
Pacific
Journal of
Mathematics

TWISTED SYMMETRIC GROUP ACTIONS

AKINARI HOSHI AND MING-CHANG KANG

Volume 248 No. 2 December 2010



PACIFIC JOURNAL OF MATHEMATICS
Vol. 248, No. 2, 2010
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Let K be any field, let K (x1, . . . , xn) be the rational function field of n vari-
ables over K , and let Sn and An be the symmetric group and the alternating
group of degree n, respectively. For any a ∈ K \{0}, define an action of Sn on
K (x1, . . . , xn) by σ ·xi = xσ(i) for σ ∈ An and σ ·xi = a/xσ(i) for σ ∈ Sn\An.
We prove that for any field K and n=3, 4, 5, the fixed field K (x1, . . . , xn)

Sn

is rational (that is, purely transcendental) over K .

1. Introduction

Let K be any field, let K (x1, . . . , xn) be the rational function field of n variables
over K , and let Sn and An be the symmetric group and the alternating group of
degree n, respectively. For any a ∈ K \ {0}, define a twisted action of Sn on
K (x1, . . . , xn) by

(1-1) σ(xi ) :=

{
xσ(i) if σ ∈ An,

a/xσ(i) if σ ∈ Sn \ An.

Consider the fixed subfield

K (x1, . . . , xn)
Sn = {α ∈ K (x1, . . . , xn) : σ(α)= α for any σ ∈ Sn}.

If n = 2, then K (x1, x2)
S2 = K (x1+ (a/x2), ax1/x2) is rational (that is, purely

transcendental) over K . When a = 1 (equivalently when a ∈ K×2), we have the
following theorem.

Theorem 1.1 [Hajja and Kang 1997, Theorem 3.5]. Let K be any field and let
a ∈ K×2. Then K (x1, . . . , xn)

Sn is rational over K .

The case when a ∈ K×\K×2 and n≥ 3 had been intractable for many years; see
[Hajja and Kang 1997, page 638; Hajja 2000, Example 5.12, page 147; Kang 2001,
Question 3.8, page 215]. Even the case n = 3 was unsolved. The next theorem is
our recent result for the cases n = 3, 4, 5.
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Theorem 1.2. Let K be any field, let a ∈ K \ {0}, and let Sn act on K (x1, . . . , xn)

as defined in (1-1). If n = 3, 4, 5, then K (x1, . . . , xn)
Sn is rational over K .

We will prove Theorem 1.2 in Section 2. It is interesting that we use three
different methods for the three cases of n; it seems that there is no unified proof
for the three cases. One of the reasons is that the solutions to Noether’s problem
for the alternating group An are rather different when n = 3 and when n = 5; see
Theorem 2.2 and Theorem 2.5. Since Noether’s problem for An is still open in
the case n ≥ 6 (see [Maeda 1989] and [Hajja and Kang 1995, Section 4] for the
statement of this problem), it is not so surprising that our question is solvable at
present only for n ≤ 5. It is still unknown whether the fixed field K (x1, . . . , xn)

Sn

is rational when n ≥ 6.
In Section 3 we propose another approach to the rationality of K (x1, . . . , xn)

Sn .
We show in Theorem 3.4 that it is isomorphic to the function field of a conic
bundle over Pn−1 of the form x2

− ay2
= h(v1, . . . , vn−1) with affine coordi-

nates v1, . . . , vn−1. Although this approach is valid only when char K 6= 2, it
does provide a new technique in studying rationality problems. The structure of a
conic bundle together with its rationality problem is a central subject in algebraic
geometry [Iskovskih 1991]. Fortunately, when n = 3 and n = 4, the conic bundle
in our case contains singularities and the rationality problem can be solved by a
suitable blowing-up process. In particular, we find another proof of Theorem 1.2
when char K 6= 2 and n = 3, 4. For other rationality problems of conic bundles,
see [Kang 2007, Section 4].

Since the fixed field K (x1, . . . , xn)
Sn is the quotient field of the ring of invariants

K [x1, . . . , xn]
Sn , it seems plausible to study it through the structure of the latter.

This strategy is carried out in Section 4, and we give another proof of Theorem 1.2
when char K = 2 and n = 3, 4.

2. Proof of Theorem 1.2

Theorem 2.1 [Kang 2004, Theorem 2.4]. Let K be any field and let K (x, y) be
the rational function field of two variables over K . Let σ be a K -automorphism on
K (x, y) defined by

σ : x 7→ a/x, y 7→ b/y,

where a ∈ K \ {0} and b = c(x + (a/x))+ d such that c, d ∈ K and at least one
of c and d is nonzero. Then K (x, y)〈σ 〉 = K (s, t), where

s =
x − (a/x)

xy− (ab/xy)
, t =

y− (b/y)
xy− (ab/xy)

.

The next result is essentially due to Masuda [1955, page 62] when char K 6= 3
(with a misprint in the original expression). We thank Y. Rikuna who pointed out
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that the same formula is still valid when char K = 3 if we compare this formula
with the proof in [Kuniyoshi 1955]. For convenience, we provide a new proof.

Theorem 2.2 [Masuda 1955, Theorem 3]. Let K be any field, K (x1, x2, x3) be the
rational function field of three variables over K . Let σ be a K -automorphism on
K (x1, x2, x3) defined by

σ : x1 7→ x2 7→ x3 7→ x1.

Then K (x1, x2, x3)
〈σ 〉
= K (s1, u, v)= K (s3, u, v), where si is the elementary sym-

metric function of degree i for 1≤ i ≤ 3, and u and v are defined by

u :=
x1x2

2 + x2x2
3 + x3x2

1 − 3x1x2x3

x2
1 + x2

2 + x2
3 − x1x2− x2x3− x3x1

,

v :=
x2

1 x2+ x2
2 x3+ x2

3 x1− 3x1x2x3

x2
1 + x2

2 + x2
3 − x1x2− x2x3− x3x1

.

Moreover, we have the identities

s2 = s1(u+ v)− 3(u2
− uv+ v2),

s3 = s1uv− (u3
+ v3),

x1x2
2 + x2x2

3 + x3x2
1 = s2

1u− 3s1u2
+ 3(2u− v)(u2

− uv+ v2),

x2
1 x2+ x2

2 x3+ x2
3 x1 = s2

1v− 3s1v
2
− 3(u− 2v)(u2

− uv+ v2).

Proof. With the aid of computer packages, say Mathematica or Maple, it is easy
to verify the theorem’s identities. We have [K (x1, x2, x3) : K (s1, s2, s3)] = 6 and
[K (x1, x2, x3)

〈σ 〉
: K (s1, s2, s3)] = 2. Since x1x2

2 + x2x2
3 + x3x2

1 6∈ K (s1, s2, s3),
it follows that K (x1, x2, x3)

〈σ 〉
= K (s1, s2, s3, x1x2

2 + x2x2
3 + x3x2

1)⊂ K (s1, u, v).
Hence K (x1, x2, x3)

〈σ 〉
= K (s1, u, v)= K (s3, u, v). �

Proof of Theorem 1.2 when n = 3. Let σ = (1, 2, 3), τ = (1, 2) ∈ S3.
By Theorem 2.2, we find that K (x1, x2, x3)

〈σ 〉
= K (s3, u, v).

Now τ(x1)= a/x2, τ(x2)= a/x3, and τ(x3)= a/x3. Note that

τ(s1)= as2/s3, τ (s2)= a2s1/s3, τ (s3)= a3/s3,

τ (x1x2
2 + x2x2

3 + x3x2
1)= a3(x1x2

2 + x2x2
3 + x3x2

1)/s
2
3 ,

τ (x2
1 x2+ x2

2 x3+ x2
3 x1)= a3(x2

1 x2+ x2
2 x3+ x2

3 x1)/s2
3 .

With the aid of Theorem 2.2, it is not difficult to find that

(2-1) τ : s3 7→
a3

s3
, u 7→ au

u2−uv+v2 , v 7→
av

u2−uv+v2 .
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Define w := u/v. Then K (s3, u, v)= K (s3, v, w) and

τ : s3 7→
a3

s3
, v 7→

a
v(1−w+w2)

, w 7→ w.

By Theorem 2.1, K (s3, v, w)
〈τ 〉 is rational over K (w). Hence K (x1, x2, x3)

S3 =

K (s3, v, w)
〈τ 〉 is rational over K . �

Proof of Theorem 1.2 when n = 4. Define

σ := (123) : x1 7→ x2 7→ x3 7→ x1,

τ := (12) : x1 7→ a/x2, x2 7→ a/x1, x3 7→ a/x3, x4 7→ a/x4,

ρ1 := (12)(34) : x1 7→ x2, x2 7→ x1, x3 7→ x4, x4 7→ x3,

ρ2 := (13)(24) : x1 7→ x3, x3 7→ x1, x2 7→ x4, x4 7→ x2.

Note that {1}CV4= 〈ρ1, ρ2〉C A4= 〈σ, ρ1, ρ2〉CS4= 〈σ, τ, ρ1, ρ2〉 is a normal
series.

First we will show that K (x1, . . . , x4)
V4 is rational over K . Define

s1 := x1+ x2+ x3+ x4, s4 := x1x2x3x4,

S :=
x1+ x2− x3− x4

x1x2− x3x4
, T :=

x1− x2− x3+ x4

x1x4− x2x3
, U :=

x1− x2+ x3− x4

x1x3− x2x4
.

Then we have K (s1, s4, S, T,U )⊂ K (x1, x2, x3, x4)
V4 and

(2-2) σ : s1 7→ s1, s4 7→ s4, S 7→ T, T 7→U, U 7→ S.

Lemma 2.3. (i) K (x1, x2, x3, x4)
V4 = K (s1, S, T,U )= K (s4, S, T,U ).

(ii) K (x1, x2, x3, x4)
A4 = K (s4, f, g, h) where f, g, h are defined by

f = S+ T +U, g = ST 2
+T U 2

+U S2
−3ST U

S2+T 2+U 2−ST−T U−U S
,

h = S2T+T 2U+U 2S−3ST U
S2+T 2+U 2−ST−T U−U S

.

Proof. Define u1 := S+T +U , u2 := ST +T U+ SU and u3 := ST U. Then it can
be checked that K (x1, x2, x3, x4)= K (s1, S, T,U )(x4) directly from the equalities

x1 =
4− s1T + (−2u1+ s1T (S+U ))x4+ SU (1− s1T )x2

4 + u3x3
4

S− T +U − SU x4
,

x2 =
4− s1U + (−2u1+ s1U (T + S))x4+ T S(1− s1U )x2

4 + u3x3
4

T −U + S− T Sx4
,

x3 =
4− s1S+ (−2u1+ s1S(U + T ))x4+U T (1− s1S)x2

4 + u3x3
4

U − S+ T −U T x4
.
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We see that [K (s1, S, T,U )(x4) : K (s1, S, T,U )] ≤ 4 by the equality

u2
1− 4u2+ s1u3+ (8− s1u1)u3x4− (2u1− s1u2)u3x2

4 − s1u2
3x3

4 + u2
3x4

4 = 0.

Hence we get K (x1, x2, x3, x4)
V4 = K (s1, S, T,U ). It follows from the equality

s4 = (u2
1− 4u2+ u3s1)/u2

3 that K (s1, S, T,U )= K (s4, S, T,U ).
As for the field K (x1, x2, x3, x4)

A4 , apply Theorem 2.2 to K (s4, S, T,U )〈σ 〉

= K (S, T,U )〈σ 〉(s4). �

We have K (x1, x2, x3, x4)
S4 = (K (x1, x2, x3, x4)

V4)S4/V4 = K (s4, S, T,U )〈σ,τ 〉.
The action of 〈σ, τ 〉 on K (s4, S, T,U ) is given by

σ : s4 7→ s4, S 7→ T, T 7→U, U 7→ S,

τ : s4 7→
a4

s4
, S 7→ −S+T+U

aT U
, T 7→ S+T−U

aST
, U 7→ S−T+U

aSU
.

Define

N :=


s4+ a2

s4− a2 if char K 6= 2,
s4

s4+ a2 if char K = 2.

Then we get K (s4, S, T,U )= K (N , S, T,U ), σ(N )= N and

τ(N )=
{
−N if char K 6= 2,
N + 1 if char K = 2.

Applying [Hajja and Kang 1995, Theorem 1], we find that K (x1, x2, x3, x4)
S4 =

K (N , S, T,U )〈σ,τ 〉 is rational over K , provided that K (S, T,U )〈σ,τ 〉 is rational
over K . Explicitly, define P by

P :=

N ·
(

S+ T +U +
S2
+ T 2

+U 2
− 2(ST + T U +U S)
aST U

)
if char K 6= 2,

N + S+T+U
S+T+U+aST U

if char K = 2.

Then we have that K (N , S, T,U ) = K (P, S, T,U ) and K (x1, x2, x3, x4)
S4 =

K (P, S, T,U )〈σ,τ 〉 = K (S, T,U )〈σ,τ 〉(P), where σ(P)= τ(P)= P .
Thus it remains to prove this:

Theorem 2.4. Let K be any field and let K (S, T,U ) be the rational function
field of three variables S, T and U over K . Let σ and τ be K -automorphisms
of K (S, T,U ) defined by

σ : S 7→ T, T 7→U, U 7→ S,

τ : S 7→ −S+T+U
aT U

, T 7→ S+T−U
aST

, U 7→ S−T+U
aSU

,

where a ∈ K \ {0}. Then 〈σ, τ 〉 ∼= S3 and K (S, T,U )〈σ,τ 〉 is rational over K .
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Proof. By Theorem 2.2, we may choose a transcendence basis of K (S, T,U )〈σ 〉

over K by K (S, T,U )〈σ 〉 = K ( f, g, h), where

f = S+ T +U, g = ST 2
+T U 2

+U S2
−3ST U

S2+T 2+U 2−ST−T U−U S
,

h = S2T+T 2U+U 2S−3ST U
S2+T 2+U 2−ST−T U−U S

.

Thus we have K (S, T,U )〈σ,τ 〉 = (K (S, T,U )〈σ 〉)〈τ 〉 = K ( f, g, h)〈τ 〉. The action
of τ on K ( f, g, h) is given by

f 7→
f 2
− 4 f (g+ h)+ 12X

aY
,

g 7→
− f 2h( f − 4h)+ 2 f ( f − 2g− 8h)X + 24X2

− 8gY
a( f 2− 2 f (g+ h)+ 4X)Y

,

h 7→
− f 2( f g+ 4h2)+ 6 f ( f − 2g)X + 24X2

− 4( f + 2h)Y
a( f 2− 2 f (g+ h)+ 4X)Y

,

where X = g2
− gh+ h2 and Y = g3

− f gh+ h3.

Case 1: char K 6= 2.
Define

F := g+ h, G := g− h, H := f − (g+ h).

Then K (S, T,U )〈σ 〉 = K ( f, g, h)= K (F,G, H) and τ acts on K (F,G, H) by

F 7→
4(27G4

− 7FG2 H + 5G2 H 2
− F H 3)

a(4FG2− F2 H +G2 H)(3G2+ H 2)
,

G 7→
4G(FG2

+ 7G2 H − F H 2
+ H 3)

a(4FG2− F2 H +G2 H)(3G2+ H 2)
,

H 7→
4H(FG2

+ 7G2 H − F H 2
+ H 3)

a(4FG2− F2 H +G2 H)(3G2+ H 2)
.

Note that τ(G/H)= G/H . Define

A := F/G, B := G, C := G/H.

Then K (S, T,U )〈σ 〉 = K (F,G, H)= K (A, B,C) and τ acts on K (A, B,C) by

A 7→
−A+ 5C − 7AC2

+ 27C3

1− AC + 7C2+ AC3 ,

B 7→
4(1− AC + 7C2

+ AC3)

aB(1− A2+ 4AC)(1+ 3C2)
, C 7→ C.

Define
D := 1− AC + 7C2

+ AC3, E := 2C(C2
− 1)/B.
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Then K (A, B,C)= K (C, D, E) and the action of τ on K (C, D, E) is given by

C 7→ C, D 7→ (1+ 3C2)3/D,

E 7→ −a(1+ 3C2)
(
D+ (1+ 3C2)3/D− 2(1+ 5C2

+ 2C4)
)
/E .

Hence the assertion follows from Theorem 2.1.

Case 2: char K = 2.
The action of τ on K ( f, g, h) is given by

τ : f 7→
f 2

aY
, g 7→

f h
aY
, h 7→

f g
aY
,

where Y = g3
+ f gh+ h3. Define

A := f/(g+ h), B := g/h, C := 1/h.

Then K ( f, g, h)= K (A, B,C) and τ acts on K (A, B,C) by

A 7→ A, B 7→ 1
B
, C 7→ a

A

(
B+ 1

B
+ A+ 1

)/
C.

Hence the assertion follows from Theorem 2.1. We will give another proof when
n = 4 and char K = 2 in Section 4. �

This concludes the proof of Theorem 1.2 when n = 4. �

Proof of Theorem 1.2 when n = 5.
We recall Maeda’s theorem for the A5 action.

Theorem 2.5 [Maeda 1989]. Let K be any field, K (x1, . . . , x5) be the rational
function field of five variables over K . Then K (x1, . . . , x5)

A5 is rational over K .
Moreover a transcendental basis F1, . . . , F5 of K (x1, . . . , x5)

A5 over K may be
given explicitly as follows:

(i) When char K 6= 2,

F1 =

∑
σ∈S5

σ([12][13][14][15][23]4[45]4x1)∑
σ∈S5

σ([12][13][14][15][23]4[45]4)
,

F2 =

∑
σ∈S5

σ([12]3[13]3[14]3[15]3[23]10
[45]10)∏

i< j [i j]2 ·
∑

σ∈S5
σ([12][13][14][15][23]4[45]4)

,

F3 =

∑
σ∈S5

σ([12]3[13]3[14]3[15]3[23]10
[45]10x1)∏

i< j [i j]2 ·
∑

σ∈S5
σ([12][13][14][15][23]4[45]4)

,

F4 =

∑
µ∈R1

µ([12]2[13]2[23]2[45]4)∏
i< j [i j]

,

F5 =

∑
µ∈R1

µ([12]2[13]2[23]2[14]4[24]4[34]4[15]4[25]4[35]4)∏
i< j [i j]3

,
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where [i j]= xi−x j and R1={1, (34), (354), (234), (2354), (24)(35), (1234),
(12354), (124)(35), (13524)}.

(ii) When char K = 2,

F1 =

∑
i< j<k xi x j xk∑

i< j xi x j
, F4 =

∑
ν∈R3

ν([12]2[34]2[13][24][15][25][35][45])∏
i< j [i j]

,

F2 =

∑5
i=1([12][13][14][15] · I 2)(1i)∏

i< j [i j] ·
∑

i< j xi x j
, F5 = the same F5 as in (i),

F3 =

∑5
i=1([12][13][14][15] · I 2

· x1)
(1i)∏

i< j [i j] ·
∑

i< j xi x j
,

where [i j]= xi−x j , I =
∑

τ∈R2
τ(x2x3(x2x3+x2

4+x2
5)), R2={1, (34), (354),

(234), (2354), (24)(35)} and R3 = {1, (234), (243), (152), (15234), (15243),
(125), (12345), (12435), (15432), (154), (15423), (15342), (15324), (153)}.

In the theorem, note that R1, R2 and R3 are coset representatives with respect
to various subgroups:

S5 =
⋃
µ∈R1

H1µ, H =
⋃
τ∈R2

H2τ, A5 =
⋃
ν∈R3

H3ν,

where

H = 〈(23), (24), (25)〉 ∼= S4, H1 = 〈(12), (13), (45)〉 ∼= D6,

H2 = 〈(23), (45)〉 ∼= V4, H3 = 〈(12)(34), (13)(24)〉 ∼= V4,

and D6 is the dihedral group of order 12.
Now we start to prove Theorem 1.2 when n = 5. Let τ = (12) ∈ S5. By

Theorem 2.5, we see that K (x1, . . . , x5)
A5 = K (F1, . . . , F5).

With the aid of a computer, we can evaluate the action of τ on K (F1, . . . , F5)

as follows:

τ : F1 7→ a/F1, F2 7→ F3/F1, F3 7→ aF2/F1,

F4 7→ −F4, F5 7→ −F5 when char K 6= 2;

τ : F1 7→ a/F1, F2 7→ F3/F1, F3 7→ aF2/F1,

F4 7→ F4+ 1, F5 7→ F5 when char K = 2.

Case 1: char K 6= 2.
Define

G1 := F1, G2 := F4+ 1/F4− 1, G3 := F4(F2− F3/F1),

G4 := F2+ F3/F1, G5 := F4 F5.



TWISTED SYMMETRIC GROUP ACTIONS 293

Then we have K (x1, . . . , x5)
A5 = K (F1, . . . , F5)= K (G1, . . . ,G5) and

τ : G1 7→ a/G1, G2 7→ 1/G2, G3 7→ G3, G4 7→ G4, G5 7→ G5.

So it follows from Theorem 2.1 that K (x1, . . . , x5)
S5 = K (G3,G4,G5)(G1,G2)

〈τ 〉

is rational over K .

Case 2: char K = 2.
Define

G1 := F1, G2 := F2, G3 :=
F2 F3

F1
, G4 := F4+

F3

F1 F2+ F3
, G5 := F5.

Then we have K (x1, . . . , x5)
A5 = K (F1, . . . , F5)= K (G1, . . . ,G5) and

τ : G1 7→ a/G1, G2 7→ G3/G2, G3 7→ G3, G4 7→ G4, G5 7→ G5.

We use Theorem 2.1 and find that K (x1, . . . , x5)
S5 = K (G3,G4,G5)(G1,G2)

〈τ 〉

is rational over K . �

3. Conic bundles: Another approach when char K 6= 2

Throughout this section we assume that char K 6= 2.
In this section, we will give another proof of Theorem 1.2 when n = 3, 4 (and

char K 6= 2) by presenting K (x1, . . . , xn)
Sn as the function field of a conic bundle

over Pn−1.
Consider the action of Sn on K (x1, . . . , xn) defined by Equation (1-1). Because

of Theorem 1.1, we may assume that a ∈ K× \ K×2 without loss of generality.
Define α :=

√
a and Gal(K (α)/K )=〈ρ〉, where ρ(α)=−α. Extend the actions

of Sn and ρ to K (α)(x1, . . . , xn) = K (α)⊗K K (x1, . . . , xn) by requiring that Sn

acts trivially on K (α) and τ acts trivially on K (x1, . . . , xn).
Define zi := (α− xi )/(α+ xi ) for 1 ≤ i ≤ n. We find that K (α)(x1, . . . , xn)=

K (α)(z1, . . . , zn) and
σ : zi 7→ −zσ(i)

for any σ ∈ Sn \ An , and

ρ : α 7→ −α, zi 7→ 1/zi .

Define z0 := z1+ · · ·+ zn , yi := zi/z0 for 1≤ i ≤ n. Hence y1+ · · ·+ yn = 1.
Let t1, . . . , tn be the elementary symmetric functions of y1, . . . , yn . In particular,

t1 = 1. Define 1 :=
∏

1≤i< j≤n(yi − y j ) ∈ K (y1, . . . , yn) and u := z0 ·1. Note that
12 can be written as a polynomial in t1, . . . , tn , and thus in t2, . . . , tn .

Lemma 3.1. K (x1, . . . , xn)
Sn = K (α)(t2, . . . , tn, u)〈ρ〉 and

ρ : α 7→ −α, ti 7→ tn−i (tn/tn−1)
i t−1

n , u 7→ f (t2, . . . , tn) · u−1,
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where f (t2, . . . , tn) ∈ K (t2, . . . , tn) is given by

(3-1) f (t2, . . . , tn) := (−1)n(n−1)/2t−(n−1)
n (tn/tn−1)

(n+1)(n−2)/212

and we adopt the convention that t0 = t1 = 1.

Proof. Note that K (α)(y1, . . . , yn, z0)= K (α)(y1, . . . , yn, u). Since u is fixed by
the action of Sn , it follows that K (α)(y1, . . . , yn, z0)

Sn = K (α)(y1, . . . , yn)
Sn (u)=

K (α)(t2, . . . , tn, u); the last equality follows, for example, from the proof of [Hajja
and Kang 1995, Lemma 1] because σ(yi )= yσ(i) for any σ ∈ Sn and i in 1≤ i ≤ n.

Thus K (x1, . . . , xn)
Sn = (K (α)〈ρ〉(x1, . . . , xn))

Sn = K (α)(x1, . . . , xn)
〈Sn,ρ〉 =

(K (α)(x1, . . . , xn)
Sn )〈ρ〉 = K (α)(t2, . . . , tn, u)〈ρ〉.

It is easy to verify that the action of ρ on K (α)(t2, . . . , tn, u) is as stated. �

We write n = 2m+ 1 if n is odd, and n = 2m otherwise. Define

(3-2) ui := ti+1, un−i := ρ(ti+1)= tn−(i+1)t i
n/t i+1

n−1 for i = 1, . . . ,m− 1

and

(3-3)
{

um := tm+1, um+1 := ρ(tm+1)= tm tm
n /tm+1

n−1 if n is odd,
um := tn/tn−1, if n is even.

Lemma 3.2. K (x1, . . . , xn)
Sn = K (α)(u1, . . . , un−1, u)〈ρ〉 and

ρ : α 7→ −α, ui 7→ un−i for i = 1, . . . , n− 1,

u 7→ g(u1, . . . , un−1) · u−1,

where g(u1, . . . , un−1)= f (t2, . . . , tn) and f (t2, . . . , tn) is given as in (3-1).

Proof. The assertion follows from K (α)(t2, . . . , tn, u) = K (α)(u1, . . . , un−1, u)
and Lemma 3.1. Indeed we may show K (t2, . . . , tn)⊂K (u1, . . . , un−1) as follows.

Case 1: n = 2m+ 1 is odd.
The fact that t2, . . . , tm+1 ∈ K (u1, . . . , un−1) follows from (3-2) and (3-3). We

have tn ∈ K (u1, . . . , un−1) because(
um+1

m

um
m−1

)
um

m+1

( 1
um+2

)m+1
=

(
tm+1
m+1

tm
m

)(
tm tm

n

tm+1
n−1

)m( tm
n−1

tm+1tm−1
n

)m+1

= tn.

and tn−1 ∈ K (u1, . . . , un−1) because

tn
(um−1

um

)
um+2

( 1
um+1

)
= tn

( tm
tm+1

)( tm+1tm−1
n

tm
n−1

)(
tm+1
n−1

tm tm
n

)
= tn−1.

From (3-2) we find that tn−(i+1) = un−i t i+1
n−1/t i

n for 1 ≤ i ≤ m − 2. Thus
tm+2, . . . , tn−2 ∈ K (u1, . . . , un−1).

Case 2: n = 2m is even. That t2, . . . , tm ∈ K (u1, . . . , un−1) follows from (3-2).
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From (3-2) and (3-3), we get

uk+1

uk+2
=

tk
tk+1
·

tn
tn−1
=

tk
tk+1
· um,

where k =m, . . . , 2m−3. We find that tk+1 = tkumuk+2/uk+1 ∈ K (u1, . . . , un−1)

for m ≤ k ≤ 2m − 3. From (3-2), we have un−1 = tn−2tn/t2
n−1 = tn−2um/tn−1.

Hence tn−1 = tn−2um/un−1 ∈ K (u1, . . . , un−1).
Since tn = um tn−1, it follows that tn ∈ K (u1, . . . , un−1). �

We will change the variables u1, . . . , un−1 to v1, . . . , vn−1 as follows. When
n = 2m+ 1 is odd, define

vi :=
1
2(ui + un−i ), vn−i :=

1
2(α(ui − un−i )) for i = 1, . . . ,m.

When n = 2m is even, define

vm := um, vi :=
1
2(ui+un−i ), vn−i :=

1
2(α(ui−un−i )) for i = 1, . . . ,m− 1.

Thus K (α)(u1, . . . , un−1, u)= K (α)(v1, . . . , vn−1, u).
In these variables, Lemma 3.2 reads as follows:

Lemma 3.3. K (x1, . . . , xn)
Sn = K (α)(v1, . . . , vn−1, u)〈ρ〉 and

ρ : α 7→ −α, vi 7→ vi for i = 1, . . . , n− 1, u 7→ h(v1, . . . , vn−1) · u−1,

where h(v1, . . . , vn−1)= f (t2, . . . , tn) and f (t2, . . . , tn) is given as in (3-1).

Hence we get the following theorem, which asserts that K (x1, . . . , xn)
Sn is the

function field of a conic bundle over Pn−1 of the form x2
−ay2

= h(v1, . . . , vn−1)

with affine coordinates v1, . . . , vn−1; see for example [Shafarevich 1974, page 73]
for conic bundles over P1.

Theorem 3.4. K (x1, . . . , xn)
Sn = K (x, y, v1, . . . , vn−1) and the generators x , y,

v1, . . . , vn−1 satisfy the relation

x2
− ay2

= h(v1, . . . , vn−1),

where h(v1, . . . , vn−1)= f (t2, . . . , tn) and f (t2, . . . , tn) is given as in (3-1).

Proof. Define

x := 1
2

(
u+

h(v1, . . . , vn−1)

u

)
, y := 1

2α

(
u−

h(v1, . . . , vn−1)

u

)
.

Then we get K (x, y, v1, . . . , vn−1) ⊂ K (x1, . . . , xn)
Sn = K (α)(v1, . . . , vn−1, u).

Thus K (x, y, v1, . . . , vn−1) = K (x1, . . . , xn)
Sn , since K (x, y, v1, . . . , vn)(u) =

K (α)(v1, . . . , vn−1, u) and [K (x, y, v1, . . . , vn)(u) : K (x, y, v1, . . . , vn)] = 2. We
also have x2

− ay2
= h(v1, . . . , vn−1) by definition. �
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Proof of Theorem 1.2 when n = 3 and char K 6= 2.
Step 1. By Lemma 3.1 we find that K (x1, x2, x3)

S3 = K (α)(t2, t3, u)〈ρ〉, where

ρ : α 7→ −α, t2 7→ t−2
2 t3, t3 7→ t−3

2 t2
3 , u 7→ −t−2

2 12
· u−1.

Note that12
=
∏

1≤i< j≤3(yi− y j )
2
= t2

2 −4t3
2 −4t3+18t2t3−27t2

3 because t1= 1.
Define u1 := t2, u2 := ρ(t2) = t−2

2 t3. Then K (α)(t2, t3, u) = K (α)(u1, u2, u)
and

ρ : u1 7→ u2 7→ u1, u 7→ g(u1, u2) · u−1,

where g(u1, u2)=−1+ 4u1+ 4u2− 18u1u2+ 27u2
1u2

2.
Define v1 := (u1+ u2)/2 and v2 := α(u1− u2)/2. Then ρ : v1 7→ v1, v2 7→ v2

and g(u1, u2)= h(v1, v2), where

h(v1, v2)=−1+ 8v1− 18v2
1 + 27v4

1 + (18/a)v2
2 − (54/a)v2

1v
2
2 + (27/a2)v4

2 .

Hence K (x1, x2, x3)
S3 = K (α)(v1, v2, u)〈ρ〉 = K (x, y, v1, v2), where

x = 1
2

(
u+

h(v1, v2)

u

)
, y = 1

2α

(
u−

h(v1, v2)

u

)
.

Note that x and y satisfy the relation

(3-4)
x2
− ay2

= h(v1, v2)

= (1+ v1)(−1+ 3v1)
3
− (18/a)v2

2(−1+ 3v2
1)+ (27/a2)v4

2 .

Step 2. Suppose that char K = 3. Then (3-4) becomes x2
−ay2

=−1−v1. Hence
K (x1, x2, x3)

S3 = K (x, y, v1, v2)= K (x, y, v2) is rational over K .

Step 3. From now on, we assume that char K 6= 2, 3.
We normalize the generators v1 and v2 by defining T1 := 3v1 and T2 := 3v2/a.

We get K (x1, x2, x3)
S3 = K (x, y, T1, T2) with a relation

(3-5) 3x2
− 3ay2

=−3+ 8T1− 6T 2
1 + T 4

1 + 6aT 2
2 − 2aT 2

1 T 2
2 + a2T 4

2 .

Step 4. We find the singularities of (3-5). We get x = y=−1+T1= T2= 0. Define
T3 := −1+ T1. The relation (3-5) becomes

3x2
− 3ay2

= 4aT 2
2 + a2T 4

2 − 4aT 2
2 T3− 2aT 2

2 T 2
3 + 4T 3

3 + T 4
3 .(3-6)

Step 5. We blow-up Equation (3-6), that is, define X2 := x/T3, Y2 := y/T3 and
T4 := T2/T3. Then K (x, y, T1, T2)= K (x, y, T2, T3)= K (X2, Y2, T3, T4) and the
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relation (3-6) becomes

(3-7)

3X2
2 − 3aY 2

2 = 4T3+ T 2
3 + 4aT 2

4 − 4aT3T 2
4 − 2aT 2

3 T 2
4 + a2T 2

3 T 4
4

= (T3− aT3T 2
4 )

2
+ 4(T3− aT3T 2

4 )+ 4aT 2
4

= (T3− aT3T 2
4 )(4+ T3− aT3T 2

4 )+ 4aT 2
4 .

Define

X3 :=
X2

T3− aT3T 2
4
, Y3 :=

Y2

T3− aT3T 2
4
,

S1 :=
4+ T3− aT3T 2

4

T3− aT3T 2
4

, S2 :=
T4

T3− aT3T 2
4
.

Note that K (X2, Y2, T3, T4) = K (X3, Y3, S1, S2). For S1 ∈ K (X3, Y3, S1, S2),
S1 is a fractional linear transformation of T3 − aT3T 2

4 . Hence T3 − aT3T 2
4 ∈

K (X3, Y3, S1, S2). Thus T4 = S2 · (T3 − aT3T 2
4 ) ∈ K (X3, Y3, S1, S2) also. Now

S1 is a fractional linear transformation of T3 with coefficients in K (T4). Hence
T3 ∈ K (X3, Y3, S1, S2). It follows that X2, Y2 ∈ K (X3, Y3, S1, S2) also.

The relation (3-7) becomes 3X2
3 − 3aY 2

3 = S1 + 4aS2
2 , which is linear in S1.

Hence K (x1, x2, x3)
S3 = K (X3, Y3, S1, S2)= K (X3, Y3, S2) is rational over K .

Step 6. Here is another proof. Instead of the method in Step 5, we may proceed as
follows:

Define X4 := x/T 2
3 , Y4 := y/T 2

3 , T4 := T2/T3, and T5 := 1/T3. Then
K (x, y, T2, T3) = K (X4, Y4, T4, T5) and (3-6) becomes

3X2
4 − 3aY 2

4 = 1− 2aT 2
4 + a2T 4

4 + 4T5− 4aT 2
4 T5+ 4aT 2

4 T 2
5 .

The singularities here are X4= Y4= T4±(1/
√

a)= T5= 0. If we blow-up with
respect to 1− aT 2

4 , that is, define

X5 := X4/(1− aT 2
4 ), Y5 := Y4/(1− aT 2

4 ), T6 := T5/(1− aT 2
4 ),

then K (X4, Y4, T4, T5)= K (X5, Y5, T4, T6) and the relation becomes

(3-8) 3X2
5 − 3aY 2

5 = 1+ 4T6+ 4aT 2
4 T 2

6 .

Thus we get K (x1, x2, x3)
S3 = K (X5, Y5, T4T6, T6)= K (X5, Y5, T4T6) is ratio-

nal over K because (3-8) becomes linear in T6. �

Proof of Theorem 1.2 when n = 4 and char K 6= 2.

Step 1. By Lemma 3.1 we find that K (x1, x2, x3, x4)
S4 = K (α)(t2, t3, t4, u)〈ρ〉,

where

ρ : α 7→ −α, t2 7→ t2t−2
3 t4, t3 7→ t−3

3 t2
4 , t4 7→ t−4

3 t3
4 , u 7→ t−5

3 t2
41

2
· u−1,
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where

12
=

∏
1≤i< j≤4

(yi − y j )
2

= t2
2 t2

3 − 4t3
2 t2

3 − 4t3
3 + 18t2t3

3 − 27t4
3 − 4t3

2 t4+ 16t4
2 t4+ 18t2t3t4− 80t2

2 t3t4

− 6t2
3 t4+ 144t2t2

3 t4− 27t2
4 + 144t2t2

4 − 128t2
2 t2

4 − 192t3t2
4 + 256t3

4 .

Define u1 := t2, u2 := t4/t3 and u3 := ρ(t2)= t2t4/t2
3 . Then K (α)(t2, t3, t4, u)

= K (α)(u1, u2, u3, u) and

ρ : α 7→ −α, u1 7→ u3 7→ u1, u2 7→ u2, u 7→ g(u1, u2, u3) · u−1,

where

g(u1, u2, u3)=
u2

u1u3

(
−27u2

1u2
2− 4u1u2u3+ 18u2

1u2u3− 6u1u2
2u3+ 144u2

1u2
2u3

− 192u1u3
2u3+ 256u1u4

2u3+ u2
1u2

3− 4u3
1u2

3+ 18u1u2u2
3

− 80u2
1u2u2

3− 27u2
2u2

3+ 144u1u2
2u2

3− 128u2
1u2

2u2
3− 4u2

1u3
3+ 16u3

1u3
3
)
.

Define v1 := (u1 + u3)/2, v2 := u2 and v3 = α(u1 − u3)/2. Then we obtain
K (α)(u1, u2, u3, u)= K (α)(v1, v2, v3, u) and

ρ : α 7→ −α, v1 7→ v1, v2 7→ v2, v3 7→ v3, u 7→ h(v1, v2, v3) · u−1,

where h(v1, v2, v3)= g(u1, u2, u3) ∈ K (v1, v2, v3) is given as

h(v1, v2, v3)=
v2

av2
1−v

2
3

(
av2

1v2(−1+4v1−8v2)
2(v2

1−4v2+4v1v2+4v2
2)

−2v2v
2
3
(
v2

1−8v3
1+24v4

1−2v2+18v1v2−80v2
1v2

+24v2
2+144v1v

2
2−128v2

1v
2
2−96v3

2+128v4
2
)

−(1/a)v2v
4
3(−1+8v1−48v2

1+80v2+128v2
2)−(16/a2)v2v

6
3
)
.

Step 2. Because h(v1, v2, v3) is still complicated, we define p, q and r as

p := 1
2

( 1
u1
+

1
u3

)
u2, q := α

2

( 1
u1
−

1
u3

)
u2, r := 4u2.

Then K (α)(v1, v2, v3, u)= K (α)(p, q, r, u). Indeed we have

p =
av1v2

av2
1 − v

2
3
, q =−

av2v3

av2
1 − v

2
3
, r = 4v2,

v1 =
apr

4(ap2− q2)
, v2 = r/4, v3 =−

apr
4(ap2− q2)

.

Hence we obtain K (x1, x2, x3, x4)
S4 = K (α)(p, q, r, u)〈ρ〉 and

ρ : α 7→ −α, p 7→ p, q 7→ q, r 7→ r, u 7→
r2

64(ap2− q2)2
·

H(p, q, r)
u

,
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where

(3-9) H(p, q, r)= a2(p− r + 2pr)2(−16p2
+ r + 4pr + 4p2r)

− a
(
−32p2

+ r + 36pr − 12p2r − 20r2
+ 72pr2

− 96p2r2
− 8r3

+ 32p2r3)q2
+ 16(−1+ r)3q4.

Define U := u ·r/(8(ap2
−q2)). Then K (α)(p, q, r, u)= K (α)(p, q, r,U ), and

ρ acts on K (α)(p, q, r,U ) by

ρ : α 7→ −α, p 7→ p, q 7→ q, r 7→ r, U 7→ H(p, q, r)/U.

Hence K (x1, . . . , x4)
S4 = K (α)(p, q, r,U )〈ρ〉 = K (X, Y, p, q, r) where

X = 1
2

(
U +

g(p, q, r)
U

)
, Y = 1

2α

(
U −

g(p, q, r)
U

)
.

Note that X and Y satisfy the relation

(3-10) X2
− aY 2

= H(p, q, r).

Step 3. Because H(p, q, r) in (3-9) is a biquadratic equation with respect to q and
its constant term has the square factor (p−r+2pr)2, we define p2 := p−r+2pr .
Then p= (p2+r)/(1+2r). We also define X2 := X (1+2r) and Y2 := Y (1+2r).
Then K (x1, x2, x3, x4)

S4 = K (X2, Y2, p2, q, r) and (3-10) becomes

X2
2−aY 2

2 = a2 p2
2(−16p2

2+r−28p2r+4p2
2r−8r2

+16p2r2
+16r3)

−a
(
−32p2

2+r−28p2r−12p2
2r−12r2

+120p2r2

−96p2
2r2
+48r3

−48p2r3
+32p2

2r3
−64r4

+64p2r4)q2

+16(−1+r)3(1+2r)2q4.

The right hand side is biquadratic in q with constant term on the first line. Hence
we define p3 := p2/q, X3 := X2/q and Y3 := Y2/q, and the equation becomes
quadratic in q:

X2
3 − aY 2

3 = ar(−1+ 4r)2(−1+ ap2
3 + 4r)

+ 4ap3r(7− 7ap2
3 − 30r + 4ap2

3r + 12r2
− 16r3)q

+ 4(−1+ ap2
3 − 4r − 4r2)(4− 4ap2

3 − 12r + ap2
3r + 12r2

− 4r3)q2.

Define q2 := 1/q , r2 := 4r , X4 := 4X3/q, Y4 := 4Y3/q . Then

(3-11) X2
4 − aY 2

4 = 4ar2(−1+ r2)
2(−1+ ap2

3 + r2)q2
2

+ 4ap3r2(28− 28ap2
3 − 30r2+ 4ap2

3r2+ 3r2
2 − r3

2 )q2

+ (−4+ 4ap2
3 − 4r2− r2

2 )(64− 64ap2
3 − 48r2+ 4ap2

3r2+ 12r2
2 − r3

2 ).



300 AKINARI HOSHI AND MING-CHANG KANG

Because (3-11) is quadratic in q2, we may eliminate a linear term of q2 in the
usual manner by putting

q3 := 2q2+
p3(28− 28ap2

3 − 30r2+ 4ap2
3r2+ 3r2

2 − r3
2 )

(−1+ r2)2(−1+ ap2
3 + r2)

.

Define

X5 := X4(−1+ r2)(−1+ ap2
3 + r2), Y5:= Y4(−1+ r2)(−1+ ap2

3 + r2).

Then (3-11) becomes

X2
5 − aY 2

5 = (2+ r2)
2(−1+ ap2

3 + r2)(4− 4ap2
3 − 5r2+ r2

2 )
3

+ ar2(−1+ r2)
4(−1+ ap2

3 + r2)
3q2

3 .

Defining
q4 :=

q3(−1+ r2)
2(−1+ ap2

3 + r2)

(2+ r2)(4− 4ap2
3 − 5r2+ r2

2 )
and

X6 :=
X5

(2+ r2)(4− 4ap2
3 − 5r2+ r2

2 )
, Y6 :=

Y5

(2+ r2)(4− 4ap2
3 − 5r2+ r2

2 )
,

we get K (x1, . . . , x4)
S4 = K (X6, Y6, p3, q4, r2) and the equation becomes

(3-12) X2
6 − aY 2

6 = (−1+ ap2
3 + r2)((4− 4ap2

3 − 5r2+ r2
2 )+ ar2q2

4 ).

Step 4. We find the singularities of (3-12). We get p3±(1/
√

a)= r2= X6=Y6=0.
Blow-up with respect to −1+ ap2

3 , that is, define

r3 := r2/(−1+ ap2
3), X7 := X6/(−1+ ap2

3), Y7 := Y6/(−1+ ap2
3).

Then K (p3, q4, r2, X6, Y6)= K (p3, q4, r3, X7, Y7) and (3-12) becomes

X2
7 − aY 2

7 = (1+ r3)(−4− 5r3+ aq2
4r3− r2

3 + ap2
3r2

3 ).

Define p4 := p3r3. Then

(3-13) X2
7 − aY 2

7 = (1+ r3)(−4− 5r3+ aq2
4r3− r2

3 + ap2
4).

Step 5. Equation (3-13) still has a singular locus p4± q4 = r3+ 1= X7 = Y7 = 0.
If we define p5 := p4+ q4 and r4 := r3+ 1, it becomes

(3-14) X2
7 − aY 2

7 = r4(ap2
5 − 2ap5q4− 3r4+ aq2

4r4− r2
4 )

with singular locus S = (p5 = r4 = X7 = Y7 = 0). Blowing this up along S by
defining r5 := r4/p5, X8 := X7/p5, and Y8 := Y7/p5, we get

X2
8 − aY 2

8 = r5(ap5− 2aq4− 3r5+ aq2
4r5− p5r2

5 ).
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Note that this is linear in p5. Hence we conclude that the fixed field K (x1, . . . , x4)
S4

= K (X8, Y8, q4, r5) is rational over K . �

4. Using the structures of rings of invariants

In this section, we give an another proof of Theorem 1.2 in the case of n = 3, 4
and char K = 2 by using the structure of K (x1, . . . , xn)

An . Throughout, we assume
that char K = 2.

For 1 ≤ i ≤ n, let si be the elementary symmetric function in x1, . . . , xn of
degree i .

By Revoy’s theorem [1982], the invariant ring K [x1, . . . , xn]
An is a free module

of rank 2 over the subring K [x1, . . . , xn]
Sn = K [s1, . . . , sn]. Revoy’s theorem is

valid for all characteristics. We will find explicitly a free basis of K [x1, . . . , xn]
An

over K [x1, . . . , xn]
Sn for the case n = 3, 4. For n = 3 and n = 4, it suffices by

[Neusel and Smith 2002, Example 1, page 75] to find a polynomial of degree 3
and 6, respectively, that is in K [x1, . . . , xn]

An but not in K [x1, . . . , xn]
Sn .

Define

b3 :=
∑
σ∈A3

σ(x1x2
2)= x1x2

2+x2x2
3+x3x2

1 ,

b4 :=
∑
σ∈A4

σ(x1x2
2 x3

3)= x2
1 x3

2 x3+x3
1 x2x2

3+x1x2
2 x3

3+x3
1 x2

2 x4+x3
2 x2

3 x4+x2
1 x3

3 x4

+x1x3
2 x2

4+x3
1 x3x2

4+x2x3
3 x2

4+x2
1 x2x3

4+x2
2 x3x3

4+x1x2
3 x3

4 .

For n = 3, 4, it follows that {1, bn} is a free basis of K [x1, . . . , xn]
An , that is,

K [x1, x2, x3]
A3 = K [s1, s2, s3]⊕ b3K [s1, s2, s3],

K [x1, x2, x3, x4]
A4 = K [s1, s2, s3, s4]⊕ b4K [s1, s2, s3, s4].

We have proved this:

Lemma 4.1. Let K be a field of char K = 2. Then the fields K (x1, x2, x3)
A3 and

K (x1, x2, x3, x4)
A4 of invariants are given as follows.

(i) K (x1, x2, x3)
A3 = K (s1, s2, s3, b3) with the relation

b2
3+ b3s1s2+ s3

2 + b3s3+ s3
1s3+ s2

3 = 0.

(ii) K (x1, x2, x3, x4)
A4 = K (s1, s2, s3, s4, b4) with the relation

b2
4+ b4s1s2s3+ b4s2

3 + s3
2s2

3 + s3
1s3

3 + s4
3 + b4s2

1s4+ s2
1s3

2s4+ s4
1s2

4 = 0.

Proof of Theorem 1.2 when n=3 and char K =2. First, τ acts on K (x1, x2, x3)
A3=

K (s1, s2, s3, b3) as

s1 7→ as2/s3, s2 7→ a2s1/s3, s3 7→ a3/s3, b3 7→ a3b3/s2
3 .
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Apply Theorem 2.2. We find K (x1, x2, x3)
A3 = K (s3, u, v), where u and v are

the same as in Theorem 2.2. It is not difficult to check that

u =
b3+ s3

s2
1 + s2

and v =
b3+ s1s2

s2
1 + s2

.

Moreover, the action of τ is given by

τ : s3 7→
a3

s3
, u 7→ au

u2−uv+v2 , v 7→
av

u2−uv+v2 .

Define w := u/v. Then K (x1, x2, x3)
A3 = K (s3, v, w) and

τ : s3 7→
a3

s3
, v 7→

a
v(1−w+w2)

, w 7→ w.

By Theorem 2.1, K (x1, x2, x3)
S3 = K (s3, v, w)

〈τ 〉 is rational over K . �

Proof of Theorem 1.2 when n = 4 and char K = 2.
In this case, τ acts on K (x1, x2, x3, x4)

A4 = K (s1, s2, s3, s4, b4) as

s1 7→ as3/s4, s2 7→ a2s2/s4, s3 7→ a3s1/s4, s4 7→ a4/s4,

b4 7→ a6(b4+ s1s2s3+ s2
3 + s2

1s4)/s3
4 .

Define

t1 :=
s1s3

s2
, t2 := s2, t3 := s3, t4 :=

s1s2s3+ s2
3 + s2

1s4

s2
2

, t5 :=
b4+ s3

2

s2
.

It follows that K (s1, s2, s3, s4, b4) = K (t1, t2, t3, t4, t5). It is easy to check that
the relation among the generators t1, . . . , t5 is given by

t3
1 + t2

1 t2+ t1t2
2 + t3

2 + t2t2
4 + t2t4t5+ t2t2

5 = 0.

Define

u1 := t1, u2 :=
t2
t1
, u3 := t3, u4 :=

t4
(t1+ t2)

, u5 :=
t5

(t1+ t2)
.

Then we get K (t1, . . . , t5)= K (u1, . . . , u5) with the relation

u2(u2
4+ u4u5+ u2

5+ 1)+ 1= 0.

Because this relation is linear in u2, we obtain the following lemma.

Lemma 4.2. K (x1, . . . , x4)
A4 = K (u1, u3, u4, u5), where

u1 =
s1s3

s2
, u3 = s3, u4 =

s1s2s3+ s2
3 + s2

1s4

s2(s2
2 + s1s3)

, u5 =
b4+ s3

2

s2(s2
2 + s1s3)

.
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Now we will prove Theorem 1.2 when n = 4 and char K = 2.
Write p = u1, q = u3, r = u4, s = u5 and τ = (12) ∈ S4 \ A4. Note that

K (x1, . . . , x4)
S4 = K (p, q, r, s)〈τ 〉 and the action of τ on K (p, q, r, s) is given by

p 7→ r2
+rs+s2

+1
ap

,

q 7→
a3 p6q

(r2+ rs+ s2+ 1)3+ p3q((r + 1)(r2+ rs+ s2+ 1)+ 1)
,

r 7→ r, s 7→ s+ r.

Define

t :=
(r2
+ rs+ s2

+ 1)3

p3q((r + 1)(r2+ rs+ s2+ 1)+ 1)
.

Then K (x1, x2, x3, x4)
S4 = K (p, q, r, s)〈τ 〉 = K (p, t, r, s)〈τ 〉 and the action of τ

on K (p, t, r, s) is given by

τ : p 7→ (r2
+ rs+ s2

+ 1)/(ap), t 7→ t + 1, r 7→ r, s 7→ s+ r.

Define
A := r + s+ r t, B := (r + s)/s, C := pr/s.

It follows that K (p, q, r, s)= K (r, A, B,C). Thus we have K (x1, x2, x3, x4)
S4 =

K (r)(A, B,C)〈τ 〉 and

τ : r 7→ r, A 7→ A, B 7→ 1
B
, C 7→ 1

a

(
(r2
+ 1)

( 1
B
+ B

)
+ r2

)/
C.

Apply Theorem 2.1. We find that K (x1, x2, x3, x4)
S4 is rational over K . �
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