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XIANG NI AND CHENGMING BAI

We introduce a notion of prealternative algebra, which may be viewed as an
alternative algebra whose product can be decomposed into two compatible
pieces. It is also an alternative algebra analogue of a dendriform dialgebra
or a pre-Lie algebra. The left and right multiplication operators of a pre-
alternative algebra give a bimodule structure of the associated alternative
algebra. There exists a (coboundary) bialgebra theory for prealternative
algebras, namely, prealternative bialgebras, which exhibits all the familiar
properties of the Lie bialgebra theory. In particular, a prealternative bial-
gebra is equivalent to a phase space of an alternative algebra, and our study
leads to what we call the PA equations in a prealternative algebra, which
are analogues of the classical Yang–Baxter equation.

1. Introduction

A dendriform dialgebra is a vector space D together with two bilinear operations
≺,� : D⊗ D→ D such that for any x, y, z ∈ D

(1-1)

(x ≺ y)≺ z = x ≺ (y ◦ z),

(x � y)≺ z = x � (y≺ z),

(x ◦ y)� z = x � (y� z),

where x ◦ y = x ≺ y + x � y. Dendriform dialgebras were introduced by J.-L.
Loday in 1995 as the (Koszul) dual of the associative dialgebra, which is related to
periodicity phenomena in algebraic K-theory [Loday 2001]. It was further studied
in connection with several areas in mathematics and physics, including operads
[Loday 2004], homology [Frabetti 1997; 1998], Hopf algebras [Chapoton 2002;
Holtkamp 2004; Ronco 2002], Lie and Leibniz algebras [Frabetti 1998], combi-
natorics [Aguiar and Sottile 2005; 2006], arithmetic [Loday 2002] and quantum
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field theory [Ebrahimi-Fard and Guo 2007]. See [Loday 2001] for a beautiful
introduction and motivation of this subject.

For any dendriform dialgebra (D, ≺ ,�), the bilinear operation ◦ defines an
associative algebra. Thus, a dendriform dialgebra may be seen as an associative
algebra whose multiplication can be decomposed into two coherent operations.

We may reexamine the identity (1-1) as follows. Let A be a vector space to-
gether with two operations ≺,� : A⊗ A→ A. The right associator (r-associator),
middle associator (m-associator) and left associator (l-associator) are defined for
all x, y, z ∈ A by

(1-2)

(x, y, z)r = (x ≺ y)≺ z− x ≺ (y ◦ z),

(x, y, z)m = (x � y)≺ z− x � (y≺ z),

(x, y, z)l = (x ◦ y)� z− x � (y� z),

respectively, where x ◦ y = x≺ y+ x� y. So (D, ≺ , �) is a dendriform dialgebra
if and only if all the above three associators are zero.

On the other hand, alternative algebras are a class of important nonassociative
algebras [Kuz’min and Shestakov 1995; Schafer 1952; 1954]. Alternative algebras
are closely related to Lie algebras [Schafer 1954], Jordan algebras [Jacobson 1968]
and Malcev algebras [Kuz’min and Shestakov 1995]. Due to the relationships
between associative algebras and alternative algebras (see Section 2), it is natural
to consider the algebraic structure on an alternative algebra as an analogue of a
dendriform dialgebra on an associative algebra. So we introduce a notion of pre-
alternative algebra, one of the main objects in this paper. Just as an alternative
algebra is a generalization of an associative algebra that weakens the condition of
associativity, a prealternative algebra is a generalization of a dendriform dialgebra
that weakens the conditions of l-associativity, m-associativity and r -associativity.

There has already been a Lie algebraic version of the relationship between as-
sociative algebras and dendriform dialgebras. A class of nonassociative algebras,
the pre-Lie algebras (also called left-symmetric algebras, Vinberg algebras and
so on — see a survey article [Burde 2006] and the references therein) play a role
similar to dendriform dialgebras. Therefore, in this sense, prealternative algebras
are just alternative algebra analogues of pre-Lie algebras or dendriform dialgebras.

Goncharov [2007] constructed alternative D-bialgebras, a bialgebra theory for
alternative algebras. In this paper, we show that prealternative bialgebras serve as a
(coboundary) bialgebra theory for prealternative algebras, and exhibit all the famil-
iar properties of the Lie bialgebra theory of Drinfeld [1983]. Just as an alternative
D-bialgebra is equivalent to an alternative analogue of Manin triple [Goncharov
2007; Chari and Pressley 1994], a prealternative bialgebra is equivalent to a phase
space of an alternative algebra [Kupershmidt 1994; Bai 2006]. In particular, there
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exists an unexpected Drinfeld double construction for a prealternative bialgebra.
Also, there is a clear analogy between alternative D-bialgebras and prealternative
bialgebras. On the other hand, we emphasize that the representation theories of
alternative and prealternative algebras play an essential role in establishing the
bialgebra theories. We also point out that both alternative D-bialgebras and pre-
alternative bialgebras can be fit into the general framework of generalized bialge-
bras introduced in [Loday 2008]. So it would be interesting to find the relationship
to Loday’s question, that is, to find, as he put it, “good triples of operads”.

The paper is organized as follows. In Section 2, we study bimodules of alter-
native algebras and introduce various methods to construct prealternative algebras.
In Section 3, we recall the properties of alternative D-bialgebras of Goncharov and
prove some new results. In Section 4, we generalize the notion of phase space in
mathematical physics [Kupershmidt 1994] to the realm of alternative algebras, and
show that prealternative algebras are the natural underlying structures. In Section 5,
we define and study bimodules and matched pairs of prealternative algebras. In
Section 6, we introduce the notion of prealternative bialgebra, which is equivalent
to a phase space of an alternative algebra. In Section 7, we show that there is a
reasonable coboundary (prealternative) bialgebra theory; what we study leads to
what we call PA equations. Section 8 discusses the properties of the PA equa-
tions. We compare alternative D-bialgebras and prealternative algebras in Section
9. In the appendix, we prove the main results in [Goncharov 2007] by a somewhat
different approach; we point out a Drinfeld double construction for an alternative
D-bialgebra that was not given there.

Throughout this paper, all the algebras are finite-dimensional over a fixed base
field k of characteristic not 2. We give some notations as follows.

Let V be a vector space. Let B : V ⊗V→ F be a symmetric or skew-symmetric
bilinear form on V . If W is a subspace of V , then we define

(1-3) W⊥ = {x ∈ V |B(x, y)= 0 for all y ∈W }.

We say W is isotropic if W ⊂W⊥ and Lagrangian if W =W⊥.
Let (A,�) be a vector space with a binary operation � : A⊗A→ A. Let l�(x) and

r�(x) denote the left and right multiplication operators, that is, l�(x)y = r�(y)x =
x � y for any x, y ∈ A. We may sometimes write instead l(x) or r(x) when no
confusion would result. Let l�, r� : A→ gl(A) be two linear maps with x 7→ l�(x)
and x 7→ r�(x), respectively.

Let V be a vector space and r =
∑

i ai ⊗ bi ∈ V ⊗ V . Set

(1-4) r12 =
∑

i

ai ⊗ bi ⊗ 1, r13 =
∑

i

ai ⊗ 1⊗ bi , r23 =
∑

i

1⊗ ai ⊗ bi ,
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where 1 is a symbol playing a role similar to the unit. If in addition there exists a
binary operation � : V ⊗ V → V on V , then the operation between two of the r is
done in the obvious way. For example,

(1-5)

r12 � r13 =
∑
i, j

ai � a j ⊗ bi ⊗ b j , r13 � r23=
∑
i, j

ai ⊗ a j ⊗ bi � b j ,

r23 � r12 =
∑
i, j

a j ⊗ ai � b j ⊗ bi .

Let V be a vector space. Let σ : V ⊗ V → V ⊗ V be the flip defined by

(1-6) σ(x ⊗ y)= y⊗ x for all x, y ∈ V .

We call r ∈ V ⊗ V symmetric if r = σ(r) and skew-symmetric if r = −σ(r). On
the other hand, any r ∈ V ⊗ V can be identified as a linear map Tr : V ∗→ V via

(1-7) 〈u∗⊗ v∗, r〉 = 〈u∗, Tr (v
∗)〉 for all u∗, v∗ ∈ V ∗,

where 〈 · , · 〉 is the canonical paring between V and V ∗. We call r ∈ V ⊗ V
nondegenerate if Tr is invertible. Any invertible linear map T : V ∗→ V induces a
nondegenerate bilinear form B on V by

(1-8) B(u, v)= 〈T−1u, v〉 for all u, v ∈ V .

We call T symmetric (respectively skew-symmetric) if the induced bilinear form B

is symmetric (respectively skew-symmetric). Obviously, the symmetry or skew-
symmetry of both T and the corresponding r ∈ V ⊗ V coincide.

Let V1, V2 be two vector spaces and T : V1→ V2 be a linear map. Denote the
dual (linear) map by T ∗ : V ∗2 → V ∗1 defined by

(1-9) 〈v1, T ∗(v∗2)〉 = 〈T (v1), v
∗

2〉 for all v1 ∈ V1, v
∗

2 ∈ V ∗2 .

On the other hand, T can be identified as an element rT ∈ V2⊗ V ∗1 by

(1-10) 〈rT , v
∗

2 ⊗ v1〉 = 〈T (v1), v
∗

2〉 for all v1 ∈ V1, v
∗

2 ∈ V ∗2 .

Note that (1-7) is exactly the case that V1= V ∗2 . In the above sense, any linear map
T : V1→ V2 is obviously an element in (V2⊕ V ∗1 )⊗ (V2⊕ V ∗1 ).

Let A be an algebra and V be a vector space. For any linear map ρ : A→ gl(V ),
define a linear map ρ∗ : A→ gl(V ∗) by

(1-11) 〈ρ∗(x)v∗, u〉 = 〈v∗, ρ(x)u〉 for all x ∈ A, u ∈ V, v∗ ∈ V ∗.

Note that in this case ρ∗ not the map dual to ρ in the sense of (1-9).
For vector spaces V1 and V2, we denote the elements of V1 ⊕ V2 by u + v or

(u, v) for u ∈ V1 and v ∈ V2.
We may use 1 to denote the identity transformation of a vector space V .
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2. Representation theory of alternative algebras and prealternative algebras

Definition 2.1. An alternative algebra (A, ◦ ) is a vector space A equipped with a
bilinear operation (x, y)→ x ◦ y satisfying

(2-1) (x, x, y)= (y, x, x)= 0 for all x, y, z ∈ A,

where (x, y, z)= (x ◦ y) ◦ z− x ◦ (y ◦ z) is the associator.

Remark 2.2. If the characteristic of the field is not 2, then an alternative algebra
(A, ◦ ) also satisfies for all x1, x2, y ∈ A the stronger axioms

(x1, x2, y)+ (x2, x1, y)= 0 and (y, x1, x2)+ (y, x2, x1)= 0.

Definition 2.3 [Schafer 1952]. Let (A, ◦) be an alternative algebra and V be a
vector space. Let L , R : A→ gl(V ) be two linear maps. We call V (or the pair
(L , R), or (V, L , R)) a representation or a bimodule of A if for any x, y ∈ A

(2-2) L(x2)= L(x)L(x), R(x2)= R(x)R(x)

and

(2-3)
R(y)L(x)− L(x)R(y)= R(x ◦ y)− R(y)R(x),

L(y ◦ x)− L(y)L(x)= L(y)R(x)− R(x)L(y).

By [Schafer 1995], (V, L , R) is a bimodule of an alternative algebra (A, ◦) if
and only if the direct sum A ⊕ V of vector spaces is turned into an alternative
algebra (the semidirect sum) by defining multiplication in A⊕ V by

(2-4) (x1+ v1) ∗ (x2+ v2)= x1 ◦ x2+ (L(x1)v2+ R(x2)v1)

for all x1, x2 ∈ A and v1, v2 ∈ V .

We denote it by A nL ,R V or simply A n V .

Proposition 2.4. If (V, L , R) is a bimodule of an alternative algebra (A, ◦), then
(V ∗, R∗, L∗) is a bimodule of (A, ◦).

Proof. By (2-2) and (2-3), we have

L(x ◦ y)− L(x)L(y)=−L(y ◦ x)+ L(y)L(x)= R(x)L(y)− L(y)R(x)

for all x, y ∈ A. So for any u∗ ∈ V ∗, v ∈ V , we have

〈(L∗(y)R∗(x)− R∗(x)L∗(y))u∗, v〉 = 〈u∗, (R(x)L(y)− L(y)R(x))v〉

= 〈u∗, (L(x ◦ y)− L(x)L(y))v〉

= 〈(L∗(x ◦ y)− L∗(y)L∗(x))u∗, v〉.

So L∗(y)R∗(x)− R∗(x)L∗(y)= L∗(x ◦ y)− L∗(y)L∗(x). Similarly, (V ∗, R∗, L∗)
also satisfies the other axioms defining a bimodule of (A, ◦). �
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Definition 2.5. A prealternative algebra (A,≺,�) is a vector space A with two
bilinear operations denoted by ≺,� : A⊗ A→ A satisfying

(x, y, z)m + (y, x, z)r = 0,

(x, y, z)m + (x, z, y)l = 0, (y, x, x)r = (x, x, y)l= 0

for all x, y, z ∈ A, where (x, y, z)r , (x, y, z)m , (x, y, z)l are defined by (1-2) and
x ◦ y = x � y+ x ≺ y.

Remark 2.6. If the characteristic of the field is not 2, then a prealternative algebra
(A,≺,�) satisfies for any x, y, z ∈ A the strong axioms

(x, y, z)m + (y, x, z)r = 0, (x, y, z)m + (x, z, y)l = 0,(2-5)

(x, y, z)l + (y, x, z)l = 0, (x, y, z)r + (x, z, y)r = 0.(2-6)

It would be interesting to describe free prealternative algebras; see [Loday 2001].

Proposition 2.7. Let (A,≺,�) be a prealternative algebra. Then the operation

x ◦ y = x � y+ x ≺ y for all x, y ∈ A,

defines an alternative algebra, which is called the associated alternative algebra of
A and denoted by Alt(A). We call (A,≺,�) a compatible prealternative algebra
structure on the alternative algebra Alt(A).

Proof. In fact, for any x, y ∈ A, we have

(x, x, y)= (x ◦ x) ◦ y− x ◦ (x ◦ y)

= (x ◦ x)� y + (x � x)≺ y+ (x ≺ x)≺ y

− x � (x � y)− x � (x ≺ y)− x ≺ (x ◦ y)

= (x, x, y)l + (x, x, y)m + (x, x, y)r = 0.

Similarly, we show that (y, x, x)= 0. �

Remark 2.8. Thus a prealternative algebra can be viewed as an alternative algebra
whose operation decomposes into two compatible pieces. On the other hand, it
is obvious that an associative algebra is an alternative algebra and a dendriform
dialgebra is a prealternative algebra.

If (A, ◦) is an alternative algebra, then (A, l◦, r◦) is a bimodule of A.

Proposition 2.9. Let (A,≺,�) be a prealternative algebra. Then (A, l�, r≺) is a
bimodule of the associated alternative algebra (Alt(A), ◦).

Proof. For any x, y, z ∈ A, we have

(r≺(y)l�(x)− l�(x)r≺(y))z = (x� z)≺ y− x�(z≺ y)= z≺(x ◦ y)−(z≺ x)≺ y

= (r≺(x ◦ y)−r≺(y)r≺(x))z.
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Similarly, (l�, r≺) satisfies the other axioms defining a bimodule of (Alt(A), ◦). �

Let (A,≺,�) be a prealternative algebra. Then by Propositions 2.4 and 2.9,
both (A∗, r∗

◦
, l∗
◦
) and (A∗, r∗

≺
, l∗
�
) are bimodules of Alt(A).

The next definition is motivated by the notion of O-operator as a generalization of
(the operator form of) the classical Yang–Baxter equation in [Kupershmidt 1999];
see also [Bai 2007].

Definition 2.10. Let (V, L , R) be a bimodule of an alternative algebra (A, ◦). A
linear map T : V → A is called an O-operator associated to (V, L , R) if

(2-7) T (u) ◦ T (v)= T (L(T (u))v+ R(T (v))u) for all u, v ∈ V .

Proposition 2.11. Let T :V→ A be an O-operator of an alternative algebra (A, ◦)
associated to a bimodule (V, L , R). Then there exists a prealternative algebra
structure on V given by

(2-8) u≺ v = R(T (v))u and u� v = L(T (u))v for all u, v ∈ V .

Therefore V is an alternative algebra as the associated alternative algebra of this
prealternative algebra and T is a homomorphism of alternative algebras. Further-
more, T (V )= {T (v) | v ∈ V } ⊂ A is an alternative subalgebra of (A, ◦) and there
is an induced prealternative algebra structure on T (V ) given by

(2-9) T (u)≺T (v)= T (u≺v) and T (u)�T (v)= T (u�v) for all u, v ∈ V .

Moreover, the associated alternative algebra structure is just the alternative sub-
algebra structure of (A, ◦) and T is a homomorphism of prealternative algebras.

Proof. We only prove one identity, with (V,≺,�) being a prealternative algebra
as an example. The proof of the others is similar. For any u, v, w ∈ V ,

(u� v)≺w+ (v≺ u)≺w = R(T (w))L(T (u))v+ R(T (w))R(T (u))v,

u� (v≺w)+ v≺ (u ◦ v)= L(T (u))R(T (w))v+ R(T (u ◦w))v.

By (2-3), (2-7) and (2-8), we show that

(u, v, w)m+(v, u, w)r = (u�v)≺w+(v≺u)≺w−u�(v≺w)−v≺(u ◦v)= 0.

The remaining parts of the conclusion are obvious. �

Definition 2.12 [Schafer 1952]. Let (A, ◦) be an alternative algebra and (V, L , R)
be a bimodule. A 1-cocycle of A into V is a linear map D : A→ V satisfying

(2-10) D(x ◦ y)= L(x)D(y)+ R(y)D(x) for all x, y ∈ A.

Proposition 2.13. For (A, ◦) an alternative algebra, the following conditions are
equivalent.
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(1) There is a compatible prealternative algebra structure (A,≺,�) on (A, ◦).

(2) There is an invertible O-operator.

(3) There is a bijective 1-cocycle.

Proof. (3) implies (2). If D is a bijective 1-cocycle of (A, ◦) into a bimodule
(V, L , R), then D−1 is an O-operator associated to (V, L , R).

(2) implies (1). If T :V→ A is an invertible O-operator associated to a bimodule
(V, L , R), then there is a compatible prealternative algebra structure on A given
by x ≺ y = T (R(y)T−1(x)) and x � y = T (L(x)T−1(y)) for all x, y ∈ A.

(1) implies (3). If (A,≺,�) is a compatible prealternative algebra structure on
(A, ◦), then it is obvious that the identity map id is a bijective 1-cocycle of A into
the bimodule (A, l�, r≺). �

Example 2.14. Let (A, ◦) be an alternative algebra graded by positive integers,
that is, A =

⊕
i∈N Ai and Ai ◦ A j ⊂ Ai+ j . Then there is a bijective 1-cocycle

associated to the bimodule (A, l◦, r◦) defined by D(xi )= i xi for xi ∈ Ai . Therefore
there exists a compatible prealternative algebra structure on (A, ◦) given by

xi � x j =
j

i + j
xi ◦ x j and xi ≺ x j =

i
i+ j

xi ◦ x j for all xi ∈ Ai , x j ∈ A j .

Definition 2.15. Let (A, ◦) be an arbitrary algebra (not necessarily associative)
and ω be a skew-symmetric bilinear form on A. The bilinear form ω is said to be
closed if ω satisfies

ω(a ◦ b, c)+ω(b ◦ c, a)+ω(c ◦ a, b)= 0 for all a, b, c ∈ A.

If ω is also nondegenerate, then ω is said to be symplectic. An alternative algebra
A equipped with a symplectic form is called a symplectic alternative algebra.

Proposition 2.16. Let (A, ◦, ω) be an alternative algebra with symplectic form ω.
Then A has a compatible prealternative algebra structure ≺,� given by

ω(x ≺ y, z)= ω(x, y ◦ z) and ω(x � y, z)= ω(y, z ◦ x) for all x, y, z ∈ A.

Proof. Define a linear map T : A→ A∗ by 〈T (x), y〉 = ω(x, y) for all x, y ∈ A.
Then T is invertible and T is a 1-cocycle of A into the bimodule (A∗, r∗

◦
, l∗
◦
). So by

Proposition 2.13, there is a compatible prealternative algebra structure ≺,� on A
given by

x ≺ y = T−1(l∗
◦
(y)T (x)) and x � y = T−1(r∗

◦
(x)T (y)) for all x, y ∈ A.

Thus, for any x, y ∈ A,

ω(x ≺ y, z)= 〈T (x ≺ y), z〉 = 〈l∗
◦
(y)T (x), z〉 = ω(x, y ◦ z),

ω(x � y, z)= 〈T (x � y), z〉 = 〈r∗
◦
(x)T (y), z〉 = ω(y, z ◦ x). �
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3. Alternative D-bialgebras and an alternative analogue of the classical
Yang–Baxter equation

Definition 3.1 [Goncharov 2007; Zhelyabin 1997]. Let M be an arbitrary vari-
ety of k-algebras and (A, ◦) be an algebra in M with comultiplication 4. Then
(A, ◦,4) is called an M-bialgebra in the sense of Drinfeld if D(A) belongs to M ,
where D(A)= A⊕ A∗ is equipped with the multiplication

(3-1) (a+ f ) ? (b+ g)= (a ◦ b+ f · b+ a · g)+ ( f ∗ g+ f • b+ a • g)

for all a, b ∈ A and f, g ∈ A∗,

where
f · a =

∑
a

a(1)〈 f, a(2)〉, 〈 f • a, b〉 = 〈 f a ◦ b〉,

a · f =
∑

a

〈 f, a(1)〉a(2), 〈a • f, b〉 = 〈 f, b ◦ a〉,

4(a)=
∑

a

a(1)⊗ a(2),

and the multiplication ∗ on A∗ is induced by 4. In this case, D(A) = A⊕ A∗ is
called the Drinfeld double of A. In particular, when M is a variety of alternative
algebras, (A, ◦,4) is called an alternative D-bialgebra.

Remark 3.2. Goncharov [2007] notes that an alternative D-bialgebra (A, ◦,1) is
equivalent to an alternative analogue of Manin triple [Chari and Pressley 1994]:
There is an alternative algebra structure on the direct sum A⊕ A∗ of the under-
lying vector spaces of A and A∗ such that both A and A∗ are subalgebras and the
symmetric bilinear form on A⊕ A∗ given by

(3-2) B(x + a∗, y+ b∗)= 〈a∗, y〉+ 〈x, b∗〉 for all x, y ∈ A and a∗, b∗ ∈ A∗

is invariant. Recall that a bilinear form B on an alternative algebra (A, ◦) is called
invariant if

(3-3) B(x ◦ y, z)=B(x, y ◦ z) for all x, y, z ∈ A.

It is easy to show that (A, ◦,1) being an alternative D-bialgebra is equivalent to
(A, A∗, r∗

◦
, l∗
◦
, r∗
∗
, l∗
∗
) being a matched pair of alternative algebras in the sense of

Proposition 4.7.

Definition 3.3. Let (A, ◦) be an alternative algebra and r =
∑

i ai ⊗ bi ∈ A⊗ A.
Then the pair (A, r) is called a coboundary alternative D-bialgebra if (A, ◦,4r ),
where

(3-4) 4r (x)=
∑

i

ai ◦ x ⊗ bi −
∑

i

ai ⊗ x ◦ bi for all x ∈ A

is an alternative D-bialgebra.
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Theorem 3.4 [Goncharov 2007]. Let (A, ◦) be an alternative algebra and let
r ∈ A⊗ A. Assume that r is skew-symmetric and

(3-5) CA(r)= r23 ◦ r12− r12 ◦ r13− r13 ◦ r23 = 0.

Then (A, ◦,4r ) is an alternative D-bialgebra.

Definition 3.5. Let (A, ◦) be an alternative algebra and let r ∈ A⊗ A. Goncharov
[2007] calls Equation (3-5) an alternative analogue of the classical Yang–Baxter
equation. We also call it the alternative Yang–Baxter equation in (A, ◦).

Proposition 3.6. Let (A, ◦) be an alternative algebra and r ∈ A ⊗ A. Then r
is a skew-symmetric solution of the alternative Yang–Baxter equation in (A, ◦) if
and only if Tr is an O-operator associated to the bimodule (A∗, r∗

◦
, l∗
◦
), that is, Tr

satisfies the equation

(3-6) Tr (a∗) ◦ Tr (b∗)= Tr (r
∗

◦
(Tr (a∗))b∗+ l∗

◦
(Tr (b∗))a∗) for all a∗, b∗ ∈ A∗.

So there is a prealternative algebra structure on A∗ given by

(3-7) a∗≺b∗= l∗
◦
(Tr (b∗))a∗ and a∗�b∗= r∗

◦
(Tr (a∗))b∗ for all a∗, b∗ ∈ A∗.

Moreover, the associated alternative algebra structure is exactly the alternative
algebra structure on A∗ as a subalgebra of D(A) = A⊕ A∗ that is induced from
the comultiplication defined by (3-4). We denote this alternative algebra structure
on A∗ by A∗(r).

Proof. Let {ei , . . . , en} be a basis of A and {e∗i , . . . , e∗n} its dual. Suppose that
ei◦e j =

∑
k ck

i j ek and r=
∑

i, j ai j ei ⊗ e j . Hence ai j =−a j i and Tr (e∗l )=
∑

k aklek .
Then r is a solution of the alternative Yang–Baxter equation in (A, ◦) if and only
if for any i, k, t ∑

js

ast ai j ck
s j − a jkast ci

js − ai j aksct
js = 0.

The left hand side of this equation is precisely the coefficient of ei in

−Tr (e∗k ) ◦ Tr (e∗t )+ Tr (r
∗

◦
(Tr (e∗k ))e

∗

t + l∗
◦
(Tr (e∗t ))e

∗

k ).

Thus the first half part of the conclusion holds. It is easy to get the other results. �

Corollary 3.7. Let (A, ◦) be an alternative algebra and r ∈ A ⊗ A. Assume r
is skew-symmetric and there exists a nondegenerate symmetric invariant bilinear
form B on (A, ◦). Define a linear map ϕ : A→ A∗ by 〈ϕ(x), y〉 = B(x, y) for
any x, y ∈ A. Then r is a solution of the alternative Yang–Baxter equation in
(A, ◦) if and only if T̃r = Trϕ : A→ A is an O-operator associated to the bimodule
(A, l◦, r◦), that is, T̃r satisfies the equation

(3-8) T̃r (x) ◦ T̃r (y)= T̃r (T̃r (x) ◦ y+ x ◦ T̃r (y)) for all x, y ∈ A.
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Hence there is a prealternative algebra structure on A given by

(3-9) x ≺ y = x ◦ T̃r (y) and x � y = T̃r (x) ◦ y for all x, y ∈ A.

Proof. For all x, y, z ∈ A, we have

〈ϕ(l◦(x)y), z〉 =B(x ◦ y, z)=B(z, x ◦ y)=B(y, z ◦ x)= 〈r∗
◦
(x)ϕ(y), z〉.

Hence ϕ(l◦(x)y)= r∗
◦
(x)ϕ(y) and similarly ϕ(r◦(x)y)= l∗

◦
(x)ϕ(y) for any x, y∈ A.

Let a∗=ϕ(x), b∗=ϕ(y). Then by Proposition 3.6, r is a solution of the alternative
Yang–Baxter equation in (A, ◦) if and only if

Trϕ(x) ◦ Trϕ(y)= Tr (a∗) ◦ Tr (b∗)= Tr (r
∗

◦
(Tr (a∗))b∗+ l∗

◦
(Tr (b∗))a∗)

= Trϕ(Trϕ(x) ◦ y+ x ◦ Trϕ(y)). �

Remark 3.8. Equation (3-8) is exactly the Rota–Baxter relation of weight zero for
an alternative algebra; see [Baxter 1960; Rota 1969].

Proposition 3.9. Let (A, ◦) be an alternative algebra, (V, L , R) a bimodule of A,
and (V ∗, R∗, L∗) the dual bimodule. Let T : V → A be a linear map that can be
identified as an element in A nR∗,L∗ V ∗⊗ A nR∗,L∗ V ∗. Then T is an O-operator
of A associated to (V, L , R) if and only if r = T − σ(T ) is a skew-symmetric
solution of the alternative Yang–Baxter equation in A nR∗,L∗ V ∗.

Proof. Let {e1, . . . , en} be a basis of A. Let {v1, . . . , vm} be a basis of V and
{v∗1 , . . . , v

∗
m} be its dual. Set T (vi )=

∑n
k=1 aikek for i = 1, . . . ,m. Then

T =
m∑

i=1

T (vi )⊗v
∗

i =

m∑
i=1

n∑
k=1

aikek⊗v
∗

i ∈ A⊗V ∗⊂ (AnR∗,L∗V ∗)⊗(AnR∗,L∗V ∗).

Therefore we have

r12 ◦ r13 =

m∑
i,k=1

(
T (vi ) ◦ T (vk)⊗ v

∗

i ⊗ v
∗

k − R∗(T (vi ))v
∗

k ⊗ vi ⊗ T (vk)

− L∗(T (vk))v
∗

i ⊗ T (vi )⊗ v
∗

k
)
,

r23 ◦ r12 =

m∑
i, j=1

(
T (vk)⊗ R∗(T (vi ))v

∗

k ⊗ v
∗

i − v
∗

k ⊗ T (vi ) ◦ T (vk)⊗ v
∗

i

+ v∗k ⊗ L∗(T (vk))v
∗

i ⊗ T (vi )
)
,

r13 ◦ r23 =

m∑
i,k=1

(
v∗i ⊗ v

∗

k ⊗ T (vi ) ◦ T (vk)− T (vi )⊗ v
∗

k ⊗ L∗(T (vk))v
∗

i

− v∗i ⊗ T (vk)⊗ R∗(T (vi ))v
∗

k
)
.

By the definition of a dual bimodule, we know

L∗(T (vk))v
∗

i =

m∑
j=1

〈v∗i , L(T (vk))v j 〉v
∗

j , R∗(T (vk))v
∗

i =

m∑
j=1

〈v∗i , R(T (vk))v j 〉v
∗

j .
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Then
m∑

i,k=1

T (vi )⊗ v
∗

k ⊗ L∗(T (vk))v
∗

i =

m∑
i,k=1

m∑
j=1

〈v∗j , L(T (vk))vi 〉T (v j )⊗ v
∗

k ⊗ v
∗

i

=

m∑
i,k=1

T (〈v∗j , L(T (vk))vi 〉v j )⊗ v
∗

k ⊗ v
∗

i

=

m∑
i,k=1

T (L(T (vk))vi )⊗ v
∗

k ⊗ v
∗

i .

Hence, we get

r12 ◦ r13+ r13 ◦ r23− r23 ◦ r12

=

m∑
i,k=1

(
(T (vi ) ◦ T (vk)− T (L(T (vi ))vk)− T (R(T (vk))vi ))⊗ v

∗

i ⊗ v
∗

k

+ v∗k ⊗ (T (vi ) ◦ T (vk)− T (L(T (vi ))vk)− T (R(T (vk))vi ))⊗ v
∗

i

+ v∗i ⊗ v
∗

k ⊗ (T (vi ) ◦ T (vk)− T (L(T (vi ))vk)− T (R(T (vk))vi ))
)
.

So r is a solution of the alternative Yang–Baxter equation in A nR∗,L∗ V ∗ if and
only if T is an O-operator of A associated to (V, L , R). �

Proposition 3.10 [Goncharov 2007]. Let (A, ◦) be an alternative algebra and let
r ∈ A ⊗ A. Suppose that r is skew-symmetric and nondegenerate. Then r is a
solution of the alternative Yang–Baxter equation in A if and only if the bilinear
form ω induced by r through (1-8) is a symplectic form.

Corollary 3.11. Let (A,≺,�) be a prealternative algebra. Let {e1, . . . , en} be a
basis of A and let {e∗1, . . . , e∗n} be its dual. Then r=

∑
i (ei ⊗ e∗i − e∗i ⊗ ei ) is a non-

degenerate solution of the alternative Yang–Baxter equation in Alt(A)nr∗≺,l
∗
�

A∗.
The symplectic form ωp induced by r through (1-8) is given by

(3-10) ωp(x +a∗, y+b∗)= 〈a∗, y〉− 〈x, b∗〉 for all x, y ∈ A and a∗, b∗ ∈ A∗.

Proof. It follows from the fact that T = id is an O-operator of Alt(A) associated to
the bimodule (A, l�, r≺). �

Proposition 3.12. Let (A, ◦, ω) be an alternative algebra with symplectic form ω.
Suppose that there is a compatible prealternative algebra structure ≺,� on A
given by Proposition 2.16 and a prealternative algebra structure ≺∗,�∗ on A∗

given by (3-7), where the solution r of the alternative Yang–Baxter equation in
(A, ◦) is induced by ω through (1-8). Let a∗ ∗ b∗ = a∗ ≺∗ b∗ + a∗ �∗ b∗ for any
a∗, b∗ ∈ A∗. Then there is a prealternative algebra structure ≺0,�0 on A⊕ A∗

given for any x, y ∈ A and a∗, b∗ ∈ A∗ by

(x, a∗)≺0 (y, b∗)= (x ≺ y+ l∗
∗
(b∗)x, a∗≺∗ b∗+ l∗

◦
(y)a∗),

(x, a∗)�0 (y, b∗)= (x � y+ r∗
∗
(a∗)y, a∗�∗ b∗+ r∗

◦
(x)b∗).
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Moreover, the associated alternative algebra is just the Drinfeld double D(A) for
the coboundary alternative D-bialgebra (A, ◦,1r ).

Proof. In fact, since r is invertible, it is easy to show for any x, y∈ A and a∗, b∗∈ A∗

that
l∗
∗
(b∗)x = x ≺ Tr (b∗), l∗

◦
(y)a∗ = a≺∗ T−1

r (y),

r∗
∗
(a∗)y = Tr (a∗)� y, r∗

◦
(x)b∗ = T−1

r (x)�∗ b∗.

So for any z ∈ A and c∗ ∈ A∗,

((x, a∗)�0 (y, b∗))≺0 (z, c∗)

=
(
(x + Tr (a∗))� y, (T−1

r (x)+ a∗)�∗ b∗
)
≺0 (z, c∗)

=
(
(x � y)≺ z+ (x � y)≺ Tr (c∗)+ (Tr (a∗)� y)≺ z+ (Tr (a∗)� y)≺ Tr (c∗),

(T−1
r (x)�∗ b∗)≺∗ T−1

r (z)+ (T−1
r (x)�∗ b∗)≺∗ c∗

+ (a∗� b∗)≺∗ T−1
r (z)+ (a∗�∗ b∗)≺∗ c∗

)
.

Similarly,

((y, b∗)≺0 (x, a∗))≺0 (z, c∗)

=
(
(y≺ x)≺ z+ (y≺ x)≺ Tr (c∗)+ (y≺ Tr (a∗))≺ z+ (y≺ Tr (a∗))≺ Tr (c∗),

(b∗≺∗ T−1
r (x))≺∗ T−1

r (z)+ (b∗≺∗ a∗)≺∗ T−1
r (z)

+ (b∗≺∗ T−1
r (x))≺∗ c∗+ (b∗≺∗ a∗)≺∗ c∗

)
,

(x, a∗)�0 ((y, b∗)≺0 (z, c∗))

=
(
x � (y≺ Tr (c∗))+ x � (y≺ z)+ Tr (a∗)� (y≺ z)+ Tr (a∗)� (y≺ Tr (c∗)),

T−1
r (x)�∗ (b∗≺∗ c∗)+ T−1

r (x)�∗ (b∗≺∗ T−1
r (z))

+ a∗�∗ (b∗≺∗ c∗)+ a∗�∗ (b∗≺∗ T−1
r (z))

)
,

(y, b∗)≺∗ ((x, a∗) • (z, c∗))

=
(
y≺ (Tr (a∗) ◦ Tr (c∗))+ y≺ (Tr (a∗)≺ z)+ y≺ (x � Tr (c∗))

+ y≺ (x ◦ z)+ y≺ (x ≺ Tr (c∗))+ y≺ (Tr (a∗)� z), b∗≺∗ (a∗ ∗ c∗)

+ b∗≺∗ (a∗≺∗ T−1
r (z))+ b∗≺∗ (T−1

r (x)�∗ c∗)+ b∗≺∗ (T−1
r (x) ∗ T−1

r (z))

+ b∗≺∗ (T−1
r (x)≺∗ c∗)+ b∗≺∗ (a∗�∗ T−1

r (z))
)
,

where •=≺0+�0. Hence

((x, a∗)�0 (y, b∗))≺0 (z, c∗)+ ((y, b∗)≺0 (x, a∗))≺0 (z, c∗)

= (x, a∗)�0 ((y, b∗)≺0 (z, c∗))+ (y, b∗)≺∗ ((x, a∗) • (z, c∗)).

Using a similar argument, we can prove that (≺0,�0) also satisfies (2-6) and the
second equation in (2-5). �
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Proposition 3.13. Let (A, ◦) be an alternative algebra.

(1) For any skew-symmetric solution r of the alternative Yang–Baxter equation,
the Drinfeld double D(A) of the coboundary alternative D-bialgebra (A, ◦,1r )

is isomorphic to A nr∗◦,l
∗
◦

A∗ as alternative algebras.

(2) The skew-symmetric solutions of the alternative Yang–Baxter equation in (A, ◦)
are in one-to-one correspondence with the linear maps Tr : A∗→ A whose graphs

graph(Tr )= {(Tr (a∗), a∗) ∈ A nr∗◦,l
∗
◦

A∗ | a∗ ∈ A∗}

are Lagrangian subalgebras of A nr∗◦,l
∗
◦

A∗ with respect to the bilinear form given
by (3-2). Consequently every alternative subalgebra that is also a Lagrangian
graph(Tr ) of A nr∗◦,l

∗
◦

A∗ carries a prealternative algebra structure defined for any
a∗, b∗ ∈ A∗ by

(Tr (a∗), a∗)≺ (Tr (b∗), b∗)= (Tr (l
∗

◦
(Tr (b∗))a∗), l∗◦(Tr (b∗))a∗),

(Tr (a∗), a∗)� (Tr (b∗), b∗)= (Tr (r
∗

◦
(Tr (a∗))b∗), r∗◦(Tr (a∗))b∗).

Proof. (1) Let r be a skew-symmetric solution of the alternative Yang–Baxter
equation in (A, ◦). Let the operation in A∗(r) be ∗. Then by Proposition 3.6, we
know a∗ ∗b∗= r∗

◦
(Tr (a∗))b∗+ l∗

◦
(Tr (b∗)a∗) for any a∗, b∗ ∈ A∗. We claim that for

any x, y ∈ A and a∗, b∗ ∈ A∗, we have

(3-11) r∗
∗
(a∗)y+ l∗

∗
(b∗)x = Tr (a∗) ◦ y+ x ◦ Tr (b∗)− Tr (r

∗

◦
(x)b∗+ l∗

◦
(y)a∗).

In fact, it follows from the computation (for any c∗ ∈ A∗)

〈r∗
∗
(a∗)y+ l∗

∗
(b∗)x, c∗〉 = 〈y, c∗ ∗ a∗〉+ 〈x, b∗ ∗ c∗〉

= 〈y, r∗
◦
(Tr (c∗))a∗+ l∗

◦
(Tr (a∗))c∗〉+ 〈x, r∗◦(Tr (b∗))c∗+ l∗

◦
(Tr (c∗))b∗〉

= 〈y ◦ Tr (c∗), a∗〉+ 〈Tr (a∗) ◦ y, c∗〉+ 〈x ◦ Tr (b∗), c∗〉+ 〈Tr (c∗) ◦ x, b∗〉

= 〈Tr (a∗) ◦ y+ x ◦ Tr (b∗)− Tr (r
∗

◦
(x)b∗+ l∗

◦
(y)a∗), c∗〉,

where we use that 〈Tr (a∗), b∗〉 =−〈a∗, Tr (b∗)〉, which follows from the fact that r
is skew-symmetric. Define a linear map λ : (D(A)= A⊕ A∗, •)→ (Anr∗◦,l

∗
◦

A∗, ?)
by λ((x, a∗))= (Tr (a∗)+ x, a∗) for all x ∈ A, a∗ ∈ A∗. Then we have

λ((x, a∗)) ? λ((y, b∗))

= ((Tr (a∗)+ x) ◦ (Tr (b∗)+ y), r∗
◦
(Tr (a∗)+ x)b∗+ l∗

◦
(Tr (b∗)+ x)a∗)

= (Tr (a∗ ∗ b∗+ r∗
◦
(x)b∗+ l∗

◦
(y)a∗)+ x ◦ y+ r∗

∗
(a∗)y+ l∗

∗
(b∗)x, a∗ ∗ b∗

+ r∗
◦
(x)b∗+ l∗

◦
(y)a∗)

= λ((x, a∗) • (y, b∗)),
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where we used (3-6) and (3-11). Furthermore, it is easy to show that λ is bijective.
Therefore λ is an isomorphism of alternative algebras.

(2) First, λ(A∗(r)) = graph(Tr ). So graph(Tr ) is a subalgebra of A nr∗◦,l
∗
◦

A∗.
Since r is skew-symmetric, graph(Tr ) is isotropic with respect to the bilinear form
defined by (3-2). Moreover, it has a complementary isotropic algebra λ(A) = A.
So it is a Lagrangian subalgebra of A nr∗◦,l

∗
◦

A∗. Conversely, let T : A∗ → A be
a linear map whose graph(T ) is a Lagrangian subalgebra of A nr∗◦,l

∗
◦

A∗. So T is
skew-symmetric, that is, 〈T (a∗), b∗〉 = −〈T (b∗), a∗〉 for any a∗, b∗ ∈ A∗. Since
graph(T ) is a subalgebra, we have

(T (a∗), a∗) ? (T (b∗), b∗)= (T (a∗) ◦ T (b∗), r∗
◦
(Tr (a∗))b∗+ l∗

◦
(Tr (b∗))a∗)

= (Tr (r
∗

◦
(Tr (a∗))b∗+ l∗

◦
(Tr (b∗))a∗), r∗◦(Tr (a∗))b∗+ l∗

◦
(Tr (b∗))a∗).

Thus T (a∗) ◦ T (b∗) = T (r∗
◦
(Tr (a∗))b∗ + l∗

◦
(Tr (b∗))a∗). By Proposition 3.6, T

corresponds to a skew-symmetric solution of the alternative Yang–Baxter equation
in (A, ◦). The last statement is obtained by transferring (by the isomorphism λ)
the prealternative algebra structure of A∗(r) to graph(Tr ). �

4. Phase spaces of alternative algebras
and matched pairs of alternative algebras

Definition 4.1. Let (A, ◦, ω) be a symplectic alternative algebra. We call A an L-
symplectic alternative algebra if it is a direct sum of the underlying vector spaces of
two Lagrangian subalgebras A+ and A−, we denote it by (A, ◦, A+, A−, ω). Two
L-symplectic alternative algebras (A1, ◦, A+1 , A−1 , ω1) and (A2, ◦, A+2 , A−2 , ω2)

are isomorphic if there exists an isomorphism ϕ : A1→ A2 of alternative algebras
such that, for all a, b ∈ A1,

(4-1) ϕ(A+1 )= A+2 , ϕ(A−1 )= A−2 , ω1(a, b)= ϕ∗ω2(a, b)= ω2(ϕ(a), ϕ(b))

It is straightforward to show that a symplectic alternative algebra (A, ◦, ω) is an
L-symplectic alternative algebra if and only if A is a direct sum of the underlying
vector space of two isotropic subalgebras.

Proposition 4.2. Let (A, ◦, A+, A−, ω) be an L-symplectic alternative algebra.
Then there exists a prealternative algebra structure on A given by Proposition 2.16
such that A+ and A− are prealternative subalgebras. Two L-symplectic alternative
algebras (Ai , ◦, A+i , A−i , ωi ) for i = 1, 2 are isomorphic if and only if there exists
an isomorphism of prealternative algebras satisfying (4-1) in which the compatible
prealternative algebras are given by Proposition 2.16.

Proof. If a, b, c∈ A+, then ω(a≺b, c)=ω(a, b◦c)= 0. Since A+ is a Lagrangian
subalgebra of A, we have a ≺ b ∈ A+ for all a, b ∈ A+. Similar arguments apply
to � and A−. So the first conclusion holds. It is easy to get the second. �
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Definition 4.3. Let (A, ◦) be an alternative algebra. If there exists an alternative
algebra structure on the direct sum of the underlying vector space of A and A∗ such
that A and A∗ are alternative subalgebras and the natural skew-symmetric bilinear
form ωp on A⊕ A∗ given by (3-10) is a symplectic form, then it is called a phase
space of the alternative algebra A.

Remark 4.4. The notion of phase space is borrowed from mathematical physics
[Kupershmidt 1994; Bai 2006].

Proposition 4.5. Every L-symplectic alternative algebra (A, ◦, A+, A−, ω) is iso-
morphic to a phase space of A+.

Proof. Since A− and (A+)∗ are identified by the symplectic form, we can transfer
the alternative algebra structure on A− to (A+)∗. Hence the alternative algebra
structure on A+⊕ A− can be transferred to A+⊕ (A+)∗. �

Remark 4.6. By symmetry of A+ and A−, every L-symplectic alternative algebra
(A, ◦, A+, A−, ω) is isomorphic to a phase space of A−.

Proposition 4.7. Let (A, ◦) and (B, ∗) be two alternative algebras. Suppose that
there are linear maps L A, RA : A → gl(B) and L B, RB : B → gl(A) such that
(L A, RA) is a bimodule of A and (L B, RB) is a bimodule of B and they satisfy the
conditions

L B(AssA(x)a)y+ (AssB(a)x) ◦ y(4-2)

= L B(a)(x ◦ y)+ RB(RA(y)a)x + x ◦ (L B(a)y),

RB(a)(x ◦ y+ y ◦ x)(4-3)

= RB(L A(y)a)x + x ◦ (RB(a)y)+ RB(L A(x)a)y+ y ◦ (RB(a)x),

RB(a)(x ◦ y)+ L B(L A(x)a)y+ (RB(a)x) ◦ y(4-4)

= RB(AssA(y)a)x + x ◦ (AssB(a)y),

L B(a)(x ◦ y+ y ◦ x)(4-5)

= (L B(a)x) ◦ y+ L B(RA(x)a)y+ (L B(a)y) ◦ x + L B(RA(y)a)x,

L A(AssB(a)x)b+ (AssA(x)a) ∗ b(4-6)

= L A(x)(a ∗ b)+ RA(RB(b)x)a+ a ∗ (L A(x)b),

RA(x)(a ∗ b+ b ∗ a)(4-7)

= RA(L B(b)x)a+ a ∗ (RA(x)b)+ RA(L B(a)x)b+ b ∗ (RA(x)a),

RA(x)(a ∗ b)+ L A(L B(a)x)b+ (RA(x)a) ∗ b(4-8)

= RA(AssB(b)x)a+ a ∗ (AssA(x)b),

L A(x)(a ∗ b+ b ∗ a)(4-9)

= (L A(x)a) ∗ b+ L A(RB(a)x)b+ (L A(x)b) ∗ a+ L A(RB(b)x)a,
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where x, y ∈ A, a, b ∈ B and Assi = L i + Ri for i = A, B. Then there is an
alternative algebra structure on the vector space A⊕ B given for all x, y ∈ A and
a, b ∈ B by

(x + a) ? (y+ b)= (x ◦ y+ L B(a)y+ RB(b)x)+ (a ∗ b+ L A(x)b+ RA(y)a)

We denote this alternative algebra by A FGL B ,RB
L A,RA

B or simply A FG B. We call any
(A, B, L A, RA, L B, RB) satisfying the conditions above a matched pair of alter-
native algebras. Every alternative algebra that is a direct sum of the underlying
vector spaces of two subalgebras can be obtained is this way.

Proof. Straightforward. �

Proposition 4.8. Let (A,≺1,�1) be a prealternative algebra and (Alt(A), ◦) be
the associated alternative algebra. Suppose there exists a prealternative algebra
structure≺2,�2 on the dual space A∗, with (Alt(A∗), ∗) the associated alternative
algebra. Then there exists an L-symplectic alternative algebra structure on A⊕A∗

such that (Alt(A), ◦) and (Alt(A∗), ∗) are Lagrangian subalgebras associated to
the symplectic form (3-10) if and only if (Alt(A),Alt(A∗), r∗

≺1
, l∗
�1
, r∗
≺2
, l∗
�2
) is a

matched pair of alternative algebras. Every L-symplectic alternative algebra can
be obtained in this way.

Proof. If (Alt(A),Alt(A∗), r∗
≺1
, l∗
�1
, r∗
≺2
, l∗
�2
) is a matched pair of alternative alge-

bras, then it is straightforward to show that the bilinear form (3-10) is a symplectic
form of the alternative algebra AFG := Alt(A) FGr

∗
≺2
,l∗�2

r∗≺1
,l∗�1

Alt(A∗). Conversely, set

x ?a∗= L◦(x)a∗+R∗(a∗)x, a∗?x = L∗(a∗)x+R◦(x)a∗ for all x ∈ A, a∗ ∈ A∗,

where ? is the alternative algebra structure of AFG. Then (A, A∗, L◦, R◦, L∗, R∗)
is a matched pair of alternative algebras. Note that

〈R◦(x)a∗, y〉 = 〈a∗?x, y〉 = −ωp(y, a∗?x)=−ωp(x�1 y, a∗)= 〈l∗
�1
(x)a∗, y〉,

〈L∗(a∗)x, b∗〉 = 〈a∗?x, b∗〉 = ωp(b∗, a∗?x)= ωp(b∗≺2 a∗, x)= 〈r∗
≺2
(a∗)x, b∗〉,

where x, y ∈ A and a∗, b∗ ∈ A∗. Hence, R◦= l∗
�1

and L∗= r∗
≺2

. Similarly, L◦= r∗
≺1

and R∗ = l∗
�2

. �

5. Bimodules and matched pairs of prealternative algebras

Definition 5.1. Let (A,≺,�) be a prealternative algebra and V be a vector space.
Let L≺, R≺, L�, R� : A→ gl(V ) be linear maps. We call V (or (L≺, R≺, L�, R�)
or (V, L≺, R≺, L�, R�)) a representation or a bimodule of A if (for any x, y ∈ A)

L�(x ◦ y+ y ◦ x)= L�(x)L�(y)+ L�(y)L�(x),(5-1)

R�(y)(L◦(x)+ R◦(x))= L�(x)R�(y)+ R�(x � y),(5-2)
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R≺(y)L�(x)+ R≺(y)R≺(x)= L�(x)R≺(y)+ R≺(x ◦ y),(5-3)

R≺(y)R�(x)+ R≺(y)L≺(x)= R�(x ≺ y)+ L≺(x)R◦(y),(5-4)

L≺(x � y)+ L≺(y≺ x)= L�(x)L≺(y)+ L≺(y)L◦(x),(5-5)

L�(y ◦ x)+ R≺(x)L�(y)= L�(y)L�(x)+ L�(y)R≺(x),(5-6)

R�(y)R◦(x)+ R≺(x)R�(y)= R�(x � y)+ R�(y≺ x),(5-7)

R�(x)L◦(y)+ L≺(y� x)= L�(y)R�(x)+ L�(y)L≺(x),(5-8)

R≺(y)R≺(x)+ R≺(x)R≺(y)= R≺(x ◦ y+ y ◦ x),(5-9)

R≺(y)L≺(x)+ L≺(x ≺ y)= L≺(x)(R◦(y)+ L◦(y)),(5-10)

where x ◦ y = x ≺ y+ x � y, L◦ = L�+ L≺ and R◦ = R�+ R≺.

According to [Schafer 1995], (V, L≺, R≺, L�, R�) is a bimodule of a prealter-
native algebra (A,≺,�) if and only if the direct sum A ⊕ V of vector spaces
becomes a prealternative algebra (the semidirect sum) by defining multiplications
in A⊕ V for any x, y ∈ A and a, b ∈ V by

(x + a)≺ (y+ b)= x ≺ y+ L≺(x)b+ R≺(y)a,

(x + a)� (y+ b)= x � y+ L�(x)b+ R�(y)a.

We denote it by A nL≺,R≺,L�,R� V or simply A n V .

Proposition 5.2. Suppose (V, L≺, R≺, L�, R�) is a bimodule of a prealternative
algebra (A,≺,�). Let (Alt(A), ◦) be the associated alternative algebra.

(1) Both (V, L�, R≺) and (V, L◦ = L≺+ L�, R◦ = R≺+ R�) are bimodules of
(Alt(A), ◦).

(2) If (V, L , R) is a bimodule of (Alt(A), ◦), then (V, 0, R, L , 0) is a bimodule
of (A,≺,�).

(3) (V ∗,−R∗
�
, L∗
◦
, R∗
◦
,−L∗

≺
) is a bimodule of (A,≺,�).

Proof. We only prove (3) as an example. The others are straightforward. Since
(V, L◦, R◦) is a bimodule of Alt(A), we have R◦(x2)= R◦(x)R◦(x) for any x ∈ A.
Hence R◦(x ◦ y+ y ◦ x)= R◦(x)R◦(y)+ R◦(y)R◦(x) for all x, y ∈ A. So for any
v ∈ V and u∗ ∈ V ∗,

〈R∗
◦
(x ◦ y+ y ◦ x)u∗, v〉 = 〈u∗, R◦(x ◦ y+ y ◦ x)v〉

= 〈u∗, (R◦(x)R◦(y)+ R◦(y)R◦(x))v〉

= 〈(R∗
◦
(x)R∗

◦
(y)+ R∗

◦
(y)R∗

◦
(x))u∗, v〉.

Therefore R∗
◦
(x ◦ y+ y ◦ x)= R∗

◦
(x)R∗

◦
(y)+ R∗

◦
(y)R∗

◦
(x). Similarly, we can prove

that (−R∗
�
, L∗
◦
, R∗
◦
,−L∗

≺
) also satisfies the remaining requirements (5-2)–(5-10)

of a bimodule. �



PREALTERNATIVE ALGEBRAS AND PREALTERNATIVE BIALGEBRAS 373

Example 5.3. Let (A,≺,�) be a prealternative algebra. Then (l≺, r≺, l�, r�),
(0, r≺, l�, 0), (0, r◦, l◦, 0), (0, l∗

◦
, r∗
◦
, 0), (0, l∗

�
, r∗
≺
, 0) and (−r∗

�
, l∗
◦
, r∗
◦
,−l∗
≺
) are

bimodules of (A,≺,�).

Definition 5.4. Let (A,≺A,�A) and (B,≺B,�B) be two prealternative algebras.
Suppose that there are linear maps

L≺A , R≺A , L�A , R�A : A→ gl(B) and L≺B , R≺B , L�B , R�B : B→ gl(A)

such that the products

(x+a)≺(y+b)= x≺A y+ L≺B (a)y+ R≺B (b)x+a≺B b+ L≺A(x)b+ R≺A(y)a,

(x+a)�(y+b)= x�A y+ L�B (a)y+ R�B (b)x+a�B b+ L�A(x)b+ R�A(y)a,

on the vector space A ⊕ B (for any x, y ∈ A and a, b ∈ B) define a prealter-
native algebra structure. Then we call (A, B, L≺A , R≺A , L�A , R�A , L≺B , R≺B ,
L�B , R�B ) a matched pair of prealternative algebras, and we denote this pair
by A FGL≺B ,R≺B ,L�B ,R�B

L≺A ,R≺A ,L�A ,R�A
B or simply A FG B.

Remark 5.5. The analogue of Proposition 4.7 for a matched pair of prealternative
algebras contains 20 equations. We omit them. Note that (B, L≺A , R≺A , L�A , R�A)

and (A, L≺B , R≺B , L�B , R�B ) must be bimodules of A and B, respectively.

Corollary 5.6. Suppose (A, B, L≺A , R≺A , L�A , R�A , L≺B , R≺B , L�B , R�B ) is a
matched pair of prealternative algebras. Then

(Alt(A),Alt(B), L≺A + L�A , R≺A + R�A , L≺B + L�B , R≺B + R�B )

is a matched pair of alternative algebras.

Proof. It follows from the relationship between a prealternative algebra and the
associated alternative algebra. �

Proposition 5.7. Let (A,≺1,�1) be a prealternative algebra and (Alt(A), ◦1) be
the associated alternative algebra. Suppose there is a prealternative algebra struc-
ture ≺2,�2 on the dual space A∗ and (Alt(A∗), ◦2) is the associated alternative
algebra. Then (Alt(A),Alt(A∗), r∗

≺1
, l∗
�1

, r∗
≺2
, l∗
�2
) is a matched pair of alternative

algebras if and only if (A, A∗,−r∗
�1
, l∗
◦1
, r∗
◦1

, −l∗
≺1

, −r∗
�2
, l∗
◦2
, r∗
◦2
,−l∗
≺2
) is also.

Proof. By Corollary 5.6, we only need to prove the “only if” part of the conclusion.
If (Alt(A), Alt(A∗), r∗

≺1
, l∗
�1
, r∗
≺2

, l∗
�2
) is a matched pair of alternative algebras, then

by Proposition 4.8,

A := Alt(A) FGr
∗
≺2
,l∗�2

r∗≺1
,l∗�1

Alt(B)

is an L-symplectic alternative algebra with symplectic form given by (3-10). Hence
Proposition 2.16 gives a compatible prealternative algebra structure on A. Then
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for any x, y ∈ A and a∗, b∗ ∈ A∗ we have

〈a∗≺ x, y〉 = ωp(a∗≺ x, y)= ωp(a∗, x ◦1 y)= 〈l∗
◦1
(x)a∗, y〉,

〈a∗≺ x, b∗〉 = −ωp(a∗≺ x, b∗)

=−〈a∗, l∗
�2
(b∗)x〉 = −〈b∗�2 a∗, x〉 = 〈−r∗

�2
(a∗)x, b∗〉.

So a∗≺ x =−r∗
�2
(a∗)x + l◦1(x)a

∗. Similarly,

x ≺ a∗ =−r∗
�1
(x)a∗+ l◦2(a

∗)x, x � a∗ = r∗
◦1
(x)a∗− l∗

≺2
(a∗)x,

a∗� x = r◦2(a
∗)x − l∗

≺1
(x)a∗.

Therefore (A, A∗,−r∗
�1
, l∗
◦1
, r∗
◦1
,−l∗
≺1
,−r∗

�2
, l∗
◦2
, r∗
◦2
,−l∗
≺2
) is a matched pair of

prealternative algebras. �

6. Prealternative bialgebras

Theorem 6.1. Let (A,≺,�, α, β) be a prealternative algebra (A,≺,�) equipped
with two comultiplications α, β : A→ A⊗ A and let (Alt(A), ◦) be the associated
alternative algebra. Suppose α∗, β∗ : A∗⊗ A∗→ A∗ induce a prealternative alge-
bra structure≺∗,�∗ on the dual space A∗. Then (Alt(A),Alt(A∗), r∗

≺
, l∗
�
, r∗
≺∗
, l∗
�∗
)

is a matched pair of alternative algebras if and only if α, β satisfy the following
eight equations for any x, y ∈ A:

α(x ◦ y+ y ◦ x)(6-1)

= (r◦(y)⊗ 1+ 1⊗ l�(y))α(x)+ (r◦(x)⊗ 1+ 1⊗ l�(x))α(y),

β(x ◦ y+ y ◦ x)(6-2)

= (r≺(y)⊗ 1+ 1⊗ l◦(y))β(x)+ (r≺(x)⊗ 1+ 1⊗ l◦(x))β(y),

α(x ◦ y)(6-3)

= (1⊗ r≺(x)+ 1⊗ l�(x)− l◦(x)⊗ 1)α(y)+ (r◦(y)⊗ 1)α(x)

+ (r◦(y)⊗ 1− 1⊗ l�(y))σβ(x),

β(x ◦ y)(6-4)

= (l�(y)⊗ 1+ r≺(y)⊗ 1− 1⊗ r◦(y))β(x)+ (1⊗ l◦(x))β(y)

+ (1⊗ l◦(x)− r≺(x)⊗ 1)σα(y),

(α+β)(x ≺ y)(6-5)

= (1⊗ l≺(x))(σα+β)(y)

+ (r≺(y)⊗ 1+ l�(y)⊗ 1− 1⊗ r≺(y))(α+β)(x)

−(r�(x)⊗ 1)σβ(y),
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(α+β)(x � y)(6-6)

= (r�(y)⊗ 1)(α+ σβ)(x)

+ (1⊗ l�(x)+ 1⊗ r≺(x)− l�(x)⊗ 1)(α+β)(y)

− (1⊗ l≺(y))σα(x),
(α+β + σα+ σβ)(x � y)(6-7)

= (r�(y)⊗ 1)α(x)+ (1⊗ l�(x))(α+β)(y)+ (1⊗ r�(y))σα(x)

+ (l�(x)⊗ 1)(σα+ σβ)(y),
(α+β + σα+ σβ)(x ≺ y)(6-8)

= (1⊗ l≺(x))β(y)+ (r≺(y)⊗ 1)(α+β)(x)+ (l≺(x)⊗ 1)σβ(y)

+ (1⊗ r≺(y))(σα+ σβ)(x).

Proof. By Proposition 4.7, we need to prove (6-1)–(6-8) are equivalent to (4-3)–
(4-9) if we replace (A, B, L A, RA, L B, RB) by (Alt(A),Alt(A∗), r∗

≺
, l∗
�
, r∗
≺∗
, l∗
�∗
).

As an example, we give an explicit proof of the equivalence between (4-3) and
(6-3). The proofs of the others are similar. In this case, (4-3) becomes

r∗
≺
(r∗
≺
(x)a∗+ l∗

�
(x)a∗)y+ (r∗

≺
(a∗)x + l∗

�
(a∗)x) ◦ y

= r∗
≺
(a∗)(x ◦ y)+ l∗

�
(l∗
�
(y)a∗)x + x ◦ (r∗

≺
(a∗)y),

where x, y ∈ A and a∗ ∈ A∗. Let both the left and the right side of this equation
act on b∗ ∈ A∗. Then

〈l.h.s., b∗〉 = 〈r∗
≺
(r∗
≺
(x)a∗+ l∗

�
(x)a∗)y+ (r∗

≺
(a∗)x + l∗

�
(a∗)x) ◦ y, b∗〉

= 〈y, b∗≺ (r∗
≺
(x)a∗+ l∗

�
(x)a∗)〉+ 〈r∗

≺
(a∗)x + l∗

�
(a∗)x, r∗

◦
(y)b∗〉

= 〈α(y), b∗⊗ r∗
≺
(x)a∗+ b∗⊗ l∗

�
(x)a∗〉+ 〈α(x), r∗

◦
(y)b∗⊗ a∗〉

+ 〈β(x), a∗⊗ r∗
◦
(y)b∗〉

= 〈(1⊗ r≺(x)+ 1⊗ l�(x))α(y)+ (r◦(y)⊗ 1)(α+ σβ)(x), b∗⊗ a∗〉,

〈r.h.s., b∗〉 = 〈x ◦ y, b∗≺ a∗〉+ 〈x, (l∗
�
(y)a∗)� b∗〉+ 〈r∗

≺
(a∗)y, l∗

◦
(x)b∗〉

= 〈α(x ◦ y), b∗⊗ a∗〉+ 〈β(x), l∗
�
(y)a∗⊗ b∗〉+ 〈α(y), l∗

◦
(x)b∗⊗ a∗〉

= 〈α(x ◦ y)+ (1⊗ l�(y))σβ(x)+ (l◦(x)⊗ 1)α(y), b∗⊗ a∗〉.

So (4-3) holds if and only if (6-3) holds. �

Definition 6.2. (1) Let (A, α, β) be a vector space with two comultiplications
α, β : A→ A⊗ A. If (A, α∗, β∗) is a prealternative algebra, then we call the
triple (A, α, β) a prealternative coalgebra.

(2) If (A,≺,�, α, β) is a prealternative algebra (A,≺,�) with two comultipli-
cations α, β : A → A ⊗ A such that (A, α, β) is a prealternative coalgebra
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and α and β satisfy (6-1)–(6-8), then we call (A,≺,�, α, β) a prealternative
bialgebra.

Combining Propositions 4.8, 5.7 and Theorem 6.1, we have this:

Corollary 6.3. Let (A,≺1,�1) be a prealternative algebra and (Alt(A), ◦1) be
the associated alternative algebra. Let α, β : A→ A⊗ A be two linear maps such
that α∗, β∗ : A∗⊗ A∗ ⊂ (A⊗ A)∗→ A∗ induce a prealternative algebra structure
≺2,�2 on A∗, that is, (A, α, β) is a prealternative coalgebra. Let (Alt(A∗), ◦2) be
the associated alternative algebra of (A∗,≺2,�2). Then the following conditions
are equivalent:

(1) (Alt(A) FGAlt(A∗),Alt(A),Alt(A∗), ωp) is an L-symplectic alternative alge-
bra (or a phase space of Alt(A)), where ωp is given by (3-10).

(2) (Alt(A),Alt(A∗), r∗
≺1
, l∗
�1
, r∗
≺2
, l∗
�2
) is a matched pair of alternative algebras.

(3) (A, A∗, −r∗
�1
, l∗
◦1
, r∗
◦1
, −l∗

≺1
, −r∗

�2
, l∗
◦2
, r∗
◦2
, −l∗

≺2
) is a matched pair of pre-

alternative algebras.

(4) (A,≺1,�1, α, β) is a prealternative bialgebra.

Definition 6.4. Let (A,≺A,�A, αA, βA) and (B,≺B,�B, αB, βB) be two pre-
alternative bialgebras. A homomorphism of prealternative bialgebras ϕ : A→ B
is a homomorphism of prealternative algebras such that

(6-9) (ϕ⊗ϕ)αA(x)=αB(ϕ(x)) and (ϕ⊗ϕ)βA(x)=βB(ϕ(x)) for all x ∈ A.

Proposition 6.5. Two L-symplectic (hence phase spaces of ) alternative algebras
are isomorphic if and only if their corresponding prealternative bialgebras are
isomorphic.

Proof. Let (Alt(C) FG Alt(C∗),Alt(C),Alt(C∗), ωp) for C = A, B be two L-
symplectic alternative algebras, with ϕ : Alt(A) FG Alt(A∗)→ Alt(B) FG Alt(B∗)
the isomorphism. Then ϕ|A : A→ B and ϕ|A∗ : A∗ → B∗ are isomorphisms of
prealternative algebras by Proposition 4.2. Moreover, ϕ|A∗ = (ϕ|A)∗−1 since

〈ϕ|A∗(a∗), ϕ(x)〉 = ωp(ϕ|A∗(a∗), ϕ(x))= ωp(a∗, x)= 〈a∗, x〉

= 〈ϕ∗(ϕ|A)
∗−1
(a∗), x〉

= 〈(ϕ|A)
∗−1
(a∗), ϕ(x)〉 for all x ∈ A and a∗ ∈ A∗.

So (ϕ|A)∗ : B∗ → A∗ is a homomorphism of prealternative algebras, and then
(A,≺A,�A, αA, βA) and (B,≺B,�B, αB, βB) are isomorphic as prealternative
bialgebras. Conversely, suppose these two are isomorphic prealternative bialge-
bras, and let ϕ′ : A→ B be the isomorphism. Let ϕ : A⊕ A∗→ B⊕ B∗ be a linear
map defined by

ϕ(x)= ϕ′(x) and ϕ(a∗)= (ϕ′∗)−1(a∗) for all x ∈ A and a∗ ∈ A∗.
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Then it is easy to show that ϕ is an isomorphism of the two L-symplectic alternative
algebras in the statement. �

Example 6.6. Let (A,≺,�, α, β) be a prealternative bialgebra. Then the dual
(A,≺∗,�∗, γ, δ) is also a prealternative bialgebra, where the prealternative alge-
bra structure ≺,� on A is defined by the linear maps γ ∗, δ∗ : A⊗ A→ A, and
α∗, β∗ : A∗⊗ A∗→ A∗ induce a prealternative algebra structure ≺∗,�∗ on A∗.

Example 6.7. Let (A,≺,�) be a prealternative algebra. Then (A,≺,�, 0, 0) is a
prealternative bialgebra, and the corresponding prealternative algebra structure on
A⊕ A∗ is the semidirect sum A n−r∗�,l

∗
◦,r
∗
◦,−l∗≺ A∗. The corresponding associated

alternative algebra is the semidirect sum Alt(A)nr∗≺,l
∗
�

A∗, with symplectic form
ωp given by (3-10).

7. Coboundary prealternative bialgebras

Definition 7.1. A prealternative bialgebra (A,≺,�, α, β) is called coboundary if
the linear maps α, β : A→ A⊗ A are given by

(7-1)
α(x)= (r◦(x)⊗ 1− 1⊗ l�(x))r≺,

β(x)= (1⊗ l◦(x)− r≺(x)⊗ 1)r�,

where x ◦ y = x ≺ y+ x � y, x, y ∈ A and r≺, r� ∈ A⊗ A.

Remark 7.2. The expression of (7-1) and (6-1)–(6-2) looks like certain kind of
1-coboundary and 1-cocycle.

Theorem 7.3. Let (A,≺,�) be a prealternative algebra with two linear maps
α, β : A→ A⊗ A defined by (7-1). If r≺ = r� = r ∈ A⊗ A and r is symmetric,
then α, β satisfy (6-1)–(6-8).

Proof. It is obvious that α, β automatically satisfy (6-1) and (6-2). For (6-3)–(6-8),
we give as an example an explicit proof of the fact that α, β satisfy (6-5); the proof
of the other cases is similar. Assume r =

∑
i ui ⊗ vi ∈ A⊗ A. After rearranging

the terms suitably, we have, noting that r is symmetric,

(α+β)(x≺ y)−(1⊗l≺(x))(σα+β)(y)

−(r≺(y)⊗1+l�(y)⊗1−1⊗r≺(y))(α+β)(x)+(r�(x)⊗1)σβ(y)

=

∑
i

(
ui ◦(x≺ y)⊗vi−ui≺(x≺ y)⊗vi−(ui ◦x)≺ y⊗vi+(ui≺x)≺ y⊗vi

− y�(ui ◦x)⊗vi+ y�(ui≺x)⊗vi+(y◦ui )�x⊗vi−ui⊗(x≺ y)�vi

+ui⊗(x≺ y)◦vi−ui⊗x≺(vi ◦ y)−ui⊗x≺(y◦vi )−ui⊗(x�vi )≺ y

+ui⊗(x ◦vi )≺ y+ y�ui⊗x≺vi+ y�ui⊗x�vi− y�ui⊗x ◦vi+ui≺ y⊗x≺vi

+ui≺ y⊗x�vi−ui≺ y⊗x ◦vi+ui ◦x⊗vi≺ y−ui≺x⊗vi≺ y−ui�x⊗vi≺ y
)
.
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The sum of the first seven terms is zero since it is equal to∑
i

(ui � (x ≺ y)− (ui � x)≺ y− y� (ui � x)+ (y ◦ ui )� x)⊗ vi = 0.

The sum of the 8th through the 13th term is zero since it is equal to∑
i

ui ⊗ ((x ≺ y)≺ vi − x ≺ (y ◦ vi )− x ≺ (vi ◦ y)+ (x ≺ vi )≺ y)= 0.

The sum of the 14th through 16th term, the sum of 17th through 19th term, and
the sum of the last three terms are all zero obviously. �

Lemma 7.4. Let A be a vector space and α, β : A→ A⊗ A be two linear maps.
Then (A, α, β) is a prealternative coalgebra if and only if the linear maps Si

α,β :

A→ A⊗ A⊗ A for i = 1, 2, 3, 4 given by the following equations are all zero for
any x ∈ A:

(7-2)

S1
α,β(x)= ((α+β)⊗ 1)β(x)+ (σ ⊗ 1)((α+β)⊗ 1)β(x)

− (1⊗β)β(x)− (σ ⊗ 1)(1⊗β)β(x),

S2
α,β(x)= (β⊗ 1)α(x)+ (σ ⊗ 1)(α⊗ 1)α(x)

− (1⊗α)β(x)− (σ ⊗ 1)(1⊗ (α+β))α(x),

S3
α,β(x)= ((α+β)⊗ 1)β(x)+ (1⊗ σ)(β⊗ 1)α(x)

− (1⊗β)β(x)− (1⊗ σ)(1⊗α)β(x),

S4
α,β(x)= (α⊗ 1)α(x)+ (1⊗ σ)(α⊗ 1)α(x)

− (1⊗ (α+β))α(x)− (1⊗ σ)(1⊗ (α+β))α(x).

Proof. It follows immediately from the definition 2.6 of a prealternative algebra. �

Definition 7.5. Let (A,≺,�) be a prealternative algebra and (Alt(A), ◦) be the
associated alternative algebra. Let r ∈ A⊗ A. The following equations are called
PAi

j equations for i = 1, 2 and j = 1, 2, 3:

(7-3)

PA1
1 = r12 ◦ r13− r23� r12− r13≺ r23 = 0,

PA2
1 = r13 ◦ r12− r12≺ r23− r23� r13 = 0,

PA1
2 = r12 ◦ r23− r23≺ r13− r13� r12 = 0,

PA2
2 = r23 ◦ r12− r13� r23− r12≺ r13 = 0,

PA1
3 = r13 ◦ r23− r12� r13− r23≺ r12 = 0,

PA2
3 = r23 ◦ r13− r13≺ r12− r12� r23 = 0.

We set PA j = PA1
j +PA2

j , where j = 1, 2, 3. Collectively the PAi
j equations are

called the PA equations.
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Proposition 7.6. Let (A,≺,�) be a prealternative algebra and (Alt(A), ◦) be the
associated alternative algebra. Let r ∈ A⊗ A be symmetric. Let α, β : A→ A⊗ A
be two linear maps given by (7-1), where r≺ = r� = r . Then (A, α, β) becomes a
prealternative coalgebra if and only if for any x ∈ A

(7-4)

−(1⊗ 1⊗ l◦(x))PA3+(1⊗ r≺(x)⊗ 1)PA2
3+(r≺(x)⊗ 1⊗ 1)PA1

3 = 0,

−(1⊗ 1⊗ l�(x))PA2+(1⊗ r◦(x)⊗ 1)PA1
2+(r≺(x)⊗ 1⊗ 1)PA2

2 = 0,

(r≺(x)⊗ 1⊗ 1)PA3−(1⊗ 1⊗ l◦(x))PA1
3−(1⊗ l�(x)⊗ 1)PA2

3 = 0,

(r◦(x)⊗ 1⊗ 1)PA1−(1⊗ l�(x)⊗ 1)PA2
1−(1⊗ 1⊗ l�(x))PA1

1 = 0.

Proof. We give an explicit proof of the fact that the first of (7-4) is equivalent to
S1
α,β = 0 as an example. Using a similar argument, we can show that the rest are

respectively equivalent to Si
α,β = 0 for i = 2, 3, 4. Set r =

∑
i ui⊗vi . Substituting

α(x)=
∑

i

ui ◦ x ⊗ vi − ui ⊗ x � vi and β(x)=
∑

i

ui ⊗ x ◦ vi − ui ≺ x ⊗ vi

for all x ∈ A into the first of (7-2) and after rearranging the terms suitably, we
divide S1

α,β as

S1
α,β = (S1)+ (S2)+ (S3),

where

(S1)=
∑
i, j

(
ui ◦u j⊗vi⊗x◦v j−ui⊗u j�vi⊗x◦v j+ui⊗u j ◦vi⊗x◦v j

−ui≺u j⊗vi⊗x◦v j+vi⊗ui ◦u j⊗x◦v j−u j�vi⊗ui⊗x◦v j

+u j ◦vi⊗ui⊗x◦v j−vi⊗ui≺u j⊗x◦v j−u j⊗ui⊗(x◦v j )◦vi

−ui⊗u j⊗(x◦v j )◦vi
)
.

(S2)=
∑
i, j

(
ui⊗(u j≺x)�vi⊗v j−ui⊗(u j≺x)◦vi⊗v j

−vi⊗ui ◦(u j≺x)⊗v j+vi⊗ui≺(u j≺x)⊗v j

+u j⊗ui≺(x◦v j )⊗vi+ui⊗u j≺x⊗v j ◦vi−ui≺v j⊗u j≺x⊗vi
)
,

(S3)=
∑
i, j

(
−ui ◦(u j≺x)⊗vi⊗v j+ui≺(u j≺x)⊗vi⊗v j

+(u j≺x)�vi⊗ui⊗v j−(u j≺x)◦vi⊗ui⊗v j+u j≺x⊗ui⊗v j ◦vi

−u j≺x⊗ui≺v j⊗vi+ui≺(x◦v j )⊗u j⊗vi
)
.

Since r is symmetric and by Remark 2.6, we have

(S1)=−(1⊗ 1⊗ l◦(x))PA3, (S2)= (1⊗ r≺(x)⊗ 1)PA2
3,

(S3)= (r≺(x)⊗ 1⊗ 1)PA1
3 . �
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Theorem 7.7. Let (A,≺,�) be a prealternative algebra and r ∈ A⊗ A be sym-
metric. Let α, β : A→ A⊗ A be linear maps given by (7-1), where r≺ = r� = r .
Then (A,≺,�, α, β) is a prealternative bialgebra if and only if the equations of
(7-4) are satsified.

Proof. It follows from Theorem 7.3 and Proposition 7.6. �

Next we give a Drinfeld double construction [Chari and Pressley 1994] for a
prealternative bialgebra.

Theorem 7.8. Let (A,≺,�, α, β) be a prealternative bialgebra. Then there is a
canonical prealternative bialgebra structure on A ⊕ A∗ such that the inclusions
i1 : A→ A⊕ A∗ and i2 : A∗→ A⊕ A∗ into the two summands are homomorphisms
of prealternative bialgebras, where the prealternative bialgebra structure on A∗ is
given in Example 6.6.

Proof. Denote the prealternative algebra structures on A∗ induced by α∗ and β∗ by
≺∗ and �∗ respectively, and the associated alternative algebra structure by ∗. Let
r ∈ A⊗ A∗ ⊂ (A⊕ A∗)⊗ (A⊕ A∗) correspond to the identity map id : A→ A.
Then the prealternative algebra structure ≺•,�• on A⊕ A∗ is given by

PAD(A)= A FG
−r∗�∗ ,l

∗
∗,r
∗
∗,−l∗≺∗

−r∗�,l
∗
◦,r
∗
◦,−l∗≺

A∗,

that is, for all x, y ∈ A and a∗, b∗ ∈ A∗,

x ≺• y = x ≺ y, x �• y = x � y,

a∗≺• b∗ = a∗≺∗ b∗, a∗�• b∗ = a∗�∗ b∗,

x ≺• a∗ =−r∗
�
(x)b∗+ l∗

∗
(a∗)x, x �• a∗ = r∗

◦
(x)a∗− l∗

≺∗
(a∗)x,

a∗≺• x =−r∗
�∗
(a∗)x + l∗

◦
(x)a∗, a∗�• x = r∗

∗
(a∗)x − l∗

≺
(x)a∗,

We denote its associated alternative algebra structure by • . Let {ei , . . . , en} be a
basis of A and {e∗1, . . . , e∗n} be the dual basis. Then r =

∑
i ei⊗e∗i . Next we prove

that

αPAD(u)= (r◦(u)⊗ 1− 1⊗ l�(u))r and βPAD(u)= (1⊗ l◦(u)− r≺(u)⊗ 1)r

induce a (coboundary) prealternative bialgebra structure on A⊕ A∗. Since r is not
symmetric we cannot apply Theorem 7.7 and βPAD satisfies (6-1)–(6-8) and the
conditions of Lemma 7.4. For the former, we prove that αPAD and βPAD satisfy
(6-3) as an example; the proof of the others is similar. In fact, we only need to
prove

(r◦(y)⊗ 1− 1⊗ l�(y))(l◦(x)⊗ 1− 1⊗ r≺(x))(r − σr)= 0 for all x ∈ A.

We can prove this equation in the following cases: x, y ∈ A; x, y ∈ A∗; x ∈ A
and y ∈ A∗; and x ∈ A∗ and y ∈ A. We prove the first case; the proof of the others
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is similar. Let x = ei and y = e j ; then the equation becomes

(7-5)
∑

k

(
(ei •e∗k )•e j⊗ek−e∗k •e j⊗ek≺•ei−ei •e∗k⊗e j�•ek+e∗k⊗e j�•(ek≺•ei )

)
=

∑
k

(
(ei •ek)•e j⊗e∗k−ek •e j⊗e∗k≺•ei−ei •ek⊗e j�•e∗k+ek⊗e j�• (e∗k≺•ei )

)
.

The coefficient of em ⊗ en on the left side of (7-5) is∑
k

(
〈(ei • e∗n) • e j , e∗m〉− 〈e

∗

k • e j , e∗m〉〈ek ≺• ei , e∗n〉− 〈ei • e∗k , e∗m〉〈e j �• ek, e∗n〉
)

=

∑
k

(
〈e∗n, ek ≺ ei 〉〈e j , e∗m ≺∗ e∗k 〉+ 〈ei , e∗n �∗ e∗k 〉〈ek ◦ e j , e∗m〉

− 〈e j , e∗m ≺∗ e∗k 〉〈ek ≺ ei , e∗n〉− 〈ei , e∗k �∗ e∗m〉〈e j � ek, e∗n〉
)
,

while on the right side that coefficient is the same:∑
k

(
−〈ek •e j , e∗m〉〈e

∗

k ≺• ei , e∗n〉−〈ei •ek, e∗m〉〈e j �• e∗k , e∗n〉+〈e j �• (e∗m≺• ei ), e∗n〉
)

=

∑
k

(
〈ek ◦ e j , e∗m〉〈ei , e∗n �∗ e∗k 〉+ 〈ei ◦ ek, e∗m〉〈e j , e∗k ≺∗ e∗n〉

− 〈e j � ek, e∗n〉〈ei , e∗k �∗ e∗m〉− 〈e j , e∗k ≺∗ e∗n〉〈e
∗

m, ei ◦ ek〉
)
.

Similarly, the coefficients of e∗m ⊗ en, em ⊗ e∗n and e∗m ⊗ e∗n on both sides of (7-5)
are the same.

On the other hand, we prove that Si
αPAD,βPAD

= 0 for i = 1, 2, 3, 4. We prove it
explicitly for i = 0. The coefficient of em ⊗ en ⊗ ep in S1

αPAD,βPAD
(ek) is

−〈e j �• e∗m, e∗n〉〈ek • e∗j , e∗p〉+ 〈e j • e∗m, e∗n〉〈ek • e∗j , e∗p〉− 〈e j �• e∗n, e∗m〉〈ek • e∗j , e∗p〉

+ 〈e j • e∗n, e∗m〉〈ek • e∗j , e∗p〉− 〈(ek • e∗m) • e∗n, e∗p〉− 〈(ek • e∗n) • e∗m, e∗p〉

= 〈e j , e∗m ≺∗ e∗n〉〈ek, e∗j �∗ e∗p〉+ 〈e j , e∗m �∗ e∗n〉〈ek, e∗j �∗ e∗p〉

+〈e j , e∗n ≺∗ e∗m〉〈ek, e∗j �∗ e∗p〉+ 〈e j , e∗n �∗ e∗m〉〈ek, e∗j �∗ e∗p〉

− 〈ek • (e∗m ∗ e∗n + e∗n ∗ e∗m), e∗p〉

= 〈ek, (e∗m ∗ e∗n + e∗n ∗ e∗m)�• e∗p − (e
∗

m ∗ e∗n + e∗n ∗ e∗m)�• e∗p〉 = 0.

Similarly, the remaining coefficients, of e∗m⊗en⊗ep, em⊗e∗n⊗ep, e∗m⊗e∗n⊗ep,
em⊗en⊗e∗p, e∗m⊗en⊗e∗p, em⊗e∗n⊗e∗p and e∗m⊗e∗n⊗e∗p, are all zero. A similar
study shows that S1

αPAD,βPAD
(e∗k )= 0. Hence PAD(A) is a prealternative bialgebra.

For ei ∈ A, we have

αPAD(ei )=
∑

j e j ◦ ei ⊗ e∗j − e j ⊗ ei �• e∗j
=
∑

j,m e j ◦ ei ⊗ e∗j − e j ⊗ e∗m〈e
∗

j , em ◦ ei 〉+ e j ⊗ em〈ei , e∗j ≺∗ e∗m〉

=
∑

j,m〈ei , e∗j ≺∗ e∗m〉e j ⊗ em = α(ei ).
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Similarly we have βPAD(ei )= β(ei ), so the inclusion i1 : A→ A⊕ A∗ is a homo-
morphism of prealternative bialgebras. Similarly, the inclusion i2 : A∗→ A⊕ A∗

is also a homomorphism of prealternative bialgebras. �

Definition 7.9. Let (A,≺,�, α, β) be a prealternative bialgebra. With the pre-
alternative bialgebra structure given in Theorem 7.8, we call A ⊕ A∗ a Drinfeld
symplectic double of A and denote it by PAD(A).

Proposition 7.10. Let (A,≺,�, α, β) be a prealternative bialgebra with α, β de-
fined by (7-1), where r≺ = r� = r ∈ A⊗ A and r is a solution of the PA equations.
Then Tr is a homomorphism of prealternative bialgebras from the prealternative
bialgebra given in Example 6.6 to (A,≺,�, α, β).

Proof. Note that (1⊗ α)r = r12 ≺ r13 and (α ⊗ 1)r = r13 ≺ r23. Denote by ≺∗
and �∗ the prealternative algebras structure on A∗ induced by α∗ and β∗, respec-
tively, and define the prealternative algebra structure ≺,� on A by the linear maps
γ ∗, δ∗ : A⊗ A→ A, respectively. Then

Tr (a∗≺∗ b∗)= 〈1⊗ (a∗≺∗ b∗), r〉 = 〈1⊗ a∗⊗ b∗, (1⊗α)r〉

= 〈1⊗ a∗⊗ b∗, r12≺ r13〉 = Tr (a∗)≺ Tr (b∗),

(Tr ⊗ Tr )γ (a∗)= 〈1⊗ 1⊗ a∗, r13≺ r23〉 = (1⊗ 1⊗ a∗)(α⊗ 1)r = α(Tr (a∗)),

where a∗, b∗ ∈ A∗. Similarly we have

Tr (a∗�∗ b∗)= Tr (a∗)� Tr (b∗) and (Tr ⊗ Tr )δ(a∗)= β(Tr (a∗)). �

8. PA equations and their properties

The simplest way to satisfy the conditions of Theorem 7.7 is given as follows.

Proposition 8.1. Let (A,≺,�) be a prealternative algebra and r ∈ A ⊗ A be
symmetric. Let α, β : A → A ⊗ A be two linear maps defined by (7-1). Then
(A,≺,�, α, β) is a prealternative bialgebra if r satisfies PA-equations.

Proposition 8.2. Let (A,≺,�) be a prealternative algebra and (Alt(A), ◦) be the
associated alternative algebra. Let r ∈ A⊗ A be a symmetric solution of the PA
equations in A. Then the prealternative algebra structure ≺•,�• on the Drinfeld
symplectic double PAD(A) is given as

a∗≺• b∗ = a∗≺∗ b∗ = l∗
◦
(Tr (b∗))a∗− r∗

�
(Tr (a∗))b∗,(8-1)

a∗�• b∗ = a∗�∗ b∗ = r∗
◦
(Tr (a∗))b∗− l∗

≺
(Tr (b∗))a∗,(8-2)

x ≺• a∗ = x ≺ Tr (a∗)+ Tr (r
∗

�
(x)a∗)− r∗

�
(x)a∗,(8-3)

x �• a∗ = r∗
◦
(x)a∗− Tr (r

∗

◦
(x)a∗)+ x � Tr (a∗),(8-4)

a∗≺• x =−Tr (l
∗

◦
(x)a∗)+ Tr (a∗)≺ x + l∗

◦
(x)a∗,(8-5)
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a∗�• x = Tr (a∗)� x + Tr (l
∗

≺
(x)a∗)− l∗

≺
(x)a∗,(8-6)

where x ∈ A and a∗, b∗ ∈ A∗, the prealternative algebra structure on A∗ is denoted
by ≺∗,�∗, and the associated alternative algebra structure on Alt(A∗) is denoted
by ∗ .

Proof. Let {e1, . . . , en} be a basis of A and {e∗1, . . . , e∗n} be its dual. Suppose that

ei ≺ e j =
∑
i, j

ck
i j ek, ei � e j =

∑
i, j

dk
i j ek, r =

∑
i, j

ai j ei ⊗ e j , ai j = a j i .

Then Tr (e∗i )=
∑

k aki ek . Thus for any k, l

e∗k ≺∗ e∗l =
∑

s

〈e∗k ⊗ e∗l , α(es)〉e∗s =
∑
i,s

(ail(ck
is+dk

is)−aki dl
si )e
∗

s

=

∑
i,s

(
ail〈ei ◦ es, e∗k 〉− eki 〈es � ei , e∗l 〉

)
e∗s = l∗

◦
(Tr (e∗l ))e

∗

k − r∗
�
(Tr (e∗k ))e

∗

l .

So (8-1) holds. Similarly (8-2) holds. Therefore

l∗
≺∗
(e∗k )em =

∑
s

〈em, e∗k ≺∗ e∗s 〉es =
∑

s

〈em, l
∗

◦
(Tr (e∗s ))e

∗

k − r∗
�
(Tr (e∗k ))e

∗

s 〉es

=

∑
s

〈Tr (e∗s ) ◦ em, e∗k 〉es −〈em � Tr (e∗k ), e∗s 〉es

= Tr (r
∗

◦
(em)e∗k )− em � Tr (e∗k ).

Hence (8-4) follows from the fact that em �• e∗k = r∗
◦
(em)e∗k − l∗

≺∗
(e∗k )em . We can

get the other equations similarly. �

Proposition 8.3. Let (A,≺,�) be a prealternative algebra and (Alt(A), ◦) be the
associated alternative algebra. Let r ∈ A⊗ A be symmetric. Then r is a solution
of one of the PAi

j -equations for i = 1, 2 and j = 1, 2, 3 if and only if Tr satisfies

(8-7) Tr (a∗) ◦ Tr (b∗)= Tr (r
∗

≺
(Tr (a∗))b∗+ l∗

�
(Tr (b∗))a∗) for all a∗, b∗ ∈ A∗,

that is, Tr is an O-operator of Alt(A) associated to the bimodule (A∗, r∗
≺
, l∗
�
). So

in this case the PAi
j equations for i = 1, 2 and j = 1, 2, 3 are all equivalent.

Moreover, if r is a solution of one of the PAi
j equations for i = 1, 2 and j = 1, 2, 3,

then there is a prealternative algebra structure on A∗ given by

(8-8) a∗≺b∗= l∗
�
(Tr (b∗))a∗ and a∗�b∗= r∗

≺
(Tr (a∗))b∗ for all a∗, b∗∈ A∗.

The associated alternative algebra structure Alt(A∗) is the same as the one given
by (8-1) and (8-2) that is induced by r in the sense of coboundary prealternative
bialgebras.

Proof. It is similar to the proof of Proposition 3.6. �
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Definition 8.4. Let (A,≺,�) be a prealternative algebra. We call a bilinear form
B : A⊗ A→ k a 2-cocycle of A if

B(x ◦ y, z)=B(x, y� z)+B(y, z≺ x) for all x, y, z ∈ A.

Proposition 8.5. Let (A,≺,�) be a prealternative algebra and (Alt(A), ◦) be
the associated alternative algebra. Let B be a 2-cocycle of (A,≺,�). Then the
bilinear form ω defined by

(8-9) ω(x, y)=B(x, y)−B(y, x) for all x, y ∈ A

is a closed form on Alt(A).

Proof. Straightforward. �

Proposition 8.6. Let (A,≺,�) be a prealternative algebra and let r ∈ A ⊗ A.
Suppose r is symmetric and nondegenerate. Then r is a solution of one of the PAi

j
equations for i=1, 2 and j=1, 2, 3 in (A,≺,�) if and only if the (nondegenerate)
bilinear form B induced by r through (1-8) is a 2-cocycle of (A,≺,�).

Proof. Let r =
∑

i ai⊗bi . Since r is symmetric, we have
∑

i ai⊗bi =
∑

i bi⊗ai .
Therefore Tr (v

∗) =
∑

i 〈v
∗, ai 〉bi =

∑
i 〈v
∗, bi 〉ai for any v∗ ∈ A∗. Since r is

nondegenerate, for any x, y, z ∈ A there exist u∗, v∗, w∗ ∈ A∗ such that x = Tr (u∗),
y = Tr (v

∗) and z = Tr (w
∗). Therefore

B(x, z ◦ y)= 〈u∗, Tr (w
∗) ◦ Tr (v

∗)〉

=

∑
i, j

〈w∗, bi 〉〈v
∗, b j 〉〈u∗, ai ◦ a j 〉 = 〈u∗⊗ v∗⊗w∗, r13 ◦ r12〉,

B(y, x ≺ z〉 = 〈v∗, Tr (u∗)≺ Tr (w
∗)〉

=

∑
i, j

〈u∗, bi 〉〈w
∗, b j 〉〈v

∗, ai ≺ a j 〉 = 〈u∗⊗ v∗⊗w∗, r12≺ r23〉,

B(y� x, z)= 〈Tr (v
∗)� Tr (u∗), w∗〉

=

∑
i, j

〈v∗, bi 〉〈u∗, b j 〉〈w
∗, ai � a j 〉 = 〈u∗⊗ v∗⊗w∗, r23� r13〉.

Hence B is a 2-cocycle of (A,≺,�) if and only if the second of (7-3) holds. By
Proposition 8.3, the conclusion follows. �

Corollary 8.7. Let (A,≺,�) be a prealternative algebra and r ∈ A⊗ A. Assume
r is symmetric and there exists a nondegenerate symmetric bilinear form h(x, y)
on A that is associative in that

(8-10) h(x ≺ y, z)= h(x, y� z) for all x, y, z ∈ A.
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Define a linear map ϕ : A→ A∗ by 〈ϕ(x), y〉 = h(x, y). Then T̃r = Trϕ : A→ A is
an O-operator associated to the bimodule (A, l�, r≺) if and only if r is a symmetric
solution of the PA equations. In this case, T̃r satisfies the equation

T̃r (x) ◦ T̃r (y)= T̃r (T̃r (x)� y+ x ≺ T̃r (y)).

So we can define a prealternative algebra structure on A by

x ≺ y = x ≺ T̃r (y),

x � y = T̃r (x)� y.

Proof. It follows from a proof similar to that of Corollary 3.7. �

Remark 8.8. A symmetric bilinear form on a prealternative algebra (A,≺,�)
satisfying (8-10) is a 2-cocycle of (A,≺,�).

By a proof similar to that of Proposition 3.9, we have this:

Proposition 8.9. Let (A, ◦) be an alternative algebra. Let (V, L , R) be a bimod-
ule of A and (V ∗, R∗, L∗) be the dual bimodule. Suppose that T : V → A is an
O-operator associated to (V, L , R). Then r = T + σ(T ) is a symmetric solution
of the PA equations in T (V )n0,L∗,R∗,0 V ∗, where T (V ) ⊂ A is a prealternative
algebra given by (2-9) and (V ∗, 0, L∗, R∗, 0) is a bimodule of T (V ).

Corollary 8.10. Let (A,≺,�) be a prealternative algebra. Then

r =
∑

i

(ei ⊗ e∗i + e∗i ⊗ ei )

is a symmetric solution of the PA equations in A n0,l∗�,r∗≺,0 A∗, where {e1, . . . , en}

is a basis of A and {e∗1, . . . , e∗n} is its dual. Moreover, r is nondegenerate and the
induced 2-cocycle B of A n0,l∗�,r∗≺,0 A∗ is given by (3-2).

Proof. Use Proposition 8.9 with V = A, (L , R)= (l�, r≺) and T = id. �

Corollary 8.11. Let (A,≺,�) be a prealternative algebra and (Alt(A), ◦) be the
associated alternative algebra. If r is a nondegenerate symmetric solution of the
PA equations in A, then there is a new compatible prealternative algebra structure
on Alt(A) given by

x ≺′ y = Tr (l
∗

�
(y)T−1

r (x)),

x �′ y = Tr (r
∗

≺
(x)T−1

r (y)) for all x, y ∈ A,

which is just the prealternative algebra structure given by

B(x ≺′ y, z)=B(x, y� z),

B(x �′ y, z)=B(y, z≺ x) for all x, y, z ∈ A,

where B is the nondegenerate symmetric 2-cocycle of A induced by r through (1-8).
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Proposition 8.12. Let (A,≺,�, α, β) be a prealternative bialgebra arising from
a symmetric solution r of the PA equations and let the corresponding matched pair
of prealternative algebras be (A∗,−r∗

�
, l∗
◦
, r∗
◦
,−l∗
≺
,−r∗

�∗
, l∗
∗
, r∗
∗
,−l∗
≺∗
).

(1) As prealternative algebras,

A FG−r∗�∗ ,l
∗
∗,r
∗
∗,−l∗≺∗

−r∗�,l
∗
◦,r
∗
◦,−l∗≺

A∗ and A n−r∗�,l
∗
◦,r
∗
◦,−l∗≺ A∗

are isomorphic.

(2) The symmetric solutions of the PA equations are in one-to-one correspondence
with linear maps Tr : A∗ → A whose graphs are Lagrangian prealternative
subalgebras (with respect to the bilinear form (3-10) of A n−r∗�,l

∗
◦,r
∗
◦,−l∗≺ A∗.

Proof. It is similar to the proof of Proposition 3.13. �

9. Comparison between alternative D-bialgebras
and prealternative bialgebras

The results in the previous sections allow us to compare alternative D-bialgebras
(see the appendix) and prealternative bialgebras in terms of matched pairs of alter-
native algebras; alternative algebra structures on the direct sum of the alternative
algebras in the matched pairs; bilinear forms on the direct sum of the alternative
algebras in the matched pairs; double structures on the direct sum of the alternative
algebras in the matched pairs; algebraic equations associated to coboundary cases,
nondegenerate solutions; O-operators of alternative algebras; and constructions
from prealternative algebras. See Table 1.

From the table, we observe that there is a clear analogy between alternative
D-bialgebras and prealternative bialgebras. Due to the correspondences between
certain symmetries and skew-symmetries appearing in the table, we regard it as a
kind of duality.

Appendix: Another approach to alternative D-bialgebras

In this section we prove the main results of [Goncharov 2007] by using a slightly
different method (in fact, we will prove some results that are a little stronger than
those there). There will be some results that were not presented there, such as
the Drinfeld double theorem for an alternative D-bialgebra (Theorem A.10) and a
homomorphism property of an alternative D-bialgebra (Theorem A.11). We omit
the proofs since they are quite similar to the study of prealternative bialgebras.

Theorem A.1. Let (A, ◦) be an alternative algebra and (A∗, ∗) be an alternative
algebra induced by a linear map1 : A→ A⊗ A. Then (A, ◦,1) is an alternative
D-bialgebra if and only if (A, A∗, r∗

◦
, l∗
◦
, r∗
∗
, l∗
∗
) is a matched pair of alternative

algebras.
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Algebras Alternative D-bialgebras Prealternative bialgebras

Matched pairs of alternative (A, A∗, r∗
◦
, l∗
◦
, r∗
∗
, l∗
∗
) (Alt(A),Alt(A∗), r∗

≺
, l∗
�

,
algebras r∗

≺∗
, l∗
�∗
)

Alternative algebra alternative phase spaces
structures on the direct sum analogues of Manin
of the alternative algebras triples
in the matched pairs

Bilinear forms on
the direct sum of the
alternative algebras
in the matched pairs

symmetric skew-symmetric

〈x + a∗, y+ b∗〉
= 〈x, b∗〉+ 〈a∗, y〉

〈x + a∗, y+ b∗〉
= −〈x, b∗〉+ 〈a∗, y〉

invariant symplectic forms

Double structures on Drinfeld’s doubles Drinfeld’s symplectic
the direct sum of the doubles
alternative algebras
in the matched pairs

Algebraic equations
associated to
coboundary cases

skew-symmetric solutions symmetric solutions

alternative YBEs in PA-equations in
alternative algebras prealternative algebras

Nondegenerate solutions symplectic forms of 2-cocycles of prealternative
alternative algebras algebras

O-operators associated to (r∗
◦
, l∗
◦
) associated to (r∗

≺
, l∗
�
)

skew-symmetric parts symmetric parts

Constructions from r =∑n
i=1(ei ⊗ e∗i − e∗i ⊗ ei )

r =∑n
i=1(ei ⊗ e∗i + e∗i ⊗ ei )prealternative algebras

induced bilinear forms induced bilinear forms
〈x + a∗, y+ b∗〉
= −〈x, b∗〉+ 〈a∗, y〉

〈x + a∗, y+ b∗〉
= 〈x, b∗〉+ 〈a∗, y〉

Table 1. Comparison between alternative D-bialgebras and pre-
alternative bialgebras

Theorem A.2. Let (A, ◦,1) be an alternative algebra equipped with a linear map
1 : A→ A⊗A such that1∗ : A∗⊗A∗→ A∗ induces an alternative algebra structure
on A∗. Then (A, A∗, r∗

◦
, l∗
◦
, r∗
∗
, l∗
∗
) is a matched pair of alternative algebras if and
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only if the following equations hold:

1(x ◦ y)= (−l◦(x)⊗ 1+ 1⊗Ass◦(x))1(y)+ (r◦(y)⊗ 1)1(x)(A-1)

+ (r◦(y)⊗ 1− 1⊗ l◦(y))σ1(x),

1(x ◦ y)= (Ass◦(y)⊗ 1− 1⊗ r◦(y))1(x)+ (1⊗ l◦(x))1(y)(A-2)

+ (1⊗ l◦(x)− r◦(x)⊗ 1)σ1(y),

1(x ◦ y+ y ◦ x)= (r◦(y)⊗ 1+ 1⊗ l◦(y))1(x)(A-3)

+ (1⊗ l◦(x)+ r◦(x)⊗ 1)1(y),

(1+ σ1)(x ◦ y)= (r◦(y)⊗ 1)1(x)+ (1⊗ r◦(y))σ1(x)(A-4)

+ (l◦(x)⊗ 1)σ1(y)+ (1⊗ l◦(x))1(y),

where x, y ∈ A, the multiplication ∗ is induced by 1, and Ass◦ = l◦+ r◦.

Remark A.3. Equations (A-1) and (A-4) have already appeared as [Goncharov
2007, Lemma 2].

Definition A.4. An alternative D-bialgebra (A, ◦,1) is called coboundary if there
exists an r ∈ A⊗ A such that 1 is given by

(A-5) 1(x)= (r◦(x)⊗ 1− 1⊗ l◦(x))r for all x ∈ A.

This definition is the same as Definition 3.3.

Lemma A.5. Let A be a vector space. Then a linear map 1 : A→ A⊗ A induces
an alternative algebra structure on A∗ if and only if for any x, y ∈ A

(1⊗ 1)1(x)+ (σ ⊗ 1)(1⊗ 1)1(x)= (1⊗1)1(x)+ (σ ⊗ 1)(1⊗1)1(x),

(1⊗ 1)1(x)+ (1⊗ σ)(1⊗ 1)1(x)= (1⊗1)1(x)+ (1⊗ σ)(1⊗1)1(x).

Definition A.6. Let (A, ◦) be an alternative algebra. The following equations are
called the Ai -equations in A for i = 1, 2:

(A-6)
A1 = r23 ◦ r12− r13 ◦ r23− r12 ◦ r13 = 0,

A2 = r12 ◦ r23− r23 ◦ r13− r13 ◦ r12 = 0.

Note that A1 given by (A-6) is exactly CA(r) given by (3-5).

Proposition A.7. Let (A, ◦) be an alternative algebra and r ∈ A ⊗ A. If r is
skew-symmetric, then A1 and A2 are the same.

Proposition A.8. Let (A, ◦) be an alternative algebra. Let r ∈ A⊗ A be skew-
symmetric. Define a linear map 1 : A → A ⊗ A by (A-5). Then 1 induces an
alternative algebra structure on A∗ if and only if for any x ∈ A

−(r◦(x)⊗ 1⊗ 1)A1− (1⊗ r◦(x)⊗ 1)A2+ (1⊗ 1⊗ l◦(x))(A1+ A2)= 0,

−(r◦(x)⊗ 1⊗ 1)(A1+ A2)+ (1⊗ l◦(x)⊗ 1)A2+ (1⊗ 1⊗ l◦(x))A1 = 0,
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Theorem A.9 [Goncharov 2007, Theorem 2]. Suppose (A, ◦) is an alternative
algebra and r ∈ A⊗ A. Let 1 : A→ A be a linear map defined by (A-5). If r
is a skew-symmetric solution of the alternative Yang–Baxter equation in A, then
(A, ◦,1) is an alternative D-bialgebra.

Theorem A.10. Let (A, ◦,1A) be an alternative D-bialgebra. Then there is a
canonical alternative bialgebra structure on A ⊕ A∗ such that the inclusion i1 :

A→ A⊕A∗ is a homomorphism of alternative D-bialgebras, where the alternative
bialgebra structure on A is given by (A, ◦,−1A) and the inclusion i2 of A∗ into
A ⊕ A∗ is a homomorphism of alternative D-bialgebras, where the alternative
bialgebra structure on A∗ is given by (A∗, ∗,1B), where ∗ is induced by 1A, and
where the alternative algebra structure ◦ on A is induced by 1B : A∗→ A∗⊗ A∗.

Theorem A.11. Let (A, ◦,1) be an alternative D-bialgebra arising from a solu-
tion r of the alternative Yang–Baxter equation in A. Then Tr is a homomorphism
of alternative D-bialgebras from (A∗, ∗, δ) to (A, ◦,−1), where ∗ is induced by
1 and the alternative algebra structure ◦ on A is induced by δ : A∗→ A∗⊗ A∗.
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