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We introduce a function wk(θ) for closed convex plane curves, and then
prove a geometric inequality involving wk(θ) and the area A enclosed by
the curve. As a by-product, we give a new proof of the classical isoperi-
metric inequality. Finally, we give some properties of convex curves with
wk(θ) being constant and pose an open problem motivated by the elegant
Blaschke–Lebesgue theorem.

1. Introduction

Geometric inequalities involving convex sets have received much attention during
the last centuries; see for example [Bonnesen and Fenchel 1934; Burago and Zal-
galler 1988; Schneider 1993]. Among them the isoperimetric inequalities are of
special interest; see [Ball 1991; Blaschke 1956; Bonnesen 1929; Osserman 1978;
1979; Pan and Zhang 2007; Schneider 1993] and references therein. For convex
curves in the Euclidean plane R2, there are also many interesting inequalities in-
volving their geometric quantities such as inradius, outradius, width, area, length
and curvature or radius of curvature; see for example [Chernoff 1969; Gage 1983;
Green and Osher 1999; Hernández Cifre 2000; Ma and Cheng 2009; Ma and Zhu
2008; Pan and Yang 2008; Sholander 1952].

Chernoff [1969] got an area-width inequality for convex plane curves. Let α
be a closed convex curve in the Euclidean plane R2 with area A and width func-
tion w(θ). Then the geometric inequality

A ≤ 1
2

∫ π/2

0
w(θ)w(θ + 1

2π)dθ

holds, with equality if and only if α is a circle. To our knowledge, this beautiful
inequality has not been generalized yet. One purpose of this note is to make some
generalization of the Chernoff inequality. To this end, we introduce for convex
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plane curves a function wk(θ) for integer k ≥ 2. This function is defined in (3-1)
below and is a generalization of the usual width of a convex curve. Then Chernoff’s
area-width inequality generalizes as

(1-1) A ≤ 1
k

∫ π/k

0
wk(θ)wk(θ +

1
kπ)dθ,

with equality if and only if α is a circle. Moreover, we can calculate

(1-2) lim
k→∞

1
k

∫ π/k

0
wk(θ)wk(θ +

1
kπ)dθ =

L2

4π
.

Thus (1-1) and (1-2) give a new proof of the classical isoperimetric inequality
L2
≥ 4π A with equality if and only if the curve is a circle.
Another purpose here is to give some properties of closed convex curves with

wk(θ) being constant. We will get in Theorem 3.2 an analogue of Barbier’s theorem
and in Theorem 3.3 we will characterize the support function of such curves. In
particular, we pose an open problem that was motivated by the elegant Blaschke–
Lebesgue theorem.

2. Preliminaries

Henceforth suppose without loss of generality that α is a smooth regular positively
oriented and closed strictly convex curve in the Euclidean plane R2. Take a point
O inside α as the origin of our frame. Let p be the oriented perpendicular distance
from O to the tangent at a point on α, and θ the oriented angle from the positive
x1-axis to this perpendicular ray. Clearly, p, as a function of θ , is single-valued
and 2π -periodic. We usually call p(θ) Minkowski’s support function of α.

One can check that α can be parametrized in terms of θ and p(θ) as

α(θ)= (α1(θ), α2(θ))= (p(θ) cos θ − p′(θ) sin θ, p(θ) sin θ + p′(θ) cos θ);

see for instance [Hsiung 1981]. The curvature κ of α can be calculated according
to κ(θ)= dθ/ds = 1/(p(θ)+ p′′(θ)) > 0. Denote by L and A the length of α and
the area it bounds. Then one can get

L =
∫
α

ds =
∫ 2π

0
ρ(θ)dθ =

∫ 2π

0
p(θ)dθ,(2-1)

A = 1
2

∫
α

p(θ)ds = 1
2

∫ 2π

0
p(θ)(p(θ)+ p′′(θ))dθ

=
1
2

∫ 2π

0
(p2(θ)− p′2(θ))dθ.

(2-2)

These are known as Cauchy’s formula and Blaschke’s formula, respectively.
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Since the support function of a given convex curve α is always continuous,
bounded and 2π -periodic, it has a Fourier series of the form

(2-3) p(θ)= 1
2a0+

∞∑
n=1

(an cos nθ + bn sin nθ),

where

(2-4)
a0 =

1
π

∫ 2π

0
p(θ)dθ, an =

1
π

∫ 2π

0
p(θ) cos nθdθ,

bn =
1
π

∫ 2π

0
p(θ) sin nθdθ for n ≥ 1.

We wish to express L and A in terms of the Fourier coefficients of p(θ). From (2-1)
and the first equation of (2-4) one easily sees that L = πa0. Then differentiating
(2-3) with respect to θ gives us p′(θ) =

∑
∞

n=1 n(−an sin nθ + bn cos nθ). By the
Parseval equality and (2-2), we get

(2-5) A = 1
4πa2

0 +
1
2π

∞∑
n=2

(1− n2)(a2
n + b2

n),

The width w(θ) of α in direction u(θ) = (cos θ, sin θ) is defined to be the dis-
tance between two tangents to α perpendicular to u(θ). It is clear that

(2-6) w(θ)= p(θ)+ p(θ +π).

The closed convex curve α is said to be of constant width if its width in any direc-
tion is a positive constant w0, and in this case, the constant w0 is called the width
of α. If α is a constant width curve with width w0, then p(θ)+ p(θ+π)=w0 for
any θ ∈ [0, 2π ].

It is obvious that a circle is a constant width curve. There are, however,- many
other noncircular curves of constant width; see for example [Burke 1966; Hsiung
1981; Rabinowitz 1997]. Among them, the most famous example is the Reuleaux
triangle, which has been used in the design of piston for the Wankel engine. A
famous result about constant width curves due to Barbier [1860] states that all
closed convex curves of constant width w0 have the same perimeter πw0. Another
elegant result is the Blaschke–Lebesgue theorem, which says that among all closed
convex curves with constant width w0, the Reuleaux triangles of the same constant
width have the smallest area.

Our Theorem 3.2 bears analogy to Barbier’s theorem. The open problem posed
in the next section is motivated by the Blaschke–Lebesgue theorem first proved by
Blaschke [1915] and Lebesgue [1914; 1921]. Harrell [2002] gives a new proof of
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this theorem and some historic remarks on it. The higher dimensional Blaschke–
Lebesgue problem appears to be very difficult to solve and remains open. For
partial results, see [Anciaux and Georgiou 2009; Anciaux and Guilfoyle 2010] and
the literature therein.

3. Main results

For an integer k ≥ 2, we introduce for a convex curve α a function wk(θ) by

(3-1) wk(θ)= p(θ)+ p(θ + 2π/k)+ · · ·+ p(θ + (2(k− 1)π)/k).

Since
1+ cos(2π/k)+ · · ·+ cos(2(k− 1)π/k)= 0,

sin(2π/k)+ · · ·+ sin(2(k− 1)π/k)= 0,
the function wk(θ) is independent of the choice of the origin O (inside α) and thus
is well-defined. It is clear that wk(θ) is a periodic function with period 2π/k.

If k = 2, w2(θ) is the usual width (see (2-6)) of a curve, that is, our wk(θ) is a
generalization of the usual width function w(θ). In this case, Chernoff [1969] got
a nice area-width inequality. For general k, we can generalize:

Theorem 3.1. Let α be a closed convex plane curve, bounding a region of area A.
Then

A ≤ 1
k

∫ π/k

0
wk(θ)wk(θ +π/k)dθ,

where the equality holds if and only if α is a circle.

Proof. The proof is divided into two steps.

Step 1. We first show that

(3-2)
∫ π/k

0
wk(θ)wk(θ +π/k)dθ = 1

2

k∑
m=1

∫ 2π

0
p(θ)p(θ + (2m− 1)π/k)dθ.

To see this, write

ai j =

∫ π/k

0
p
(
θ +

(2i − 1)π
k

)
p
(
θ +

2( j − 1)π
k

)
dθ for i, j = 1, 2, . . . , 2k.

Then

(3-3)
∫ π/k

0
wk(θ)wk

(
θ +

π

k

)
dθ

=

∫ π/k

0

(
p(θ)+ p

(
θ +

2π
k

)
+ · · ·+ p

(
θ +

2(k−1)π
k

))
·

(
p
(
θ +

π

k

)
+ p

(
θ +

3π
k

)
+ · · ·+ p

(
θ +

(2k−1)π
k

))
dθ =

k∑
i, j=1

ai j .
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Since p is a 2π -periodic function, we get

(3-4) ai+k, j = ai j = ai, j+k for i, j = 1, 2, . . . , k.

Now, we claim that

(3-5)
k∑

m=1

k∑
l=1

am+l−1,l =

k∑
m=1

k∑
l=1

al,m+l =

k∑
i, j=1

ai j .

The sum at left can be treated as
k∑

l=1

( k−l+1∑
m=1

am+l−1,l+

k∑
m=k−l+2

am+l−k−1,l

)
=

k∑
l=1

( k∑
i=l

ail+

l−1∑
i=1

ail

)
=

k∑
l=1

k∑
i=1

ail,

while the middle sum becomes
k∑

l=1

( k−l∑
m=1

al,m+l +

k∑
m=k−l+1

al,m+l−k

)
=

k∑
l=1

( k∑
i=l+1

ali +

l∑
i=1

ali

)
=

k∑
l=1

k∑
i=1

ali .

Thus, we get

(3-6)
∫ π/k

0
wk(θ)wk(θ +π/k)dθ =

k∑
i, j=1

ai j =
1
2

k∑
m=1

( k∑
l=1

(am+l−1,l + al,m+l)
)
.

Next, we shall show that, for 1≤ m ≤ k,

(3-7)
k∑

l=1

(am+l−1,l + al,m+l)=

∫ 2π

0
p(θ)p(θ + (2m− 1)π/k)dθ.

In fact,

left side of (3-7)=
k∑

l=1

(∫ π/k

0
p
(
θ +

2(m+ l − 1)− 1
k

π
)

p
(
θ +

2(l − 1)
k

π
)

dθ

+

∫ π/k

0
p
(
θ +

2l − 1
k

π
)

p
(
θ +

2(m+ l − 1)
k

π
)

dθ
)

=

k∑
l=1

(∫ (2l−1)π/k

2(l−1)π/k
p(θ)p

(
θ +

(2m− 1)π
k

)
dθ

+

∫ 2lπ/k

(2l−1)π/k
p(θ)p

(
θ +

(2m− 1)π
k

)
dθ
)

=

∫ 2π

0
p(θ)p

(
θ +

(2m− 1)π
k

)
dθ.

Now, combining (3-3)–(3-7) yields (3-2).
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Step 2. After some calculations, we get, for 1≤ m ≤ k,

(3-8)
∫ 2π

0
p(θ)p

(
θ+

(2m− 1)π
k

)
dθ = 1

2πa2
0+π

∞∑
n=1

(a2
n+b2

n) cos
n(2m− 1)π

k
.

For any integer n not a multiple of k, we have

(3-9)

k∑
m=1

cos
n(2m− 1)π

k
=

1
sin(nπ/k)

k∑
m=1

(
cos

n(2m− 1)π
k

sin
nπ
k

)
=

sin 2nπ
2 sin(nπ/k)

= 0.

It follows from (3-2), (3-8), (3-9) and (2-5) that

(3-10)

1
k

∫ π/k

0
wk(θ)wk

(
θ +

π

k

)
dθ = 1

2k

k∑
m=1

∫ 2π

0
p(θ)p

(
θ +

(2m− 1)π
k

)
dθ

=
1
4πa2

0 +
π

2

∞∑
n=1

(a2
n + b2

n)
1
k

k∑
m=1

cos
n(2m− 1)π

k

=
1
4πa2

0 +
π

2

∞∑
l=1

(a2
kl + b2

kl)
1
k

k∑
m=1

cos(l(2m− 1)π)

=
1
4πa2

0 +
π

2

∞∑
l=1

(−1)l(a2
kl + b2

kl)

= A+ π
2

( ∞∑
n=2

(a2
n + b2

n)(n
2
− 1)+

∞∑
l=1

(−1)l(a2
kl + b2

kl)

)
≥ A.

The equality holds if and only if an = bn = 0 for all n ≥ 2, that is, when the curve
is a circle. �

From the continuity of p(θ), it is easy to see that, for all θk ∈ [0, 2π/k],

lim
k→∞

2π
k
wk(θk)= lim

k→∞

2π
k

k∑
m=1

p
(
θk +

2mπ
k

)
=

∫ 2π

0
p(θ)dθ.

Moreover, for any k ∈ N, there exists a ξk ∈ [0, π/k] such that

1
k

∫ π/k

0
wk(θ)wk(θ +π/k)dθ = π

k2wk(ξk)wk(ξk +π/k).
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Since ξk ∈ [0, π/k] ⊂ [0, 2π/k], we have ξk +π/k ∈ [0, 2π/k]. Thus, we obtain

lim
k→∞

1
k

∫ π/k

0
wk(θ)wk(θ +π/k)dθ = lim

k→∞

π

k2wk(ξk)wk(ξk +π/k)

=
1

4π

(∫ 2π

0
p(θ)dθ

)2
=

L2

4π
.

which with (3-10) gives us a new proof of the classical isoperimetric inequality.
We can also get the following generalization of Barbier’s theorem.

Theorem 3.2. All convex curves for wk(θ) is equal to a constant 3 have the same
length L = (2π/k)3.

Proof. It is easy to see from (2-1) that L =
∫ 2π/k

0 wk(θ)dθ = (2π/k)3. �

Among all curves with the same length L , circles have the greatest area. For
constant width curves, the Blaschke–Lebesgue theorem claims that the Reuleaux
triangles have the least area.

Question. Among all closed convex curves with wk(θ) equal to a fixed consant3,
which has the least possible area?

Theorem 3.3. Suppose α is a closed convex plane curve with wk(θ) equal to a
constant 3. Then the Fourier expansion of the support function p(θ) of α is of the
form

p(θ)= 1
2a0+

∞∑
n=1,n 6=mk

(an cos nθ + bn sin nθ),

where a0 = (1/π)
∫ 2π

0 p(θ)dθ = L/π = 23/k and m ∈ N.

Proof. In terms of the Fourier expansion of the support function p(θ) of α,

wk(θ)=
1
2 ka0+

∞∑
n=1

(
an cos nθ+bn sin nθ+an cos

(
nθ+2nπ

k

)
+bn sin

(
nθ+2nπ

k

)
+· · ·+an cos

(
nθ+

2n(k−1)π
k

)
+bn sin

(
nθ+

2n(k−1)π
k

))
=

1
2 ka0+

∞∑
n=1

(
(an cos nθ+bn sin nθ)

(
1+cos 2nπ

k
+· · ·+cos

2n(k−1)π
k

)
+(bn cos nθ−an sin nθ)

(
sin 2nπ

k
+sin 4nπ

k
+· · ·+sin

2n(k−1)π
k

))
=

1
2 ka0+k

∞∑
n=1

(akn cos(knθ)+bkn sin(knθ)).

If wk(θ)=3, then one gets a0 = (2/k)3 and akn = 0= bkn . �
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