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We study complete Riemannian manifolds satisfying the equation

Ric+∇2 f − 1
m d f ⊗ d f = 0

by studying the associated PDE 1 f f + mµ exp(2 f/m) = 0 for µ ≤ 0. By
developing a gradient estimate for f , we show there are no nonconstant
solutions. We then apply this to show that there are no nontrivial Ricci
flat warped products with fibers that have nonpositive Einstein constant.
We also show that for nontrivial steady gradient Ricci solitons, the quantity
R+ |∇ f |2 is a positive constant.

1. Introduction

An interesting question posed by Besse [1987] is that of determining when one
can construct examples of Einstein manifolds that are warped products. If (M, g)
and (N m, h) are Riemannian manifolds, the warped product (M × N , ḡ), where
ḡ = g⊕ exp(−2 f/m)h, is Einstein if and only if (N , h) is Einstein and

Ricm
f = λg,(1-1)

1f f −mλ=−mµ exp
( 2

m f
)
,(1-2)

where Ric(h)= µh, Ric(ḡ)= λḡ,

Ricm
f = Ric+∇2 f − 1

m d f ⊗ d f

is the Bakry–Émery–Ricci tensor, ∇2 is the Hessian, and1f u=1u−∇ f ·∇u. We
will call f the potential. As a result of the Bianchi identity, Kim and Kim [2003]
proved that (1-1) implies (1-2) for some constantµ, and thus one can study Einstein
warped product manifolds by studying only (1-1) on the base (M, g).

If one takes m = ∞ in (1-1), one is studying gradient Ricci solitons. In this
case, the Bianchi identity yields

(1-3) 1f f + 2λ f =−µ
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for some constant µ; see [Ivey 1994]. The sign here is chosen so that one can view
(1-3) as the limit m→∞ of (1-2).

In [Case et al. 2008], a quasi-Einstein metric g is defined as a metric such that
Ricm

f (g) = λg for some constant λ, where 0 < m ≤ ∞. The observation of Kim
and Kim together with its generalization to the m = ∞ case allows us to study
the nonexistence of nontrivial warped product Einstein metrics by considering
only (1-2) and (1-3), where a quasi-Einstein metric is nontrivial if the potential
is nonconstant. This will be the point of view of this paper.

Besse [1987] constructed examples of quasi-Einstein manifolds with λ < 0 and
µ of arbitrary sign, as well as examples with λ = 0 and µ ≥ 0 in (1-1) and (1-2).
In the latter case, all of the nontrivial examples have µ> 0, while the trivial quasi-
Einstein metric Ricm

f = 0 necessarily satisfies µ= 0. More recently, Lü, Page and
Pope [2004] constructed nontrivial quasi-Einstein metrics with λ > 0 and m > 1,
which also satisfy µ > 0. On the other hand, if m < ∞ and λ > 0, then M is
necessarily compact; see [Wei and Wylie 2007]. Thus, the maximum principle
applied to (1-2) yields µ> 0. From these results, all that remains to be understood
is whether there are nontrivial quasi-Einstein metrics with λ= 0 and µ≤ 0.

For steady gradient Ricci solitons, this question is also interesting. The Bryant
and Ivey steady solitons [Ivey 1994] are all examples of nontrivial steady gradient
Ricci solitons with µ> 0. Dancer and Wang [2009] later generalized the construc-
tion to provide an even larger class of examples of nontrivial steady gradient Ricci
solitons, and they too all had µ > 0. Thus one is also led to wonder if there are
nontrivial steady gradient Ricci solitons with µ≤ 0.

In this paper, we show that there are no such quasi-Einstein metrics:

Theorem 1.1. Let (M, g) be a complete Riemannian manifold such that Ricm
f = 0

for some smooth function f and 0≤ m ≤∞, and let µ be the constant given by

(1-4) 1f f +µ exp
( 2

m f
)
= 0.

Then µ≥ 0, and equality holds if and only if (M, g) is Ricci flat.

In fact, we shall actually prove a slightly stronger theorem:

Theorem 1.2. Let (M, g) be a complete Riemannian manifold such that Ricm
f ≥ 0

for some smooth function f and 0≤ m ≤∞, and suppose that

1f f = c1 exp(c2 f ) for constants c1, c2 ≥ 0.

Then f is constant.

In Theorem 1.1, the condition (1-4) encompasses both (1-2) and (1-3), where
the exponential term is understood to be equal to one if m = ∞. We also note
that in Theorem 1.1 for the case m = ∞, the definition of µ given by (1-4) is
equivalent to the definition R + |∇ f |2 = µ. Thus, in this case our result would
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follow immediately from knowing that the scalar curvature R is nonnegative. As
was pointed out to me by McKenzie Wang after an early version of this paper
was made available, this has been shown in the context of ancient solutions of the
Ricci flow by B.-L. Chen [2009a], and explicitly in our setting by Z. Zhang [2009].
However, this result does not imply Theorem 1.2. Theorem 1.2 is also of interest
in that it is an example of a result whereby one can “take the limit” m→∞, even
though the underlying Laplacian comparison result does not extend.

Together with the maximum principle result for quasi-Einstein metrics with
λ > 0, Theorem 1.1 then yields a partial answer to the question posed by Besse:

Corollary 1.3. Let M × N be a nontrivial Einstein warped product manifold with
nonnegative scalar curvature. Then at least one of M and N is Einstein with
positive scalar curvature.

Another interesting corollary, pointed out to me by Yujen Shu, deals with con-
formally Einstein Riemannian products. If (M, g) and (N , h) are Riemannian
manifolds, then the manifold M×N is a conformally Einstein Riemannian product
if the standard product metric is conformally Einstein. Using a characterization by
Cleyton [2008] of such manifolds, we have the following corollary.

Corollary 1.4. Suppose M × N is a complete conformally Ricci flat Riemannian
product. Then either one of M or N is Einstein with positive Einstein constant, or
both M and N are Ricci flat.

Our result was motivated by a result of Anderson [1999] for static metrics in
general relativity; see [Wald 1984, Chapter 6]. In that setting, static metrics are
Riemannian triples (M3, g, u), where u is called the static potential, such that

u Ric=∇2u and 1u = 0.

This yields a Ricci-flat spacetime metric −u2dt2
⊕ g on the product R× M . In

the language of quasi-Einstein metrics, static metrics are then just quasi-Einstein
metrics (M3, g, f ) with the constants λ = 0 = µ, where u = e− f . Using PDE
methods, Anderson proved that if (M, g, u) is a complete static metric with u > 0,
then u must in fact be constant. One of our original observations was that, using
comparison results for manifolds with Ricm

f ≥ 0 and the Harnack inequality for the
f -Laplacian of Li [2005], Anderson’s proof generalizes almost immediately to the
case when λ= µ= 0 and m <∞, thus providing the original inspiration to study
nonexistence of quasi-Einstein metrics using PDE methods.

To extend this result to the steady gradient Ricci soliton case m = ∞, as well
as to rule out the possibility µ < 0, we instead focus on the gradient estimate that
leads to the Harnack inequality; see the gradient estimate of Schoen and Yau [1994,
Theorem 3.1]. More precisely, we arrive at the following estimate:
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Theorem 1.5. Let (Mn, g, f,m) be such that Ricm
f ≥0, m<∞, and1f f =φ( f ),

where φ : R→ R satisfies

φ′(t)+ 2
nφ(t)≥ 0 for all t ∈ R.

Then for all x ∈ M and a > 0 such that B(x, a) is geodesically connected in M
and the closure B(x, a) is compact, we have

|∇ f |2(x)≤ 2n(m+ n+ 6)/a2.

The crucial aspect of this theorem is the dependence of the gradient estimate
on m. Though the gradient estimate itself does not hold when m = ∞, we will
be able to find a conformally related triple (M, g̃, f̃ ) that satisfies the hypotheses
of Theorem 1.5 for any 0 < m̃ <∞. The dependence of the gradient estimate on
m will then allow us to prove that (M, g̃) is complete for m̃ large enough, which
then yields Theorem 1.2. There is a natural interpretation for this conformal trans-
formation coming from the relationship between warped product Einstein metrics
and conformally Einstein products; this will be discussed in Section 2.

To fix notation, we will be considering a Riemannian manifold (Mn, g, f,m)
that is not necessarily complete. Unless otherwise stated, we assume 0≤ m ≤∞.

2. The conformal rescaling

As mentioned before, we will find it useful to conformally rescale steady gradient
Ricci solitons. The desired rescaling is suggested by the following lemma:

Lemma 2.1. Let (Mn, g) be a Riemannian manifold, let f be a smooth function
on M , and let 0< m <∞. Define the conformally related triple (M, g̃, f̃ ) by

g̃ = exp
(
−

2
m+n−2

f
)

g and f̃ = m
m+n−2

f.

Then

Ricm
f̃
(g̃)= Ric(g)+∇2

g f + 1
m+n−2

d f ⊗ d f + 1
m+n−2

1f f g,(2-1)

1̃ f̃ = exp
( 2

m+n−2
f
)
1f .(2-2)

The proof, which we omit, is a straightforward calculation using the well-known
formulas for the change of the Ricci curvature and the Hessian of a function
under a conformal change of metric, as can be found in [Besse 1987]. A closely
related expression appears in the recent preprint of D. Chen [2009b], where he
constructs conformally Einstein Riemannian products. The choice of conformal
change comes from an equivalence of two metrics:

g̃⊕ exp
(
−

2
m

f̃
)

h = exp
(
−

2
m+n−2

f
)
(g⊕ h) ,
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where the constants are chosen so that the Ricci curvature restricted to horizontal
vector fields is given by (2-1). This “duality” between warped product metrics
and conformal Riemannian products is a useful tool for the study of quasi-Einstein
metrics, as will be discussed in a forthcoming paper.

For the purposes of this paper, the important feature of the lemma above is that
on the right hand side of (2-1), the coefficient of the quadratic term is positive. In
particular, since

Ric+∇2 f + 1
m+n−2

d f ⊗ d f ≥ Ricf ,

we can the use Lemma 2.1 to pass a lower bound for Ricf to a lower bound for
Ricm

f for a conformally related metric, arriving at the following corollary:

Corollary 2.2. Suppose (Mn, g, f ) satisfies Ricf ≥ 0 and1f f = c1 exp(c2 f ). Fix
m <∞, and define (M, g̃, f̃ ) as in Lemma 2.1. Then

Ricm
f̃
(g̃)≥ c1

m+n−2
exp

((
c2+

2
m+n−2

)
f
)

g̃

1̃ f̃ f̃ =
mc1

m+ n− 2
exp

((
c2+

2
m+ n− 2

)
f
)
.

In particular, if c1 ≥ 0, then Ricm
f̃
(g̃)≥ 0.

Proof. The second equality follows immediately from (2-2), and the first inequality
follows immediately from (2-1) and the observation that if Ricf ≥ 0, then

Ricm
f̃
(g̃)≥ 1

m+n−2
1f f g. �

3. Gradient estimate

In this section we establish our gradient estimate for the potential. As a corollary,
we arrive at a Liouville-type theorem that, together with an argument using the
conformally related metrics of the previous section, yields Theorem 1.2. To start,
we will need two standard comparison results for the Bakry–Émery–Ricci tensor,
the Bochner formula and the Laplacian comparison theorem; both of these results
can be found, for example, in the survey article [Wei and Wylie 2007].

Theorem 3.1 (Bochner formula). Let u, f ∈ C∞(M). Then

1
21f |∇u|2 = |∇2u|2+〈∇u,∇1f u〉+Ricm

f (∇u,∇u)+ 1
m 〈∇ f,∇u〉2.

One can quickly derive from the Bochner formula the Laplacian comparison
theorem. In the following, when we say that U ⊂ M is geodesically connected
in M , we mean that for all p, q ∈ U , there is a minimal geodesic lying in M that
connects p to q .
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Theorem 3.2 (Laplacian comparison). Let U ⊂M be geodesically connected in M
and suppose that Ricm

f ≥ 0 on M. Fix x ∈U and let r denote the distance function
from x. Then outside the cut locus of x in U , we have 1f r ≤ (m+ n− 1)/r .

Proof of Theorem 1.5. Applying the Bochner formula to f , we see that

1
21f |∇ f |2 ≥ |∇2 f |2+φ′( f )|∇ f |2+ 1

m |∇ f |4

On the other hand, the Cauchy–Schwarz inequality yields

|∇
2 f |2 ≥ 1

n (1 f )2 = 1
n (1f f + |∇ f |2)2 = 1

nφ
2( f )+ 2

nφ( f )|∇ f |2+ 1
n |∇ f |4

≥
1
n |∇ f |4+ 2

nφ( f )|∇ f |2.

Hence, using the assumption on φ, we arrive at the estimate 1f |∇ f |2 ≥ 2
n |∇ f |4.

Now consider the function F = (a2
− r2)2|∇ f |2 defined on B(x, a), where

r(y) = d(x, y) is the radial distance function. Then there is a point x0 in the
interior of B(x, a) at which F achieves its maximum. Using the method of support
functions if necessary, we may assume that x0 lies outside the cut locus of x . At
the point x0, we necessarily have

d|∇ f |2

|∇ f |2
=

2d(r2)

a2− r2 ,

0≥−
21f r2

a2− r2 +
1f |∇ f |2

|∇ f |2
+ 2

|∇r2
|
2

(a2− r2)2
−

4〈∇|∇ f |2,∇r2
〉

(a2− r2)|∇ f |2
.

The Laplacian comparison theorem yields 1f r2
≤ 2(m+n), and so combining the

above inequalities with the estimate for 1f |∇ f |2, we see that

0≥ 2
n
|∇ f |2−

4(m+ n)
a2− r2 −

24r2

(a2− r2)2
.

Multiplying through by (a2
− r2)2, we see that 0≥ (2/n)F − 4(m+ n+ 6)a2, so

sup
B(x,a)

(a2
− r2)2|∇ f |2 ≤ 2n(m+ n+ 6)a2.

In particular, a4
|∇ f |2(x)≤ 2n(m+ n+ 6)a2. �

In particular, Theorem 1.5 can be applied to manifolds satisfying the hypotheses
of Theorem 1.2 with m <∞ to achieve a Liouville-type theorem:

Corollary 3.3. Let (M, g) be a complete Riemannian manifold and let 0<m<∞

and f ∈ C∞(M) be such that Ricm
f ≥ 0 and 1f f = c1 exp(c2 f ) for c1, c2 ≥ 0.

Then f is constant.

Proof. The function φ(t)= c1 exp(c2t) clearly satisfies φ′+(2/n)φ≥ 0, and so we
can apply Theorem 1.5. Because (M, g) is complete, we may take a→∞, which
yields the result. �
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4. Proof of Theorem 1.2

If m <∞, Corollary 3.3 implies that f is constant. On the other hand, if m =∞,
choose some m̃<∞ and let (M, g̃, f̃ ) be the conformally related triple defined by

g̃ = exp
(
−

2
m̃+n−2

f
)

g and f̃ = m̃
m̃+n−2

f.

Corollary 2.2 then implies that there are constants c̃1, c̃2 such that

Ricm̃
f̃
(g̃)≥ 0 and 1̃ f̃ f̃ = c̃1 exp(c̃2 f ).

If (M, g̃) is complete, then applying Corollary 3.3 again yields the desired result.
However, a priori we do not know that (M, g̃) is complete, and so we turn to
addressing this issue.

Define R = sup{r : B(x0, r) is compactly contained in M}. If R = ∞, then
(M, g̃) is complete, so suppose instead that R <∞. Thus there is an inextendable
unit speed g̃-geodesic γ : [0, R)→ (M, g̃) with γ (0) = x0. Because (M, g) is
complete, we know that

Lg(γ )=

∫ R

0
exp

( f̃ (γ (t))
m̃

)
dt =∞.

We will derive a contradiction by showing that Lg(γ ) <∞. Let t ∈ [0, R), and
consider the g̃-geodesic balls Bt = B(γ (t), (R − t)/2). The triangle inequality
implies Bt is geodesically connected in (M, g̃), and so we can apply our gradient
estimate to f in Bt , yielding |∇̃ f̃ |(γ (t))≤C/(R−t), where C =

√
8n(m̃+ n+ 6).

In particular, C ∈ O(m̃1/2). Integrating the inequality above yields

exp
( f̃ (γ (t))

m̃

)
≤ C1(R− t)−C/m̃

for some constant C1 > 0. Since C/m̃ ∈ O(m̃−1/2), we can choose m̃ sufficiently
large so that C/m̃ < 1. Hence Lg(γ ) < ∞, a contradiction, and so we see that
(M, g̃) must be complete. �
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