

VX =kE,
Vié = kX,

where V denotes the Levi-Civita connection of (N,h). Let B: I — (M3, g)bea
horizontal lift of . Let X and £ be the horizontal lifts of X and £, respectively. Let
V be the unit vector field tangent to the fibers of the submersion 7. Then {X, &, V'}
is an orthonormal frame of M adapted to the surface, with & the unit normal vector
of the surface. The restriction of this frame to the curve g is the Frenet frame
along B. Therefore, the Frenet formula along f is given by

VXX :KS,
(15) Vxé=—«kX+1V,
VXV = —Té:,

where V denotes the Levi-Civita connection of (M, g). Since a Riemannian sub-
mersion preserves the inner product of horizontal vector fields, we can check that
k =kom and T = (Vxé&, V) = (Ax&, V) is the torsion of the horizontal lift that
vanishes if the Riemannian submersion has integrable horizontal distribution; here
A is the A-tensor of the submersion [O’Neill 1966]. In what follows, we will use
the frame {X, &, V'} to compute the mean curvature, second fundamental form, and
other terms that appear in the biharmonic equation of the surface X.
Using (15) we have
A(X)=—(Vx&, X)X —(Vx&, V)V =kX -1V,
A(V)=—(Vy§, X)X —(VyE, V)V = —1X,
b(Xa X)=<A(X)’X>=Ks b(X’ V)=<A(X)’ V>=_T,
b(V,X)=(A(V), X) = —, b(V,V)=(A(V),V)=0;
H=3bX,X)+b(V,V)) =i,
A(grad H) = AX )X + V(G0 V) = X Gr)AX) = 3’ (kX —TV);
AH=XX(H)— (VxX)H+VV(H)— (VyV)H = 3«’;
AP = (b(X, X))* + (0(X, V)* + (B(V, X))? + (b(V, V) = > + 21,

Substituting these into the biharmonic hypersurface equation (5), we conclude that
the surface ¥ is biharmonic in (M3, g) if and only if

1" = Sk (e +21%) + e RicM (£, 6) = 0,

K' (kX —TV) + 2ki’X —k Ric™ (&, X)X — k Ric” (€, V)V =0.
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These are equivalent to
k" —k(k*+2t%) +x RicM (£, £) =0,
(16) 3k'k — 2k RicM (£, X) =0,
k't 4+ Kk RicY (g, V) =0.

Applying (16) to Hopf fibration 7 : S* — S? we have the following corollary,
which recovers [Inoguchi 2004, Proposition 3.1].

Corollary 4.1. There is no proper biharmonic Hopf cylinder in S>.

Finally, applying (16) to the submersions 77 : S> xR — S? and 7 : H> x R — H?
yields another corollary:

Corollary 4.2. (1) The Hopf cylinder ¥ = |, 7Y a(t)) is a proper bihar-
monic surface in S* x R if and only if the directrix o : [ — (82, h) is a part of
a circle in S? with radius ~/2/2;

(2) The Hopf cylinder ¥ =, 7~ Ya(t)) is biharmonic in H* x R if and only
if it is minimal.
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