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We adapt Topping’s L-optimal transportation theory for Ricci flow to a
more general situation, in which a complete manifold (M, gi j (t)) evolves by
∂t gi j =−2Si j , where Si j is a symmetric 2-tensor field on M. We extend some
recent results of Topping, Lott and Brendle, generalize the monotonicity of
the W-entropy of List (and hence also of Perelman), and recover the mono-
tonicity of the reduced volume of Müller (and hence also of Perelman).

1. Introduction

Since Monge introduced the optimal transportation problem, much beautiful work
has been done, especially in the last several decades. For an extensive discus-
sion, see [Villani 2009]. Recently, Topping, Lott, Brendle and others considered
this problem on a manifold evolving by Hamilton’s Ricci flow. Topping [2009]
introduced L-optimal transportation for Ricci flow. He studied the behavior of
Boltzmann–Shannon entropy along L-Wasserstein geodesics, and obtained a nat-
ural monotonic quantity from which the monotonicity of Perelman’s W-entropy
was recovered, among other things. Using Topping’s work, both Lott [2009] and
Brendle [2009] were able to prove again the monotonicity of Perelman’s reduced
volume. Lott did so by showing the convexity of a certain entropy-like function,
while Brendle proved a Prékopa–Leindler-type inequality for Ricci flow.

List [2008] considered an extended Ricci flow in his thesis, and generalized the
monotonicity of Perelman’s W-entropy to his flow. Müller [2010] studied more
general evolving closed manifolds (M, gi j (t)) with metrics gi j (t) satisfying the
equation

(1-1)
∂gi j

∂t
=−2Si j ,

where S = (Si j ) is a symmetric 2-tensor field on M . He generalized the mono-
tonicity of Perelman’s reduced volume to this flow satisfying a certain constraint
condition, which will be stated later; see [Müller 2010, Theorem 1.4].
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Here we adapt Topping’s L-optimal transportation theory for Ricci flow to the
general flow (1-1). We obtain some analogs of results of Topping, Lott and Brendle
mentioned above, and using this we can generalize the monotonicity of List’s (and
hence also of Perelman’s) W-entropy, and recover the monotonicity of Müller’s
(and hence also of Perelman’s) reduced volume.

Now we consider the flow (1-1) backwards in time on a complete manifold. Let
τ be some parameter increasing backward in time, that is, τ = C − t for some
constant C ∈ R. Consider the reverse flow

(1-2)
∂gi j

∂τ
= 2Si j (τ ),

defined on a time interval including [τ1, τ2], with 0≤ τ1 <τ2. Following Perelman
[2002] and Müller [2010], we define the L-length of a curve γ : [τ1, τ2] → M by

L(γ) :=

∫ τ2

τ1

√
τ(S(γ(τ ), τ )+ |γ′(τ )|2g(τ ))dτ,

where S is the trace of S (with respect to g(τ )). Then we define the L-distance by

(1-3) Q(x, τ1; y, τ2)

:= inf{L(γ) | γ : [τ1, τ2] → M is smooth and γ(τ1)= x, γ(τ2)= y}.

Given two Borel probability measures ν1 and ν2 viewed at times τ1 and τ2,
respectively, following [Topping 2009] we define the L-Wasserstein distance by

(1-4) V (ν1, τ1; ν2, τ2) := inf
{∫

M×M
Q(x, τ1; y, τ2)dπ(x, y)

∣∣∣ π ∈ 0(ν1, ν2)
}
,

where 0(ν1, ν2) is the space of Borel probability measures π on M × M with
marginals ν1 and ν2, that is, π(�×M)= ν1(�) and π(M×�)= ν2(�) for Borel
subsets � in M .

To state our theorems we need to introduce a quantity from [Müller 2010]. Let
g(τ ) evolve by (1-2), and let X ∈0(TM) be a vector field on M . Following Müller,
we set

(1-5) D(S, X) := −∂τ S−4S− 2|S|2

− 4δS(X)− 2X (S)+ 2 Ric(X, X)− 2S(X, X),

where δS :=− tr12 ∇S. (Here, tr12 means to trace over the first and second entries.)
Our first result generalizes [Topping 2009, Theorem 1.1] and a result of von Re-

nesse and Sturm [2005]. Following Topping, we refer to a family of smooth proba-
bility measures ν(τ) on M as a diffusion if the density u(τ ) relative to the Riemann-
ian volume measure µ(τ) of g(τ ) (that is, the density with dν(τ) = u(τ )dµ(τ))
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satisfies the equation

(1-6)
∂u
∂τ
=4u− Su.

Theorem 1.1. Given 0 < τ̄1 < τ̄2, suppose (M, g(τ )) is a closed, n-dimensional
manifold evolving by (1-2) for τ in some open interval containing [τ̄1, τ̄2], such that
the quantity D(S, X) is nonnegative for all vector fields X ∈ 0(TM) and all times
for which the flow exists. Let ν1(τ ) and ν2(τ ) be two diffusions (as defined above)
for τ in some neighborhoods of τ̄1 and τ̄2, respectively. Set τ1 = τ1(s) := τ̄1es and
τ2 = τ2(s) := τ̄2es , and define the renormalized L-Wasserstein distance by

2(s) := 2(
√
τ2−
√
τ1)V (ν1(τ1), τ1; ν2(τ2), τ2)− 2n(

√
τ2−
√
τ1)

2

for s in a neighborhood of 0 such that νi (τi (s)) are defined for i = 1, 2.
Then 2(s) is a weakly decreasing function of s.

The constraint condition on D(S, X) in Theorem 1.1 is the same as that appeared
in [Müller 2010, Theorem 1.4]. Müller pointed out that it is satisfied, for example,
by the static manifolds with nonnegative Ricci curvature, by Hamilton’s Ricci flow,
by List’s flow [2008], by the Ricci flow coupled with harmonic map heat flow
introduced in Müller’s thesis [2010], and by mean curvature flow in an ambient
Lorentzian manifold with nonnegative sectional curvature.

Our second result generalizes [Lott 2009, Theorem 1].

Theorem 1.2. Given 0 < τ1 < τ2, suppose that (M, g(τ )) is a connected closed,
n-dimensional manifold evolving by (1-2) for τ in some open interval including
[τ1, τ2], such that the quantity D(S, X) is nonnegative for all vector fields X in
0(TM) and all times for which the flow exists. Let Vτ (τ ∈ [τ1, τ2]) be an L-
Wasserstein geodesic induced by a reflexive function ϕ : M→ R, with Vτ1 and Vτ2

both absolutely continuous probability measures. Set

(1-7) φ(y, τ ) := 1
2
√
τ

inf
x∈M

(Q(x, τ1; y, τ )−ϕ(x))

for y ∈ M and τ ∈ [τ1, τ2]. Then E(Vτ )+
∫

M φ( · , τ )dVτ + (n/2) ln τ is convex in
the variable τ−1/2.

For the definition of L-Wasserstein geodesic, see the paragraph after [Topping
2009, Theorem 2.14] and also the paragraph following our Theorem 2.1. Here
E(Vτ ) is the Boltzmann–Shannon entropy of Vτ (recalled in Section 2).

Our third theorem generalizes [Brendle 2009, Theorem 2] and also a result in
[Cordero-Erausquin et al. 2001]. Note that we do not assume that M is compact
in this theorem.

Theorem 1.3. Given 0 < τ1 < τ2, suppose that (M, g(τ )) is a complete manifold
evolving by (1-2) for τ in some open interval including [τ1, τ2], with Si j uniformly
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bounded in compact time intervals, and such that the quantity D(S, X) is non-
negative for all vector fields X ∈ 0(TM) and all times for which the flow exists.
Fix τ̄ ∈ (τ1, τ2), and write

1
√
τ̄
=

1−λ
√
τ1
+

λ
√
τ2
,

for some 0 < λ < 1. Let u1, u2, v : M → R be nonnegative measurable functions
such that(

τ̄

τ 1−λ
1 τ λ2

)n/2
v(γ(τ̄ ))≥ exp

(
−

1−λ
2
√
τ1

Q(γ(τ1), τ1; γ(τ̄ ), τ̄ )
)

u1(γ(τ1))
1−λ

× exp
(

λ

2
√
τ2

Q(γ(τ̄ ), τ̄ ; γ(τ2), τ2)
)

u2(γ(τ2))
λ

for each minimizing L-geodesic γ : [τ1, τ2] → M. Then∫
M
v dµ(τ̄ )≥

(∫
M

u1 dµ(τ1)
)1−λ(∫

M
u2 dµ(τ2)

)λ
.

The proofs of our theorems, given in Section 2, rely heavily on [Topping 2009].
In Section 3 we give some applications, (following Topping and Brendle).

2. Proofs of theorems

Part of Topping’s L-optimal transportation theory for Ricci flow extends to the
general flow (1-1) without any change. In particular, virtually all theorems in
[Topping 2009, Section 2] hold in our more general situation.

Consider (M, g(τ )) satisfying (1-2) on an open time interval including some
interval [τ1, τ2] with 0< τ1 < τ2. Recall [Perelman 2002; Müller 2010] that a path
γ : [τ1, τ2]→ M is an L-geodesic if the first variation of the L-length at γ is zero.
For x ∈ M and Z ∈ Tx M , let γ : [τ1, τ2] → M be the (unique) L-geodesic with
γ(τ1)= x and

√
τ1γ
′(τ1)= Z . We define

Lτ1,τ2 expx(Z)= γ(τ2).

Theorem 2.1 (see [Topping 2009, Section 2, in particular Theorem 2.14]). Given
0 < τ1 < τ2, suppose that (M, g(τ )) is a closed manifold evolving by (1-2) for τ
in some open interval including [τ1, τ2]. Suppose that ν1 and ν2 are absolutely
continuous probability measures, with respect to (any) volume measure. Then there
exists an optimal transference plan π in (1-4) that is given by the push-forward of
ν1 under the map x 7→ (x, F(x)), where F : M→ M is a Borel map defined by

(2-1) F(x) := Lτ1,τ2 expx(−
1
2∇ϕ(x)),

at points of differentiability of some reflexive function ϕ : M → R, where the gra-
dient is with respect to g(τ1).
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There exists a Borel set K ⊂ M with ν1(K ) = 1 such that for each x ∈ K ,
ϕ admits a Hessian at x and

(2-2) fτ1(x)= fτ2(F(x)) det(d F)x 6= 0,

where fτi is the density defined by dνi = fτi dµ(τi ) for i = 1, 2.

For definition of reflexive function, see [Topping 2009, Definition 2.1], and for
push-forward measure, see for example [Villani 2009, Conventions, page 11].

As in [Topping 2009], we refer to Vτ := (Fτ )](ν1) as an L-Wasserstein geodesic,
where Fτ : M→ M is a Borel map defined by

Fτ (x) := Lτ1,τ expx(−
1
2∇ϕ(x))

at points of differentiability of ϕ (as in the theorem above) for τ ∈ [τ1, τ2].

Remark 2.2. Theorem 2.1 extends to the case of noncompact M with suitable
modifications: One imposes in addition that Si j is uniformly bounded (in compact
time intervals) and that V (ν1, τ1; ν2, τ2) is finite. Then the results in Theorem 2.1
still hold, with the gradient in (2-1), the differential in (2-2), and the Hessian re-
placed by approximate versions. (Of course, ϕ need not be reflexive any more.) For
more details, see [Fathi and Figalli 2010; Figalli 2007; Villani 2009]. Moreover,
in the noncompact case, one can still say something even if one does not impose
the finiteness condition on V (ν1, τ1; ν2, τ2); see [Figalli 2007; Villani 2009].

Note that Müller [2010] has established some properties of L-geodesics and
L-distance in our situation.

As in [Müller 2010], (following R. Hamilton) we introduce

(2-3) H(S, X) := −∂τ S− (1/τ)S− 2X (S)+ 2S(X, X) for X ∈ 0(TM).

The following key lemma generalizes [Topping 2009, Lemma 3.1].

Lemma 2.3. Let γ : [τ1, τ2] → M be an L-geodesic, and {Yi (τ )}i=1,...,n be a
set of L-Jacobi fields along γ that form a basis of Tγ(τ)M for each τ ∈ [τ1, τ2],
with {Yi (τ1)} orthonormal and 〈DτYi , Y j 〉 symmetric in i and j at τ = τ1. Define
α : [τ1, τ2] → R by α(τ)=− 1

2 ln det〈Yi (τ ), Y j (τ )〉g(τ ), and write σ =
√
τ . Then

d2α

dσ 2 = 4
√
τ

d
dτ

(√
τ

dα
dτ

)
≥ 2τ(H(S, X)+D(S, X)),

d2(σα)

dσ 2 = 4 d
dτ

(
τ 3/2 dα

dτ

)
≥ 2τ 3/2(H(S, X)+D(S, X))− nτ−1/2,

where X = γ′(τ ).
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Proof. The proof follows closely that of [Topping 2009, Lemma 3.1] with some
necessary modifications. Recall the L-geodesic equation [Müller 2010]

Dτ X = 1
2∇S− 2S̃(X)− 1

2τ
−1 X,

where S̃ is S viewed as an endomorphism (using g(τ )), which is defined by
〈S̃(Z),W 〉=S(Z ,W ), and Dτ = Dg(τ )

τ represents the pull-back of the Levi-Civita
connection on (M, g(τ )) under γ, acting in the direction ∂/∂τ . Then at τ = τ̂ ,

D2
τY := Dg(τ )

τ (Dg(τ )
τ Y )

= Dg(τ̂ )
τ (Dg(τ̂ )

τ Y )+ (∇Y S̃)(X)+ (∇X S̃)(Y )− ((∇S)( · , X, Y ))],

where ] represents the musical isomorphism 0(γ∗(T ∗M))→ 0(γ∗(TM)) via the
Riemannian metric and is given by

〈ω], Z〉 = ω(Z)

for a 1-form ω ∈ 0(γ∗(T ∗M)).
Then we can derive the L-Jacobi equation for Y (τ ),

D2
τY =−R(X, Y )X + 1

2∇Y (∇S)−∇Y S̃(X)− 2S̃(DτY )

−
1
2τ
−1 DτY +∇X S̃(Y )− (∇S( · , X, Y ))]

where R(X, Y )Z =−∇X∇Y Z +∇Y∇X Z +∇[X,Y ]Z .
Now consider the solution ei ∈ 0(γ

∗(TM)) for i = 1, . . . , n of the ODE

Dτ ei + S̃(ei )= 0,

with initial condition ei (τ1)= Yi (τ1). Then {ei (τ )} is an orthonormal frame for all
τ ∈ [τ1, τ2]. Write Y j (τ )= Ak j ek(τ ) for a τ -dependent n× n matrix A. Then

A′i j = 〈DτY j , ei 〉+ Ak j S(ek, ei ),

A′′i j = 〈D
2
τY j , ei 〉+ 2A′k j S(ek, ei )+ Ak j 〈Dτ (S̃(ek)), ei 〉.

Using the L-Jacobi equation we get

〈D2
τY j , ei 〉

= Ak j
(
−Rm(X, ek, X, ei )+

1
2 Hess(S)(ei , ek)+∇X S(ei , ek)−〈∇ek S̃(X), ei 〉

− 〈∇ei S̃(X), ek〉+ 2〈S̃2
(ek), ei 〉+

1
2τ
−1S(ei , ek)

)
− 2A′k j S(ek, ei )−

1
2τ
−1 A′i j .

We also have

〈Dτ (S̃(ek)), ei 〉 =
∂S
∂τ
(ei , ek)+∇X S(ei , ek)− 3〈S̃2

(ek), ei 〉.

Then we get
A′′+ 1

2τ
−1 A′ = M A,
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where M is the τ -dependent n× n symmetric matrix given by

Mik =−Rm(X, ek, X, ei )+
1
2 Hess(S)(ei , ek)+ 2∇X S(ei , ek)−〈∇ek S̃(X), ei 〉

− 〈∇ei S̃(X), ek〉− 〈S̃
2
(ek), ei 〉+

1
2τ
−1S(ei , ek)+

∂S
∂τ
(ei , ek).

Using tr∇X S=∇X tr S and the definition of the operator δ (recalled in Section 1),
we compute

tr M =−Ric(X, X)+ 1
24S+ 2X (S)+ 2δS(X)− |S|2+ S

2τ
+ tr ∂S

∂τ
.

Using (1-5), (2-3) and the equation tr ∂S/∂τ = ∂S/∂τ + 2|S|2, we see that

tr M =− 1
2(H(S, X)+D(S, X)).

Now define B := (d A/dτ)A−1. Then as in [Topping 2009], using α = − ln det A
and dα/dτ =− tr((d A/dτ)A−1), we have

τ−1/2 d
dτ

(√
τ

dα
dτ

)
= tr B2

− tr M = tr B2
+

1
2(H(S, X)+D(S, X)),

τ−3/2d/dτ
(
τ 3/2 dα

dτ

)
= tr(B− 1

2τ
−1 I )2+ 1

2(H(S, X)+D(S, X))−
n

4τ 2 .

Similarly to [Topping 2009], one can show that B is symmetric, and our result
follows. �

Now we begin to study the behavior along an L-Wasserstein geodesic of the
Boltzmann–Shannon entropy, the entropy defined for a probability measure f dµ
by

E( f dµ)=
∫

M
f ln f dµ,

where µ is a Riemannian volume measure and f is a reasonably regular weakly
positive function on M . As before we set σ =

√
τ . Then we have the following

lemma, which generalizes [Topping 2009, Lemma 3.2].

Lemma 2.4. Let (M, g(τ )) be as in Theorem 2.1. Let Vτ (τ ∈ [τ1, τ2]) be an L-
Wasserstein geodesic induced by a potential ϕ : M → R, with Vτ1 and Vτ2 both
absolutely continuous probability measures, and write dVτ = fτdµ(τ), whereµ(τ)
is the volume measure of g(τ ). Then for all τ ∈ [τ1, τ2], we have fτ ∈ L ln L(µ(τ)),
and the function E(Vτ ) is semiconvex in τ and satisfies, for almost all τ ∈ [τ1, τ2],

d2

dσ 2 E(Vτ )= 4
√
τ

d
dτ

(√
τ

d E(Vτ )
dτ

)
≥ 2τ

∫
M
(H(S, X (τ ))+D(S, X (τ )))dVτ1
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and

d2

dσ 2 (σ E(Vτ ))= 4 d
dτ

(
τ 3/2 d E(Vτ )

dτ

)
≥ 2τ 3/2

∫
M
(H(S, X (τ ))+D(S, X (τ )))dVτ1 − nτ−1/2,

where σ 7→ E(Vτ ) admits a second derivative in the sense of Alexandrov, and where
X (τ ) = γ′(τ ) at a point x ∈ M where ϕ admits a Hessian, for γ : [τ1, τ2] → M
the minimizing L-geodesic from x to F(x). Moreover, the one-sided derivatives of
E(Vτ ) at τ1 and τ2 exist, with

d
dτ

∣∣∣
τ+1

E(Vτ )≥−
∫

M

(
S( · , τ1)+

〈
∇ϕ

2
√
τ1
,∇ ln fτ1

〉
g(τ1)

)
dVτ1 .

Proof. Using Theorem 2.1 and Lemma 2.3, one can follow exactly the steps of
[Topping 2009]. �

Let g(τ ) be defined on (τ̂1, τ̂2)⊃[τ1, τ2], where τ̂1>0. As in [Topping 2009], let
ϒ :={(x, τa; y, τb) | x, y∈M, τ̂1<τa<τb<τ̂2}. Suppose (x, τ1; y, τ2)∈ϒ\LCut,
(for the definition of LCut, see [Topping 2009, Appendix A]), let γ : [τ1, τ2]→ M
be the minimizing L-geodesic from x to y, and write X (τ ) = γ′(τ ) as before.
Following [Perelman 2002; Topping 2009; Müller 2010], define

K= K(x, τ1, y, τ2) :=

∫ τ2

τ1

τ
3
2 H(S, X (τ ))dτ.

Then we have the following result that generalizes [Topping 2009, Corollary 3.3].

Corollary 2.5. Assume again the hypothesis of Lemma 2.4, and assume further
that the quantity D(S, X) is nonnegative for all vector fields X ∈ 0(TM) and all
times for which the flow exists. Then∫

M×M

(
K− 2τ 3/2

1 S(x, τ1)− τ1〈∇1 Q,∇ ln fτ1(x)〉g(τ1)+ 2τ 3/2
2 S(y, τ2)

− τ2〈∇2 Q,∇ ln fτ2(y)〉g(τ2)

)
dπ(x, y)

≤ n(
√
τ2−
√
τ1),

where we denote by ∇1 Q the gradient of Q with respect to its x argument and with
respect to g(τ1) and by ∇2 Q the gradient of Q with respect to its y argument and
with respect to g(τ2); also π is the optimal transference plan from Vτ1 to Vτ2 (for
L-optimal transportation).

The following result generalizes [Topping 2009, Lemma A.6].

Lemma 2.6. Under the flow (1-2), we have

τ2
∂Q
∂τ2
+ τ1

∂Q
∂τ1
= 2τ 3/2

2 S(y, τ2)− 2τ 3/2
1 S(x, τ1)+K− 1

2 Q.
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Proof. Similarly to [Topping 2009, (A.4) and (A.5)], we have (compare with
[Müller 2010, Section 5])

∂Q
∂τ1

(x, τ1; y, τ2)(2-4)

=
√
τ1(|X (τ1)|

2
− S(x, τ1)); ∇1 Q(x, τ1; y, τ2)=−2

√
τ1 X (τ1),

∂Q
∂τ2

(x, τ1; y, τ2)(2-5)

=
√
τ2(S(y, τ2))− |X (τ2)|

2); ∇2 Q(x, τ1; y, τ2)= 2
√
τ2 X (τ2).

Similarly to [Topping 2009, (A.9)], we have (see [Müller 2010, Section 5])

(2-6) τ
3/2
2 (S(y, τ2)+ |X (τ2)|

2)− τ
3/2
1 (S(x, τ1)+ |X (τ1)|

2)

=−K(x, τ1, y, τ2)+
1
2 Q(x, τ1; y, τ2). �

Finally, Theorem 1.1 follows from Corollary 2.5 and Lemma 2.6; compare with
[Topping 2009, Section 4].

Proof of Theorem 1.2. We follow [Lott 2009, Proposition 16].
Since the manifold M is compact, for y ∈M and τ ∈[τ1, τ2] the infimum in (1-7)

is attained at some point x ∈ M . Assume that the functions ϕ and Q( · , τ1; y, τ )
are both differentiable at x (which is almost always the case). Then

(2-7) ∇1 Q(x, τ1; y, τ )−∇ϕ(x)= 0.

We may assume that there is a unique minimizing L-geodesic γ : [τ1, τ ] → M
from x to y. Set X ( · ) = γ′( · ) as before. Then using (2-4) and (2-7) we get
√
τ1 X (τ1) = −∇ϕ(x)/2. So y = γ(τ) = Lτ1,τ expx(−∇ϕ(x)/2) = Fτ (x). Now

we have
2
√
τφ(γ(τ), τ )= Q(x, τ1; γ(τ), τ )−ϕ(x).

Then we get

d
dτ
(2
√
τφ(γ(τ), τ ))=

d
dτ

Q(x, τ1; γ(τ), τ )=
√
τ(S(γ(τ ), τ )+ |X (τ )|2)

by definition of the L-distance, and

τ 3/2 d
dτ
φ(γ(τ), τ )=− 1

2

√
τφ(γ(τ), τ )+ 1

2τ
3/2(S(γ(τ ), τ )+ |X (τ )|2).

From the proof of [Müller 2010, Lemma 5.1], we have

d
dτ
(S(γ(τ ), τ )+ |X (τ )|2)=−H(S, X)− 1

τ
(S(γ(τ ), τ )+ |X (τ )|2).

It follows that (
τ 3/2 d

dτ

)2
φ(γ(τ), τ )=− 1

2τ
3H(S, X).
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Combining this with the condition Vτ = (Fτ )]Vτ1 , we have(
τ 3/2 d

dτ

)2
∫

M
φ( · , τ )dVτ =

(
τ 3/2 d

dτ

)2
∫

M
φ(Fτ ( · ), τ )dVτ1

=−
1
2τ

3
∫

M
H(S, X (τ ))dVτ1 .

Combining this with Lemma 2.4 and the assumption on D(S, X), we are done. �

Proof of Theorem 1.3. It suffices to prove the case that u1 and u2 have compact
support, since then the general case will follow by an approximate technique as in
[Cordero-Erausquin et al. 2001]. Now one proceeds as in [Brendle 2009]. A key
step is to prove that under our assumption on D(S, X), one has

τ−3/2 d
dτ

(
τ 3/2 d

dτ

(n
2

ln τ + 1
2τ
−1/2 Q(x, τ1; Fτ (x), τ )− ln det A

))
≥ 0

as in [Brendle 2009], where A is as in the proof of Lemma 2.3. This can be proved
by using Lemma 2.3, as we did in the proof of Theorem 1.2. �

3. Some applications

For a closed manifold (Mn, g(τ )) evolving by (1-2) and a solution u of (1-6) we
introduce the W-entropy as in [Perelman 2002; List 2008]:

W :=

∫
M

(
τ(S+ |∇ f |2)+ f − n

)
(4πτ)−n/2e− f dµ,

where f is defined by u = (4πτ)−n/2e− f .

Theorem 3.1. Assume that the quantity D(S, X) is nonnegative for all vector fields
X ∈ 0(TM) and all times for which the flow exists. Then dW/dτ ≤ 0.

Proof. This follows easily from Theorem 1.1 and by generalizing [Topping 2009,
Lemma 1.3] by replacing R in [Topping 2009, (1.7)] with S (the proof requires
only a minor modification). �

Remark 3.2. Some special cases of Theorem 3.1 appeared in [Perelman 2002;
Ni 2004; List 2008]. Of course, one can also prove Theorem 3.1 by a direct
computation as in these references.

As in [Topping 2009, Section 1.3], Theorem 1.1 also implies the monotonicity
of the enlarged length, generalizing the corresponding result of Perelman [2002].
More precisely, following Perelman, consider L(y, τ ) := Q(x, 0; y, τ ) for fixed
x ∈ M and L(y, τ ) := 2

√
τ L(y, τ ).

Theorem 3.3. Assume that the quantity D(S, X) is nonnegative for all vector fields
X ∈ 0(TM) and all times for which the flow exists. Then the minimum over M of
L( · , τ )− 2nτ is a weakly decreasing function of τ .
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Following [Perelman 2002; Müller 2010], we define the reduced distance by
l(y, τ ) := L(y, τ )/(2

√
τ) and the reduced volume by

Ṽ (τ )=
∫

M
τ−n/2e−l(y,τ )dµ(y).

The following theorem extends a theorem in [Perelman 2002, Section 7.1], and
also extends [Müller 2010, Theorem 1.4] to the noncompact case.

Theorem 3.4. Suppose that (M, g(τ )) is a complete manifold evolving by (1-2),
with the Ricci curvature uniformly bounded below and Si j uniformly bounded in
compact time intervals, and such that the quantity D(S, X) is nonnegative for all
vector fields X ∈ 0(TM) and all times for which the flow exists. Then the reduced
volume Ṽ (τ ) is nonincreasing in τ .

Proof. This is a corollary of Theorem 1.3; see [Brendle 2009, Section 3]. The
assumption on the boundedness of the Ricci curvature and Si j guarantees that the
reduced volume is finite. �

Remark 3.5. Our L-length is the same as the Lb-length in [Müller 2010], and
corresponds to the L−-length in [Lott 2009]. One can also develop a parallel
theory of L f - (or L+-) and L0-optimal transportation as in [Lott 2009].
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