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Using the technique of singular fibers of C∞ stable maps, we give a new
proof to the theorem, originally due to Rohlin, that the oriented cobordism
group of 4-dimensional manifolds is infinite cyclic and is generated by the
cobordism class of the complex projective plane. A byproduct is a new and
transparent proof of the signature formula, originally due to T. Yamamoto
and the author, for 4-dimensional manifolds in terms of singular fibers.

1. Introduction

Saeki [2004] developed the theory of singular fibers of generic differentiable maps
f : M → N between manifolds with dim M > dim N . In particular, C∞ stable
maps with (dim M, dim N )= (2, 1), (3, 2) and (4, 3) were thoroughly studied and
their singular fibers were completely classified up to a natural equivalence. (For
precise definitions, see [Golubitsky and Guillemin 1973] and Section 2. For the
case of maps between nonorientable manifolds, see [Yamamoto 2006] as well.)

In this paper, we use these classifications of singular fibers to determine the
structures of N2, �2, �3 and �4, where Nn and �n are the cobordism group and
oriented cobordism group, respectively, of manifolds of dimension n. These groups
were central objects of study in differential topology in the middle of 20th century,
and their structures have been completely clarified. Our main objective here is
to use classifications of singular fibers of C∞ stable maps to show that �4 is an
infinite cyclic group generated by the cobordism class of the complex projective
plane, and that the signature function�4→Z gives an isomorphism. This theorem
is originally due to Rohlin [1952]; see also [Guillou and Marin 1986].

The idea of our proof, which is constructive, is as follows. If we have a smooth
map f of a closed oriented 4-manifold M into a 3-manifold N , then a regular fiber
is a finite disjoint union of circles. In particular, if f is nonsingular, then M is a
circle bundle over a 3-manifold and therefore bounds the associated 2-disk bundle.
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If f has singularities and is generic enough, then the 4-manifold M is decomposed
into several pieces according to the classification of singular fibers. For example,
regular fibers correspond to a circle bundle over a 3-manifold. Furthermore, we can
find a “canonical” 5-manifold for each such piece, except for that corresponding
to specific singular fibers, called singular fibers of type III8 in [Saeki 2004]. By
gluing these 5-manifold pieces to M × [0, 1], we get a cobordism between M
and a finite disjoint union of copies of a certain 4-manifold, each corresponding
to a singular fiber of type III8. In this paper, we will show that this 4-manifold
is in fact diffeomorphic to the complex projective plane CP2 up to orientation.
This observation shows that CP2 is a natural representative of the generator of
the 4-dimensional oriented cobordism group �4, since our proof is natural and the
appearance of CP2 is not artificial. We may also say that we give a modern proof
of the classical Rohlin’s theorem from a singularity theoretical viewpoint.

As a corollary to our argument, we get a new and constructive proof of the
signature formula proved in [Saeki and Yamamoto 2006]: the signature of a 4-
manifold M coincides with the number of singular fibers of type III8 counted with
signs for any C∞ stable map f :M→ N into a 3-manifold. The proof depended on
the classification of singular fibers of C∞ stable maps of n-dimensional manifolds
into (n−1)-dimensional manifolds for n ≤ 5, whereas our proof here needs only
the classification of such singular fibers for n ≤ 4.

The paper is organized as follows. In Section 2, we review some prerequisite
notions about cobordisms of manifolds and singular fibers of differentiable maps.
In Section 3, we show that N2∼=Z2 and �2= 0 using the classification of singular
fibers of Morse functions on surfaces. We will see that the real projective plane
RP2 is a natural representative of the generator of N2 and that the Euler character-
istic modulo two gives an isomorphism N2→ Z2. Although the argument is quite
elementary, the proof will turn out to be a good guideline for the 4-dimensional
case. In Section 4, we will show that �3 = 0 using the classification of singular
fibers of C∞ stable maps of 3-manifolds into surfaces. A similar idea has been used
by Costantino and D. Thurston [2008] in a proof that every 3-manifold efficiently
bounds a 4-manifold. In fact, the idea of this paper is based on their work. In
Section 5, we will show that �4 ∼= Z by using the classification of singular fibers
of C∞ stable maps of 4-manifolds into 3-manifolds. As a corollary, we will also
show that if f : M → N is a generic differentiable map between manifolds with
dim M−dim N =1 that has only singular fibers of codimension≤3 and no singular
fiber of type III8, then M is null cobordant. We note that the results in this paper
depend on a bundle structure theorem for singular fibers of stable maps due to
Kalmár [2008, Section 5; 2009, Section 6].

Throughout the paper, all manifolds and maps are differentiable of class C∞.
The symbol ∼= denotes a diffeomorphism between manifolds or an appropriate
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isomorphism between algebraic objects. For a closed surface 6 and a positive
integer m, we denote by 6(m) the surface 6 with m open disks removed. We
denote by cl(A) the closure of a subset A of a topological space.

2. Preliminaries

Let n be a nonnegative integer. Two closed oriented (possibly disconnected) n-
dimensional manifolds M0 and M1 are oriented cobordant if there is a compact
oriented (n+1)-dimensional manifold V such that ∂V = (−M0)∪M1 as oriented
manifolds, where −M0 denotes the manifold obtained by reversing the orientation
of M0. This defines an equivalence relation on the set of all closed oriented
manifolds of dimension n, and the oriented cobordism class of a closed oriented
manifold M is denoted by [M].

We denote by �n the set of all oriented cobordism classes of closed oriented n-
dimensional manifolds. This clearly forms an additive group under the operation
given by [M]+[M ′]= [M∪M ′]. The abelian group�n is called the n-dimensional
oriented cobordism group.

If we ignore the orientations of the manifolds in these definitions above, then
we get the usual notion of a cobordism, and the set of all cobordism classes of
closed (possibly nonorientable) n-dimensional manifolds is denoted by Nn , which
is called the (unoriented) n-dimensional cobordism group.

These groups were formulated and studied in the middle of 20th century, and
their structures have been completely determined. For example, see [Milnor and
Stasheff 1974; Pontryagin 1955; Thom 1954; Wall 1959]. In particular, �n and
Nn are a finitely generated Z-module and Z2-module, respectively. (Historically,
Pontrjagin [1955] first introduced such groups to compute certain homotopy groups
of spheres. Thom [1954] reduced the computation of the cobordism groups to
the study of homotopy groups of certain spaces, and then the structures of the
cobordism groups have been determined by several authors.)

We now recall some definitions about singular fibers. See [Saeki 2004].

Definition 2.1. Let fi : Mi → Ni be maps between manifolds and take points
yi ∈ Ni for i = 0, 1. We say that the fibers over y0 and y1 are C∞ equivalent
if for some open neighborhoods Ui of yi in Ni , there exist diffeomorphisms ϕ̃ :
( f0)

−1(U0)→ ( f1)
−1(U1) and ϕ :U0→U1 with ϕ(y0)= y1 such that the following

diagram is commutative:

(( f0)
−1(U0), ( f0)

−1(y0))
ϕ̃ //

f0

��

ϕ̃ // (( f1)
−1(U1), ( f1)

−1(y1))

f1

��
(U0, y0)

ϕ // (U1, y1).
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When y ∈ N is a regular value of a map f : M → N between manifolds, we call
the C∞ equivalence class of the fiber over y (or the space f −1(y)) a regular fiber;
otherwise, we call it singular.

Given f :M→ N and a point y ∈ N , consider the map f ×idR :M×R→ N×R,
where idR is the identity map of the real line R. Then the fiber of f × idR over the
point (y, 0) ∈ N ×R is called the suspension of the fiber of f over y.

For certain dimension pairs (dim M, dim N ), singular fibers of C∞ stable maps
(defined below) of M into N have been classified up to C∞ equivalence. For
details, see [Saeki 2004; Yamamoto 2006; Yamamoto 2007].

Definition 2.2. For manifolds M and N , we denote by C∞(M, N ) the space of all
smooth maps of M into N , endowed with the Whitney C∞ topology. We say that
a smooth map f : M→ N is a C∞ stable map if there exists a neighborhood U f

of f in C∞(M, N ) such that for each g ∈U f , the diagram

M ψ̃ //

f
��

M

g
��

N
ψ // N

commutes for some diffeomorphisms ψ̃ and ψ ; for details, see [Golubitsky and
Guillemin 1973].

It is known that a smooth function M→R on a closed manifold M is C∞ stable
if and only if it is a Morse function, that is, if and only if its critical points are all
nondegenerate and have distinct critical values. Furthermore, if dim N ≤ 5, then
the set of C∞ stable maps is open and dense in C∞(M, N ); see [Mather 1971].

Let us recall the following notion of a Stein factorization, which will play an
important role in this paper.

Definition 2.3. Let f : M→ N be a smooth map between smooth manifolds. For
two points x, x ′ ∈ M , we define x ∼ f x ′ if f (x)= f (x ′), and the points x and x ′

belong to the same connected component of a fiber of f . We define Wf = M/∼ f

to be the quotient space with respect to this equivalence relation, and q f :M→Wf

denotes the quotient map. Then it is easy to see that there exists a unique continuous
map f̄ :Wf → N such that the following diagram commutes:

M

q f   

f // N

Wf

f̄

>>

This diagram is called the Stein factorization of f ; see [Levine 1985].
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(1)

(2)

(3)

Figure 1. List of C∞ equivalence classes of singular fibers for
Morse functions on surfaces.

If f is a proper C∞ stable map, then Wf is a polyhedron and all the maps
appearing in this diagram are triangulable; for details, see [Hiratuka 2001].

The Stein factorization is a very useful tool for studying topological properties
of C∞ stable maps.

3. Two-dimensional cobordism group

In this section, we show that N2∼=Z2 and�2=0 using the classification of singular
fibers of Morse functions on surfaces.

Let M be an arbitrary closed 2-dimensional manifold, possibly disconnected or
nonorientable. It is known that there always exists a Morse function f : M → R.
The singular fibers of such Morse functions are classified as in Figure 1, which
may be folklore; for details, see [Saeki 2004].

Construct a compact 3-dimensional manifold V whose boundary includes M by
attaching certain pieces to M ×[0, 1], as follows.

Let Wf be the quotient space in the Stein factorization of f = f̄ ◦q f . It is a graph
whose vertices correspond to connected components of singular fibers: the degree
of a vertex is equal to 1, 3 or 2 if it corresponds to the connected component of
the singular fiber as (1), (2) or (3) of Figure 1, respectively, containing the critical
point; see Figure 2 for an example.

For an edge e of Wf , set e′=cl(e\N0), where N0 is a small regular neighborhood
of the set of vertices in Wf and cl denotes the closure in Wf . Since the map
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q f

M = M ×{0}
N0

e

e′

q−1
f (e

′)×{0}

Wf

Figure 2. Constructing the 3-manifold V .

q f restricted to q−1
f (e

′) is a locally trivial fiber bundle over e′ with fiber S1, it
is diffeomorphic to S1

× e′. Let us glue a 2-handle D2
× e′ to M × [0, 1] by

identifying ∂D2
×e′ and q−1

f (e
′)×{0} by using the diffeomorphism above. Let us

perform this operation for each edge of Wf and denote by V the resulting compact
3-dimensional manifold. For an example of the union of M×{0} and the 2-handles,
see Figure 2.

We see that the boundary ∂V is a disjoint union of M × {1} and some closed
surfaces F j , where each F j corresponds to a singular fiber of f . More precisely,
let v be a vertex of Wf and N0(v) its small regular neighborhood in Wf , which is
a component of N0. Then, the corresponding surface F j is diffeomorphic to the
union of q−1

f (N0(v)) and some 2-disks attached to the regular fibers corresponding
to N0(v)∩ cl(Wf \ N0).

Thus, according to the classification of singular fibers as in Figure 1, we see that
each surface F j is connected and is diffeomorphic to S2 for the singular fibers as
in (1) and (2) of Figure 1, and to RP2 for that in Figure 1(3). See Figure 3.

Since S2
= ∂D3 is null cobordant, we have proved the following.

Lemma 3.1. Every closed surface is cobordant to the disjoint union of a finite
number of copies of RP2.

The cobordism class [RP2
∪RP2

] is zero since RP2
∪RP2 is the boundary of

the compact 3-manifold RP2
×[0, 1]. Let us consider the homomorphism

ϕ : Z2→N2, 1 7→ [RP2
],

where 1 ∈ Z2 is the generator. This is a well-defined homomorphism, and is sur-
jective by Lemma 3.1.
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RP2

∼ =

∼ =

∼= S2

∼= S2

∪

(1)

(2)

(3)

Singular fiber F j

Figure 3. Surface F j appearing around each singular fiber.

Let

(3-1) χ2 :N2→ Z2

be the homomorphism defined by associating to each cobordism class the Euler
characteristic modulo two of its representative. Using standard techniques in alge-
braic topology, we can show that this defines a well-defined homomorphism; for
example, see [Thom 1952].

Since the Euler characteristic of RP2 is equal to 1, we see that the composition
χ2 ◦ ϕ : Z2 → Z2 is the identity. Therefore, ϕ must be injective. Thus, we have
proved the following.

Theorem 3.2. The 2-dimensional cobordism group N2 is cyclic of order two and
is generated by the cobordism class of RP2. In fact, the homomorphism (3-1) is an
isomorphism.

Our proof does not depend on the classification of closed surfaces.
As a corollary to the proof, we also get the following, which was originally

obtained in [Saeki 2004].
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κ = 1

κ = 2

I0 I1

II2 II3 IIa

Figure 4. List of C∞ equivalence classes of singular fibers of C∞

stable maps of orientable 3-manifolds into surfaces.

Corollary 3.3. Let f : M→ R be a Morse function on a closed surface M. Then,
the number of singular fibers of f as in Figure 1(3) has the same parity as the
Euler characteristic of M.

If a closed surface M is oriented, then a singular fiber as in Figure 1(3) never
appears, since its neighborhood is nonorientable. Furthermore, the 3-manifold V
constructed above is orientable, since M × [0, 1] is orientable and attaching a 2-
handle does not alter the orientability of a 3-manifold. Moreover, V can be oriented
so that its oriented boundary consists of M and some 2-spheres. Thus:

Corollary 3.4. The 2-dimensional oriented cobordism group �2 vanishes.

4. Three-dimensional oriented cobordism group

In this section, we show that �3 = 0 by using the classification of singular fibers
of C∞ stable maps of closed orientable 3-manifolds into surfaces.

For M a closed oriented 3-manifold, there always exists a C∞ stable map f
from M into any surface N ; for example, see [Kushner et al. 1984; Levine 1985].
Singular fibers of such maps have been classified in [Saeki 2004] up to C∞ equiv-
alence; see also [Kushner et al. 1984; Levine 1985]. The connected components
of singular fibers containing singular points are as depicted in Figure 4, where
each figure represents the connected component of the inverse image of a point in
the target. (In fact, it is known that two such singular fibers are C∞ equivalent if
and only if the corresponding inverse images are diffeomorphic to each other. For
details, see [Saeki 2004].) Furthermore, in Figure 4, κ denotes the codimension of
a singular fiber, that is, it is the codimension of the set of those points in the target
over which lies a relevant singular fiber. Following the convention introduced in
[Saeki 2004], we use the notation I0, I1 and so on for the C∞ equivalence classes
of singular fibers. The I0-type (or I1-type) singular fiber is the suspension of the
singular fiber for Morse functions as in Figure 1(1) (respectively Figure 1(2)).

A C∞ stable map of a 3-manifold into a surface has only fold and cusp singu-
larities [Kushner et al. 1984; Levine 1985]. A singular fiber (or the corresponding
inverse image) can be regarded as a graph: a fold point corresponds to an isolated
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vertex or to a vertex of degree four, and a cusp point corresponds to a cuspidal
vertex of degree two (see Figure 4).

Let Wf be the quotient space in the Stein factorization of a C∞ stable map
f from a closed oriented 3-manifold M into a surface N . The space Wf is a
compact 2-dimensional polyhedron and its local structure is completely determined
[Kushner et al. 1984; Levine 1985]. Let W (0) denote the q f -image of the singular
fibers of κ = 2, and let W (1) denote the q f -image of the singular fibers of κ ≥ 1
(more precisely, they are the q f -images of the components of the relevant singular
fibers containing singular points). Note that W (0) is a finite set of points and W (1)

is a 1-dimensional subcomplex of Wf whose complement is a nonsingular surface.
For i = 0, 1, we denote by N (i) a small regular neighborhood of W (i) in Wf . We
set N0= N (0), N1= cl(N (1)

\N (0)) and N2= cl(Wf \N (1)), where N1 is regarded
as a regular neighborhood of cl(W (1)

\ N (0)) in cl(Wf \ N (0)). Note that Wf is
decomposed as

Wf = N0 ∪ N1 ∪ N2.

Let us construct a compact 4-dimensional manifold V by attaching certain pieces
to M×[0, 1] as follows. First note that q f restricted to q−1

f (N2) is a locally trivial
fibration with fiber S1 over the surface N2. Thus, we can attach the total space of the
associated D2-bundle over N2 to M × [0, 1] by identifying the associated (∂D2)-
bundle with q−1

f (N2)× {0}. (Here, we use the well-known fact that the structure
group of every smooth S1-bundle can be reduced to the orthogonal group O(2).)
The resulting 4-manifold is denoted by V1. Note that V1 is orientable, since M and
q−1

f (N2) are orientable as 3-manifolds.
Let V ′1(⊂V1) denote the union of M×{0} and the D2-bundle over N2. There is a

natural map q1 :V ′1→Wf , which on M×{0} is defined by q f :M×{0}=M→Wf ,
and on the D2-bundle is defined by the projection to N2.

Let e be a connected component of cl(W (1)
\ N0). Note that e is an arc or

a circle. Let N1(e) denote the connected component of N1 containing e. If the
singular fiber lying over a point in e is of type I0, then q−1

f (N1(e)) is diffeomorphic
to the total space of a D2-bundle over e [Kushner et al. 1984; Levine 1985]. In
fact, N1(e) is diffeomorphic to e × [0, 1] by a diffeomorphism that induces the
identity e(⊂ N1(e))→ e×{0}, and if J (∼= [0, 1]) is a fiber of the natural fibration
N1(e)→ e, then q f restricted to q−1

f (J )∼= D2 is equivalent to the function

(4-1) (x, y) 7→ x2
+ y2.

(In fact, the commutative diagram

q−1
f (N1(e))

''

q f // N1(e)

yye
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can be regarded as a fiber bundle with the map D2
→ [0, 1] defined by (4-1) as

fiber in an appropriate sense. For details, see [Kalmár 2008, Section 5; Kalmár
2009, Section 6].)

Therefore, q1 restricted to q−1
1 (N1(e)) followed by the natural projection from

N1(e) to e is an S2-bundle, where the fiber of this fibration can be identified
with the 2-sphere as in Figure 3(1) in Section 3. Then, we can attach the asso-
ciated D3-bundle over e to V1, where we identify the associated (∂D3)-bundle
with q−1

1 (N1(e)). Here, we use the fact that the structure group of every smooth
S2-bundle can be reduced to O(3); see [Smale 1959]. Note that the resulting 4-
manifold is orientable, since so is V1 and the orientability of q−1

1 (N1(e)) coincides
with that of q−1

f (N1(e)) (⊂ M).
If the singular fiber lying over a point in e is of type I1, then the natural projection

N1(e)→ e defines a Y -bundle, where

Y = {r exp (2π
√
−1k/3) ∈ C | 0≤ r ≤ 1, k = 0, 1, 2}.

Moreover, q−1
f (N1(e)) is diffeomorphic to the total space of an S2

(3)-bundle over e,
where S2

(3) denotes the 2-sphere with three open disks removed. Then, q1 restricted
to q−1

1 (N1(e)) followed by the natural projection N1(e)→ e is again an S2-bundle,
but with fiber as in Figure 3(2), and we can attach the associated D3-bundle.

We perform the operation described above for each e. The resulting 4-manifold,
denoted by V , is a compact 4-dimensional manifold that is orientable. Furthermore,
it can be oriented so that

∂V = (M ×{1})∪
(
−
⋃

j F j
)
,

where each F j is a closed oriented 3-manifold corresponding to a singular fiber
of f of κ = 2.

Lemma 4.1. The closed 3-manifold F j is diffeomorphic to the 3-sphere S3 for
every singular fiber of κ = 2.

In fact, for the singular fibers of types II2 and II3, this lemma has been essentially
obtained in [Costantino and Thurston 2008]. Here we give a proof from a different
viewpoint in a way that is useful in Section 5.

Proof. Let v be a point in Wf that is the q f -image of a singular fiber of type II2.
Then, its regular neighborhood N0(v) in Wf is of the form depicted in Figure 5,
where N0(v) is the component of N0 containing v. Note that f̄ (N0(v))∼= J1× J2

with J1 = J2 = [−1, 1].
Then, the map f restricted to q−1

f (N0(v)) can be regarded as a 1-parameter
family of functions on S2

(4) with only nondegenerate critical points as depicted in
Figure 6. This family is parametrized by J1, where for each parameter value the
relevant function is regarded as a height function S2

(4)→ J2.
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v

N0(v)

Figure 5. Neighborhood of the q f -image of a II2-type singular fiber.

In constructing V1, we attached to each S2
(4) 2-disks along the four boundary

circles so that we get a 2-sphere. Along the 2-spheres for t = ±1, we attached
3-disks to construct V . Thus, the relevant 3-manifold F j is diffeomorphic to a
manifold obtained by attaching two 3-disks to S2

× [−1, 1] along the boundaries,
and is therefore diffeomorphic to the 3-sphere S3.

The same argument can be applied for the singular fiber of type II3. The regular
neighborhood of a corresponding point in Wf is shown in Figure 7.

Finally, for the singular fiber of type IIa , a similar argument can be applied as
follows. The regular neighborhood of a corresponding point in Wf is shown in the
top of Figure 8. The map f restricted to the inverse image of the neighborhood

t =−1

t = 0

t = 1

J1

J2

Figure 6. 1-parameter family of functions on S2
(4) corresponding

to a II2-type singular fiber.
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Figure 7. Neighborhood of the q f -image of a II3-type singular fiber.

Figure 8. The case of a singular fiber of type IIa .

with respect to q f can be regarded as a 1-parameter family of smooth functions
on the annulus corresponding to a birth-death of a pair of nondegenerate critical
points as shown in the bottom of Figure 8. Thus, the resulting 3-manifold F j is
again diffeomorphic to S3.

This completes the proof of Lemma 4.1. �

Since S3 is the oriented boundary of an oriented 4-disk, we see that M bounds
a compact oriented 4-manifold. Therefore, we have proved the following.
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III4 III5 III6

III7 III8 IIIb

IIIc IIId IIIe

Figure 9. Singular fibers of C∞ stable maps of orientable 4-
manifolds into 3-manifolds of κ = 3.

Theorem 4.2. The 3-dimensional oriented cobordism group �3 vanishes.

This result is originally due to Rohlin [1951] and Thom [1952]. In fact, our
argument resembles that in [Costantino and Thurston 2008].

Remark 4.3. Kalmár [2009] showed that for every C∞ stable map f of a closed
orientable 3-manifold M into the plane, singular fibers of types II2, II3 and IIa can
be eliminated by cobordism. Using this result, he showed that �3 = 0. For details,
see [Kalmár 2009, Remark 2.8].

5. Four-dimensional oriented cobordism group

In this section, we show that the oriented cobordism group�4 is infinite cyclic and
is generated by the cobordism class of CP2, using the classification of singular
fibers of C∞ stable maps of orientable 4-manifolds into 3-manifolds.

For M a closed oriented 4-manifold, there always exists a C∞ stable map f
from M into any 3-manifold N ; for example, see [Saeki 2004]. Singular fibers of
such maps were classified up to C∞ equivalence in [Saeki 2004]. The connected
components of singular fibers containing singular points are shown in Figure 9 in
addition to the singular fibers of codimension κ = 1 and 2 that are suspensions of
the singular fibers as in Figure 4. (For the singular fibers of κ ≤ 2, we continue to
use the same notation I0, I1, and so on as in Figure 4 for the suspensions as well.)

A C∞ stable map of a 4-manifold into a 3-manifold has only fold, cusp, and
swallowtail singularities. A fold point corresponds to an isolated point or to a trans-
verse crossing point of two line segments, a cusp point corresponds to a cuspidal
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vertex of degree two in a singular fiber, and a swallowtail point corresponds to an
isolated point (depicted by a black square in Figure 9, IIIc) or to a tangency point
of two touching parabolas.

Let Wf be the quotient space in the Stein factorization of a C∞ stable map f of
a closed oriented 4-manifold M into a 3-manifold N . The space Wf is a compact
3-dimensional polyhedron, and its local structure has been completely determined.
A complete list of local structures can be found in [Hiratuka 2001], although we
do not need it here. Let W ( j) denote the q f -image of the components of singular
fibers of κ ≥ 3− j containing singular points for j = 0, 1, 2, and let N ( j) denote
a small regular neighborhood of W ( j) in Wf . Then, set

N0 = N (0), N1 = cl(N (1)
\N (0)), N2 = cl(N (2)

\N (1)), N3 = cl(Wf \N (2)),

where N1 is seen as a regular neighborhood of cl(W (1)
\N (0)) in cl(Wf \N (0)) and

N2 is seen as a regular neighborhood of cl(W (2)
\ N (1)) in cl(Wf \ N (1)).

Let us now construct a compact 5-dimensional manifold V by attaching certain
pieces to M×[0, 1] as follows. First note that q f restricted to q−1

f (N3) is a locally
trivial fibration with fiber S1 over the 3-manifold possibly with boundary N3. Thus,
we can attach the total space of the associated D2-bundle over N3 to M × [0, 1]
by identifying the associated (∂D2)-bundle with q−1

f (N3) × {0}. The resulting
5-manifold, denoted by V1, is orientable.

Let V ′1 (a subset of V1) be the union of M×{0} and the D2-bundle over N3. There
is a natural map q1 :V ′1→Wf that on M×{0} is defined by q f :M×{0}=M→Wf ,
and on the D2-bundle is defined by the projection to N3.

Let S be a connected component of cl(W (2)
\ N (1)). Note that S is a compact

surface possibly with boundary. Let N2(S) denote the connected component of
N2 containing S. If the singular fiber lying over a point in S is of type I0, then
q−1

f (N2(S)) is diffeomorphic to the total space of a D2-bundle over S. In fact,
N2(S) is diffeomorphic to S×[0, 1] by a diffeomorphism that induces the identity
S (⊂ N2(S)) → S × {0}, and if J (∼= [0, 1]) is a fiber of the natural fibration
N2(S)→ S, then q f restricted to q−1

f (J )∼= D2 is equivalent to the function (4-1).
(For this, we need the bundle structure theorem mentioned in [Kalmár 2008, Sec-
tion 5; Kalmár 2009, Section 6].) Therefore, the map q1 restricted to q−1

1 (N2(S))
followed by the natural projection N2(S) → S is an S2-bundle whose fiber can
be identified with the 2-sphere as in Figure 3(1). Then, we can attach the associ-
ated D3-bundle over S to V1, where we identify the associated (∂D3)-bundle with
q−1

1 (N2(S)) (⊂ V ′1). The resulting 5-manifold is orientable, since so is V1 and the
orientability of q−1

1 (N2(S)) coincides with that of q−1
f (N2(S)) (⊂ M).

If the singular fiber lying over a point in S is of type I1, then q−1
f (N2(S)) is

diffeomorphic to the total space of an S2
(3)-bundle over S. Then, q1 restricted to

q−1
1 (N2(S)) followed by the natural projection N2(S)→ S is again an S2-bundle,



SINGULAR FIBERS AND 4-DIMENSIONAL COBORDISM GROUP 247

Figure 10. Function on each D3-fiber.

but with fiber as in Figure 3(2), and we can attach the associated D3-bundle. As
before, the resulting 5-manifold is orientable.

We perform the operation described above for each connected component S of
cl(W (2)

\N (1)). The resulting 5-manifold, denoted V2, is orientable. We denote by
V ′2 the union of V ′1 and the D3-bundle over cl(W (2)

\N (1)). There is a natural map
q2 : V ′2→Wf that on V ′1 is defined by q1 : V ′1→Wf , and on the D3-bundle X over
cl(W (2)

\ N (1)) is defined by the natural map X→ N2 that makes the diagram

X //

''

N2

ww
cl(W (2)

\ N (1))

commutative and is given by the function on each fiber as shown in Figure 10. (For
this, we again need Kalmár’s bundle structure theorem.)

Let e be a connected component of cl(W (1)
\ N (0)) and we denote by N1(e)

the connected component of N1 containing e. If the singular fiber lying over a
point in e is of type II2, then q−1

f (N1(e)) is diffeomorphic to the total space of an
(S2
(4)×[0, 1])-bundle over e; see Figure 6.
Therefore, q2 restricted to q−1

2 (N1(e)) followed by the natural projection from
N1(e) to e is an S3-bundle by Lemma 4.1. From [Hatcher 1983], the structure
group of every smooth S3-bundle can be reduced to the orthogonal group O(4).
Then, we can attach the associated D4-bundle over e to V2, where we identify
the associated (∂D4)-bundle with q−1

2 (N1(e)) (⊂ V ′2). The resulting 5-manifold is
orientable, since so is V2 and the orientability of q−1

2 (N1(e)) coincides with that
of q−1

f (N1(e)) (⊂ M).
If the singular fiber lying over a point in e is of another type (II3 or IIa), then

we can still perform the same operation by virtue of Lemma 4.1.
We perform such an operation for each e. The resulting 5-manifold V is compact

and orientable. Note that V can be oriented so that

∂V = (M ×{1})∪
(
−
⋃

j F j
)
,
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where each F j is a closed oriented 4-manifold corresponding to a singular fiber of
f of κ = 3.

Lemma 5.1. F j is diffeomorphic to the 4-sphere S4 for the singular fibers of types
III4, III5, III6, III7, IIIb, IIIc, IIId and IIIe.

Proof. Let us first consider the case of the singular fiber of type III4. Let g : L→D3

be a representative of the singular fiber; we assume that it has a singular fiber of
type III4 over the center of D3. Then, we can regard g as a family of functions
{hs}s∈1 on S2

(5) with only nondegenerate critical points parametrized by1∼= D2 as
depicted in Figure 11, where the target D3 is identified with the product [−1, 1]×1,
π : [−1, 1] ×1→1 is the projection to the second factor, and the critical points
of hs are denoted by p1, p2 and p3. More precisely, g can be identified with the
map L ∼= S2

(5)×1→ [−1, 1] ×1 ∼= D3, (x, s) 7→ (hs(x), s). The singular point
set S(g) of g consists of three 2-disks, and their images by g in D3 intersect at the
origin in general position.

Then, from the construction of V it follows that the 4-manifold F j corresponding
to g−1(0) is diffeomorphic to the boundary of a D̃-bundle over 1, where D̃ ∼= D3

is the 3-disk as in Figure 12, which is obtained by filling S2
(5) × [0, 1] by 2- and

3-handles as in Section 3. Hence F j is diffeomorphic to S4.
For the singular fibers of types III5, IIIb, IIIc and IIIe, similar arguments show

that F j ∼= S4.
For the singular fiber of type III6, we can again regard its representative g :

L → D3 as a family of functions parametrized by a 2-disk 1. Note that L is
diffeomorphic to S2

(5)×1. Set F ′j = L∪q−1
1 ((ḡ)−1({±1}×1)) and F ′′j =cl(F j\F ′j ),

where g = ḡ ◦ qg is the Stein factorization of g : L→ [−1, 1] ×1 and we regard
Wg as a subset of Wf .

Then, we see that F ′j is diffeomorphic to S2
× D2. On the other hand, from

the construction of V it follows that F ′′j is the union of six copies of D3
×[−1, 1]

attached to each other along D3
× {±1} consecutively so that if forms the total

space of a D3-bundle over S1. Hence, F ′′j is diffeomorphic to D3
× S1, since it is

orientable. Therefore, F j is diffeomorphic to the union of S2
× D2 and D3

× S1

attached along their boundaries, where S2
×{∗}⊂ S2

×D2 and ∂D3
×{∗}⊂ D3

×S1

are identified. Then a standard argument shows that F j is diffeomorphic to S4.
For the singular fibers of types III7 and IIId , similar arguments give F j ∼= S4.
This completes the proof of Lemma 5.1. �

Lemma 5.2. For the singular fiber of type III8, F j is orientation-preservingly
diffeomorphic to the complex projective plane CP2 or its orientation reversal CP2.

Proof. As in the proof of Lemma 5.1, a representative g : L→ D3 of the singular
fiber of type III8 can be regarded as a family of functions {hs}s∈1 on T 2

(3) with only
nondegenerate critical points parametrized by a small 2-disk 1. (Here, the torus
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hs(p1) > hs(p3) > hs(p2)

hs(p1) > hs(p2) > hs(p3)

hs(p2) > hs(p1) > hs(p3)

p1 p2 p3

hs(p1)

hs(p2)

hs(p3)

π

1

[−1, 1]×1

Figure 11. Family of functions corresponding to a singular fiber
of type III4.

with three holes appears, since the natural “thickening” of the III8-type singular
fiber is a compact orientable surface with three boundary circles and has Euler
characteristic−3. See Figure 13.) See Figure 14, where π : D3∼=[−1, 1]×1→1

is the projection onto the second factor; see also [Saeki 2004, Figure 6.3].
Set K = g−1(∂D3)= ∂L , which is a closed orientable 3-manifold. Then, g|K :

K → ∂D3 can be regarded as a stable map as in Section 4. Note that F j is L ∪W
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Figure 12. D̃ ∼= D3.

Figure 13. Natural “thickening” of the III8-type singular fiber.

attached along K , where W is the compact orientable 4-manifold bounded by K
constructed as in Section 4 from the stable map g|K .

Set
F ′j = L ∪ q−1

1 ((ḡ)−1({±1}×1)) and F ′′j = cl(F j \ F ′j )

as in the proof of the previous lemma. Note that F ′j is diffeomorphic to a T 2-bundle
over 1. (More precisely, the map π ◦ g : L → 1 is a smooth fiber bundle with
T 2
(3) as fibers, and F ′j is obtained from L by attaching three 2-disks to each of the

fibers.)
Let us consider the piece Pi in F ′′j corresponding to the arc αi for i = 1, 2, 3,

on ∂1 as depicted in Figure 14. More precisely, Pi is the compact 4-manifold
described as follows. First, note that g|(π◦g)−1(αi ) : (π ◦ g)−1(αi )→ [−1, 1] × αi

can be regarded as a 1-parameter family of smooth functions on T 2
(3) with exactly

three nondegenerate critical points corresponding to interchanging the heights of
the top two critical points. Furthermore, the singular fiber (of codimension two)
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[−1, 1]×1

α3

α1α2

β1

β2

β3

1

T 2
(3)

π

hs(p1) > hs(p3) > hs(p2)

hs(p1) > hs(p2) > hs(p3)

hs(p2) > hs(p1) > hs(p3)

p1

p2

p3

hs(p1)

hs(p2)

hs(p3)

Figure 14. Family of functions corresponding to a singular fiber
of type III8.

over the middle point of αi corresponds to the singular fiber of type II3. The
compact 4-manifold Pi is obtained from (π ◦ g)−1(αi )× [0, 1] by attaching D2-
bundles, D3-bundles and a 4-disk as in Section 4, where the last 4-disk corresponds
to the II3-type singular fiber.
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c1 c2
∼ = ∼ = ∼ =

Figure 15. Family of functions corresponding to II3.

By attaching D2-bundles over arcs and three copies of D3 to each component of
(π ◦ g)−1(∂αi ), we get two copies of the solid torus. Hence ∂Pi is diffeomorphic
to the union of two solid tori attached along their boundaries. The attaching map
sends the boundary c1 of a meridian disk1 to a simple closed curve on the boundary
of the other solid torus that intersects with the boundary c2 of its meridian disk
transversely at one point. For details, see Figure 15, which shows how the fibers
change around a singular fiber of type II3. (Note that each component of a regular
fiber bounds a disk by virtue of the construction of V .) Hence, ∂Pi is diffeomorphic
to S3. Since Pi is obtained from ∂Pi ×[0, 1] by attaching a 4-disk, we see that Pi

is diffeomorphic to D4.
On the other hand, the piece Qi corresponding to the arc βi for i = 1, 2, 3 on ∂1

as shown in Figure 14 is diffeomorphic to (S1
×D2)×[−1, 1]. This is because the

singular fiber of type II3 over the middle point of βi corresponds to interchanging
the heights of the bottom two critical points of the function hs : T 2

(3) → [−1, 1],
where s ∈ βi . In terms of the quotient space, its behavior is similar to what is
depicted in Figure 7. Therefore, Qi is obtained from a 4-disk (corresponding to
the II3-type singular fiber) by attaching D3

× βi (corresponding to the top critical
point of hs)2 along (D2

1 ∪ D2
2)×βi , where D2

1 and D2
2 are disjoint 2-disks in ∂D3.

Therefore, Qi is diffeomorphic to (S1
× D2)× βi ∼= (S1

× D2)× [−1, 1], since
over each end point of βi we have a solid torus, which is orientable.

Consequently, F ′′j is diffeomorphic to the compact 4-manifold obtained from
three 4-disks P1, P2 and P3 by attaching them appropriately along solid tori. Thus

1A properly embedded 2-disk in a solid torus is a meridian disk if its boundary is not null homo-
topic in the boundary torus.

2Each 3-disk D3
×{∗} corresponds to that in the lower-left figure of Figure 10.
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P1 can be regarded as a 0-handle and then P2 is regarded as a 2-handle attached
to P1 along an unknotted circle on ∂P1, since the exterior of the attaching circle
in ∂P1 is again a solid torus. Furthermore, F ′j is diffeomorphic to T 2

× D2, and
P3 ∪ F ′j is diffeomorphic to D4 since P3 ∩ F ′j is diffeomorphic to T 2

×α3.
Therefore, F j is diffeomorphic to the closed 4-manifold consisting of the 0-

handle P1, the 2-handle P2 attached to P1 along an unknotted circle on ∂P1, and
a 4-handle. In particular, the boundary of P1 ∪ P2 must be diffeomorphic to S3

so that the framing of the 2-handle P2 must be equal to ±1; see [Kirby 1989], for
example. Therefore, F j must be diffeomorphic to the complex projective plane
CP2 up to orientation. �

Remark 5.3. It is easy to see that the singular fibers appearing in Figure 9 can
be embedded in the 2-sphere, except for the III8-type singular fiber. This fact
implies that the corresponding singular fiber is associated with a 2-parameter fam-
ily of smooth functions on a punctured 2-sphere, as pointed out in the proof of
Lemma 5.1. The III8-type singular fiber cannot be embedded in the 2-sphere, but
can be embedded in the 2-dimensional torus (see the proof of Lemma 5.2). The
proofs above show that this fact is essential in distinguishing the III8-type singular
fiber from the others.

We have proved that every closed oriented 4-manifold is oriented cobordant to
the disjoint union of a finite number of copies of ±CP2.

Let us consider the homomorphism ϕ : Z→�4 defined by ϕ(1)= [CP2
]. This

is a well-defined homomorphism, and is surjective by the argument above.
Let

(5-1) σ :�4→ Z

be the homomorphism defined by associating to each oriented cobordism class the
signature of its representative. Classical techniques in algebraic topology show
that this defines a well-defined homomorphism; for example, see [Thom 1952].

Since σ([CP2
])= 1, we see that the composition σ ◦ϕ : Z→ Z is the identity.

Therefore, ϕ is injective. Thus, we get the following, which was originally proved
by Rohlin [1952]; see also [Guillou and Marin 1986].

Theorem 5.4. The 4-dimensional oriented cobordism group �4 is infinite cyclic
and is generated by the oriented cobordism class of CP2. In fact, the homo-
morphism (5-1) is an isomorphism.

Our proof shows that the complex projective plane naturally appears around
each singular fiber of type III8, and therefore CP2 can be regarded as the genuinely
natural representative of the generator of �4 ∼= Z.

As a corollary to our proof, we get the following, which was originally obtained
in [Saeki and Yamamoto 2006]. The proof given there is somewhat complicated
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since it depends on the classification of singular fibers of C∞ stable maps of n-
dimensional manifolds into (n−1)-dimensional manifolds for n ≤ 5, whereas our
proof needs only the classification of such singular fibers for n ≤ 4.

Corollary 5.5. Let f be a C∞ stable map of a closed oriented 4-manifold M into
a 3-manifold N. Then the number of singular fibers of f of type III8 counted with
signs coincides with the signature of M.

The sign of a singular fiber of type III8 is+1 (or−1) if the corresponding mani-
fold F j is oriented diffeomorphic to CP2 (respectively CP2). This sign convention
must coincide with the one in [Saeki and Yamamoto 2006] since Corollary 5.5
determines the sign uniquely.

Gromov [2009] studied estimates for the number of self-intersections of the
critical value set of a generic map from one manifold to another in terms of the
topology of the source manifold. Corollary 5.5 gives a model case for such a study,
as pointed out by Gromov.

Corollary 5.6. Let f be a smooth map of a closed oriented n-dimensional mani-
fold M into an (n−1)-dimensional manifold N for n ≥ 4, and suppose its singular
fibers are (iterated suspensions of ) those of C∞ stable maps of codimension ≤ 3
not of type III8 (that is, the singular fibers of f are as in Figures 4 and 9 but without
the III8-type). Then the manifold M is oriented null cobordant.

For the proof, we again need Kalmár’s bundle structure theorem concerning
the structure group since we need to deal with smooth fiber bundles with fiber S4.
Note that this corollary generalizes [Kalmár 2009, Corollary 2.7] about simple fold
maps.

In particular, if M is not oriented null cobordant, then every generic map M→N
has a singular fiber of codimension ≥ 4 or (an iterated suspension of) a singular
fiber of type III8.

Remark 5.7. Unfortunately, our technique in this paper does not directly apply
for computing the 3-dimensional unoriented cobordism group N3. This is because
the 2-dimensional one is not trivial, and we cannot fill RP2-bundles over arcs and
circles. For similar reasons, our method cannot directly be used for computating
Nm for m ≥ 4 and �n for n ≥ 5.
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