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MINIMAL SURFACES IN S3 FOLIATED BY CIRCLES

NIKOLAI KUTEV AND VELICHKA MILOUSHEVA

We study minimal surfaces in the unit sphere S3 that are one-parameter
families of circles. Minimal surfaces in R3 foliated by circles were first
investigated by Riemann, and a hundred years later Lawson constructed
examples of such surfaces in S3. We prove that in S3 only two types of
minimal surfaces are foliated by circles crossing the principal lines at a con-
stant angle. The first type of surfaces are foliated by great circles that are
bisectrices of the principal lines, and we show that these are the examples
of Lawson. The second type, which are new in the literature, are families of
small circles, and the circles are principal lines. We give a constructive for-
mula for these surfaces and an application to the theory of minimal foliated
semisymmetric hypersurfaces in R4.

1. Introduction

We study minimal surfaces in the unit sphere S3 in the four-dimensional Euclidean
space R4, equipped with the standard Euclidean metric 〈 · , · 〉. A surface M2 in S3

is given by a unit vector-valued function l(u, v) in R4 defined in a domain D⊂R2,
that is,

l(u, v)=
(
l1(u, v), l2(u, v), l3(u, v), l4(u, v)

)
for (u, v) ∈ D,

where 〈l(u, v), l(u, v)〉 = 1 for (u, v) ∈ D. Since our considerations are local, we
assume that the parameters (u, v) are isothermal (conformal), which means that
〈lu, lu〉 = 〈lv, lv〉 and 〈lu, lv〉 = 0.

The minimal surfaces in S3 are determined by the solutions l = l(u, v) of the
system

1l + |∇l|2l = 0,

〈lu, lu〉 = 〈lv, lv〉, 〈lu, lv〉 = 0, 〈l, l〉 = 1,
(1-1)
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where ∇ and 1 denote the gradient and the Laplacian operators, respectively, with
respect to the Euclidean metric in R4.

The system (1-1) is an Euler–Lagrange system of harmonic maps and has been
studied intensively in the last decades by variational methods [Giaquinta et al.
1998a, 1998b; Hildebrandt 1982; Jost 1984, 1991; Struwe 1988].

Our aim is to find the minimal surfaces in S3 that satisfy the geometric property
that locally they are one-parameter families of circles. Variational methods cannot
be applied for studying the geometric structure of these minimal surfaces. Hence,
we use a method based on the differential geometry of surfaces in R4 rather than
one based on PDEs.

It is well known that the only minimal rotational surface in R3 is the catenoid,
which is a surface fibered by circles in parallel planes. Another class of mini-
mal surfaces in R3 foliated by circles in parallel planes consists of the Riemann
examples [Riemann 1868]. Enneper [1869] proved that catenoids and Riemann
examples are the only minimal surfaces in R3 foliated by circles. A surface in
R3 that is determined by a smooth one-parameter family of circles is also called a
cyclic surface. Cyclic surfaces of constant mean curvature and cyclic surfaces of
constant Gauss curvature in R3 are described in [Nitsche 1989] and [López 2001].

Our idea to find the minimal surfaces in S3 that are one-parameter families of
circles is motivated by what happens for cyclic minimal surfaces in R3.

A well-known example of a minimal surface in S3 is the Clifford torus (the
standard flat torus), which consists of two orthogonal families of circles. This
is generalized by the Lawson tori [1970], which have two orthogonal families of
parametric lines: one of them consists of circles, the other of curves with constant
Frenet curvatures in R4.

The circles on the Lawson torus cross the principal lines at an angle π/4. Here
we will find all minimal surfaces in S3 that are one-parameter families of circles
crossing the principal lines at a constant angle. We call these surfaces generalized
tori. In Theorem 2.2, we prove that there are only two types of generalized tori
in S3: The generalized tori of first type are those whose circles are bisectrices of
the principal lines. The generalized tori of second type are those whose circles are
principal lines. In Theorem 2.3, we show that all generalized tori of first type are
Lawson tori. In Theorem 2.4, we give a constructive formula for the generalized
tori of second type.

In Section 3, we will point out the relationship between the theory of minimal
surfaces in S3 and the theory of minimal foliated semisymmetric hypersurfaces
in R4. Each minimal surface in S3 generates a minimal foliated semisymmet-
ric hypersurface in R4 according to a special construction given in [Ganchev and
Milousheva 2007a]. We will illustrate how this construction can be applied to two
examples of minimal surfaces in S3 to obtain first and second type helicoids, which
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are special minimal foliated semisymmetric hypersurfaces. We will also apply the
construction to the class of generalized tori of second type, and thus obtain new
minimal foliated semisymmetric hypersurfaces in R4.

2. Generalized tori in S3

Let M2
: l = l(u, v) for (u, v) ∈ D be a surface, parametrized by isothermal pa-

rameters and lying on the unit sphere S3 in R4. In other words, the vector-valued
function l(u, v) satisfies the equalities

(2-1)

〈lu, lu〉 = 〈lv, lv〉 = E(u, v),

〈lu, lv〉 = 0,

〈l, l〉 = 1.

Since l, lu , and lv are mutually orthogonal, there exists a unique (up to a sign)
unit vector field n(u, v) such that {l, lu, lv, n} form an orthogonal basis in R4.
Differentiating the equalities (2-1), we get the derivative formulas

luu =
Eu

2E
lu −

Ev
2E

lv − El + a11n,

luv =
Ev
2E

lu +
Eu

2E
lv + a12n,

lvv = −
Eu

2E
lu +

Ev
2E

lv − El + a22n,

where ai j (u, v) for i, j = 1, 2 are functions defined in D. Hence

(2-2) luu + lvv + 2E l = (a11+ a22)n.

M2 is a minimal surfaces in S3 if and only if a11 + a22 = 0. Equation (2-2)
implies that M2 is minimal if and only if

luu + lvv + 2E l = 0.

Consequently, the problem of finding the minimal surfaces in S3 is equivalent
to the solvability of the system

(2-3)
{
1l(u, v)+ 2E(u, v) l(u, v)= 0,

〈lu, lu〉 = 〈lv, lv〉 = E(u, v), 〈lu, lv〉 = 0, 〈l, l〉 = 1

with an appropriate C∞ smooth scalar function E(u, v) > 0 in a small neighbor-
hood D of the origin.

According to the theorem of Hélein [Giaquinta et al. 1998b, page 346], the
solutions of system (1-1) (and hence of (2-3)) are C∞ smooth because D is a
two-dimensional domain.
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Let M2
: l = l(u, v) be a minimal surface in S3. Then the derivative formulas of

M2 are

(2-4)

luu =
Eu

2E
lu −

Ev
2E

lv − El + an,

luv =
Ev
2E

lu +
Eu

2E
lv + bn,

lvv = −
Eu

2E
lu +

Ev
2E

lv − El − an,

where a(u, v) and b(u, v) are functions in D. The derivatives nu and nv of n(u, v)
satisfy

(2-5) nu =−
a
E

lu −
b
E

lv and nv =−
b
E

lu +
a
E

lv.

Using the Gauss and Codazzi equations (or equivalently, the identities of the
mixed third derivatives of l(u, v) and mixed second derivatives of n(u, v)) from
(2-4) and (2-5), we see that the functions a(u, v) and b(u, v) are harmonic and
satisfy the Cauchy–Riemann conditions

bu(u, v)= av(u, v) and bv(u, v)=−au(u, v).

The Gauss and Codazzi equations for M2 also imply the identity

(2-6) a2
+ b2
=

1
21E −

E2
u + E2

v

2E
+ E2.

The Gauss curvature K of M2 is given by

(2-7) K =
E2

u + E2
v

2E3 −
1E
2E2 =−

1
2E
1 ln E .

Hence, equalities (2-6) and (2-7) imply that the Gauss curvature K is expressed in
terms of the functions a and b as

(2-8) K = 1− a2
+b2

E2 .

The simplest case in which problem (2-3) can be solved completely is the case
K = const. Lawson [1969] proved that if M2 is a minimal surface in S3 of constant
Gauss curvature K , then either K = 1 and M2 is totally geodesic, or K = 0 and
M2 is an open piece of the Clifford torus.

From (2-8) it follows that the case M2 is totally geodesic in S3 (that is, M2 is a
sphere with radius 1) corresponds to a = b= 0. Further on we shall consider only
the case (a, b) 6= (0, 0).

Let us recall that the Clifford torus is a surface in R4 parametrized as

M : l(u, v)= (cos u cos v; cos u sin v; sin u cos v; sin u sin v).
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A direct computation shows that l(u, v) satisfies the equality luu+lvv+2l = 0, and
〈lu, lu〉 = 〈lv, lv〉 = 1, 〈lu, lv〉 = 0 and 〈l, l〉 = 1. The parametric lines u = const
and v = const of M are circles.

H. B. Lawson [1970] found other minimal surfaces in S3 that generalize the
Clifford torus: He proved that every “ruled” minimal surface in S3 is an open
submanifold of one of the surfaces Mα given by

(2-9) Mα : l(x, y)= (cos x cosαy; cos x sinαy; sin x cos y; sin x sin y)

for some constant α > 0. By “ruled”, Clifford means it belongs to a one-parameter
family of great circles in S3. The surface M1 is the Clifford torus, and it is the only
surface Mα with constant Gauss curvature [Lawson 1969]. We call the surfaces
Mα with α 6= 1 Lawson tori.

The tangent space of Mα is spanned by the vector fields

(2-10)
lx(x, y)= (−sin x cosαy;−sin x sinαy; cos x cos y; cos x sin y),

ly(x, y)= (−α cos x sinαy;α cos x cosαy;− sin x sin y; sin x cos y),

and the coefficients E , F , and G of the first fundamental form of Mα are given by
E = 1, F = 0 and G = G(x)= α2 cos2 x + sin2 x .

Using (2-9) and (2-10), we find the unit normal vector field n(u, v) of Mα that
is orthogonal to {l, lu, lv}:

n(x, y)= (sin x sinαy;−sin x cosαy;−α cos x sin y;α cos x cos y)√
α2 cos2 x+sin2 x

.

A direct computation shows that the Gauss curvature of Mα is given by

K = 1− α2

(α2 cos2 x+sin2 x)2
,

and obviously K 6= const when α 6= 1.
Let us consider the Lawson torus Mα for α 6= 1. In such case the parametric

lines y = y0 = const of Mα are circles, while the parametric lines x = x0 = const
are curves in R4 with constant Frenet curvatures.

The parametrization (2-9) of Mα is not isothermal. We shall find isothermal
parameters for Mα that are also principal parameters of the surface. Consider the
change of parameters

u =
∫ x

0

1
√

G(τ )
dτ and v = v.

Then we obtain E = G = G(x(u)) and F = 0, that is, the parameters (u, v) are
isothermal. A direct computation shows that the vector function l(u, v) satisfies
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the system

lu u =
Eu

2E
lu − E l, luv =

Eu

2E
lv +αn, lvv =−

Eu

2E
lu − E l.

Hence, for the Lawson torus Mα, the functions a and b in formulas (2-4) are a = 0,
b = α = const, and E = E(u). The circles on Mα are the parametric u-lines.

If we change the isothermal parameters (u, v) to isothermal parameters (u, v)
via

u = (u+ v)/
√

2 and v = (u− v)/
√

2,

then Ẽ(u, v)= 〈lu, lu〉 = 〈lv, lv〉 = G̃(u, v), and l(u, v) satisfies (2-4) with a = α,
b = 0 and Ẽ instead of E .

With respect to (u, v), the surface Mα is parametrized by principal lines, that is,
the shape operator corresponding to the normal vector field n(u, v) is in diagonal
form. The circles on Mα are bisectrices of the principal lines.

Now we shall find all minimal surfaces in S3 that are one-parameter families
of circles crossing the principal lines at a constant angle. We call these surfaces
generalized tori in S3. They generalize the Lawson tori.

Proposition 2.1. Suppose M2 is a minimal surface in S3 with nonconstant Gauss
curvature. Then M2 can locally be parametrized by principal lines, and the new
parameters are isothermal.

Proof. Let M2
: l = l(u, v) for (u, v) ∈D be a minimal surface in S3 parametrized

by isothermal parameters. Then the derivative formulas (2-4) of M2 hold, and
the functions a(u, v) and b(u, v) are harmonic functions satisfying the Cauchy–
Riemann conditions. In case of b(u, v) ≡ 0, the parameters (u, v) are principal.
Let b(u0, v0) 6= 0 for (u0, v0) ∈D. Then there exists D0 ⊂D such that b(u, v) 6= 0
for all (u, v) ∈ D0. We shall prove that there exist isothermal parameters (x, y)
such that b(x, y) = 〈lx y, n〉 = 0. If x = x(u, v) and y = y(u, v) is a holomorphic
change of the parameters (so that x(u, v) and y(u, v) satisfy the Cauchy–Riemann
conditions), then b(x, y)= 2aux u y − b(u2

x − u2
y). Hence,

b = 0 if and only if b
(ux

u y

)2
− 2a

(ux

u y

)
− b = 0.

From the inverse change of parameters, using the Cauchy–Riemann conditions
we have xu = ux/(u2

x + u2
y) and xv = −u y/(u2

x + u2
y), and hence we obtain that

b = 0 if and only if

b
( xu

xv

)2
+ 2a

( xu

xv

)
− b = 0,

that is, xu/xv = (−a±
√

a2+ b2)/b. We write β(u, v)= (−a+
√

a2+ b2)/b and
γ (u, v)= (−a−

√
a2+ b2)/b.
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Now let us consider the equations

(2-11) dv
du
= β(u, v) and dv

du
= γ (u, v).

For each point (u0, v0) ∈ D0, there exist D1 ⊂ D0 and functions 8(u, v) 6= 0 and
9(u, v) 6= 0 in D1, such that the integral curves of the first equation in (2-11) are
given by8(u, v)= const, while the integral curves of the second equation in (2-11)
are 9(u, v)= const. Hence,

(2-12) 8u =−β8v and 9u =−γ9v.

We consider the following smooth change of parameters:

(2-13) x =8(u, v) and y =9(u, v) for (u, v) ∈ D1.

When (u, v) ranges over in D1, the parameters (x, y) describe a domain D ⊂ R2.
Now xu = 8u , xv = 8v, yu = 9u and yv = 9v. Using βγ = −1 and equalities
(2-12), we get 〈lx , ly〉=0, that is, the parametrization (x, y) is orthogonal. We shall
prove that this parametrization is isothermal. With respect to the new parameters,
the coefficients of the first fundamental form are E = 〈lx , lx 〉, F = 〈lx , ly〉 = 0,
and G = 〈ly, ly〉. Then for the surface M2, we have the derivative formulas

lxx =
Ex

2E
lx −

Ey

2E
ly − El + an,

lxy =
Ey

2E
lx +

Gx

2G
ly,

lyy =−
Gx

2G
lx +

G y

2G
ly −Gl − an,

(2-14)

nx =−
a
E

lx and ny =
a
G

ly .(2-15)

Taking into account the second fundamental form of M2 as a surface in R4, from
(2-14) we calculate that the Gauss curvature K is given by

(2-16) K = 1− a2

EG
.

Using nxy = nyx , lxxy = lxyx , and lxyy = lyyx , from (2-14) and (2-15) we obtain

ax = 0, ay = 0, (E −G)Ey = 0, (E −G)Gx = 0,(2-17)

Eyy

2E
+

Gxx

2G
−

3E2
y

4E2 −
G2

x

4G2 −
Ex Gx − EyG y

4EG
+ E −

a2

G
= 0,

Eyy

2E
+

Gxx

2G
−

3G2
x

4G2 −
E2

y

4E2 +
Ex Gx − EyG y

4EG
+G−

a2

E
= 0.

(2-18)
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If we assume that E(x0, y0)− G(x0, y0) 6= 0 at some point (x0, y0) ∈ D, and
hence E −G 6= 0 in a neighborhood D0 ⊂ D of (x0, y0), then from (2-17) we get
Ey = Gx = 0 in D0. Now equalities (2-16), (2-17), and (2-18) imply that K = 0
in D0, which contradicts the assumption in the theorem. Hence, E −G ≡ 0 in D.
Consequently, the parameters (x, y) defined by change (2-13) are principal. �

Now let M2
: l = l(u, v) be a minimal surface in S3 parametrized locally by

isothermal principal parameters, that is, b = 0. Using bu = av and bv = −au , we
get a = const. Without loss of generality, we assume that a = 1 (if a 6= 1, we
multiply the parameters by

√
|a|). Hence the derivative formulas (2-4) and (2-5)

hold with a = 1 and b = 0.

Theorem 2.2. Suppose M2 is a minimal surface in S3 with nonconstant Gauss
curvature. If on M2 there exists a family of circles crossing the principal lines at a
constant angle θ , then the circles are either principal lines (θ = 0 or θ = π/2) or
bisectrices of the principal lines (θ = π/4 or θ = 3π/4).

Proof. Let M2
: l = l(u, v) be parametrized locally by principal parameters. Sup-

pose that on M2 there exists a family of circles crossing the principal lines at a
constant angle θ . Let

(2-19)
x = cos θ u+ sin θ v,

y =−sin θ u+ cos θ v, θ = const for θ ∈ [0; 2π).

Then from (2-19) we get

(2-20) Ex = cos θ Eu + sin θ Ev and Ey =−sin θ Eu + cos θ Ev.

Using (2-4) with a = 1, b = 0, and (2-20), we calculate

(2-21)

lxx =
Ex

2E
lx −

Ey

2E
ly − El + cos 2θn,

lxy =
Ey

2E
lx +

Ex

2E
ly − sin 2θn,

lyy = −
Ex

2E
lx +

Ey

2E
ly − El − cos 2θn.

Let us write a = cos 2θ and b = sin 2θ(a, b− const).
Consider an arbitrary x-line c : l(x) = l(x, y0) for constant y0. It is a circle if

and only if its Frenet curvatures are ~ = const and τ = σ = 0. Using (2-21) we
calculate the tangent vector tc and the principal normal vector nc of c:

tc =
lx
√

E
, nc =

1
~

(
−

Ey

2E2 ly − l + a
E

n
)
, where ~2

=
E2

y

4E3 + 1+ a2

E2 .
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The derivatives of tc and nc are

(2-22)

t ′c = ~ nc,

n′c =−~ tc−
(( 1
~

)′ Ey

2E2 +
1
~

(( Ey

2E2

)
x
+

Ex Ey

4E3 +
a b
E2

)) ly
√

E

−

( 1
~

)′ l
√

E
+

(( 1
~

)′ a
E
+

1
~

(
−b

Ey

2E2 +

( a
E

)
x

)) n
√

E
.

From (2-22) it follows that c is a circle if and only if

~ = const,
( Ey

2E2

)
x
+

Ex Ey

4E3 +
a b
E2 = 0,( a

E

)
x
− b

Ey

2E2 = 0,

which is equivalent to

(2-23)
2aEx + bEy = 0,

2E Exy − 3Ex Ey + 4abE = 0.

Analogously, the y-lines are circles if and only if

(2-24)
bEx − 2aEy = 0,

2E Exy − 3Ex Ey − 4abE = 0.

From (2-20), we calculate

(2-25) Exy =−sin θ cos θEuu + cos 2θEuv + sin θ cos θEvv.

From the first equality of (2-23), using (2-20), we get cos3 θ Eu−sin3 θ Ev = 0.
All solutions of this equation are given by

(2-26) E = ϕ(sin3 θ u+ cos3 θ v)

for an arbitrary smooth function ϕ. Hence, Eu = sin3 θ ϕ′, Ev = cos3 θ ϕ′,
Euu = sin6 θ ϕ′′, Evv = cos6 θ ϕ′′, and Euv = sin3 θ cos3 θ ϕ′′. From the second
equality of (2-23), we obtain sin 2θ cos 2θ(ϕϕ′′− 3

2ϕ
′2
−4ϕ)= 0 using (2-25) and

(2-26). Consequently, the x-lines are circles if and only if

(2-27)
E = ϕ(sin3 θ u+ cos3 θ v),

0= sin 2θ cos 2θ(ϕϕ′′− 3
2ϕ
′2
− 4ϕ).

Analogously, using (2-24) we obtain that the y-lines are circles if and only if

(2-28)
E = ϕ(cos3 θ u− sin3 θ v),

0= sin 2θ cos 2θ(ϕϕ′′− 3
2ϕ
′2
− 4ϕ).

Thus the condition that the x-lines (or y-lines) be circles leads to the cases
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(I) sin 2θ = 0, that is, θ = 0 or θ = π/2.

This case corresponds to x = u, y = v or x = v, y =−u. From (2-27) and (2-28)
we obtain that the u-lines are circles if and only if E = ϕ(v), and the v-lines are
circles if and only if E = ϕ(u). In this case, one of the families of principal lines
is a family of circles.

(II) cos 2θ = 0, that is, θ = π/4 or θ = 3π/4.

This case corresponds to x = (u+v)/
√

2, y= (−u+v)/
√

2 or x = (−u+v)/
√

2,
y =−(u+v)/

√
2. From (2-27) and (2-28) we obtain that the x-lines are circles if

and only if E = ϕ(x), and the y-lines are circles if and only if E = ϕ(y). In this
case one of the families of bisectrices of the principal lines is a family of circles.

(III) ϕϕ′′− 3
2ϕ
′2
− 4ϕ = 0 and sin 2θ cos 2θ 6= 0.

We shall prove that this case is not possible. Since E >0, we have E =ϕ(τ)= ez(τ )

for some function z= z(τ ) with τ = sin3 θ u+cos3 θ v (or τ = cos3 θ u−sin3 θ v).
Moreover, E 6= const, that is, z′(τ ) 6= 0. The equality ϕϕ′′− 3

2ϕ
′2
−4ϕ = 0 implies

(2-29) z′′− 1
2 z′2− 4e−z

= 0.

On the other hand, using identity (2-6), we obtain

(2-30) (cos6 θ + sin6 θ)z′′+ 4 sinh z = 0.

Let us write λ= cos6 θ + sin6 θ = const. Multiplying (2-30) by z′ and integrating,
we get

1
2λz′2(τ )+ 4 cosh z(τ )= 1

2λz′2(0)+ 4 cosh z(0).

Equalities (2-29) and (2-30) imply

4 sinh z+ 1
2λz′2+ 4λe−z

= 0.

Using the last two equalities, we obtain

4(1− λ)e−z
=

1
2λz′2(0)+ 4 cosh z(0)= const .

Since 1−λ= 3 sin2 θ cos2 θ 6= 0, we get e−z(τ )
= const, that is, z(τ )= const, which

contradicts the condition z′(τ ) 6= 0, that is, E 6= const. �

From Theorem 2.2 it follows that there are only two types of generalized tori
in S3: the first are those such that one of the families of bisectrices of the principal
lines is a family of circles (such surfaces are generalized tori of the first type); the
second are those such that one of the families of principal lines is a family of circles
(these are the generalized tori of the second type).

Theorem 2.3. Let M2 be a generalized torus of the first type with nonconstant
Gauss curvature. Then M2 is a Lawson torus Mα for some positive α with α 6= 1.



MINIMAL SURFACES IN S3 FOLIATED BY CIRCLES 345

Proof. Let M2 be a generalized torus of the first type with nonconstant Gauss
curvature. In this case the derivative formulas (2-4) hold with a = 0, b = 1, and
E = E(u) (or E = E(v)). We consider only the first case, in which E = E(u) and
Eu 6= 0. The second one can be investigated analogously. The derivative formulas
in this case look like

(2-31)

luu =
Eu

2E
lu − E l, nu =−

1
E

lv,

luv =
Eu

2E
lv + n, nv =−

1
E

lu,

lvv =−
Eu

2E
lu − E l.

We shall prove that the parametric u-lines are great circles. Consider for constant
v0 the u-line c : c(u)= l(u, v0). From (2-31) it follows that ċ= lu , and the tangent
vector tc of c is tc = c′ = ċ/ṡ = lu/

√
E . We calculate

t ′c =
ṫc
ṡ
=

1
√

E

(
luu
√

E
−

Eu

2E
√

E
lu

)
=−l.

Hence the curvature ~ of c is ~=1, so c is a great circle. Consequently, M2 is a one-
parameter family of great circles. According to [Lawson 1970, Proposition 7.2],
M2 is an open submanifold of Mα for some positive α with α 6= 1. �

Now we consider a generalized torus of the second type with nonconstant Gauss
curvature. In this case the derivative formulas (2-4) hold with a = 1, b = 0, and
E = E(u) (or E = E(v)). We consider the case E = E(u) and Eu 6= 0, so that the
parametric v-lines are circles. We prove that the different v-lines are circles with
different radii.

Now the derivative formulas are

(2-32)

luu =
Eu

2E
lu − E l + n, nu =−

1
E

lu,

luv =
Eu

2E
lv, nv =

1
E

lv,

lvv =−
Eu

2E
lu − E l − n.

For u0 = const, we consider the v-line c : c(v) = l(u0, v). As in the proof of
Theorem 2.3, from (2-32) we calculate the curvature ~(u0) of c to be

~(u0)=

√
1+

E2
u(u0)

4E3(u0)
+

1
E2(u0)

.
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For different values of the constant u0, the curvatures ~(u0) are different. We note
that ~(u0) > 1, that is, the circles are not great ones. Therefore, the generalized
tori of the second type differ from the Lawson tori.

Since E(u) > 0, we write E(u) in the form E(u)= e z(u) for z(u) 6= const. Then
the system (2-32) is rewritten in the form

(2-33)

luu −
1
2 z′(u) lu + e z(u) l − n = 0, nu + e−z(u) lu = 0,

luv −
1
2 z′(u) lv = 0, nv − e−z(u) lv = 0,

lvv + 1
2 z′(u) lu + e z(u) l + n = 0.

We look for classical solutions of the system (2-33) for the vector-valued functions
l(u, v), lu(u, v), lv(u, v) and n(u, v) in a neighborhood of the origin under the
initial conditions

(2-34)
l(0, 0)= e1, lv(0, 0)= e s/2e3 =

√
E(0) e3,

lu(0, 0)= e s/2e2 =
√

E(0) e2, n(0, 0)= e4,

where {e1, e2, e3, e4} is the standard orthonormal basis in R4, and s = const =
z(0)= ln E(0).

Since the function E(u) satisfies identity (2-6) with a = 1 and b = 0, it follows
that z(u) is the solution of the ordinary differential equation

(2-35) z′′(u)+ 4 sinh z(u)= 0, z(0)= s, z′(0)= 2t,

where s and t are arbitrary constants.
To find z(u) explicitly, we note that the identity (2-6) holds for an arbitrary

minimal surface in S3 parametrized by isothermal parameters. So let us consider
again the Lawson torus Mα defined by (2-9). We change the parameters (x, y) by
new parameters (u, v) via

(2-36) u = h(x)=
√
α

∫ x

0

1√
α2 cos2 τ+sin2 τ

dτ, v =
√
αy,

and denote by h−1 the inverse function of h. Then we obtain an isothermal para-
metrization of Mα, and the function

E(u)= e z(u)
=
α2 cos2 h−1(u)+sin2 h−1(u)

α

satisfies (2-6) with a = 0 and b = 1. Hence the function

(2-37) z(u)= ln α
2 cos2 h−1(u)+sin2 h−1(u)

α
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is a solution of (2-35) with t = 0 and s= lnα for α> 0, α 6= 1. (It can be calculated
directly that the function z(u) defined by (2-37) satisfies (2-35) with z(0) = lnα
for α > 0, α 6= 1 and z′(0)= 0.)

We will prove that every solution z̃(u) of (2-35) with arbitrary t and s can be
obtained from (2-37) by the formula z̃(u) = z(u + u0) for a suitable choice of
constants u0 and α. Since (2-35) is an autonomous equation and z(u) is its solution,
z̃(u)= z(u+u0) is also a solution of this equation. Therefore we have to check only
the initial conditions. Let x0 = h−1(u0). Simple calculations give us the equalities

z̃(0)= z(u0)= ln
α2 cos2 x0+ sin2 x0

α
= s,

z̃′(0)= z′(u0)=
(1−α2) sin 2x0

√
α
√
α2 cos2 x0+ sin2 x0

= 2t,

which imply

sin 2x0 =
2αtes/2

1−α2 ,

cos 2x0 =
1+α2

−2αes

1−α2 .

Using sin2 2x0+ cos2 2x0 = 1, we see that α satisfies

esα2
− (1+ e2s

+ t2es)α+ es
= 0,

whose positive solutions are

α =
1+ e2s

+ t2es
±

√
(1+ e2s + t2es)2− 4e2s

2es .

For this choice of α and

u0 = h(x0)=
1
2 arctan

2αte s/2

1+α2− 2αes ,

the initial conditions are satisfied.
Note that all solutions of (2-35) are periodic with period ω = h(π).
To simplify system (2-33), we change the vector function l(u, v) with vector

function L(u, v) determined by

(2-38) l(u, v)= e z(u)/2L(u, v).
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We get the system

(2-39)

0= Luu(u, v)+ 1
2 z′(u)Lu(u, v)+e−z(u)L(u, v)−e−z(u)/2n,

0= Luv(u, v),

0= Lvv(u, v)+ 1
2 z′(u)Lu(u, v)+((1

2 z′(u))2+e z(u))L(u, v)+e−z(u)/2n,

0= nu+e−z(u)/2(Lu+
1
2 z′(u)L),

0= nv−e−z(u)/2Lv.

The initial conditions (2-34) for l(u, v) imply the following initial conditions
for L(u, v):

L(0, 0)= e−s/2e1, Lv(0, 0)= e3,

Lu(0, 0)=−te−s/2e1+ e2, n(0, 0)= e4.

From the second equality in (2-39) it follows that L(u, v)= f (u)+g(v), where
f (u) and g(v) are vector functions satisfying the system

(2-40)

0= f ′′(u)+ 1
2 z′(u) f ′(u)+e−z(u)( f (u)+g(v))−e−z(u)/2n,

0= g′′(v)+ 1
2 z′(u) f ′(u)+(( 1

2 z′(u))2+e z(u))( f (u)+g(v))+e−z(u)/2n,

0= nu+e−z(u)/2( f ′(u)+ 1
2 z′(u)( f (u)+g(v))),

0= nv−e−z(u)/2g′(v)= 0,

f ′(0)=−te−s/2e1+e2, g′(0)= e3, f (0)+g(0)= e−s/2e1.

Without loss of generality we assume that g(0)= 0 and f (0)= e−s/2e1.
Let us fix u = 0 in the fourth equality of (2-40). Then after integration we get

n(0, v) = e−s/2g(v)+ e4. Now using the second equality of (2-40), we see that
g(v) satisfies the initial value problem

g′′(v)+ (t2
+ 2 cosh s)g(v)=−e s/2e1− te2− e−s/2e4,

g(0)= 0, g′(0)= e3.

Simple computations give us

(2-41) g(v)= 1
t2+2 cosh s

(
cos

√
t2+ 2 cosh s v− 1

)
(e s/2e1+ te2+ e−s/2e4)

+
1

√
t2+2 cosh s

sin
√

t2+ 2 cosh s ve3.

Now, multiplying (2-35) with z′(u) and integrating from 0 to u, we get that z′(u)
satisfies the equality

(2-42) (z′(u))2+ 8 cosh z(u)= 4t2
+ 8 cosh s.
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Using the first and second equalities of (2-40), (2-41), and (2-42), and setting v=0,
we see that f (u) satisfies the initial value problem

f ′′(u)+ z′(u) f ′(u)+ (t2
+ 2 cosh s) f (u)= e s/2e1+ te2+ e−s/2e4,

f (0)= e−s/2e1, f ′(0)=−te−s/2e1+ e2.

Therefore the solution f (u) of the system above can be written in the form

f (u)= p(u)+ 1
t2+2 cosh s

(e s/2e1+ te2+ e−s/2e4),

where p(u) is the unique solution of the linear homogeneous system

p′′(u)+z′(u)p′(u)+(t2
+2 cosh s)p(u)= 0,

p(0)=
1

t2+2 cosh s
[e−s/2(t2

+e−s)e1−te2−e−s/2e4], p′(0)=−te−s/2e1+e2.

By (2-38), the solution l(u, v) of problem (2-33) under condition (2-34) is

l(u, v)= e z(u)/2 p(u)+ e z(u)/2

t2+2 cosh s
cos

√
t2+ 2 cosh s v(e s/2e1+ te2+ e−s/2e4)

+
e z(u)/2

√
t2+2 cosh s

sin
√

t2+ 2 cosh s ve3.

If we denote β =
√

t2+ 2 cosh s (here β is constant), then l(u, v) is rewritten as

l(u, v)= e z(u)/2 p(u)+ e z(u)/2

β2 (cosβ v(e s/2e1+ te2+ e−s/2e4)+β sinβ ve3).

The function z(u) is given explicitly by (2-37). Thus we have proved this:

Theorem 2.4. Let M2
: l = l(u, v) be a generalized torus of the second type with

nonconstant Gauss curvature. Then

l(u, v)= e z(u)/2 p(u)+ e z(u)/2

β2 (cosβ v(e s/2e1+ te2+ e−s/2e4)+β sinβ ve3),

where β =
√

t2+ 2 cosh s for arbitrary constants s and t. The scalar function z(u)
is the solution of the initial value problem

z′′+ 4 sinh z(u)= 0, z(0)= s, z′(0)= 2t,

and is given explicitly by (2-37). The vector function p(u) is a solution of the
system

(2-43)
p′′(u)+z′(u)p′(u)+β2 p(u)= 0,

p(0)= 1
β2 (e

−s/2(t2
+e−s)e1−te2−e−s/2e4), p′(0)=−te−s/2e1+e2,

and {e1, e2, e3, e4} is the standard orthonormal basis in R4.
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3. Application to the theory of minimal foliated
semisymmetric hypersurfaces

We now relate the theory of minimal surfaces in S3 to the theory of minimal foliated
semisymmetric hypersurfaces in R4.

For an n-dimensional Riemannian manifold (Mn, g), we denote by Tp Mn the
tangent space to Mn at a point p ∈ Mn and by XMn the algebra of all vector fields
on Mn . The associated Levi-Civita connection of the metric g is denoted by ∇ and
the Riemannian curvature tensor R is defined by

R(X, Y )= [∇X ,∇Y ] −∇[X,Y ] for X, Y ∈ XMn.

A semisymmetric space is a Riemannian manifold (Mn, g) such that R satisfies
the identity R(X, Y ) · R = 0 for all vector fields X, Y ∈XMn . (Here R(X, Y ) acts
as a derivation on R).

According to the classification of Z. Szabó [1982], the main class of semisym-
metric spaces is the class of all Riemannian manifolds foliated by Euclidean leaves
of codimension two.

The foliated semisymmetric hypersurfaces in the Euclidean space En+1 are the
hypersurfaces of type number two, that is, those hypersurfaces whose second fun-
damental form has rank two everywhere. They are characterized by a second fun-
damental form h=ν1 η1⊗η1+ν2 η2⊗η2 for ν1ν2 6=0, where η1 and η2 are unit one-
forms, and ν1 and ν2 are functions on the hypersurface Mn . The Euclidean leaves
of the foliation are the integral submanifolds of the distribution 10, determined by
the one-forms η1 and η2, that is, 10(p) = {X ∈ Tp Mn

| η1(X) = 0, η2(X) = 0}
for p ∈ Mn . A special class of foliated semisymmetric hypersurfaces is the class
of ruled hypersurfaces.

A hypersurface Mn of type number two is minimal if ν1+ ν2 = 0.
Ganchev and Milousheva [2007b] have characterized the foliated semisymmetric

hypersurfaces in En+1 as follows.

Theorem 3.1. A hypersurface Mn in Euclidean space En+1 is locally a foliated
semisymmetric hypersurface if and only if it is the envelope of a two-parameter
family of hyperplanes in En+1.

If we consider a foliated semisymmetric hypersurface as the envelope of a two-
parameter family of hyperplanes, each such hypersurface is determined by a pair
consisting of a unit vector-valued function l(u, v) and a scalar function r(u, v),
both defined in a domain D⊂ R2.

Since the vector fields lu and lv are linearly independent, l(u, v) determines a
two-dimensional surface M2

: l = l(u, v) for (u, v) ∈ D in En+1. Without loss
of generality, it can be assumed that the surface M2 is parametrized locally by
isothermal parameters, namely, E = G and F = 0. Then the generated foliated
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semisymmetric hypersurface Mn is given in [Ganchev and Milousheva 2007a] by

(3-1) X (u, v, wα)= r l +
ru

E
lu +

rv
E

lv +wα bα for α = 1, . . . , n− 2,

where (u, v)∈D, wα ∈R for α= 1, . . . , n−2 and b1(u, v), . . . , bn−2(u, v), where
(u, v) ∈D are n−2 mutually orthogonal unit vectors, orthogonal to span{l, lu, lv}.

The minimal foliated semisymmetric hypersurfaces in En+1 are characterized
analytically in [Ganchev and Milousheva 2007a] as follows.

Theorem 3.2. Let Mn be a hypersurface in En+1 that is the envelope of a two-
parameter family of hyperplanes and is determined by a unit vector-valued function
l(u, v), represented by isothermal parameters, and a scalar function r(u, v). Then
Mn is minimal if and only if l(u, v) and r(u, v) satisfy

1l(u, v)+ 2E(u, v) l(u, v)= 0,

1r(u, v)+ 2E(u, v) r(u, v)= 0.

Hence, the minimal foliated semisymmetric hypersurfaces in R4 are generated
by the solutions of system (2-3), that is, by the minimal surfaces in S3.

Now we construct examples of minimal foliated semisymmetric hypersurfaces
in R4 that are generated by some minimal surfaces in S3.

The simplest example of a minimal surface in S3 is the sphere S2
= S3⋂R3. We

assume that R3 is the subspace of R4 orthogonal to e4, that is, R3
= span{e1, e2, e3}.

An isothermal parametrization of S2 is given by

S2
: l(u, v)= 1

cosh u
(cos v; sin v; sinh u; 0).

A direct check shows that E = 〈lu, lu〉 = 〈lv, lv〉 = 1/cosh2 u and F = 〈lu, lv〉 = 0,
and obviously l(u, v) satisfies the equality

1l(u, v)+ 2
cosh2 u

l(u, v)= 0.

The normal vector field n(u, v) of S2 is n = e4 = (0; 0; 0; 1). By Theorem 3.2,
the corresponding differential equation for the scalar function r(u, v) is

(3-2) 1r(u, v)+ 2
cosh2 u

r(u, v)= 0.

Every solution r(u, v) of (3-2) together with the sphere S2
: l = l(u, v) generates

a minimal foliated semisymmetric hypersurface in R4 according to formula (3-1).
One solution of (3-2) is

r(u, v)= (v+ 1
2π) tanh u.
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Now consider the minimal foliated semisymmetric hypersurface M3 generated by
l(u, v) and this solution r(u, v). Calculating ru , rv, lu , lv, and applying formula
(3-1), we obtain M3

: X (u, v, w)= (− sinh u sin v; sinh u cos v; v+ 1
2π; w). After

changing to the parameters u1
= sinh u and t = v+ 1

2π , we obtain the hypersurface

(3-3) M3
: X (u1, t, w)= u1(cos t e1+ sin t e2)+ te3+we4.

The hypersurface M3 whose radius vector X = X (u1, t, w) is determined by
(3-3) is the generalized helicoidal ruled hypersurface obtained by G. Aumann
[1981, Theorem 4]. It is also called a first type helicoid in R4 and is a generalization
of the right helicoid in R3.

The next well-known example of a minimal surface in S3 is the Clifford torus

M : l(u, v)= (cos u cos v; cos u sin v; sin u cos v; sin u sin v).

The normal vector field n(u, v) of M is

n(u, v)= (sin u sin v;−sin u cos v;−cos u sin v; cos u cos v).

Since E = 〈lu, lu〉 = 〈lv, lv〉 = 1, Theorem 3.2 says that the corresponding equation
for the scalar function r(u, v) is1r(u, v)+2 r(u, v)=0. If we take the trivial solu-
tion r(u, v)= 0, we obtain the minimal foliated semisymmetric hypersurface M3

:

X (u, v, w)= wn(u, v)= w(sin u sin v;−sin u cos v;−cos u sin v; cos u cos v).
After the change of parameters u1

= −w sin u, u2
= w cos u, and t = v+ 1

2π ,
we obtain the hypersurface

(3-4) M3
: X (u1, u2, t)= u1(cos t e1+ sin t e2)+ u2(cos t e3+ sin t e4).

The hypersurface M3 whose radius vector X = X (u1, u2, t) is determined by
(3-4) is the minimal ruled hypersurface obtained by G. Aumann [1981, Theorem 1],
and is known as a second type helicoid. The helicoids of first and second type are
the only minimal ruled hypersurfaces in R4 [Aumann 1981].

Thus we have shown that the first type helicoid is generated by the sphere S2

in S3, while the second type helicoid is generated by the Clifford torus.
Our scheme of constructing minimal foliated semisymmetric hypersurfaces in

R4 can be applied to each minimal surface M2
: l = l(u, v) in S3 and each solution

of the corresponding differential equation for the scalar function r(u, v).
We illustrate how this construction can be applied to the generalized torus of the

second type, given in Theorem 2.4, in the special case when t = 0 and s = lnα for
positive α 6= 1. Since the calculations are too long and complicated, we give only
a short sketch. In this case the solution l(u, v) is defined by

l(u, v)= f (u)
(

p(u)+ α

α2+1
cosβv

(√
αe1+

1
√
α

e4

)
+

√
α

α2+1
sinβv e3

)
,
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where f (u)=
√

(α2 cos2 h−1(u)+ sin2 h−1(u))/α, h−1(u) is the inverse function
of h given in (2-36), p(u) is the solution of system (2-43), and β =

√
(α2+ 1)/α.

As a solution of the corresponding differential equation for r(u, v), we choose
r(u, v) = f (u)

√
α/(α2+ 1) sinβv. We calculate lu(u, v) and lv(u, v), and using

(2-33) and (2-41), we find the vector-valued function

n(u, v)= 1−α2

α(α2+1)
(e1−αe4)+

α

(α2+1) f (u)
cosβv

(√
αe1+

1
√
α

e4

)
+

√
α

α2+1
1

f (u)
sinβv e3−

p(u)
f (u)
−

1−α2

α

∫ u

0

sin 2h−1(s)
f 2(s)

p(s) ds.

Applying formula (3-1), we obtain the following minimal foliated semisymmet-
ric hypersurface M3:

X (u, v, w)=
1−α2

2
√
α(α2+ 1)

sin 2h−1(u)
f (u)

sinβv p′(u)

+

√
α

α2+ 1
α4 cos2 h−1(u)+ sin2 h−1(u)

α2 f 2(u)
sinβv p(u)

−

(√
α

α2+ 1

)3 1
2 f 2(u)

sin 2βv
(√
αe1+

1
√
α

e4

)
+

(
1− α

(α2+1) f 2(u)
sin2 βv

)
e3

+wn(u, v).

Unfortunately, in this case we cannot write the hypersurface M3 in terms of
elementary functions as in the previous examples, because we cannot find an
explicit solution p(u) of linear system (2-43).
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