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Suppose that one of the real vector spaces V and W is symplectic and the
other is quadratic. Let g1 and g2 denote the Lie algebras of the groups of
isometries of the two spaces, and let τi : V ⊗R W → gi be their respective
moment maps for i = 1, 2. Suppose that O and Q are nilpotent orbits in g1

and g2, respectively. We prove that τ2(τ
−1
1 (O)) and τ1(τ

−1
2 (Q))) are each the

union of at most two closures of nilpotent orbits in g1 and g2, respectively
(where P denotes the closure of a nilpotent orbit P).

1. Introduction

Let F denote either complex numbers C or the real numbers R. Let (V, 〉 · , · 〉) be a
(nondegenerate) symplectic space, and let (W, ( · , · )) be a quadratic space over F .
The tensor product V ⊗W is a symplectic space, with the form 〈〈 · , · 〉〉 defined by

〈〈e⊗ v, f ⊗w〉〉 = 〈e, f 〉(v,w) for e, f ∈ V and v,w ∈W .

The pair of groups (Sp(V ),O(W )) is called a reductive dual pair [Howe 1989].
Let ϕ1 : V ⊗ W → Hom(V,W ) be the vector space isomorphism given by

ϕ1(v⊗w)(x) := 〈v, x〉w, and let ϕ2 : V ⊗W → Hom(W, V ) be the isomorphism
given by ϕ2(v ⊗w)(y) := (w, y)v. Define the maps τ1 : V ⊗W → End(V ) by
τ1(γ ) := ϕ2(γ ) ◦ ϕ1(γ ), and τ2 : V ⊗W → End(W ) by τ2(γ ) := ϕ1(γ ) ◦ ϕ2(γ ).
It turns out that the image of τ1 is in sp(V ) and the image of τ2 is in so(W ). The
maps τ1 and τ2 are called the moment maps [Kazhdan et al. 1978].

An element X ∈ sp(V ) is said to correspond to an element X ′ ∈ so(W ) if
τ−1

1 (X) ∩ τ−1
2 (X ′) is not empty. An orbit O in sp(V ) is said to correspond to

an orbit O′ in so(W ) if there is an element in O that corresponds to an element
in O′. Suppose that O is an orbit in sp(V ) corresponding to an orbit O′ in so(W ). It
is known that O is nilpotent if and only if O′ is nilpotent. On the correspondence of
nilpotent orbits, A. Daszkiewicz, W. Kraśkiewicz and T. Przebinda [1997] proved
the next theorem:
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Theorem A. Let F =C. Let τ1 : V ⊗F W→ sp(V ) and τ2 : V ⊗F W→ so(W ) be
the moment maps. Let O and Q be nilpotent orbits in sp(V ) and so(W ) contained in
the images of τ1 and τ2, respectively. There are unique nilpotent orbits O′⊆ so(W )

and Q′ ⊆ sp(V ) such that τ2(τ
−1
1 (O))= O′ and τ1(τ

−1
2 (Q))= Q′, where P denotes

the closure of a nilpotent orbit P.

In the theorem of 4.1, we give a slightly more precise form of this theorem,
which coincides with [Daszkiewicz et al. 1997, Theorem 5.2]. Our main theorem
is the analogous result for real orbit correspondences:

Theorem B. Suppose F =R. Let τ1 :V⊗F W→ sp(V ) and τ2 :V⊗F W→ so(W )

be the moment maps. Let O and Q be nilpotent orbits in sp(V ) and so(W ) contained
in the images of τ1 and τ2, respectively. Then, τ2(τ

−1
1 (O)) and τ1(τ

−1
2 (Q))) are

each the union of at most two closures of nilpotent orbits in so(W ) and sp(V )),
respectively.

The motivation for the result is this: Suppose G is a real reductive group with
Lie algebra g0. Let g := g0 ⊗R C be the complexified Lie algebra of the com-
plexified group G

C
of G. Let K be a maximal compact subgroup of G. Given

an irreducible admissible representation (π, E) of G, we can attach to it a union
of nilpotent coadjoint orbits of G

C
in the dual space g∗ of g, as follows: If E K is

the subspace of K-finite vectors of E , then E K is an irreducible (g, K )-module.
Denote the action of g on E K by π still. Let Iπ be the annihilator of E K in the
universal enveloping algebra U (g) of g. The latter has a natural grading, and the
associated graded algebra gr(U (g)) is isomorphic to the algebra of polynomials
on g∗. Let V(Iπ ) denote the variety in g∗ defined by the ideal gr(Iπ ) of gr(U (g)).
It is known that V(Iπ ) is a finite union of nilpotent orbits in g∗ and by [Collingwood
and McGovern 1993; Joseph 1985] is the closure of a single nilpotent orbit. The
variety V(Iπ ) is called the associated variety of the annihilator, in the universal
enveloping algebra, of the Harish-Chandra module of the representation (π, E).
By a result of R. Howe [1989], there is a one-to-one correspondence between
some irreducible admissible representations of the metaplectic cover S̃p(V ) and
some irreducible admissible representations of Õ(W ). Therefore, one expects a
relation between the correspondence of coadjoint orbits and the correspondence of
irreducible representations. Some results have been established in [Adams 1983;
1987; Przebinda 1993].

Theorem B might be interesting for studying representations of real groups by
using finer orbit structures, such as wave front sets or characteristic varieties. In
fact, this result is used in [He 2003; He 2005].

The content of this paper is as follows: In Sections 2 and 3, we summarize some
well-known results on nilpotent orbits in sp(V ) and so(W ). We describe some
special realization of the Lie algebras sp(V ) and so(W ), and the parametrization of
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their nilpotent orbits by some special kinds of partitions. In Section 4, we describe
the results of complex orbit correspondences; the proofs are omitted, since the re-
sults in this section are already known from [Daszkiewicz et al. 1997]. In Section 5,
we describe the basic rules for determining the real orbit correspondence. We state
our main theorem in Section 6. The construction is somewhat subtle, although the
idea is in fact simple. The proof of the main theorem is in the final Section 7.

2. Signed partitions and signed Young diagrams

2.1. Partitions. For nonnegative integers ri , let d :=
⊕k

i=1[ri ] denote the partition
[r1, r2, . . . , rk], where r1 ≥ r2 ≥ · · · ≥ rk , and let |d| :=

∑k
i=1 ri denote the size

of d. We may use k[r ] to denote [r ]⊕ [r ]⊕ · · ·⊕ [r ] (with k terms). Suppose that
d1
:=
⊕k1

i=1[r
1
i ] and d2

:=
⊕k2

i=1[r
2
i ] are two partitions of the same size. We write

d1
≤ d2 if

j∑
i=1

r1
i ≤

j∑
i=1

r2
i for each j ≥ 1.

This defines a partial ordering on the set of partitions of same size.

2.2. Symplectic and orthogonal partitions. A partition
⊕k

i=1 αi [ri ] of pairwise
distinct ri is symplectic if αi is even whenever ri is odd. A symplectic partition is
said to be simple if it is of the form [2r ] or 2[2r − 1] for some positive integer r .
It is clear that a symplectic partition is a sum of simple symplectic partitions.

A partition
⊕k

i=1 αi [ri ] is orthogonal if αi is even whenever ri is even. An
orthogonal partition is simple if it is of the form [2r − 1] or 2[2r ] for some positive
integer r . An orthogonal partition is a sum of simple orthogonal partitions.

2.3. Signed partitions and signed Young diagrams. A signed partition is a sum⊕k
i=1[ri ]

• of symbols [ri ]
•, where ri is a nonnegative integer and • is either plus

or minus.
The signed partitions [r ]− and [r ]+ can be presented as rows of r with boxes

labeled alternatingly by plus and minus signs, ending with � and �, respectively.
For example, [2r ]− has the presentation

� � � · · · � � �︸ ︷︷ ︸
2r

.

By convention, we set [0]+= [0]− := ∅. The signed partitions [r ]+ and [r ]− are
respectively called positive and negative rows.

A presentation of a signed partition is called a signed Young diagram if the sizes
of the rows are nonincreasing. Two signed Young diagrams of a signed partition
are not regarded as the same if they differ by exchanging two rows of the same
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length but opposite parity. For example, the signed Young diagrams

� �
� � and � �

� �

are regarded as different, although they are associated to the same signed partition
[2]+⊕ [2]−. Giving a signed Young diagram of a signed partition is equivalent to
defining a total order on the set of rows of the signed partition. For example, the
first signed Young diagram above gives the order [2]+ > [2]−, while the second
Young diagram gives the order [2]− > [2]+. Therefore, we will use the notation
(d, Q) to denote a signed Young diagram of a signed partition d, where Q is an
order on the set of rows of d.

2.4. Signature of a signed partition. If d :=
⊕k

i=1[ri ]
∗ is a signed partition, the

signature of d is the ordered pair defined by

sgn(d) :=
k∑

i=1

sgn([ri ]
∗)

with sgn([r ]+) := (b(r + 1)/2c, br/2c) and sgn([r ]−) := (br/2c, b(r + 1)/2c),
where bac stands for the largest integer not greater than a, and (p, q)+ (r, s) is
defined to be (p+ r, q + s). That is, the first (respectively, second) component of
the signature is the number of plus (respectively, minus) boxes in any presentation
of a signed partition.

2.5. Derivatives of signed partitions. Define the derivatives of a partition or of a
signed partition as follows: Let

[r ]′ := [r − 1], ([r ]+)′ := [r − 1]+, ([r ]−)′ := [r − 1]−.

Define d ′ :=
⊕k

i=1([ri ]
∗)′ if d =

⊕k
i=1[ri ]

∗. Let d(0) := d, and d(k) :=
(
d(k−1)

)′
for k ≥ 1.

For two pairs of positive integers, the order (p, q)≤ (r, s) stands for p ≤ r and
q ≤ s. Suppose that d1 and d2 are two signed partitions of the same signature. We
say that d1 ≤ d2 if sgn(d(k)1 )≤ sgn(d(k)2 ) for all k ≥ 0.

2.6. Symplectic and orthogonal signed partitions. A signed partition d is simple
symplectic if d is equal to [2r ]+, [2r ]−, or [2r − 1]+⊕[2r − 1]− for some positive
integer r . The signed partition [2r − 1]+⊕[2r − 1]− is called a double odd block,
with [2r − 1]+ called the partner of [2r − 1]− and vice versa. A sum of simple
symplectic signed partitions is a symplectic signed partition.

We say a signed partition d is simple orthogonal if d is [2r − 1]+, [2r − 1]−

or [2r ]+⊕ [2r ]− for some positive integer r . A sum of simple orthogonal signed
partitions is an orthogonal signed partition.
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3. Nilpotent orbits and moment maps

3.1. Nilpotent orbits in a symplectic Lie algebra. Let F be the field C or R. Let
(V, 〈 · , · 〉) be a 2n-dimensional symplectic space over F . The Lie algebra sp(V )
consists of elements X ∈ EndF (V ) such that 〈X.v, w〉 + 〈v, X.w〉 = 0 for all
v,w ∈ V . The Lie algebra sp(V ) can be realized as the space S2(V ) of degree
two elements in the symmetric algebra of V , with the Lie bracket given by

[e f, e′ f ′] := 〈e′, e〉 f f ′+〈 f ′, e〉 f e′+〈e′, f 〉e f ′+〈 f ′, f 〉ee′

for e, e′, f, f ′ ∈ V . The action of S2(V ) on V is given by

(e f )(x) := 〈x, e〉 f +〈x, f 〉e

for e, f, x ∈ V . Details can be found in [Howe 1989].
It is well known that, when F = R, the nilpotent orbits of the symplectic group

Sp(V ) in sp(V ) are parametrized by the set of symplectic signed partitions of
size 2n [Collingwood and McGovern 1993]. We can take

e1 f2+ · · ·+ er−1 fr + er er

as representative of the nilpotent orbit corresponding to the simple signed partition
[2r ]−, where {e1, . . . , er , f1, . . . , fr } is a self-dual basis (that is, 〈ei , f j 〉 = δi j ) of
a 2r -dimensional symplectic subspace of V . Similarly, we can take

e1 f2+ · · ·+ er−1 fr − er er

as representative of the nilpotent orbit corresponding to [2r ]+, and

e1 f2+ · · ·+ e2r−2 f2r−1

as representative of the nilpotent orbit corresponding to [2r − 1]+⊕[2r − 1]−.

3.2. Nilpotent orbits in an orthogonal Lie algebra. Suppose (W, ( · , · )) is an m-
dimensional quadratic space over F . The Lie algebra so(W ) can be realized as the
space

∧2
(W ) of degree two elements in the exterior algebra of W , with the Lie

bracket given by

[v∧w, v′∧w′] := (v, v′)gw∧w′+ (v,w′)w∧v′+ (w, v′)gv∧w′+ (w,w′)v∧v′

for v, v′, w,w′ ∈W . The Lie algebra
∧2
(W ) acts on W by

(v∧w)(y) := (y, w)v− (y, v)w for v,w, y ∈W .

It is well known that, when F = R, the nilpotent orbits of the orthogonal group
O(W ) in so(W ) are parametrized by the set of orthogonal signed partitions with
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signature equal to that of the form ( · , · ) [Collingwood and McGovern 1993]. We
can take

v1 ∧w2+ v2 ∧w3+ · · ·+ vr−2 ∧wr−1+ vr−1 ∧ z

as representative of the nilpotent orbit corresponding to the simple orthogonal
signed partition [2r − 1]+, where {z, v1, . . . , vr−1, w1, . . . , wr−1} is a basis of a
(2r − 1)-dimensional orthogonal subspace of signature (r, r − 1) such that

(vi , w j )= δi j , (vi , v j )= (wi , w j )= 0, (vi , z)= (wi , z)= 0, (z, z)= 1.

Similarly, we can take v1 ∧ w2 + v2 ∧ w3 + · · · + vr−2 ∧ wr−1 + vr−1 ∧ z′ as
representative of the nilpotent orbit corresponding to [2r − 1]−, where (z′, z′)=−1,
and take v1 ∧w2 + v2 ∧w3 + · · · + v2r−1 ∧w2r as representative of the nilpotent
orbit corresponding to [2r ]+⊕[2r ]−.

3.3. Derivatives and the ordering of orbits. Let O1 and O2 be two nilpotent orbits
in sp(V ) (or in so(W )), with corresponding signed partitions d1 and d2, respec-
tively. We define O1 ≤ O2 if O1 ⊂ O2, the closure of O2.

Proposition [Djoković 1981]. We have O1≤O2 if and only if sgn(d(k)1 )≤ sgn(d(k)2 )

for every k ≥ 0.

3.4. Moment maps. Consider the vector space isomorphisms

ϕ1 : V ⊗W → Hom(V,W ), ϕ1(v⊗w)(x) := 〈v, x〉w,

ϕ2 : V ⊗W → Hom(W, V ), ϕ2(v⊗w)(y) := (w, y)v

for v, x ∈ V and w, y ∈W , and define the moment maps

τ1 : V ⊗W → End(V ), τ1(γ ) := ϕ2(γ ) ◦ϕ1(γ ),

τ2 : V ⊗W → End(W ), τ2(γ ) := ϕ1(γ ) ◦ϕ2(γ ).

It is known that τ1(V ⊗W )⊆ sp(V ) and τ2(V ⊗W )⊆ so(W ). It is not difficult to
check that

(3-1) τ1(γ )=
∑
i, j

(ηi , η j )εiε j and τ2(γ )=
∑
i, j

〈εi , ε j 〉ηi ∧ η j

when γ :=
∑

i εi ⊗ ηi ∈ V ⊗W with εi ∈ V and ηi ∈ W , under the realization
sp(V )= S2(V ) and so(W )=

∧2
(W ).

4. The orbit correspondences for complex reductive dual pairs

In this section, we assume that F = C. Let V be a 2n-dimensional complex sym-
plectic space and W be an m-dimensional complex quadratic space. Let τ1 and τ2

be the moment maps from 3.4.
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4.1. The purpose of Section 4 is, for a nilpotent orbit O in sp(V ), to define a
nilpotent orbit 8(λ(O)) in so(W ) such that the following theorem holds.

Theorem. Let O be a nilpotent orbit in sp(V ) that is contained in the image of τ1.
Then τ2(τ

−1
1 (O))=8(λ(O)).

4.2. Let d :=
⊕k

i=1 αi [ri ] be a symplectic partition of size 2n, with r1> r2> · · ·>

rk > 0. Define the numbers r1
i = r2

i = · · · = rαi
i := ri for each i = 1, 2, . . . , k, so

we may write

(4-1) d =
k⊕

i=1

αi⊕
j=1

[r j
i ].

Let α :=
∑k

i=1 αi be the number of rows of d. We define

(4-2) ϕ(d) :=
{⊕k

i=1
⊕αi

j=1[r
j

i −1]⊕(α+m−2n)[1] if −α ≤ m− 2n,
[0] otherwise.

It is not difficult to see that the partition ϕ(d) is either [0] or an orthogonal partition
of size m. Define

ϕ(O) :=

{
Oϕ(d) if ϕ(d) 6= [0],
∅ if ϕ(d)= [0];

that is, if it is nonempty, ϕ(O) is a nilpotent orbit in so(W ).

4.3. We define two partitions ψ1(d) and ψ2(d) according to the following cases:

(i) Suppose that α < m− 2n; define

ψ1(d) :=
k⊕

i=1

αi [ri ]⊕α[1] and ψ2(d) := (m− 2n−α)[1].

(ii) Suppose that 0≤ m− 2n ≤ α; define

ψ1(d) :=
k⊕

i=1

αi [ri ]⊕ (m− 2n)[1] and ψ2(d) := [0].

(iii) Suppose that −α ≤m− 2n < 0. Let x0 and y0 be the indices such that r y0
x0 be

the (2n−m)-th number from the smallest in the ordered sequence

(4-3) r1
1 ≥ · · · ≥ rα1

1 > r1
2 ≥ · · · ≥ rα2

2 > · · ·> r1
k−1 ≥ · · · ≥ rαk−1

k−1 > r1
k ≥ · · · ≥ rαk

k ,
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that is, choose x0 and y0 so that αx0 − y0+ 1+
∑k

i=x0+1 αi = 2n−m. Define

ψ1(d) :=
x0−1⊕
i=1

αi [ri ]⊕ (y0− 1)[rx0] and

ψ2(d) := (αx0− y0+ 1)[rx0 − 1]⊕
k⊕

i=x0+1

αi [ri − 1].

(iv) Suppose that m− 2n <−α; define ψ1(d)= ψ2(d) := [0].

Note that the definitions of ψ1(d) and ψ2(d) depend on the dimensions m and 2n.

4.4. For ψ1(d) as given in 4.3, we define the element 8∗(ψ1(d)). If ψ1(d)= [0],
we define 8∗(ψ1(d)) := [0]. Assume next that ψ1(d) 6= [0]. Suppose that

ψ1(d)=
l⊕

i=1

βi⊕
j=1

[ f j
i ],

where the numbers f j
i are ordered as

(4-4) f 1
1 = · · · = f β1

1 > f 1
2 = · · · = f β2

2 > · · ·

> f 1
l−1 = · · · = f βl−1

l−1 > f 1
l = · · · = f βl

l > 0.

Let β :=
∑l

i=1 βi be the number of rows of ψ1(d). We define the number s y
x

according to the following cases:

(i) Suppose that β is even, and let f y2
x2 ≥ f y1

x1 be the two median numbers in (4-4).

(a) If f y1
x1 = f y2

x2 are odd and y1 is even, we define s y
x by

s y
x :=


f y
x + 1 if either x = x2 and y < y2, or x < x2;

f y
x if either x = x1 and y = y1, or x = x2 and y = y2;

f y
x − 1 if either x = x1 and y > y1, or x > x1.

(b) Otherwise, we define

s y
x :=

{
f y
x + 1 if either x = x2 and y ≤ y2, or x < x2;

f y
x − 1 if either x = x1 and y ≥ y1, or x > x1.

(ii) Suppose that β is odd, and let f y3
x3 ≥ f y2

x2 ≥ f y1
x1 be the three median numbers

in (4-4).

(a) If f y2
x2 = f y3

x3 are odd and y2 is even, we define

s y
x :=


f y
x + 1 if either x = x3 and y < y3, or x < x3;

f y
x if either x = x2 and y = y2, or x = x3 and y = y3;

f y
x − 1 if either x = x1 and y ≥ y1, or x > x1.
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(b) Otherwise, we define

s y
x :=

{
f y
x + 1 if either x = x3 and y ≤ y3, or x < x3;

f y
x − 1 if either x = x2 and y ≥ y2, or x > x2.

Then, we define

(4-5)
8∗(ψ1(d)) :=

{⊕l
i=1

⊕βi
j=1[s

j
i ] for case (i.a) and (i.b),⊕l

i=1
⊕βi

j=1[s
j

i ]⊕ [1] for case (ii.a) and (ii.b);

8(d) :=8∗(ψ1(d))⊕ψ2(d).

The partition 8(d) is either [0] or an orthogonal partition of size m. Define

8(O) :=

{
O8(d) if 8(d) 6= [0],
∅ if 8(d)= [0],

that is, 8(O) is a nilpotent orbit in so(W ) if it is nonempty.

4.5. Example. Suppose that 2n=24, m=25, and d=[6]⊕2[5]⊕[4]⊕2[2]; that
is, r1

1 =6, r1
2 =5, r2

2 =5, r1
3 =4, r1

4 =2, and r2
4 =2. We have α=1+2+1+2=6

and m − 2n = 25− 24 = 1, so we are in case (ii) of 4.3. Thus, ψ2(d) = [0] and
ψ1(d)= [6]⊕2[5]⊕[4]⊕2[2]⊕[1]. Now, α+ (m−2n)= 7 is odd, and the three
median numbers of sequence Equation (4-4) are 5 > 4 > 2. We are in case (ii.b)
of 4.4 and, hence, s1

1 =7, s1
2 =6, s2

2 =6, s1
3 =3, s1

4 =1, s2
4 =1, and s1

5 =0. Thus,
8(d)=8∗(ψ1(d))= [7]⊕ 2[6]⊕ [3]⊕ 3[1] and ϕ(d)= [5]⊕ 2[4]⊕ [3]⊕ 9[1].

4.6. Proposition. If O is a nilpotent orbit contained in the image of τ1, then 8(O)
is the unique maximal element and ϕ(O) is the unique minimal element in the set
of nilpotent orbits in τ2(τ

−1
1 (O)).

4.7. Suppose that we are not in the case (iv) of 4.3. We want to define a new
partition λ(d) of size 2n. If m − 2n ≥ α, we define λ(d) := d. Next, we suppose
that m − 2n < α. Define a row [r y0

x0 ] as follows: Let [r y0
x0 ] be the smallest element

in the ordered sequence (4-3) satisfying the condition

(4-6)
k∑

i=x0+1

αiri + (αx0− y0+ 1)rx0 + (m− 2n)≥ y0− 1+
x0−1∑
i=1

αi ,

where x0 is some number between 1 and k, and y0 is between 1 and αx0 . Define

σ :=

k∑
i=x0+1

αiri + (αx0− y0+ 1)rx0 + (m− 2n)−
(

y0− 1+
x0−1∑
i=1

αi

)
,

δ := y0− 1+
x0−1∑
i=1

αi − (m− 2n).
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It is clear that 0 ≤ σ < r y0
x0 and 0 ≤ δ. We define λ(d) according to the following

cases:

(i) If r y0
x0 is even or y0 is odd, we define

λ(d) := e⊕


[σ −1]⊕(δ+1)[1], if σ is odd,
δ[1] if σ = 0,
[σ −2]⊕(δ+2)[1] if σ is positive and even,

where

e :=
x0−1⊕
i=1

αi⊕
j=1

[r j
i ]⊕

y0−1⊕
j=1

[r j
x0
].

(ii) If r y0
x0 is odd and y0 is even, we define

λ(d) := e′⊕
{
[σ −1]⊕(δ+2)[1], if σ is odd,
[σ ]⊕(δ+1)[1], if σ is even,

where

e′ :=
x0−1⊕
i=1

αi⊕
j=1

[r j
i ]⊕

y0−2⊕
j=1

[r j
x0
]⊕ [r y0−1

x0
− 1].

It is not difficult to see that λ(d) is a symplectic partition of size 2n and λ(d)≤ d.
Finally, we define

λ(Od) := Oλ(d).

4.8. Example. Suppose that 2n=m = 60 and d = 6[8]⊕2[6]. Then, m−2n= 0,
α = 6+ 2= 8, ψ2(d)= [0] and ψ1(d)= d. Hence,

8(d)=8∗(ψ1(d))= 4[9]⊕ 2[7]⊕ 2[5].

Now, r1
1 = r2

1 = · · · = r6
1 = 8, r1

2 = r2
2 = 6, α1 = 6, α2 = 2 and k = 2. Therefore,

r y0
x0 = r1

2 , that is, x0=2 and y0=1. Hence, σ =0+(2−1+1)·6+0−(1−1+6)=6,
which is even, and δ=(1−1+6)−0=6. Then, λ(d)=6[8]⊕[4]⊕8[1]. The number
of rows for λ(d) is 6+ 1+ 8= 15. Hence, ψ1(λ(d))= λ(d) and ψ2(λ(d))= [0].
Write ψ1(λ(d))=

⊕l
i=1

⊕βi
j=1[ f

j
i ], where f 1

1 = f 2
1 = · · · = f 6

1 = 8, f 1
2 = 4, and

f 1
3 = f 2

3 = · · · = f 8
3 = 1. The number of rows of ψ1(λ(d)) is odd. So now we are

in the case (ii.b) of 4.4 and, therefore, 8(λ(d))=8∗(ψ1(λ(d)))= 6[9]⊕[5]⊕[1].
It is clear that λ(d) < d, but 8(λ(d)) > 8(d).

4.9. Proposition. Let O be a nilpotent orbit contained in the image of τ1. Then,
8(λ(O)) is the unique maximal element in the set {8(Q) | Q≤ O}.

5. The rules for simple signed partitions

From now on to the end of this paper we assume that F = R. Let τ1 and τ2 be the
maps defined in 3.4.
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5.1. Suppose O is a nilpotent orbit in sp(V ) that is in the image of τ1, that d is
the signed partition corresponding to O, and that γ is an element in V ⊗W such
that τ1(γ ) is in O. Assume V = V 1

⊕ · · · ⊕ V k is an orthogonal decomposition
corresponding to the Jordan blocks of the decomposition d =

⊕k
i=1 di , such that

each di is a simple symplectic signed partition, as introduced in 2.6. Now, γ can be
written as (γ 1, . . . , γ k), where γ i

∈ V i
⊗W , and τ1(γ ) ∈

⊕k
i=1 sp(V i )⊆ sp(V ).

Write τ1(γ ) = (π
1(τ1(γ )), . . . , π

k(τ1(γ ))) with π i (τ1(γ )) ∈ sp(V i ) for each i ,
and assume that

π i (τ1(γ ))= ei
1 f i

2 + · · ·+ ei
ri−1 f i

ri
+ ei

ri
ei

ri
;

that is, π i (τ1(γ )) is an element of the nilpotent orbit in sp(V i ) corresponding to
[2ri ]

−, as in 3.1. Then, there is a self-dual set S = {vi
l , w

i
l , zi
| l = 1, . . . , ri − 1}

and an isotropic vector ωi (possibly trivial) orthogonal to S, such that γ i is of the
form

ei
1⊗ v

i
1+ ei

2⊗ v
i
2+ · · ·+ ei

ri−1⊗ v
i
ri−1+ ei

ri
⊗ zi

+ f i
1 ⊗ω

i
+ f i

2 ⊗w
i
1+ · · ·+ f i

ri−1⊗w
i
ri−2+ f i

ri
⊗wi

ri−1.

Therefore, by Equation (3-1), τ2(γ ) has a block of the form

vi
1 ∧ω

i
+ vi

2 ∧w
i
1+ · · ·+ v

i
ri−1 ∧w

i
ri−2+ zi

∧wi
ri−1.

This block corresponds to [2ri + 1]+ or [2ri − 1]+, depending on whether the vector
ωi can be nonzero or not.

5.2. Assume that π i (τ1(γ )) = ei
1 f i

2 + · · · + ei
ri−1 f i

ri
− ei

ri
ei

ri
; that is, π i (τ1(γ )) is

an element in the nilpotent orbit in sp(V i ) corresponding to [2ri ]
+. Then, there is

a set S = {vi
l , w

i
l , z′i | l = 1, . . . , ri − 1} such that

(vi
r , w

i
s)= δrs, (vi

r , v
i
s)= (w

i
r , w

i
s)= (v

i
r , z′i )= (wi

r , z′i )= 0, (z′i , z′i )=−1

for any r, s = 1, . . . , l and an isotropic vector ωi orthogonal to S, such that γ i is
of the form

ei
1⊗ v

i
1+ ei

2⊗ v
i
2+ · · ·+ ei

ri−1⊗ v
i
ri−1+ ei

ri
⊗ z′i

+ f i
1 ⊗ω

i
+ f i

2 ⊗w
i
1+ · · ·+ f i

ri−1⊗w
i
ri−2+ f i

ri
⊗wi

ri−1.

Therefore, τ2(γ ) has a block of the form

vi
1 ∧ω

i
+ vi

2 ∧w
i
1+ · · ·+ v

i
ri−1 ∧w

i
ri−2+ z′i ∧wi

ri−1.

This block corresponds to [2ri + 1]− or [2ri − 1]−, depending on whether the vector
ωi can be nonzero or not.
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5.3. Assume now that

π i (τ1(γ ))= ei
1 f i

2 + · · ·+ ei
2ri−2 f i

2ri−1;

that is, π i (τ1(γ )) is an element in the nilpotent orbit in sp(V i ) corresponding to
[2ri − 1]+⊕ [2ri − 1]−. There is a self-dual set S = {vi

l , w
i
l | l = 1, . . . , 2ri − 2}

and two isotropic vectors ωi
0 and ωi

2ri−1, orthogonal to each other and orthogonal
to S, such that γ i is of the form

ei
1⊗ v

i
1+ ei

2⊗ v
i
2+ · · ·+ ei

2r i−2⊗ v
i
2ri−2+ ei

2ri−1⊗ω
i
2ri−1

+ f i
1 ⊗ω

i
0+ f i

2 ⊗w
i
1+ · · ·+ f i

2ri−2⊗w
i
2ri−3+ f i

2ri−1⊗w
i
2ri−2.

Therefore, τ2(γ ) has a block of the form

vi
1 ∧ω

i
0+ v

i
2 ∧w

i
1+ · · ·+ v

i
2ri−2 ∧w

i
2ri−3+ω

i
2ri−1 ∧w

i
2ri−2.

This block corresponds to
[2ri ]

+
⊕[2ri ]

− if both ωi
0 and ωi

2ri−1 are allowed to be nonzero;
[2ri − 1]+⊕[2ri − 1]− if only one of ωi

0 and ωi
2ri−1 is allowed to be nonzero;

[2ri − 2]+⊕[2ri − 2]− if both ωi
0 and ωi

2ri−1 have to be zero.

5.4. Example. Suppose that 2n=8, p=4, q=4 and d=[4]+⊕[2]−⊕[1]+⊕[1]−.
Let γ be an element in V⊗W such that τ1(γ ) is in the nilpotent orbit corresponding
to d. Now, d = d1

⊕ d2
⊕ d3, where d1

:= [4]+, d2
:= [2]− and d3

:= [1]+⊕[1]−.
We have the corresponding decomposition V 1

⊕ V 2
⊕ V 3 of V , where V 1 is 4-

dimensional, and V 2 and V 3 are 2-dimensional. Therefore, a nilpotent orbit Od ′ in
so(W ) is in τ2(τ

−1
1 (Od)) if and only if

d ′ = d ′1⊕ d ′2⊕ d ′3⊕
1
2(8− |d

′

1| − |d
′

2| − |d
′

2|)([1]
+
⊕[1]−),

such that d ′1 is [5]− or [3]−, d ′2 is [3]+ or [1]+, d ′3 is [2]+⊕[2]−, [1]+⊕[1]− or ∅,
and

∑3
i=1|d

′

i | ≤ 8. The only possible combinations for d ′ are

e1 := [5]−⊕[3]+, e4 := [3]−⊕[1]+⊕[2]+⊕[2]−,

e2 := [5]−⊕[1]+⊕[1]+⊕[1]−, e5 := [3]−⊕[1]+⊕[1]+⊕[1]−⊕[1]+⊕[1]−,

e3 := [3]−⊕[3]+⊕[1]+⊕[1]−.

Hence,

τ2(τ
−1
1 (Od))= Oe1 ∪Oe2 ∪Oe3 ∪Oe4 ∪Oe5 .
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6. The construction for real cases

In this section, we assume that F = R, that V is a 2n-dimensional real symplectic
space and that W is an m-dimensional real quadratic space with signature (p, q).
Let τ1 and τ2 be the moment maps given in 3.4.

6.1. Our purpose is to define an orthogonal signed partition 8(λ(d, Q)) for an
admissible signed Young diagram (d, Q) (see 2.3), such that the following main
theorem holds:

Theorem. Let Od be a nilpotent orbit in sp(V ) contained in the image of τ1. Then

τ2(τ
−1
1 (Od))=

⋃
(d,Q)

O8(λ(d,Q)),

where the union runs over all possible admissible signed Young diagrams of the
signed partition d. The union consists of at most two closures of nilpotent orbits.

The theorem will be proved in 7.8.

6.2. Let

(6-1) d :=
k⊕

i=1

αi [ai ]
+
⊕

l⊕
j=1

β j [b j ]
−

be a symplectic signed partition of sized 2n, where a1 > a2 > · · · > ak > 0 and
b1 > b2 > · · ·> bl > 0. We can rewrite d as

(6-2) d =
k⊕

i=1

αi⊕
j=1

[a j
i ]
+
⊕

l⊕
i=1

βi⊕
j=1

[b j
i ]
−

such that the numbers a j
i and b j

i satisfy the conditions

a1
1 = · · · = aα1

1 > a1
2 = · · · = aα2

2 > · · ·> a1
k = · · · = aαk

k ,

b1
1 = · · · = bβ1

1 > b1
2 = · · · = bβ2

2 > · · ·> b1
l = · · · = bβl

l ,

where a1
i = · · · = aαi

i = ai and b1
j = · · · = bβ j

j = b j for each i and j . To simplify
the notation, we define an order on the set {[ay

x ]
+
| x, y}, as follows. We say that

[ay1
x1 ]
+ > [ay2

x2 ]
+ if either x1 < x2, or x1 = x2 and y1 < y2. It is a total order on the

set {[ay
x ]
+
| x, y}; that is, we have the sequence

(6-3) [a1
1]
+ > · · ·> [aα1

1 ]
+ > [a1

2]
+ > · · ·> [aα2

2 ]
+ > · · ·

> [a1
k−1]

+ > · · ·> [aαk−1
k−1 ]

+ > [a1
k ]
+ > · · ·> [aαk

k ]
+.

We define a total order on the set {[by
x ]
−
| x, y} analogously.
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6.3. The ten cases. We want to define two signed partitions ψ1(d) and ψ2(d)
from the symplectic signed partition d. The definition depends on the signature
(p, q) of W . Without loss of generality we assume that p ≥ q. Let α :=

∑k
i=1 αi ,

β :=
∑l

j=1 β j , d1 := min{p− n, β} and d2 := min{q − n, α}. We define ψ1(d)
and ψ2(d) according to the following cases:

(i) Suppose q ≥ n and β−α≥ p−n. We have p≥ n and β >β−α−(p−n)≥ 0.
Therefore, there exists a unique number ν between 0 and l such that

∑l
i=νβi >

β − α− (p− n) ≥
∑l

i=ν+1 βi . Let β ′ :=
∑l

i=ν βi − (β − α− (p− n)), and
define

ψ1(d) :=
( k⊕

i=1

αi⊕
j=1

[a j
i ]
+

)
⊕

( ⊕
[by

x ]
−
≥[bβ

′

ν ]
−

[by
x ]
−

)
⊕ (p− n)[1]+,

ψ2(d) :=
( ⊕
[by

x ]
−<[bβ

′

ν ]
−

[by
x − 1]+

)
⊕ (β −α+ q − p)[1]−.

(ii) Suppose that q ≥ n and p− n > β − α ≥ p− q . It is clear that both d1 and
p−n−d1 are nonnegative. Now, α−β+d1 is equal to α or α−β+ p−n, and
hence α−β+d1 is also nonnegative. Now, β−α+q−n−d1 ≥ p−n−d1.
So, β −α+ q − n− d1 is nonnegative. Define

ψ1(d) := d⊕ d1[1]+⊕ (α−β + d1)[1]−,

ψ2(d) := (p− n− d1)[1]+⊕ (β −α+ q − n− d1)[1]−.

(iii) Suppose that q ≥ n and p − q > β − α ≥ −(q − n). Clearly both d2 and
q−n−d2 are nonnegative. Now, β−α+d2 is equal to β or β−α+ (q−n).
Hence, β−α+d2 is nonnegative. Next, α−β+ p−n−d2 > q−n−d2. So,
α−β + p− n− d2 is also nonnegative. Define

ψ1(d) := d⊕ (β −α+ d2)[1]+⊕ d2[1]−,

ψ2(d) := (α−β + p− n− d2)[1]+⊕ (q − n− d2)[1]−.

(iv) Suppose that q ≥ n and−(q−n)>β−α. Since α≥α−β−(q−n)> 0, there
is a unique number µ between 0 and k such that

∑k
i=µαi >α−β− (q−n)≥∑k

i=µ+1αi . Let α′ :=
∑k

i=µ αi − (α−β − (q − n)). Define

ψ1(d) :=
( ⊕
[ay

x ]
+
≥[aα

′

µ ]
+

[ay
x ]
+

)
⊕

( l⊕
i=1

βi⊕
j=1

[b j
i ]
−

)
⊕ (q − n)[1]−,

ψ2(d) :=
( ⊕
[ay

x ]
+<[aα

′

µ ]
+

[ay
x − 1]−

)
⊕ (α−β + p− q)[1]+.
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(v) Suppose that p≥n>q≥n−β and β−α≥ p−q. We have β≥β−α−(p−n)≥
n− q > 0. Let ν be the number such that∑l

i=νβi > β −α− (p− n)≥
∑l

i=ν+1 βi ,

and let β ′ :=
∑l

i=ν βi − (β −α− (p− n)). Define

ψ1(d) :=
( k⊕

i=1

αi⊕
j=1

[a j
i ]
+

)
⊕

( ⊕
[by

x ]
−
≥[bβ

′

ν ]
−

[by
x ]
−

)
⊕ (p− n)[1]+,

ψ2(d) :=
( ⊕
[by

x ]
−<[bβ

′

ν ]
−

[by
x − 1]+

)
⊕ (β −α+ q − p)[1]−.

(vi) Suppose that p ≥ n > q ≥ n − β and p − q > β − α ≥ n − q . Now, both
β − α + q − n and p − q − β + α are nonnegative. Since β ≥ n − q > 0,
there is a unique number ν ′ such that

∑l
i=ν′βi > n − q ≥

∑l
i=ν′+1βi . Let

β ′′ :=
∑l

i=ν′ βi − (n− q). Define

ψ1(d) :=
( k⊕

i=1

αi⊕
j=1

[a j
i ]
+

)
⊕

( ⊕
[by

x ]
−
≥[bβ

′′

ν′
]
−

[by
x ]
−

)
⊕ (β −α+ q − n)[1]+,

ψ2(d) :=
( ⊕
[by

x ]
−<[bβ

′′

ν′
]
−

[by
x − 1]+

)
⊕ (α−β + p− q)[1]+.

(vii) Suppose that p≥n>q≥n−β and n−q>β−α. Hence, α≥α−β−q+n>0
and β ≥ n− q > 0. Let µ and ν ′ be the numbers such that∑k

i=µαi > α−β− (q−n)≥
∑k

i=µ+1 αi and
∑l

i=ν′ βi > n−q ≥
∑l

i=ν′+1 βi .

Let α′ :=
∑µ

i=1αi − (α− β − (q − n)) and β ′′ :=
∑ν′

i=1βi − (n− q). Now,
α−β + p− q ≥ α−β + n− q ≥ 0. Define

ψ1(d) :=
( ⊕
[ay

x ]
+
≥[aα

′

µ ]
+

[ay
x ]
+

)
⊕

( ⊕
[by

x ]
−
≥[bβ

′′

ν′
]
−

[by
x ]
−

)
,

ψ2(d) :=
( ⊕
[ay

x ]
+<[aα

′

µ ]
+

[ay
x −1]−

)
⊕

( ⊕
[by

x ]
−<[bβ

′′

ν′
]
−

[by
x −1]+

)
⊕(α−β+ p−q)[1]+.

(viii) Suppose that n > p ≥ n − α, n > q ≥ n − β and β − α ≥ p− q . Hence,
α ≥ n− p> 0 and β ≥ β−α+n− p> 0. Let µ′ and ν be the numbers such
that∑k

i=µ′ αi > n− p≥
∑k

i=µ′+1 αi and
∑l

i=ν βi >β−α− (p−n)≥
∑l

i=ν+1 βi .
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Let α′′ :=
∑µ

i=1 αi − (n− p) and β ′ :=
∑l

i=ν βi − (β−α− (p−n)). Define

ψ1(d) :=
( ⊕
[ay

x ]
+>[aα

′′

µ′
]
+

[ay
x ]
+

)
⊕

( ⊕
[by

x ]
−>[bβ

′

ν ]
−

[by
x ]
−

)
,

ψ2(d) :=
( ⊕
[ay

x ]
+
≤[aα

′′

µ′
]
+

[ay
x − 1]−

)
⊕

( ⊕
[by

x ]
−
≤[bβ

′

ν ]
−

[by
x − 1]+

)
⊕ (β −α+ q − p)[1]−.

(ix) Suppose that n > p ≥ n − α, n > q ≥ n − β and p− q > β − α. Hence,
α≥α−β+n−q>0 and β≥n−q>0. Letµ and ν ′ be the numbers such that∑k

i=µ αi >α−β−(q−n)≥
∑k

i=µ+1 αi and
∑l

i=ν′ βi > n−q ≥
∑l

i=ν′+1 βi .
Let α′ :=

∑k
i=µαi − (α−β− (q− n)) and β ′′ :=

∑l
i=νβi − (n−q). Define

ψ1(d) :=
( ⊕
[ay

x ]
+
≥[aα

′

µ ]
+

[ay
x ]
+

)
⊕

( ⊕
[by

x ]
−
≥[bβ

′′

ν′
]
−

[by
x ]
−

)
,

ψ2(d) :=
( ⊕
[ay

x ]
+<[aα

′

µ ]
+

[ay
x − 1]−

)
⊕

( ⊕
[by

x ]
−<[bβ

′′

ν′
]
−

[by
x − 1]+

)
⊕ (α−β + p− q)[1]+.

(x) Suppose that p < n−α, or q < n−β. In this case we define

ψ1(d)= ψ2(d) :=∅.

6.4. Lemma. Let ψ1(d) be defined as in 6.3. If we write

ψ1(d) :=
k′⊕

i=1

α′i⊕
j=1

[a′ ji ]
+
⊕

l ′⊕
i=1

β ′i⊕
j=1

[b′ ji ]
−,

then
∑k′

i=1 α
′

i =
∑l ′

i=1 β
′

i ; that is, the number of positive rows of ψ1(d) is equal to
the number of negative rows.

Proof. For case (i) in 6.3, we have∑k′
i=1 α

′

i =
∑k

i=1αi+ p−n = α+ p−n,∑l ′
i=1 β

′

i =
∑ν

i=1 βi+β
′
=
∑ν

i=1 βi+
∑ν

i=1 βi−(β−α−(p−n))= α−(p−n).

Hence,
∑k′

i=1 α
′

i =
∑l ′

i=1 β
′

i for this case.
Next, we consider case (ii). We have∑k′

i=1 α
′

i =
∑k

i=1 αi + d1 = α+ d1∑l ′
i=1 β

′

i =
∑l

i=1 βi + d1− (β −α)= α+ d1.

Hence,
∑k′

i=1 α
′

i =
∑l ′

i=1 β
′

i . The proofs for the other cases are similar, and we skip
them. �

From this lemma we know that the number of rows of ψ1(d) is even.
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6.5. Lemma. Let [r y1
x1 ]
∗ < [r y2

x2 ]
∗ be the two median elements with respect to an

order on the set of rows of ψ1(d). If [r y−1
x ]

∗
⊕ [r y

x ]
∗ is a double odd block of d

such that [r y
x ]
∗ is in ψ1(d) but [r y−1

x ]
∗ is not in ψ1(d), then [r y

x ]
∗
≤ [r y1

x1 ]
∗ with

respect to the same order.

Proof. For case (i) in 6.3, [r y
x ]
∗ is [r y

x ]
+; that is, it ends with �. If [rwz ]

∗ < [r y
x ]
+,

then [rwz ]
∗ also ends with �. The lemma follows from 6.4, because no more than

half the number of rows end with �. For cases (ii) and (iii), the lemma is true
because no such [r y

x ]
∗ exist. For case (iv), [r y

x ]
∗ is [r y

x ]
−; that is, it ends with �. If

[rwz ]
∗ < [r y

x ]
−, then [rwz ]

∗ also ends with �. This lemma holds again, by 6.4. The
proofs for the other cases are similar, and we omit them. �

6.6. Minimal and maximal elements. We set ϕ(d) := [0] for case (x) in 6.3, and

(6-4) ϕ(d) :=
( k⊕

i=1

αi [ai − 1]−
)
⊕

( l⊕
j=1

β j [b j − 1]+
)

⊕ (α+ p− n)[1]+⊕ (β + q − n)[1]−

for the other cases.
Suppose that ψ1(d) 6= [0]. Let (ψ1(d), Q) be a signed Young diagram of ψ1(d).

Then, as in Equation (4-5), we can define the element 8∗(ψ1(d), Q) as follows:
Assume that ψ1(d) is written as

⊕δ
i=1

⊕ρi
j=1[ f

j
i ]
∗. Let s y

x be defined as in 4.4. If
s y

x = f y
x , let the sign of [s y

x ]
∗ be the same as that of [ f y

x ]
∗; if s y

x 6= f y
x , let the sign

of [s y
x ]
∗ be opposite to the sign of [ f y

x ]
∗. Finally, define

8∗(ψ1(d), Q) :=
δ⊕

i=1

ρi⊕
j=1

[s j
i ]
∗

8(d, Q) :=8∗(ψ1(d), Q)⊕ψ2(d).

Proposition. If 8(d, Q) and ϕ(d) are not [0], then they are signed orthogonal
partitions of signature (p, q).

Proof. From Equation (6-4), it is clear that the signature of ϕ(d) is (p, q). We
know that d is a finite sum of simple even blocks or double odd blocks. Hence,
it is clear that ϕ(d) is a finite sum of simple odd blocks or double even blocks.
Therefore, ϕ(d) is an orthogonal signed partition.

Next, we consider 8(d, Q). The meaning of 6.5 is that the image of two rows
of a double block still have the same length after applying 8∗. Hence, from its
definition, it is not difficult to see that 8(d, Q) is an orthogonal signed parti-
tion. If we check the definitions of ψ1(d) and ψ2(d), we see that the signature of
ψ1(d)⊕ψ2(d) is (p, q). Clearly, the signature ofψ1(d) is the same as the signature
of 8∗(ψ1(d), Q) for any order Q. Hence, 8(d, Q) has signature (p, q). �
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Let Od be the nilpotent orbit in sp(V ) corresponding to d. From the previous
proposition, we know that each of ϕ(d) and 8(d, Q) correspond to a nilpotent
orbit in so(W ). We define

ϕ(Od) := Oϕ(d) and 8(Od) :=
⋃

Q O8(d,Q),

where the union
⋃

Q O8(d,Q) is running over all possible signed Young diagrams
(ψ1(d), Q) of the signed partition ψ1(d). Of course, it is a finite union.

6.7. Example. Suppose that 2n = 36, p = 21, q = 19 and d = 2[4]+⊕ [3]+⊕
5[4]−⊕[3]−⊕[2]−. Now, p−q= 2, α1= 2, α2= 1, α= 2+1= 3, β1= 5, β2= 1,
β3 = 1, β = 5+ 1+ 1= 7, d1 =min{21− 18, 7} = 3, d2 =min{19− 18, 3} = 1
and β−α= 4. So, we are in case (i) of 6.3. Now, β2+β3 >β−α− (p−n)≥ β3.
Then, ν = 2 and β ′ = (1+ 1)− (7− 3− (21− 18)) = 1. Therefore, ψ1(d) =
2[4]+⊕[3]+⊕5[4]−⊕[3]−⊕3[1]+ and ψ2(d)= [1]+⊕2[1]−. Note that the number
of positive blocks in ψ1(d) is equal to the number of negative blocks. It is not
difficult to see that there are 42 different signed Young diagrams (ψ1(d), Q) of the
signed partition ψ1(d). However, they only produce two different 8∗(ψ1(d), Q),
which are

8∗(ψ1(d), Q1)= 5[5]+⊕[2]+⊕[5]−⊕[3]−⊕[2]−,

8∗(ψ1(d), Q2)= 4[5]+⊕[3]+⊕[2]+⊕ 2[5]−⊕[2]−.

Therefore, 8(Od)= Oe1 ∪Oe2 and ϕ(Od)= O f , where

e1 := 5[5]+⊕[2]+⊕[1]+⊕[5]−⊕[3]−⊕[2]−⊕ 2[1]−,

e2 := 4[5]+⊕[3]+⊕[2]+⊕[1]+⊕ 2[5]−⊕[2]−⊕ 2[1]−,

f := 5[3]+⊕[2]+⊕ 7[1]+⊕ 2[3]−⊕[2]−⊕ 8[1]−.

6.8. Admissible signed Young diagrams. Let d be a symplectic signed partition,
as in 6.2. Rewrite d as

d =
s⊕

i=1

γi⊕
j=1

[r j
i ]
•,

where each • is plus or minus, as usual, and these r j
i satisfy the condition r1

1 =

· · · = rγ1
1 > r1

2 = · · · = rγ2
2 > · · · > r1

s = · · · = rγs
s . Let rx be the size of a row

[r y
x ]. We define a special kind of signed Young diagrams of d called admissible,

as follows: The definition depends on the signature (p, q) of W . Recall that we
assume that p≥ q and, in a Young diagram, a row of longer length is always above
a shorter row.

(i) Among the rows of same length, if the length rx is even, we put a row [r y
x ]
∗

with sign such that the difference of the negative rows and the positive rows
that are no lower than the row [r y

x ]
∗ is as close to q − p as possible.
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(ii) If rx is odd, then the number of positive rows of length rx is equal to the
number of negative rows of the same length. Let the signs of these [r y

x ]
∗

appear alternatively, in the order starting from the sign such that the difference
of negative rows and positive rows that are no lower than the row [r y

x ]
∗ is as

close to p− q as possible.

If (d, Q) is an admissible signed Young diagram of d, then Q is called an
admissible order on the set of rows in the signed partition d.

6.9. Example. Suppose that 2n = 26, p = 14, q = 13 and d = 2[4]+⊕ 3[4]−⊕
[3]+⊕[3]−. The rows of d have two lengths, namely 4 and 3. So, the top five rows
are of size 4, and the next two rows are of size 3. Since now p− q = 1, the first
row of an admissible signed Young diagram of d must be negative. The second
row is allowed to be positive or negative. If the second row is positive, then the
third row has to be negative. If the second row is negative, then the third row is
forced to be positive, and so on. Therefore, we have the following eight possible
admissible signed Young diagrams associated to the signed partition d:

� � � �
� � � �
� � � �
� � � �
� � � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � �
� � �

6.10. Let (d, Q) be an admissible signed Young diagram of a symplectic signed
partition d of size 2n. Recall that Q is an order on the set {[r y

x ]
∗
}. Let [r y0

x0 ]
∗ be the

smallest element under the order Q, subject to the condition that v ≤ p′ + p− n
and u ≤ q ′+ q − n, where

(p′, q ′) := sgn
( ⊕
[r y

x ]
∗
≤[r

y0
x0 ]
∗

[r y
x ]
∗

)
,

u is the cardinality of the set {[r y
x ]
+
| [r y

x ]
+> [r y0

x0 ]
∗
} and v is the cardinality of the

set {[r y
x ]
−
| [r y

x ]
−> [r y0

x0 ]
∗
}. Set

σ :=min{p′+ p− n− v, q ′+ q − n− u}.
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Let [2σ ]∗ be a simple signed partition, with the same sign as the sign of the row
next to [r y0

x0 ]
∗. We define λ(d, Q) according to the following three cases:

(i) If r y0
x0 is odd, y0 is even, and [r y0

x0 ]
∗ is a positive row, then we define

λ(d, Q) :=
⊕

[r y
x ]
∗>[r

y0−1
x0 ]

∗

[r y
x ]
∗
⊕[r y0−1

x0
− 1]−⊕[2σ ]∗⊕ (p′−σ)[1]+⊕ (q ′−σ +1)[1]−.

(ii) If r y0
x0 is odd, y0 is even, and [r y0

x0 ]
∗ is a negative row, then we define

λ(d, Q) :=
⊕

[r y
x ]
∗>[r

y0−1
x0 ]

∗

[r y
x ]
∗
⊕[r y0−1

x0
− 1]+⊕[2σ ]∗⊕ (p′−σ +1)[1]+⊕ (q ′−σ)[1]−.

(iii) In the remaining cases, set

λ(d, Q) :=
⊕

[r y
x ]
∗>[r

y0
x0 ]
∗

[r y
x ]
∗
⊕[2σ ]∗⊕ (p′− σ)[1]+⊕ (q ′− σ)[1]−.

Clearly, λ(d, Q) is a signed partition of signature (n, n). Moreover, we can check
that p′ + 1 = q ′ for case (i), p′ = q ′ + 1 for case (ii), and p′ = q ′ for case (iii).
Hence, λ(d, Q) is a symplectic signed partition.

6.11. Example. Suppose 2n = 22, d = [6]+⊕[6]−⊕[5]+⊕[5]−, and p= q = 11.
There are four admissible orders on the set of rows of d, namely

Q1 : [6]+> [6]−> [5]+> [5]−,
Q2 : [6]−> [6]+> [5]+> [5]−,
Q3 : [6]+> [6]−> [5]−> [5]+,
Q4 : [6]−> [6]+> [5]−> [5]+.

First, we consider Q1. Under the admissible order Q1, it is easy to check that
[r y0

x0 ]
∗
= [5]−. Then, (p′, q ′)= (2, 3), u = 2 and v = 1. Hence,

σ =min{2+ 11− 11− 1, 3+ 11− 11− 2} = 1.

Now, r y0
x0 = 5, y0 is 2, and [r y0

x0 ]
∗ is a negative row. So, we are in case (ii) of 6.10,

and
λ(d, Q1)= [6]+⊕[6]−⊕[4]+⊕[2]−⊕ 2[1]+⊕ 2[1]−.

For Q2, we have [r y0
x0 ]
∗
= [5]−. By the same argument, we have

λ(d, Q2)= [6]+⊕[6]−⊕[4]+⊕[2]−⊕ 2[1]+⊕ 2[1]−.

For Q3, we have [r y0
x0 ]
∗
= [5]+. Then, (p′, q ′) = (3, 2), u = 1 and v = 2. Hence,

σ =min{3+ 11− 11− 2, 2+ 11− 11− 1} = 1. Now, r y0
x0 = 5, y0 is 2 and [r y0

x0 ]
∗

is a positive row. So, we are in case (i) of 6.10, and

λ(d, Q3)= [6]+⊕[6]−⊕[4]−⊕[2]+⊕ 2[1]+⊕ 2[1]−.
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For Q4, we have [r y0
x0 ]
∗
= [5]+. By the same argument as for Q3, we have

λ(d, Q4)= [6]+⊕[6]−⊕[4]−⊕[2]+⊕ 2[1]+⊕ 2[1]−.

Note that λ(d, Q1)= λ(d, Q2) 6= λ(d, Q3)= λ(d, Q4).

6.12. Lemma. For all possible admissible signed Young diagrams (d, Q) of a
signed partition d, there are at most two different signed partitions λ(d, Q).

Proof. Let [a]∗ be a row of the signed partition d. Suppose that [a]∗ is [r y0
x0 ]
∗, under

some admissible order Q. If [a]∗ is a row in a double odd block with partner [b]∗,
then it might be that there is another admissible order Q′ such that [r y0

x0 ]
∗ is [b]∗.

If [a]∗ is a row of even length, it is also possible that there is another admissible
order Q′ such that [r y0

x0 ]
∗ is a row of the same length, but opposite sign. From

the construction, we know that these two situations are the only chances to obtain
different signed partitions λ(d, Q), λ(d, Q′). �

6.13. Lemma. If (d, Q) is an admissible signed Young diagram of a signed par-
tition d, then λ(d, Q)≤ d and 8(Oλ(d,Q)) is a single nilpotent orbit.

Proof. The first part is obvious from the definition of λ(d, Q) in 6.10.
We prove the second part. Let Q1 and Q2 be two different admissible orders of

the signed partition ψ1(λ(d, Q)). From the construction of λ(d, Q) and definition
of 8, it is not difficult to see that 8∗(ψ1(λ(d), Q), Q1) = 8

∗(ψ1(λ(d), Q), Q2).
Hence,

8(λ(d, Q), Q1)=8(λ(d, Q), Q2).

Therefore, 8(Oλ(d,Q)) is a single nilpotent orbit. �

Because the signed partition 8(λ(d, Q), Q′) is independent of the admissible
order Q′ of ψ1(λ(d, Q)), we will write 8(λ(d, Q)) instead of 8(λ(d, Q), Q′).

6.14. Example. Suppose that 2n = 26, p = 14, q = 13 and d = 2[4]+⊕ 3[4]−⊕
[3]+⊕[3]−. We see that [r y0

x0 ]
∗
=[3]+ for any admissible order Q on the set of rows

of d. Hence, (p′, q ′)= sgn([3]+⊕[3]−)= (3, 3), (p′+ p−n, q ′+q−n)= (4, 3),
u = 2, v = 3 and σ = min{4− 3, 3− 2} = 1. Now, r y0

x0 = 3 is odd, y0 = 2 is
even, [r y0

x0 ]
∗ is a positive row, and σ 6= 0. So we are in case (iii) of 6.10. Therefore,

λ(d, Q)= 2[4]+⊕3[4]−⊕3[1]+⊕3[1]− for all four different admissible orders Q.
It is obvious that λ(d, Q)≤ d. Now, ψ1(λ(d, Q))= 2[4]+⊕3[4]−⊕3[1]+⊕2[1]−

andψ2(λ(d, Q))=[1]+⊕[1]−. Therefore,8(λ(d, Q))=3[5]+⊕2[5]−⊕[1]+⊕[1]−.
It is not difficult to check that there are two signed Young diagrams (d, Q1) and
(d, Q2) of d such that

8(d, Q1)= 2[5]+⊕ 2[5]−⊕[3]+⊕[2]+⊕[2]−,

8(d, Q2)= 3[5]+⊕[5]−⊕[3]−⊕[2]+⊕[2]−.

Clearly, 8(λ(d, Q)) > 8(d, Q1) and 8(λ(d, Q)) > 8(d, Q2).
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7. The orbit correspondences for real reductive dual pairs

7.1. Keep the assumption that F := R, and let ϕ, 8 be the maps defined in 6.6.

Proposition. If O is a nilpotent orbit in sp(V ) such that O is in the image of τ1,
then 8(O) is the union of maximal elements in the set of nilpotent orbits contained
in τ2(τ

−1
1 (O)).

The proof of this proposition is in 7.4.

7.2. Complexification. Let W C
:= W ⊗R C. The real Lie algebra so(W ) is nat-

urally contained in the complex Lie algebra so(W C). Hence, a real orbit Q in
so(W ) is contained in a unique complex orbit in so(W C), denoted by QC. The
complex orbit QC is called the complexification of Q. If d is the signed partition
corresponding to the real orbit Q, then we can obtain the partition corresponding
to the complex orbit QC by forgetting the signs in d.

Lemma. Let Od be a nilpotent orbit contained in the image of τ1. If Q1 and Q2 are
two nilpotent orbits contained in 8(Od), then QC

1 = QC
2 .

Proof. Let Q1 and Q2 be the orders of rows of ψ1(d) such that Q1 and Q2 are
nilpotent orbits corresponding to

8∗(ψ1(d), Q1)⊕ψ2(d) and 8∗(ψ1(d), Q2)⊕ψ2(d),

respectively. From the construction, it is clear that the left summands have the
same complexification. Hence, the sums have the same complexification. �

7.3. Lemma. Let O be a nilpotent orbit in the image of τ1. Suppose that P is a
nilpotent orbit contained in τ2(τ

−1
1 (O)). There exists a nilpotent orbit Q contained

in 8(O) such that P≤ Q.

Proof. Let V C
:= V ⊗R C and W C

:=W ⊗R C. Let τC
1 : V

C
⊗

C
W C
→ sp(V C) and

τC
2 : V

C
⊗

C
W C
→ so(W C) be the complex moment maps. Clearly, the complex

nilpotent orbit PC is contained in τC
2 (τ

C
1
−1
(OC)). Moreover, if Q′ is a nilpotent

orbit contained in 8(O), then clearly Q′C = 8(OC), where 8(OC) is as defined
in 4.4. Hence, we have PC

≤ Q′C by 4.6. Clearly, we need only consider the case
when there is no nilpotent orbit P′ ⊆ τ2(τ

−1
1 (O)) such that P< P′ and P′C ≤ QC.

Let d=
⊕s

i=1
⊕γi

j=1[r
j

i ]
∗ be the symplectic signed partition corresponding to the

nilpotent orbit O. From 5.1, 5.2 and 5.3, we know that a nilpotent orbit contained
in τ2(τ

−1
1 (O)) should correspond to an orthogonal signed partition e, constructed

from d according the following rules:

(i) If [r j
i ]
+ (respectively, [r j

i ]
−) is an even single row of d, then e has an odd

single row [r j
i + 1]− or [r j

i + 1]− (respectively, [r j
i + 1]+ or [r j

i + 1]+); that
is, we can remove or add a signed box to an even single row of d. We shall
say that the row [r j

i + 1]∗ or [r j
i − 1]∗ is the image in e of the row [r j

i ]
∗.
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(ii) If [r j−1
i ]

+
⊕[r j

i ]
− is an odd double row, then e has a double row

[r j−1
i − 1]−⊕[r j

i − 1]+, [r j−1
i ]

+
⊕[r j

i ]
−, or [r j−1

i + 1]−⊕[r j
i + 1]+.

(iii) The signature of e is (p, q).

Suppose that P 6≤ Q′, for otherwise the lemma is proved. Give an order on the set
of rows of d as in Equation (6-3). Let [r y1

x1 ]
∗ be the largest row in d whose image

in the signed partition corresponding to P has longer length than its image in the
signed partition corresponding to Q′. From the construction of8(O), we see that d
has a row [r y2

x2 ]
∗ such that its image in the signed partition corresponding to Q′ has

longer length than that in the signed partition corresponding to P, and r y2
x2 ≥ r y1

x1 .
However, P 6≤ Q′, and there is no nilpotent orbit P′ contained in τ2(τ

−1
1 (O)) such

that P < P′ and P′C ≤ Q′C, so r y2
x2 is equal to r y1

x1 , while [r y1
x1 ]
∗ and [r y2

x2 ]
∗ have

opposite parity. Then, there is a nilpotent orbit Q′′ ∈ 8(O) such that the largest
row in d, with its image in the signed partition corresponding to P having longer
length than its image in the signed partition corresponding to Q′′, is strictly smaller
than [r y1

x1 ]
∗. Hence, the result can be obtained by induction. �

7.4. Proof of the proposition in 7.1. It is clear from the construction and the rules
in 5.1, 5.2 and 5.3 that every nilpotent Q in 8(O) is contained in τ2(τ

−1
1 (O)). Sup-

pose that Q1 and Q2 are two different nilpotent orbits contained in 8(O). From the
construction, we know that Q1 and Q2 have the same complexification. Therefore,
they are clearly not comparable. Suppose that P is a nilpotent orbit contained in
τ2(τ

−1
1 (O)). Then, by 7.3, P ≤ Q for some nilpotent orbit Q contained in 8(O).

Hence, every nilpotent orbit contained in8(O) is a maximal element in the ordered
set of nilpotent orbits contained in τ2(τ

−1
1 (O)). Moreover, every maximal element

in the set of nilpotent orbits contained in τ2(τ
−1
1 (O)) is contained in 8(O). �

7.5. Proposition. If O1 and O2 are nilpotent orbits in sp(V ) such that O1 ≥ O2,
then ϕ(O1) ≥ ϕ(O2). Moreover, ϕ(O) is the unique minimal element among the
nilpotent orbits contained in τ2(τ

−1
1 (O)).

Proof. Use the definition of ϕ in 6.6 and the rules in 5.1, 5.2 and 5.3. �

7.6. Lemma. If Od is a nilpotent orbit contained in the image of τ1, then O8(λ(d,Q))
is a maximal element in the set of nilpotent orbits in τ2(τ

−1
1 (Od)). Every maximal

element in the set of nilpotent orbits in τ2(τ
−1
1 (Od)) is of this form for some Q.

Proof. Suppose that O8(λ(d,Q)) is not a maximal element. Then, O8(λ(d,Q))<P for
some nilpotent orbit P in τ2(τ

−1
1 (Od)). Hence, OC

8(λ(d,Q)) <PC, contradicting 4.9.
It is also clear from 4.9 that every maximal element in the set of nilpotent orbits in
τ2(τ

−1
1 (Od)) is of the form O8(λ(d,Q)) for some Q. �
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7.7. Lemma. If Od1 , Od2 are two nilpotent orbits contained in the image of τ1 such
that Od1 ≤ Od2 , then, for every nilpotent orbit Q1 contained in

⋃
(d1,Q1)

O8(λ(d1,Q1)),
there is a nilpotent orbit Q2 contained in

⋃
(d2,Q2)

O8(λ(d2,Q2)) such that Q1 ≤ Q2,
where the union

⋃
(di ,Qi )

runs over the admissible signed Young diagrams of the
signed partition di .

Proof. Suppose (d1, Q1) is an admissible signed Young diagram of d1 such that
Q1 = O8(λ(d1,Q1)). We have λ(d1, Q1)≤ d1 ≤ d2. So, O8(λ(d1,Q1)) ⊂ τ2(τ

−1
1 (Od2)).

By 6.12, we know that a maximal element in the set of nilpotent orbits contained
in τ2(τ

−1
1 (Od2)) is equal to O8(λ(d2,Q2)) for some admissible signed Young diagram

(d2, Q2) of d2. Hence, Q1 ≤ O8(λ(d2,Q2)). �

7.8. Proof of 6.1. First, we show that

τ2(τ
−1
1 (Od))⊆

⋃
(d,Q) O8(λ(d,Q)).

Suppose Q is a nilpotent orbit in τ2(τ
−1
1 (Od)). Then, Q is in τ2(τ

−1
1 (Od1)) for some

nilpotent orbit Od1 in sp(V ) such that Od1 ≤ Od . From 7.1, we know that Q ≤ Q1

for some nilpotent orbit Q1 contained in 8(Od1). By 7.6, there exists an admissi-
ble signed Young diagram (d1, Q1) such that Q1 ≤ O8(λ(d1,Q1)). Since Od1 ≤ Od ,
by 7.7, there is an admissible signed Young diagram (d, Q) such that O8(λ(d1,Q1))≤

O8(λ(d,Q)). Hence, Q1 ≤ O8(λ(d,Q)) and therefore Q1 ⊆
⋃
(d,Q) O8(λ(d,Q)).

Next, we prove the opposite inclusion

τ2(τ
−1
1 (Od))⊇

⋃
(d,Q)O8(λ(d,Q)).

Let Q′ be a nilpotent orbit contained in
⋃
(d,Q) O8(λ(d,Q)). Then, Q′ ≤ O8(λ(d,Q))

for some admissible signed Young diagram (d, Q). By a construction similar to
6.6, we can define a map ϕ′, from the set of nilpotent orbits in so(W ) to the set of
nilpotent orbits in sp(V ), such that ϕ′(O′) is the unique minimal element among
the nilpotent orbits contained in τ1(τ

−1
2 (O′)) for any nilpotent orbit O′ in so(W ).

Moreover,

(7-1) ϕ′(Q′)≤ ϕ′(O8(λ(d,Q))).

We know that O8(λ(d,Q)) is contained in τ2(τ
−1
1 (Oλ(d,Q))). Hence, the nilpotent

orbit Oλ(d,Q) is contained in τ1(τ
−1
2 (O8(λ(d,Q)))). Thus, ϕ′(O8(λ(d,Q))) ≤ Oλ(d,Q)

because ϕ′(O8(λ(d,Q))) is the unique minimal element among the nilpotent orbits
contained in τ1(τ

−1
2 (O8(λ(d,Q)))). Hence, we have ϕ′(Q′) ≤ Oλ(d,Q) from (7-1).

Then, by 6.13, we have

(7-2) ϕ′(Q′)≤ Od .

From the construction, we know that ϕ′(Q′) is contained in τ1(τ
−1
2 (Q′)). Hence, Q′

is contained in τ2(τ
−1
1 (ϕ′(Q′)). By (7-2), we see that Q′ is contained in τ2(τ

−1
1 (Od)).
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From 6.12, we know that
⋃
(d,Q) O8(λ(d,Q)) is a union of at most two closures

of nilpotent orbits. �
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