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MICHAEL J. PULS

Let p be a real number greater than one and let G be a connected graph of
bounded degree. We introduce the p-harmonic boundary of G and use it to
characterize the graphs G for which the constant functions are the only p-
harmonic functions on G. We show that any continuous function on the p-
harmonic boundary of G can be extended to a function that is p-harmonic
on G. We also give some properties of this boundary that are preserved
under rough-isometries. Now let 0 be a finitely generated group. As an
application of our results, we characterize the vanishing of the first reduced
` p-cohomology of 0 in terms of the cardinality of its p-harmonic bound-
ary. We also study the relationship between translation invariant linear
functionals on a certain difference space of functions on 0, the p-harmonic
boundary of 0, and the first reduced ` p-cohomology of 0.

1. Introduction

Let p be a real number greater than one and let 0 be a finitely generated infi-
nite group. There has been some work done relating various boundaries of 0
and the nonvanishing of the first reduced `p-cohomology space H 1

(p)(0) of 0
(to be defined in Section 7). Gromov [1993, Chapter 8, Section C2] — see also
[Elek 1997] — showed that if the `p-corona of 0 contains more than one element,
then H 1

(p)(0) 6= 0. Puls [2007] showed that if there is a Floyd boundary of 0
containing more than two elements, and if the Floyd admissible function satisfies a
certain decay condition, then H 1

(p)(0) 6= 0. However, it is unknown if the converse
of either of these two results is true. The motivation for this paper is to find a
boundary for 0 whose cardinality characterizes the vanishing of H 1

(p)(0). We will
show that the p-harmonic boundary, defined in Section 2.1, does the trick. This
boundary gives the desired result because H 1

(p)(0) = 0 if and only if the only
p-harmonic functions on 0 are the constants, [Puls 2006, Theorem 3.5]. We will
show in Section 7 that the cardinality of the p-harmonic boundary is 0 or 1 if and
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only if the only p-harmonic functions on 0 are the constants. Hence, H 1
(p)(0)= 0

if and only if the cardinality of the p-harmonic boundary is 0 or 1.
L p-cohomology was investigated first in [Gol’dshteı̆n et al. 1987] for the case of

Riemannian manifolds. Gromov [1993, Chapter 8] has studied `p-cohomology for
finitely generated groups, and in the more general setting of graphs with bounded
degree. In particular, Cheeger and Gromov [1986] showed that the first reduced
`2-cohomology of a finitely generated amenable group is zero. Gromov [1993,
page 150] conjectured that this result is also true for all real numbers p > 1. This
is our main justification for choosing to study the p-harmonic boundary in the
discrete setting. If enough insight can be gained into this boundary, then we may be
able to develop the tools needed to compute the p-harmonic boundary of a finitely
generated amenable group. This of course would resolve Gromov’s conjecture.

More information about the first reduced L p-cohomology (and the special case
of L2-cohomology) can be found in [Pansu 1989; 2007; 2008; Tessera 2009] for
various manifolds, and in [Bekka and Valette 1997; Bourdon 2004; Bourdon et al.
2005; Elek 1998; Martin and Valette 2007; Puls 2003; 2006; 2007] for finitely
generated groups. As implied earlier, there is a strong connection between the
vanishing of the first reduced L p-cohomology and the nonexistence nonconstant
p-harmonic functions; for a proof in the case of homogeneous Riemannian mani-
folds, see [Tessera 2009, Proposition 4.11]. Thus results on p-harmonic functions
are useful in trying to determine if the first reduced L p-cohomology vanishes.
The papers [Coulhon et al. 2001; Grigoryan 1987] study p-harmonic functions on
manifolds, while [Holopainen and Soardi 1997a; Kim and Lee 2005; 2007; Soardi
1993; Yamasaki 1977] examine p-harmonic functions on graphs.

2. Definitions and statement of main results

Let p be a real number greater than one, and let 0 be a finitely generated infinite
group. The definition of the p-harmonic boundary for 0 does not depend on the
group law of 0, so we can define this boundary in the more general setting of a
graph. The reason is that we can associate a graph, called the Cayley graph of 0,
with 0. The vertex set for this graph consists of the elements of 0, and x1, x2 ∈ 0

are joined by an edge if and only if x1 = x2s±1 for a generator s of 0.

2.1. The p-harmonic boundary. Let G be a graph with vertex set VG and edge
set EG . We will write V for VG and E for EG if it is clear what the graph G is.
For x ∈ V , we denote by deg(x) the number of neighbors of x and by Nx the set
of neighbors of x . We say a graph G is of bounded degree if there exists a positive
integer k such that deg(x)≤ k for every x ∈V . A path in G is a sequence of vertices
x1, x2, . . . , xn for which xi+1 ∈ Nxi for 1 ≤ i ≤ n − 1. A graph G is connected
if any two given vertices of G are joined by a path. All graphs considered in this
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paper will be countably infinite, connected, of bounded degree with no self-loops.
Assign length one to each edge in EG ; then the graph G is a metric space with
respect to the shortest path metric. Let dG( · , · ) denote this metric. So if x, y ∈ V ,
then dG(x, y) is the length of the shortest path joining x and y. We will drop the
subscript G from dG( · , · ) when it is clear what graph G we are working with.
Finally, if x ∈ V , then Bn(x) will denote the metric ball that contains all elements
of V that have distance less than n from x .

Let G be a graph with vertex set V , and let p be a real number greater than one.
To construct the p-harmonic boundary of G, we need to first define the space of
bounded p-Dirichlet finite functions on G. For any S ⊂ V , the outer boundary ∂S
of S is the set of vertices in V \ S with at least one neighbor in S. For a real-valued
function f on S ∪ ∂S, we define the p-th power of the gradient, the p-Dirichlet
sum, and the p-Laplacian of x ∈ S by

|D f (x)|p =
∑
y∈Nx

| f (y)− f (x)|p,

Ip( f, S)=
∑
x∈S

|D f (x)|p,

1p f (x)=
∑
y∈Nx

| f (y)− f (x)|p−2( f (y)− f (x)).

In the case 1< p < 2, we make the convention that

| f (y)− f (x)|p−2( f (y)− f (x))= 0 if f (y)= f (x).

Let S ⊆ V . We say a function f is p-harmonic on S if 1p f (x)= 0 for all x ∈ S,
and p-Dirichlet finite if Ip( f, V ) <∞. We denote the set of all p-Dirichlet finite
functions on G by Dp(G). Under the norm

‖ f ‖Dp = (Ip( f, V )+ | f (o)|p)1/p,

Dp(G) is a reflexive Banach space, where o is a fixed vertex of G and f ∈ Dp(G).
Denote by HDp(G) the set of p-harmonic functions on V contained in Dp(G). Let
`∞(G) denote the set of bounded functions on V , and let ‖ f ‖∞ = supV | f | for
f ∈ `∞(G). Set BDp(G) = Dp(G)∩ `∞(G). The set BDp(G) is a Banach space
under the norm

‖ f ‖BDp = (Ip( f, V ))1/p
+‖ f ‖∞,

where f ∈BDp(G). Set BHDp(G)=HDp(G)∩BDp(G). It turns out that BDp(G)
is closed under pointwise multiplication. To see this, let f, h ∈ BDp(G) and set
a = supV | f | and b = supV |h|. It follows from Minkowski’s inequality that

(2-1) (Ip( f h, V ))1/p
≤ b(Ip( f, V ))1/p

+ a(Ip(h, V ))1/p.
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Thus f h ∈ BDp(G). Using the inequality above, we obtain

‖ f h‖BDp ≤ ((Ip( f, V ))1/p
+ a)((Ip(h, V ))1/p

+ b)= ‖ f ‖BDp‖h‖BDp .

Hence BDp(G) is an abelian Banach algebra. A character on BDp(G) is a nonzero
homomorphism from BDp(G) into the complex numbers. Let Sp(BDp(G)) be
the set of characters on BDp(G); it is known as the spectrum of BDp(G). With
respect to the weak ∗-topology, Sp(BDp(G)) is a compact Hausdorff space. Let
C(Sp(BDp(G))) denote the set of continuous functions on Sp(BDp(G)). For each
f ∈BDp(G), we define a continuous function f̂ on Sp(BDp(G)) by f̂ (τ )= τ( f ).
The map f → f̂ is known as the Gelfand transform.

Define a map i : V → Sp(BDp(G)) by (i(x))( f )= f (x). For x ∈ V , define δx

by δx(v) = 0 if v 6= x and δx(x) = 1. Let x, y ∈ V and suppose i(x) = i(y); then
(i(x))(δx)= (i(y))(δx), which implies δx(x)= δx(y). Thus i is an injection. If f
is a nonzero function in BDp(G), then there exists an x ∈ V such that f̂ (i(x)) 6= 0
since f̂ (i(x))= f (x). Hence BDp(G) is semisimple. Then [Taylor and Lay 1986,
Theorem 4.6 on page 408] tells us that BDp(G) is isomorphic to a subalgebra of
C(Sp(BDp(G))) via the Gelfand transform. Since the Gelfand transform separates
points of Sp(BDp(G)) and the constant functions are contained in BDp(G), the
Stone–Weierstrass theorem yields that BDp(G) is dense in C(Sp(BDp(G))) with
respect to the supremum norm. The following proposition shows that i(V ) is dense
in Sp(BDp(G)); see [Elek 1997, Proposition 1.1(ii)] for the proof.

Proposition 2.1. The image of V under i is dense in Sp(BDp(G)).

When the context is clear we will abuse notation and write V for i(V ) and x
for i(x), where x ∈ V . The compact Hausdorff space Sp(BDp(G)) \ V is known
as the p-Royden boundary of G, which we will denote by Rp(G). When p = 2,
this is simply known as the Royden boundary of G. Let RG be the set of real-
valued functions on V with finite support, and let B(RG)Dp = (RG)Dp ∩ `

∞(G).
Suppose ( fn) is a sequence in B(RG)Dp that converges to a bounded function f in
the BDp(G) norm. It follows from ‖ f − fn‖Dp ≤ ‖ f − fn‖BDp that f ∈ (RG)Dp .
Thus B(RG)Dp is closed in BDp(G) with respect to the BDp(G) norm. We are
now ready to define the main object of study for this paper.

The p-harmonic boundary of G is the subset

∂p(G) := {x ∈ Rp(G) | f̂ (x)= 0 for all f ∈ B(RG)Dp}

of the p-Royden boundary. When p = 2, the p-harmonic boundary is known as
the harmonic boundary. Our definition of p-harmonic boundary directly general-
izes that of harmonic boundary. A good reference for the Royden and harmonic
boundaries of graphs is [Soardi 1994, Chapter VI].
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An important fact about B(RG)Dp is that it is an ideal in BDp(G). To see this,
let f ∈ B(RG)Dp and h ∈ BDp(G). We need to show that f h ∈ B(RG)Dp . We
claim that there exists a sequence ( fn) in RG converging pointwise to f , for which
there exists a constant M with | fn(x)|≤M for all n and for all x ∈V , and for which
Ip( fn, V ) is bounded. Let (un) be a sequence in RG that converges to f in Dp(G)
and let M = supx∈V | f (x)|. Set fn = max(min(un,M),−M). The sequence ( fn)

satisfies the claim above since Ip(un, V ) is bounded and Ip( fn, V ) ≤ Ip(un, V ).
Also ( fnh) is a sequence in RG that converges pointwise to f h. By (2-1), we see
that

Ip( fnh, V )≤ (b(Ip( fn, V ))1/p
+M(Ip(h, V ))1/p)p,

where b = supx∈V |h(x)|. Since Ip( fnh, V ) is bounded, [Taylor and Lay 1986,
Theorem 10.6, page 177] says, by passing to a subsequence if necessary, that ( fnh)
converges weakly to a function f h. Since B(RG)Dp is closed, it follows that
f h ∈ B(RG)Dp . Because point evaluations by elements of V are continuous linear
functionals on BDp(G), ( fnh) also converges pointwise to f h. Hence, f h = f h
and f h ∈ B(RG)Dp .

2.2. Statement of main results. Recall that p is a real number greater than one and
that o is a fixed vertex of V . By #(A), we mean the cardinality of a set A, and 1V

will denote the function on V that always takes the value one. Furthermore, `p(G)
will be the set that consists of the functions on V for which

∑
x∈V | f (x)|

p <∞.
The `p-norm for f ∈ `p(G) is given by ‖ f ‖p = (

∑
x∈V | f (x)|

p)1/p. In Section 3,
we give a quick review of some results about p-harmonic functions on graphs. In
Section 4 we prove several results concerning BDp(G) and ∂p(G); when BHDp(G)
consists precisely of the constant functions and a neighborhood base is given for
the topology on ∂p(G), we characterize when ∂p(G)=∅,

Before we stating some of our main results, we need a theorem that will allow
us to classify graphs in a nice way. We start by giving the following definition.
The p-capacity of a finite subset A of V is defined by

Capp(A,∞, V )= inf
u

Ip(u, V ),

where the infimum is taken over all finitely supported functions u on V such that
u = 1 on A. The following theorem will allow us to classify a graph G in terms of
the p-capacity of a finite set.

Theorem 2.2 [Yamasaki 1977, Theorem 3.1]. Let A be a finite, nonempty subset
of V . Then

Capp(A,∞, V )= 0 if and only if 1V ∈ B(RG)Dp .

Corollary 2.3. Let A and B be nonempty finite subsets of V . Then

Capp(A,∞, V )= 0 if and only if Capp(B,∞, V )= 0.
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We say that a graph G is p-parabolic if there exists a finite subset A of V such that
Capp(A,∞, V )= 0. If G is not p-parabolic, we shall say that G is p-hyperbolic.
If G is p-hyperbolic, then Capp(A,∞, V ) > 0 for all finite subsets A of V .

In Section 5 we will prove the following results. The first reduces to [Soardi
1994, Theorem 4.6] in the case p = 2 and also generalizes [Kim and Lee 2005,
Theorem 4.2].

Theorem 2.4. Let p be a real number greater than one, and let G be a graph. If
G is p-parabolic, then all p-harmonic functions on G are constant functions.

Identify the constant functions on V with R. By combining this theorem with
[Holopainen and Soardi 1997a, Lemma 4.4] and Theorem 4.10 we get a Liouville-
type theorem for p-harmonic functions:

Theorem 2.5. Let p be a real number greater than one. Then HDp(G)= R if and
only if the cardinality of ∂p(G) is either zero or one.

Theorem 2.6. Let p be a real number greater than one and let G be a graph. If f
is a continuous function on ∂p(G), then there exists a p-harmonic function h on V
such that limn→∞ h(xn) = f (x), where x ∈ ∂p(G) and (xn) is any sequence in V
that converges to x.

By combining this theorem with the maximum principle and Corollary 4.9 we
obtain the following corollary, which generalizes both [Kim and Lee 2005, Theo-
rem 4.3] and [Kim and Lee 2007, Theorem 1.1].

Corollary 2.7. Let p be a real number greater than one and let G be a graph.
Assume that the p-harmonic boundary of G is a finite set {x1, x2, . . . , xn} of points.
Then given real numbers a1, a2, . . . , an ∈ R, there exists a bounded p-harmonic
function h that satisfies

(2-2) h(xi )= ai for i = 1, 2, . . . , n.

Conversely, each bounded p-harmonic function is uniquely determined by its
values in (2-2).

Let (X, dX ) and (Y, dY ) be metric spaces. A map φ : X → Y is said to be a
rough isometry if it satisfies the following two conditions:

(1) There exist constants a ≥ 1 and b ≥ 0 such that for x1, x2 ∈ X

(1/a)dX (x1, x2)− b ≤ dY (φ(x1), φ(x2))≤ adX (x1, x2)+ b.

(2) There exists a positive constant c such that for each y ∈ Y , there exists an
x ∈ X that satisfies dY (φ(x), y) < c.
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For a rough isometry φ, there exists a rough isometry ψ : Y → X such that if
x ∈ X and y ∈ Y , then dX ((ψ ◦ φ)(x), x) ≤ a(c+ b) and dY ((φ ◦ψ)(y), y) ≤ c.
The map ψ , which is not unique, is said to be a rough inverse for φ. Whenever we
refer to a rough inverse to a rough isometry, it will always satisfy the conditions
above. In Section 6, we prove the following two results:

Theorem 2.8. Let p be a real number greater than one and let G and H be graphs.
If there is a rough isometry from G to H , then ∂p(G) is homeomorphic to ∂p(H).

Theorem 2.9. Let p be a real number greater than one and let G and H be graphs.
If there is a rough isometry from G to H , then there is a bijection from BHDp(G)
to BHDp(H).

The main result of [Soardi 1993] is that if G and H are roughly isometric graphs,
then HDp(G)=R if and only if HDp(H)=R. By [Holopainen and Soardi 1997a,
Lemma 4.4], this is equivalent to BHDp(G) = R if and only if BHDp(H) = R.
Both Theorem 2.8 and Theorem 2.9 are generalizations of this result.

We now return to the case of a finitely generated group 0. In Section 7, we
define the first reduced `p-cohomology space H 1

(p)(0) of 0. Then we will use our
results on p-harmonic boundaries to prove this:

Theorem 2.10. Let 1< p ∈ R. Then H 1
(p)(0) 6= 0 if and only if #(∂p(0)) > 1.

It appears there are not many explicit examples of the p-Royden boundary
Rp(G) for a given graph G. Wysoczański [1996] provided the only example we
know of by giving an explicit description of R2(Z). We will conclude Section 7
by using Theorem 2.10 to compute the p-harmonic boundary for the case 0 = Zn .
We will also compute the p-Royden boundary of nonamenable groups with infinite
center, and of the groups 01 ×02 × · · · ×0n for n ≥ 2, where each Fi is finitely
generated and at least one of the 0i is nonamenable.

Let E be a normed space of functions on a finitely generated group 0. Let
f ∈ E and let x ∈0. The right translation of f by x , denoted by fx , is the function
fx(g)= f (gx−1), where g ∈ 0. Assume that if f ∈ E , then fx ∈ E for all x ∈ 0,
that is, that E is right translation invariant. For the rest of this paper translation
invariant will mean right translation invariant. We shall say that T is a translation
invariant linear functional (TILF) on E if T ( fx) = T ( f ) for f ∈ E and x ∈ 0.
We will use TILFs to denote translation invariant linear functionals. A common
question to ask is, If T is a TILF on E , then is T continuous? For background
about the problem of automatic continuity, see [Meisters 1983; Saeki 1984; Willis
1988; Woodward 1974]. Define

Diff(E) := linear span{ fx − f | f ∈ E, x ∈ 0}.

It is clear that Diff(E) is contained in the kernel of any TILF on E . In Section 8
we study TILFs on Dp(0)/R, and prove the following:
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Theorem 2.11. Let 0 be a finitely generated infinite group and let 1< p ∈R. Then
#(∂p(0)) > 1 if and only if there exists a nonzero continuous TILF on Dp(0)/R.

Willis [1986] showed that if 0 is nonamenable, then the only TILF on `p(0) is
the zero functional. (Consequently every TILF is automatically continuous!) We
will conclude Section 8 by showing that this result is not true for Dp(0)/R.

3. Review of p-harmonic functions on graphs

The four results below are from [Holopainen and Soardi 1997a, Section 3], where
a more comprehensive treatment, including proofs, is given.

• Existence. Let S be a finite subset of V . For any function f on ∂S, there
exists an unique function h on S ∪ ∂S that is p-harmonic on S and equals f
on ∂S. In the proof of existence, it was shown that the p-harmonic function
h satisfies miny∈∂S f (y)≤ h(x)≤maxy∈∂S f (y) for all x ∈ S.

• Minimizer property. Let h be a p-harmonic function on a finite subset S of V .
Then Ip(h, S)≤ Ip( f, S) for all functions f on S∪∂S satisfying f = h on ∂S.

• Convergence. Let (Sn) be an increasing sequence of finite connected subsets
of V and let U =

⋃
i Si . Let (hi ) be a sequence of functions on U ∪ ∂U such

that hi (x)→ h(x) <∞ for every x ∈U ∪ ∂U . If hi is p-harmonic on Si for
all i , then h is p-harmonic on U .

• Comparison principle. Let h and u be p-harmonic functions on a finite subset
S of V . If h ≥ u on ∂S, then h ≥ u on S.

We also prove the maximum principle for bounded p-harmonic functions on V :

Lemma 3.1. Let h be a p-harmonic function on V . If there exists an x ∈ V such
that h(x)≥ h(y) for all y ∈ V , then h is constant on V .

Proof. Let x ∈ V such that h(x)≥ h(x ′) for all x ′ ∈ V . Because∑
y∈Nx

|h(y)− h(x)|p−2h(y)=
∑
y∈Nx

|h(y)− h(x)|p−2h(x),

we see that h(x)= h(y) for all y ∈ Nx . Thus h(x)= h(z) for all z ∈ V since G is
connected. �

4. Preliminary results

In this section we will give some results about ∂p(G) and BDp(G). Most of the
results given in Propositions 4.2 through 4.8 are given in the first two sections of
[Soardi 1994, Chapter VI] for the case of p = 2. However, our presentation and
some of our proofs are different. Recall that o is a fixed vertex of the graph G.
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Lemma 4.1. If x ∈ ∂p(G) and (xn) is a sequence in V that converges to x , then
d(o, xn)→∞ as n→∞.

Proof. Let x ∈ ∂p(G) and suppose (xn)→ x , where (xn) is a sequence in V . Let B
be a positive real number. Define a function χB on V by χB(y)= 1 if d(o, y)≤ B
and χB(y)= 0 if d(o, y) > B. Since χB has finite support it is an element of RG.
Suppose there exists a real number M such that d(o, xn) ≤ M for all n. Then
χ̂M(x)= limn→∞ χM(xn)= 1, a contradiction. Thus d(o, xn)→∞ as n→∞. �

We now characterize p-parabolic graphs in terms of ∂p(G).

Proposition 4.2. Let G be a graph and let 1< p ∈R. Then ∂p(G)=∅ if and only
if G is p-parabolic.

Proof. Assume G is p-parabolic and suppose ∂p(G) 6= ∅. Let x ∈ ∂p(G) and let
(xn) be a sequence in V that converges to x . Then 1̂V (x)= limn→∞ 1̂V (xn)=1. By
Theorem 2.2, we have 1V ∈ B(RG)Dp , which says that 1̂V (x)= 0, a contradiction.
Hence if G is p-parabolic, then ∂p(G)=∅.

Now suppose that G is p-hyperbolic. Then 1V /∈ B(RG)Dp . Since B(RG)Dp

is an ideal in the commutative ring BDp(G), there exists a maximal ideal M in
BDp(G) containing B(RG)Dp . Using the correspondence between maximal ideals
in BDp(G) and Sp(BDp(G)), there is an x ∈Sp(BDp(G)) that satisfies ker(x)=M .
So f̂ (x)= x( f )= 0 for all f ∈ B(RG)Dp . For each y ∈ V , there exists an f ∈RG
(in particular δy) such that y( f )= f (y) 6= 0, which means that x cannot be in V .
Also, if x ∈ Rp(G)\∂p(G), then there exists an f ∈ B(RG)Dp for which f̂ (x) 6= 0.
This implies that B(RG)Dp is not contained in M . Therefore x ∈ ∂p(G). �

For the rest of this paper, we will assume that 1V /∈ B(RG)Dp unless otherwise
stated, that is, we assume G is p-hyperbolic.

Let f and h be elements in BDp(G) and let 1< p ∈ R. Define

〈4ph, f 〉 :=
∑
x∈V

∑
y∈Nx

|h(y)− h(x)|p−2(h(y)− h(x))( f (y)− f (x)).

This sum exists since
∑

x∈V
∑

y∈Nx

∣∣|h(y)−h(x)|p−2(h(y)−h(x))
∣∣q = Ip(h, V ) is

finite, where 1/p+ 1/q = 1. The next few lemmas will help show the uniqueness
of the decomposition of BDp(G) that will be given in Theorem 4.6.

Lemma 4.3. Let f1 and f2 be functions in Dp(G). Then 〈4p f1−4p f2, f1− f2〉

is zero if and only if f1− f2 is constant on V .

Proof. Let f1, f2 ∈ Dp(G) and assume there exists an x ∈ V with a y ∈ Nx such
that f1(x)− f1(y) 6= f2(x)− f2(y). Define a function f : [0, 1] → R by

f (t)=
∑
x∈V

∑
y∈Nx

| f1(y)− f1(x)+ t (( f2(y)− f2(x))− ( f1(y)− f1(x)))|p.
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Observe that f (0)= I ( f1, V ) and f (1)= I ( f2, V ). A derivative calculation gives

f ′(0)= p〈4p f1, f2− f1〉 = −p〈4p f1, f1− f2〉.

It follows from [Ekeland and Témam 1999, Proposition 5.4] that Ip( f2, V ) >
Ip( f1, V )−p〈4p f1, f1− f2〉. Similarly, Ip( f1, V )> Ip( f2, V )−p〈4p f2, f2− f1〉.
Hence, p〈4p f1 −4p f2, f1 − f2〉 > 0 if there exists an x ∈ V with y ∈ Nx that
satisfies f1(x)− f1(y) 6= f2(x)− f2(y). Conversely, suppose f1− f2 is constant
on V . We immediately see that 〈4p f1−4p f2, f1− f2〉 = 0. �

Lemma 4.4. Let h ∈BDp(G). Then h ∈BHDp(G) if and only if 〈4ph, δx 〉 = 0 for
all x ∈ V .

Proof. Let x ∈ V and let h ∈ BDp(G). The lemma follows from

〈4ph, δx 〉 = −2(deg(x))
∑
y∈Nx

|h(x)− h(y)|p−2(h(y)− h(x)). �

The lemma implies that if h ∈ BHDp(G), then 〈4ph, f 〉 = 0 for all f ∈ RG.

Lemma 4.5. If h ∈ BHDp(G) and f ∈ B(`p(G))Dp , then 〈4ph, f 〉 = 0.

Proof. Let h and f be as stated. Then there exists a sequence ( fn) in RG such that
‖ f − fn‖Dp → 0 as n→∞ since (RG)Dp = (`

p(G))Dp . Now

0≤ |〈4ph, f 〉| = |〈4ph, f − fn〉|

=

∣∣∣∑
x∈V

∑
y∈Nx

|h(y)− h(x)|p−2(h(y)− h(x))(( f − fn)(x)− ( f − fn)(y))
∣∣∣

≤

∑
x∈V

∑
y∈Nx

|h(y)− h(x)|p−1
|( f − fn)(x)− ( f − fn)(y)|

≤

(∑
x∈V

∑
y∈Nx

(|h(y)− h(x)|p−1)q
)1/q

(Ip( f − fn, V ))1/p
→ 0

as n→∞. The last inequality follows from Hölder’s inequality. �

Clarkson’s inequality will be needed in the next proof. Let f1 and f2 be elements
of Dp(G). If 2≤ p ∈ R, then

Ip( f1+ f2)+ Ip( f1− f2)≤ 2p−1(Ip( f1)+ Ip( f2))

and if 1< p ≤ 2, then

(Ip( f1+ f2))
1/(p−1)

+ (Ip( f1− f2))
1/(p−1)

≤ 2(Ip( f1)+ Ip( f2))
1/(p−1).

The following decomposition of BDp(G) will be crucial:

Theorem 4.6. Let 1< p ∈R and suppose f ∈BDp(G). Then there exists a unique
u ∈ B(`p(G))Dp and a unique h ∈ BHDp(G) such that f = u+ h.
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Proof. Our assumption remains that 1V /∈ B(`p(G))Dp . Let f ∈ BDp(G). Since f
is bounded there exists real numbers a and b for which a ≤ f (x) ≤ b is satisfied
by all x ∈ V . Denote by hn the function that is p-harmonic on Bn(o) and equal
to f on V \ Bn(o). Because miny∈∂Bn(o) f (y) ≤ hn(x) ≤ maxy∈∂Bn(o) f (y) for all
x ∈ Bn(o), we have a ≤ hn ≤ b for each n ∈ N. Furthermore, if m > n, then
Ip(hm) ≤ Ip(hn). Set rn = Ip(hn) and denote the limit of the bounded decreasing
sequence (rn) by r . We are still assuming that m > n. By the minimizing property
of p-harmonic functions, Ip(hm, V )≤ Ip((hn+hm)/2, V ) since (hn+hm)/2= hm

on V \ Bm(o). Using Clarkson’s inequality we obtain for 2≤ p ∈ R,

rm ≤ Ip(
1
2(hn + hm), V )

≤ Ip(
1
2(hn + hm), V )+ Ip(

1
2(hn − hm), V )

≤ 2p−1(Ip(
1
2 hn, V )+ Ip(

1
2 hm, V ))

=
1
2(Ip(hn, V )+ Ip(hm, V ))

and for 1< p ≤ 2,

r1/(p−1)
m ≤ (Ip(

1
2(hn + hm), V ))1/(p−1)

≤ (Ip(
1
2(hn + hm), V ))1/(p−1)

+ (Ip(
1
2(hn − hm), V ))1/(p−1)

≤ 2(Ip(
1
2 hn, V )+ Ip(

1
2 hm, V ))1/(p−1).

Letting m, n→∞, we have Ip(
1
2(hn+ hm), V )→ r and Ip(

1
2(hn− hm), V )→ 0.

Also, (|hn(o)|) is a bounded sequence; thus (hn) is a Cauchy sequence in Dp(G).
Set h equal to the limit function of the sequence (hn) in Dp(G). Because (hn)

also converges pointwise to h, the convergence property says that h is p-harmonic.
Clearly, a ≤ h ≤ b on V , so h ∈ BHDp(G). Let u be the limit function in Dp(G)
of the Cauchy sequence ( f − hn). Since f − hn ∈ RG for each n, we see that
u ∈ B(RG)Dp . Thus f = u+ h.

To show that this decomposition is unique, suppose f = u1 + h1 = u2 + h2,
where u1, u2 ∈ B(`p(G))Dp and h1, h2 ∈ BHDp(G). Lemma 4.5 says that

〈4ph1−4ph2, h1− h2〉 = 〈4ph1−4ph2, u2− u1〉 = 0

since u1− u2 ∈ B(`p(G))Dp . However, u1− u2 = 0 since 1V /∈ B(`p(G))Dp . �

Theorem 4.7 (maximum principle). Let h be a nonconstant function in BHDp(G)
and suppose a and b are real numbers for which a ≤ ĥ ≤ b on ∂p(G). Then
a < h < b on V .

Proof. Since ĥ is continuous on the compact space Sp(BDp(G)), there is a number
c > 0 such that b− ĥ ≥−c on Sp(BDp(G)). Let ε > 0 and set Fε to be the set of
x ∈ Sp(BDp(G)) such that b−h+ε ≤ 0. To prove the theorem, we will first show
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that there exists an f ∈ B(RG)Dp with f̂ = 1 on Fε and 0≤ f̂ ≤ 1 on Sp(BDp(G)).
This f will yield the inequality

(4-1) c f + b− h+ ε ≥ 0 on Sp(BDp(G)).

We will then show that b− h+ ε ≥ 0 on V . Combining this with Lemma 3.1 and
the assumption that h is nonconstant will give h < b on V .

Observe that Fε∩∂p(G)=∅ and Fε is a closed subset of Sp(BDp(G)). For each
x ∈ Fε there exists an fx ∈ B(RG)Dp for which f̂x(x) 6= 0. Since B(RG)Dp is an
ideal, we may assume that fx ≥ 0 on V and f̂x(x) > 0. Let Ux be a neighborhood
of x in Sp(BDp(G)) that satisfies fx(y) > 0 for all y ∈Ux . By compactness there
exists x1, . . . , xn for which Fε ⊆

⋃n
j=1 Ux j . Set

g =
n∑

j=1

fx j and α = inf{g(x) | x ∈ Fε}.

Clearly α > 0 and g ∈ B(RG)Dp . Now define a function f on Sp(BDp(G)) by
f = min(1, α−1g). Note that 0 ≤ f̂ ≤ 1 on Sp(BDp(G)) and f̂ = 1 and Fε . We
still need to show that f ∈ B(RG)Dp . Let (gn) be a sequence in RG that converges
to g in Dp(G), so Ip((g− gn), V )→ 0 as n→∞. Set fn = min(1, α−1gn). The
sequence ( fn) converges pointwise to f . Furthermore, by passing to a subsequence
if necessary, ( fn) converges weakly to a function f̄ in Dp(G) since Ip( fn, V ) is
bounded. Clearly f̄ is bounded, so f̄ ∈ B(RG)Dp . It is also true ( fn) converges
pointwise to f̄ because point evaluations by elements of V are continuous linear
functionals on BDp(G). Hence, f̄ = f and f ∈ BDp(G). Inequality (4-1) is now
established.

Next we will show that b − h + ε ≥ 0 on V . Put vε = c f + b − h + ε and
denote by hn the unique function that is p-harmonic on Bn(o) and agrees with vε
on V \ Bn(o). We claim that hn ≥ 0 on Bn(o). Supposing otherwise, there exists
an x ∈ Bn(o) for which hn(x) < 0. Define a function h∗n by

h∗n =
{
vε if x ∈ V \ Bn(o),
max(hn, 0) if x ∈ Bn(o).

Now Ip(h∗n, Bn(o)) < Ip(hn, Bn(o)), but this contradicts the minimizer property
of p-harmonic functions. This proves the claim. By using the argument used in
the proof of Theorem 4.6, we see that (hn) converges to a bounded p-harmonic
function h̄ and that there exists a v ∈ B(RG)Dp such that vε = v+ h̄. Furthermore
h̄ ≥ 0 on V because hn ≥ 0 for each n. The uniqueness part of Theorem 4.6 says
that v = c f and h̄ = b− h+ ε. Hence b ≥ h− ε on V . Thus h < b on V .

A similar argument shows that a < h on V . Therefore, a < h < b on V . �

We now characterize the functions in BDp(G) that vanish on ∂p(G).
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Theorem 4.8. Let f ∈ BDp(G). Then f ∈ B(`p(G))Dp if and only if f̂ (x)= 0 for
all x ∈ ∂p(G).

Proof. Since B(`p(G))Dp = B(RG)Dp it follows immediately that f̂ (x)= 0 for all
f ∈ B(`p(G))Dp and all x ∈ ∂p(G).

Conversely, suppose f ∈BDp(G) and f̂ (x)= 0 for all x ∈ ∂p(G). Theorem 4.6
allows us to write f = u + h, where u ∈ B(`p(G))Dp and h ∈ BHDp(G). Now
ĥ(x) = 0 for all x ∈ ∂p(G) since û(x) = 0. Therefore, h = 0 by the maximum
principle. �

Corollary 4.9. Every function in BHDp(G) is uniquely determined by its values
on ∂p(G).

Proof. Let h1 and h2 be elements of BHDp(G)with ĥ1(x)= ĥ2(x) for all x ∈∂p(G).
Then h1 − h2 ∈ B(`p(G))Dp . Let ( fn) be a sequence in `p(G) that converges to
h1− h2. Using Lemma 4.5, we obtain

〈4ph1−4ph2, h1− h2〉 = lim
n→∞
〈4ph1−4ph2, fn〉 = 0.

It now follows from Lemma 4.3 that h1− h2 = 0. �

We can now characterize when BHDp(G) is precisely the constant functions.

Theorem 4.10. Let 1< p ∈ R. Then BHDp(G) 6= R if and only if #(∂p(G)) > 1.

Proof. Suppose that #(∂p(G)) = 1 and that x ∈ ∂p(G). Let h ∈ BHDp(G). Then
ĥ(x) = c for some constant c. It follows from Corollary 4.9 that the function
h(x) = c for all x ∈ V is the only function in BHDp(G) with ĥ(x) = c. Hence
BHDp(G)= R.

Conversely, suppose #(∂p(G)) > 1. Let x, y ∈ ∂p(G) such that x 6= y and pick
an f ∈ BDp(G) that satisfies x( f ) 6= y( f ). By Theorem 4.8, f /∈ B(`p(G))Dp . It
now follows from Theorem 4.6 and Theorem 4.8 that there exists an h ∈BHDp(G)
with ĥ(z) = f̂ (z) for all z ∈ ∂p(G). Since V is dense in Sp(BDp(G)), there exist
sequences (xn) and (yn) in V such that (xn)(h)→ x(h) and (yn)(h)→ y(h). Hence
limn→∞ h(xn)= x(h) 6= y(h)= limn→∞ h(yn). Hence h is not constant on V . �

We now define the important concept of a Dp-massive subset of a graph. An
infinite connected subset U of V with ∂U 6= ∅ is called a Dp-massive subset if
there exists a nonnegative function u ∈ BDp(G) such that

(a) 1pu(x)= 0 for all x ∈U ,

(b) u(x)= 0 for x ∈ ∂U , and

(c) supx∈U u(x)= 1.

We call any u that satisfies these conditions an inner potential of the Dp-massive
subset U . The following will be needed in the proof of Lemma 5.1.
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Proposition 4.11. If U is a Dp-massive subset of V , then i(U ) contains at least
one point of ∂p(G).

Proof. We will write U for i(U ), where the closure is taken in Sp(BDp(G)). As-
sume U ∩ ∂p(G) = ∅ and let u be an inner potential for U . We may and do
assume that u = 0 on V \U . By the existence property for p-harmonic functions,
there exists a p-harmonic function hn on Bn(o) such that hn=u on ∂Bn(o) for each
natural number n. Also 0≤miny∈∂Bn(o) u(y)≤hn≤maxy∈∂Bn(o) u(y)≤1 on Bn(o).
Extend hn to all of V by setting hn=u on V \Bn(o). By the minimizing property of
p-harmonic functions, Ip(hn, Bn(o))≤ Ip(u, Bn(o)), and so Ip(hn, V )≤ Ip(u, V ).
Both hn and u are p-harmonic on U ∩ Bn(o), and we have u(x) ≤ hn(x) for all
x ∈ ∂(U ∩ Bn(o)). The comparison principle says that u ≤ hn on U ∩ Bn(o). On
Bn(o) \U we have u = 0, so u ≤ hn ≤ 1 for each n. By taking a subsequence if
needed, we assume that (hn) converges pointwise to a function h. Now u ≤ h ≤ 1
on V , so supx∈U h(x)= 1. By the convergence property for p-harmonic functions,
h is p-harmonic and h ∈ BHDp(G) since Ip(hn, V )≤ Ip(u, V ) <∞ for all n.

Let x ∈ ∂p(G). Since u−hn = 0 on V \ Bn(o), we see that û(x)− ĥn(x)= 0 for
all n; thus û− h = 0 on ∂p(G). According to Theorem 4.8, u− h ∈ B(`p(G))Dp .
Hence u = f + h, where f ∈ B(`p(G))Dp . Another appeal to Theorem 4.8 shows
that û = ĥ on ∂p(G). If x ∈ ∂p(G), then û(x) = 0 because if (xn) is a sequence
in V converging to x , then u(xn)= 0 for all but a finite number of n since we are
assuming U ∩ ∂p(G) = ∅. So ĥ(x) = 0 for all x ∈ ∂p(G). Hence h = 0 on V
by the maximum principle, which contradicts supU h = 1. Therefore, if U is a
Dp-massive subset of V , then U contains at least one point of ∂p(G). �

It would be nice to know if the converse of Proposition 4.11 is true. That is, if
x ∈ ∂p(G), does there exist a Dp-massive subset U of V such that x ∈ U? The
next result leads to a partial converse and also describes a base of neighborhoods
for open sets in ∂p(G).

Proposition 4.12. Let x ∈ ∂p(G) and let O be an open set in ∂p(G) containing x.
Then there exists a subset U of V such that

(a) U =
⋃
α∈I Aα, where each Aα is a Dp-massive subset of V and I is an index

set, and Aα ∩ Aβ =∅ if α 6= β, and

(b) x ∈U ∩ ∂p(G)⊆ O.

Proof. Let x ∈ ∂p(G), and let O be an open set of ∂p(G) containing x . By
Urysohn’s lemma there exists an f ∈ C(Sp(BDp(G))) with 0≤ f ≤ 1, f (x)= 1
and f = 0 on ∂p(G) \ O . Since the Gelfand transform of BDp(G) is dense in
C(Sp(BDp(G)))with respect to the supremum norm, we will assume f ∈BDp(G).
By Theorem 4.6 we have the decomposition f = w+ h, where w ∈ B(`p(G))Dp

and h ∈ BHDp(G). Since ŵ = 0 on ∂p(G), it follows that ĥ(x) = 1 and ĥ = 0
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on ∂p(G) \ O . Also, 0 ≤ ĥ ≤ 1 on ∂p(G), so 0 < h < 1 on V by the maximum
principle and 0 ≤ ĥ ≤ 1 on Sp(BDp(G)) due to the density of V . Fix ε with
0 < ε < 1 and set U = {x ∈ V | h(x) > ε}. Let A be a component of U . It now
follows from the comparison principle that A is infinite. Define a function v on
V by v = (h − ε)/(1− ε). There exists a p-harmonic function un on Bn(o) ∩ A
taking the values max{0, v} on V \ (Bn(o) ∩ A) and such that 0 ≤ un ≤ 1 on
Bn(o) ∩ A. By passing to a subsequence if necessary, we may assume that (un)

converges pointwise to a function u. By the convergence property, u is p-harmonic
on A. Also v ≤ un ≤ 1 on Bn(o), so by replacing u by a suitable scalar multiple
if necessary, we have supa∈A u(a) = 1. Also, u = 0 on ∂A because h ≤ ε on ∂A.
Since h ∈ BDp(G), it follows that u ∈ BDp(G). Thus A is a Dp-massive subset
with inner potential u. Hence, each component of U is a Dp-massive subset in V .
So U =

⋃
α∈I Aα, where each Aα is Dp-massive. The proof of part (a) is complete.

Clearly x ∈U . We will show that U∩∂p(G)⊆O . Let y ∈U∩∂p(G) and let (yk)

be a sequence in U that converges to y. Then f (y) = ĥ(y) = limk→∞ h(yk) ≥ ε.
Hence y ∈ O since f = 0 on ∂p(G) \ O . �

The following partial converse to Proposition 4.11 is a direct consequence of
Proposition 4.12.

Corollary 4.13. If #(∂p(G)) is finite, then for each x ∈ ∂p(G) there exists a
Dp-massive subset U of V such that x ∈U.

5. Proofs of Theorem 2.4 and Theorem 2.6

The key ingredient in the proof of Theorem 2.4 is the following.

Lemma 5.1. Let 1 < p ∈ R and suppose that G is a p-parabolic graph. If f is a
nonconstant function in BHDp(G), then supV f > lim supd(o,x)→∞ f .

Proof. Suppose that lim supd(o,x)→∞ f (x)= supV f =M . Since f is nonconstant,
there exists an ε > 0 such that the set W = {x ∈ V | f (x) > M − ε} is a proper
infinite subset of V . Let U be a component of W . If U is finite, then we can
construct a unique p-harmonic function w on U that agrees with f on ∂U . Since
f is p-harmonic, f = w on U by uniqueness. But if x ∈U , then

w(x)≤ max
y∈∂U

f (y)≤ M − ε < f (x),

a contradiction. Thus U is infinite. Now set h= ( f −M+ε)/ε. There is an number
N ∈ N such that Bn(o)∩U 6= ∅ for n > N . For n > N , let un be a p-harmonic
function on Bn(o)∩U that takes the values max{0, h} on V \ (Bn(o)∩U ). Note
that un ≥ 0. Since h is p-harmonic on Bn(o)∩U , it follows from the comparison
principle that h ≤ un ≤ 1 on Bn(o) ∩U . By taking a subsequence if necessary,
we may assume that the sequence (un) converges pointwise to a function u. By
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the convergence property, u is p-harmonic on U . If x ∈ ∂U , then f (x) ≤ M − ε.
Therefore, un(x)= 0 for all n, which implies u(x)= 0. Thus u = 0 on ∂U . Since
supU h = 1, we see that supU u = 1. We can show using the minimizing property
for p-harmonic functions that Ip(un,U ∩ Bn(o))≤ Ip(max{0, h},U ∩ Bn(o)), and
it follows from this inequality that Ip(un,U ) ≤ Ip(h,U ). Hence Ip(u,U ) <∞
because Ip(h, V ) <∞. Thus U is a Dp-massive subset of V .

By Proposition 4.11, we have U∩∂p(G) 6=∅, which contradicts Proposition 4.2
since we are assuming G is p-parabolic. Hence supV f > lim supd(o,x)→∞ f . �

Proof of Theorem 2.4. Let h ∈BHDp(G) and suppose that h is nonconstant. Since
h is bounded, supV h= B<∞. Lemma 5.1 says that there exists an x ∈V such that
h(x)= B. By the maximum principle, h is constant on V , a contradiction. Hence
BHDp(G) consists of only the constant functions. Therefore, HDp(G) is precisely
the constant functions by [Holopainen and Soardi 1997a, Lemma 4.4]. �

Proof of Theorem 2.6. Let f be a continuous function on ∂p(G). By Tietze’s
extension theorem, there exists a continuous extension of f , which we also denote
by f , to all of Sp(BDp(G)). Let ( fn) be a sequence in BDp(G) converging to f
in the supremum norm. For each n ∈ N and each r ∈ N, let hn,r be a function on
V that is p-harmonic on Br (o) and takes the values fn on V \ Br (o). The function
hn,r ∈ BDp(G) since Br (o) is finite, and |hn,r | ≤ supV | fn| because

min
y∈∂Br (o)

fn(y)≤ hn,r ≤ max
y∈∂Br (o)

fn(y) on Br (o).

By the Ascoli–Arzela theorem, there exists a subsequence of (hn,r ), which we
also denote by (hn,r ), that converges uniformly on all finite subsets of V to a
function hn as r goes to infinity. The function hn is p-harmonic on V by the con-
vergence property. For each r , the minimizing property of p-harmonic functions
gives Ip(hn,r , Br (o)) ≤ Ip( fn, Br (o)), so Ip(hn,r , V ) ≤ Ip( fn, V ), which implies
hn ∈ BHDp(G).

Let ε > 0. Since ( fn)→ f in the supremum norm, there exists a number N
such that supV | fn− fm |< ε for n,m ≥ N . It follows that sup∂Br (o)|hn,r − hm,r |<

ε for all r ∈ N because fn = hn,r on V \ Br (o). Both hn,r and hm,r + ε are
p-harmonic on Br (o) and hm,r−ε ≤ hn,r ≤ hm,r+ε on ∂Br (o), so by applying the
comparison principle, we obtain supBr (o)|hn,r − hm,r |< ε for all r . It now follows
that supBr (o)|hn−hm |< 3ε for all r . Thus supV |hn−hm | ≤ 3ε. Hence, the Cauchy
sequence (hn) converges uniformly on finite subsets of V to a function h, which is
p-harmonic by the convergence property.

Let ε >0. There exists an N ∈N such that supV | fn− f |<ε and supV |hn−h|<ε
if n ≥ N . Let x ∈ ∂p(G). Since fn(x) = hn(x), there exists a neighborhood U
of x such that |hn(y)− fn(x)|< ε for all y ∈U . Therefore, limk→∞ h(xk)= f (x),
where (xk) is a sequence in V that converges to x . �



GRAPHS OF BOUNDED DEGREE AND THE p-HARMONIC BOUNDARY 445

6. Proofs of Theorem 2.8 and Theorem 2.9

Let G and H be graphs with vertex sets VG and VH , respectively. Fix a vertex oG

in G and a vertex oH in H . Let φ :G→ H be a rough isometry, and let φ∗ denote
the map from `∞(H) to `∞(G) given by φ∗ f (x)= f (φ(x)). We start by defining
a map φ : ∂p(G)→ ∂p(H). Let x ∈ ∂p(G). Then there exists a sequence (xn)

in VG such that (xn)→ x . Now (φ(xn)) is a sequence in the compact Hausdorff
space Sp(BDp(H)). By passing to a subsequence, if necessary we may assume
that (φ(xn)) converges to a unique limit y in Sp(BDp(H)). Now define φ(x)= y.
Before we show that y ∈ ∂p(H) and φ is well defined, we need a lemma.

Lemma 6.1. Let G and H be graphs. If φ : G→ H is a rough isometry, then

(a) φ∗ maps BDp(H) to BDp(G),

(b) φ∗ maps `p(H) to `p(G), and

(c) φ∗ maps B(`p(H))Dp to B(`p(G))Dp .

Proof. We will only prove part (a) since the proofs of parts (b) and (c) are similar.
Let f ∈BDp(H). We will now show that φ∗ f ∈BDp(G). Let x ∈ VG and w ∈ Nx ,
so x and w are neighbors in G but φ(w) and φ(x) are not necessarily neighbors
in H . However, by the definition of rough isometry there exists constants a ≥ 1
and b ≥ 0 such that dH (φ(w), φ(x)) ≤ a+ b. Set h1 = φ(x) and hl = φ(w), and
let h1, . . . , hl be a path in H with length at most a+ b. Thus

(6-1)

|φ∗ f (w)−φ∗ f (x)|p = | f (φ(w))− f (φ(x))|p

≤ |a+ b|p−1
l−1∑
j=1

| f (h j+1)− f (h j )|
p.

The inequality follows from Jensen’s inequality applied to the function x p for x>0.
Let y ∈ VH and z ∈ Ny . We claim that there is at most a finite number of paths

in H of length at most a + b that contain the edge y, z and have the endpoints
φ(x) and φ(w). To see this, let U be the set of all elements in VG such that
the four distances dH (φ(x), y), dH (φ(x), z), dH (φ(w), y) and dH (φ(w), z) are
all at most a + b. Let x, x ′ ∈ U . By the triangle inequality, dH (φ(x ′), φ(x)) ≤
dH (φ(x ′), y)+dH (φ(x), y). It now follows from the definition of rough isometry
that dG(x ′, x)≤ 2a2

+3ab. Thus the metric ball B(x, 2a2
+3ab+1) contains U as

a subset. Hence the cardinality of U is bounded above by some constant k, which
is independent of y and z. Since f ∈ BDp(H) it follows from (6-1) that∑

x∈VG

∑
w∈Nx

|φ∗ f (w)−φ∗ f (x)|p ≤ |a+ b|p−1k
∑
y∈VH

∑
z∈Ny

| f (z)− f (y)|p <∞. �

Proposition 6.2. The map φ is well defined from ∂p(G) to ∂p(H).
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Proof. Let x , y and (xn) be as above. We first show that y∈∂p(H). Lemma 4.1 tells
us that dG(oG, xn)→∞ as n→∞. The element φ(oG) is fixed in H , so it follows
from the definition of rough isometry that dH (φ(oG), φ(xn))→∞ as n→∞. Thus
y ∈ Sp(BDp(H)) \ H since y = limn→∞ φ(xn) /∈ H . Let f ∈ B(`p(H))Dp and
suppose f̂ (y) 6= 0. Then 0 6= limn→∞ f (φ(xn)) = φ

∗ f (x). By Lemma 6.1(c),
φ∗ f ∈ B(`p(G))Dp and Theorem 4.8 says that φ∗ f (x)= 0, a contradiction. Hence
f̂ (y)= 0 for all f ∈ B(`p(H))Dp , so y ∈ ∂p(H).

We will now show that φ is well-defined. Let (xn) and (x ′n) be sequences in VG

that both converge to x ∈ ∂p(G). Now suppose that (φ(xn)) converges to y1 and
(φ(x ′n)) converges to y2 in Sp(BDp(H)). Assume that y1 6= y2 and let f ∈BDp(H)
such that f (y1) 6= f (y2). By Lemma 6.1(a), we have φ∗ f ∈ BDp(G). Thus

lim
n→∞

φ∗ f (xn)= φ
∗ f (x)= lim

n→∞
φ∗ f (x ′n),

which implies f (y1)= f (y2), a contradiction. Hence φ is a well-defined map from
∂p(G) to ∂p(H). �

The next lemma will be used to show that φ is one-to-one and onto.

Lemma 6.3. Let φ : G → H be a rough isometry and let ψ be a rough inverse
of φ. If f ∈ Dp(G), then limdG(oG ,x)→∞| f ((ψ ◦φ)(x))− f (x)| = 0.

Proof. Let x ∈ VG . Since ψ is a rough inverse of φ, there are nonnegative constants
a, b and c with a ≥ 1 such that dG((ψ ◦ φ)(x), x) ≤ a(c+ b). Let x1, x2, . . . , xn

be a path in VG of length not more than a(c+b) with x1 = x and xn = (ψ ◦φ)(x).
So

| f ((ψ◦φ)(x))− f (x)|p=
∣∣∣n−1∑

k=1

( f (xk+1)− f (xk))

∣∣∣p
≤n p−1

n−1∑
k=1

| f (xk+1)− f (xk)|
p.

The last sum approaches zero as dG(oG, x)→∞ since f ∈Dp(G) and n≤a(c+b).
Thus limdG(oG ,x)→∞| f ((ψ ◦φ)(x))− f (x)| = 0. �

Proposition 6.4. The function φ is a bijection.

Proof. Let x1, x2 ∈ ∂p(G) with x1 6= x2, and let f ∈ BDp(G) with f (x1) 6= f (x2).
There exists sequences (xn) and (x ′n) in VG such that (xn)→ x1 and (x ′n)→ x2.
Assume that

φ(x1)= lim
n→∞

(φ(xn))= lim
n→∞

(φ(x ′n))= φ(x2),

so limn→∞ f ((ψ ◦φ)(xn))= limn→∞ f ((ψ ◦φ)(x ′n)). It follows from Lemma 6.3
that limn→∞ f (xn)= limn→∞ f (x ′n); thus f (x1)= f (x2), a contradiction. Hence
φ is one-to-one.

We now show that φ is onto. Let y ∈ ∂p(H) and let (yn) be a sequence in VH that
converges to y. By passing to a subsequence if necessary, we can assume that there
is a unique x in the compact Hausdorff space Sp(BDp(G)) such that (ψ(yn))→ x .
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Since limn→∞ dH (oH , yn)→∞, we have limn→∞ dG(oG, ψ(yn))→∞, so x /∈G.
Using an argument similar to the first paragraph in the proof of Proposition 6.2, we
obtain x ∈ ∂p(G). The proof will be complete once we show that φ(x) = y. Let
f ∈ BDp(H). By Lemma 6.3, we see that limn→∞| f ((φ ◦ψ)(yn))− f (yn)| = 0.
Thus f (φ(x))= f (y) for all f ∈ BDp(H). Hence φ(x)= y. �

We finally show that the bijection φ is also a homeomorphism. We only need to
show that φ is continuous, since both Sp(BDp(G)) and Sp(BDp(H)) are compact
Hausdorff spaces. Let W be an open set in ∂p(H) and let x ∈ φ−1(W ). Choose
y ∈W so that x =φ−1(y). By Proposition 4.12, there exists a subset U of VH such
that y ∈U and U ∩∂p(H)⊆W . We saw in the proof of Proposition 4.12 that there
is an h ∈ BHDp(H) for which ĥ(y)= 1 and ĥ = 0 on ∂p(H) \W and ĥ ≥ ε on U ,
where 0< ε < 1. By Lemma 6.1(a), we have φ∗h = h ◦φ ∈ BDp(G). Combining
Theorems 4.6 and 4.8, we have an h̄ ∈BHDp(G) that satisfies h̄ = ĥ ◦φ on ∂p(G).
Let O = {x ′ ∈ ∂p(G) | h̄(x ′) > ε}. Now O is an open set containing x since h̄ is
continuous on ∂p(G) and h̄(x) = 1. For z ∈ O , we see that ĥ(φ(z)) = h̄(z) ≥ ε,
thus φ(z) ∈ W for all z in O . Thus O ⊆ φ−1(W ). Since our choice of x was
arbitrary, φ−1(W ) is open and consequently φ is continuous. The proof that φ is a
homeomorphism is complete.

We now prove Theorem 2.9. Let φ be a rough isometry from G to H , and let ψ
be a rough inverse of φ. Let h ∈ BHDp(G). By Lemma 6.1(a), h ◦ψ ∈ BDp(H).
Let π(h ◦ψ) be the unique element in BHDp(H) given by Theorem 4.6. We now
define a map 8 : BHDp(G) 7→ BHDp(H) by 8(h) = π(h ◦ ψ). Theorem 4.8
implies that π(h ◦ ψ)(φ(x)) = (h ◦ ψ)(φ(x)) for all x ∈ ∂p(G), where φ is
the homeomorphism from ∂p(G) to ∂p(H) defined earlier in this section. Thus
8(h)(φ(x)) = (h ◦ ψ)(φ(x)) = h(x) for all x ∈ ∂p(G). We can now show that
8 is one-to-one. Let h1, h2 ∈ BHDp(G) and suppose that 8(h1) = 8(h2). So
8(h1)(φ(x)) = 8(h2)(φ(x)) for all x ∈ ∂p(G), which implies h1(x) = h2(x) for
all x ∈ ∂p(G). Hence, h1 = h2 by Corollary 4.9. Thus 8 is one-to-one.

We will now show that 8 is onto. Let f ∈ BHDp(H). Then f ◦ φ ∈ BDp(G).
Let h = π( f ◦ φ), where π( f ◦ φ) is the unique element in BHDp(G) given by
Theorem 4.6. Let y ∈ ∂p(H). Since h(x)=π( f ◦φ)(x) for all x ∈ ∂p(G) and ψ ◦φ
equals the identity on ∂p(G), we see that (8(h))(y) = π(h ◦ψ)(y) = h(ψ(y)) =
f ((φ ◦ψ)(y))= f (y). Thus 8 is onto and the proof of Theorem 2.9 is complete.

The map 8 is an isomorphism in the case p= 2 since BHD2(G) and BHD2(H)
are linear spaces. However, in general these spaces are not linear if p 6= 2.

7. The first reduced ` p-cohomology of 0

In the final two sections, 0 will denote a finitely generated group with generating
set S. So for a real-valued function f on 0 the p-th power of the gradient and the
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p-Laplacian of x ∈ 0 are

|D f (x)|p =
∑
s∈S

| f (xs−1)− f (x)|p,

1p f (x)=
∑
s∈S

| f (xs−1)− f (x)|p−2( f (xs−1)− f (x)).

If f ∈Dp(0), then (‖ f ‖Dp = Ip( f, 0)+| f (e)|p)1/p, where e is the identity element
of 0. Also `p(0) is the set that consists of real-valued functions on 0 for which∑

x∈0| f (x)|
p is finite. The first reduced `p-cohomology space of 0 is defined by

H 1
(p)(0)= Dp(0)/(`p(0)⊕R)Dp .

We now prove Theorem 2.10. Suppose ∂p(0)=∅. By Proposition 4.2, there exists
a sequence ( fn) in R0 that satisfies ‖ fn − 10‖Dp→0. It follows that Ip( fn, 0)→0
and ( fn(e)) 6→ 0. Thus H 1

(p)(0)= 0 by [Puls 2003, Theorem 3.2]. We now assume
∂p(G) 6=∅. It was shown in [Puls 2006, Theorem 3.5] that H 1

(p)(0) 6= 0 if and only
if HDp(0) 6= R. Since #(S) <∞, [Holopainen and Soardi 1997a, Lemma 4.4]
says that BHDp(0) = R if and only if HDp(0) = R. Theorem 2.10 now follows
from Theorem 4.10.

We now use Theorem 2.10 to compute ∂p(0) and Rp(0) for some special cases
of 0. By [Holopainen and Soardi 1997b, Corollary 1.10], BHDp(0) = R when 0
has polynomial growth and 1 < p ∈ R. Thus, if 0 has polynomial growth, then
H 1
(p)(0) = 0 and ∂p(0) is either the empty set or contains exactly one element. It

would be nice to know when a group with polynomial growth is p-parabolic or
p-hyperbolic. This has been worked out for the case 0 = Zn , where n is a positive
integer. Yamasaki [1977, Example 4.1] showed that Z is p-parabolic for p > 1,
and thus ∂p(Z)=∅ for p> 1. The main result of [Maeda 1977] says that Zn with
n ≥ 2 is p-parabolic if and only if p ≥ n. Hence, ∂p(Z

n)=∅ if p ≥ n and ∂p(Z
n)

consists of exactly one point if 1< p < n.
There is a one-to-one correspondence between the maximal ideals of BDp(0)

and the points of Sp(BDp(0)). If τ ∈ Rp(0), then ker(τ ) is the maximal ideal of
BDp(0) corresponding to τ . For each x ∈0, we have δx ∈ker(τ ). By the continuity
of τ , we see that `p(0) ⊆ ker(τ ). Assume that 0 is nonamenable. Then `p(0) is
closed in Dp(0) by [Guichardet 1977, Corollary 1]. Hence (R0)Dp = `

p(0). Also,
(`p(0))BDp = `

p(0) because (`p(0))BDp ⊆ B(`p(0))Dp . Thus f̂ (τ )= 0 for every
f ∈ (R0)Dp . Therefore, Rp(0) = ∂p(0) when 0 is nonamenable. Consequently,
Rp(0) contains exactly one point when 0 is nonamenable and H 1

(p)(0)= 0. Some
groups that satisfy this last condition for 1< p ∈ R are nonamenable groups with
infinite center [Martin and Valette 2007, Theorem 4.2], and 01 × 02 × · · · × 0n

for n ≥ 2, each 0i is finitely generated, and at least one of the 0i is nonamenable
[Martin and Valette 2007, Theorem 4.7].
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8. Translation invariant linear functionals

Recall that 0 denotes a finitely generated group with generating set S. In this
section we will study TILFs on Dp(0)/R. By definition we have the inclusions

Diff(`p(0))⊆ Diff(Dp(0)/R)⊆ `
p(0)⊆ Dp(0)/R.

The set Dp(0)/R is a Banach space under the norm induced from Ip(·, 0). Thus
if [ f ] if a class from Dp(G)/R, then its norm is given by

‖[ f ]‖D(p) =

(∑
x∈0

∑
s∈S

| f (xs−1)− f (x)|p
)1/p

.

We will write ‖ f ‖D(p) for ‖[ f ]‖D(p). Now (`p(0))D(p) = Dp(0)/R if and only if
(`p(0)⊕R)Dp = Dp(0). So H 1

(p)(0)= 0 if and only if (`p(0))D(p) = Dp(0)/R.

Lemma 8.1. (Diff(Dp(0)/R))D(p) = (`p(0))D(p).

Proof. Let f ∈ `p(0). By [Woodward 1974, Lemma 1], there is a sequence ( fn)

in Diff(`p(0)) that converges to f in the `p-norm. It follows from Minkowski’s
inequality that for s ∈ S,

‖( f − fn)s − ( f − fn)‖
p
p =

∑
x∈0

| f (xs−1)− fn(xs−1)− ( f (x)− fn(x))|p→ 0

as n→∞. Hence f ∈ (Diff(`p(0)))D(p), implying `p(0) ⊆ (Diff(`p(0)))D(p).
The result now follows. �

Theorem 8.2. Let 1< p∈R. Then H 1
(p)(0) 6= 0 if and only if there exists a nonzero

continuous TILF on Dp(0)/R.

Proof. If H 1
(p)(0) 6= 0, then (`p(0))D(p) 6= Dp(0)/R. It now follows from the

Hahn–Banach theorem that there exists a nonzero continuous linear functional T
on Dp(0)/R such that (`p(0))D(p) is contained in the kernel of T . Thus T is
translation invariant by Lemma 8.1.

Conversely, if T is a continuous TILF on Dp(0)/R, then T ( f ) = 0 for all
f ∈ (`p(0))D(p). So if there exists a nonzero continuous TILF on Dp(0)/R, then
(`p(0))D(p) 6= Dp(0)/R. �

Theorem 2.11 now follows by combining Theorems 8.2 and 2.10.
If h ∈ Dp(0)/R, then 〈4ph, · 〉 is a well-defined continuous linear functional

on Dp(0)/R since equivalent functions in Dp(0)/R differ by a constant. It was
shown in [Puls 2006, Proposition 3.4] that if h ∈HDp(0)/R and f ∈ (`p(0))D(p),
then 〈4ph, f 〉 = 0. Consequently, if h ∈ HDp(0)/R, then 〈4ph, · 〉 defines a
continuous TILF on Dp(0)/R. Thus there are no nonzero continuous TILFs on
Dp(0)/R when HDp(0) only contains the constant functions.
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If H 1
(p)(0)= 0, then (`p(0))D(p)= Dp(0)/R. It is known that `p(0) is closed in

Dp(0)/R if and only if 0 is nonamenable, [Guichardet 1977, Corollary 1]. As was
mentioned in Section 2, if 0 is nonamenable, then zero is the only TILF on `p(0).
Consequently zero is the only TILF on Dp(0)/R when 0 is nonamenable and
H 1
(p)(0)= 0. Summing up:

Theorem 8.3. Let 0 be an infinite, finitely generated group and let 1< p ∈R. The
following are equivalent:

(1) H 1
(p)(0)= 0.

(2) Either ∂p(0)=∅ or #(∂p(0))= 1.

(3) HDp(0)= R.

(4) BHDp(0)= R.

(5) The only continuous TILF on Dp(0)/R is zero. If 0 is also nonamenable, then
this is still equivalent to (6):

(6) Zero is the only TILF on Dp(0)/R.

Some examples show zero is not the only TILF on Dp(0)/R when 0 is non-
amenable; this differs from the `p(0) case. Puls [2006, Corollary 4.3] showed
H 1
(p)(0) 6= 0 for groups with infinitely many ends and 1 < p ∈ R. Thus by

Theorem 8.2 there exists a nonzero continuous TILF on Dp(0)/R.
If there is a nonzero continuous TILF on Dr (0)/R for some nonamenable group

0 and some real number r , then is it true that there is a nonzero continuous TILF
on Dp(0)/R for all real numbers p> 1? The answer to this question is no. To see
this, let Hn denote hyperbolic n-space, and suppose 0 is a group that acts properly
discontinuously on Hn by isometries and that the action is cocompact and free. By
combining [Bourdon et al. 2005, Theorem 2] and [Puls 2007, Theorem 1.1], we
obtain H 1

(p)(0) 6= 0 if and only if p > n− 1.
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