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We study some rigidity properties of stable solutions of elliptic equations set
on manifolds with boundary. Our results are classified by the dimension of
the manifold and the sign of its Ricci curvature. As a consequence of our
results on boundary reactions, we obtain several symmetry and Liouville
results for nonlocal equations.

1. Introduction

Let (M, ḡ) be a complete, connected, smooth, (n+1)-dimensional manifold with
boundary ∂M, endowed with a smooth Riemannian metric ḡ = {ḡi j }i, j=1,...,n .

The volume element is written in local coordinates as

(1-1) dVḡ =
√
|ḡ| dx1

∧ · · · ∧ dxn+1,

where {dx1, . . . , dxn+1
} is the basis of 1-forms dual to the basis {∂i , . . . , ∂n+1} of

vectors and we use the standard notation |ḡ| = det(ḡi j )> 0.
We denote by divḡ X the divergence of a smooth vector field X on M, that is, in

local coordinates,
divḡ X = 1

√
|ḡ|
∂i
(√
|ḡ|X i),

where we use the Einstein summation convention.
We also denote by ∇ḡ the Riemannian gradient and by1ḡ the Laplace–Beltrami

operator, that is, in local coordinates,

(1-2) (∇ḡφ)
i
= ḡi j∂ jφ

and
1ḡφ = divḡ(∇ḡφ)=

1
√
|ḡ|
∂i
(√
|ḡ|ḡi j∂ jφ

)
,

for any smooth function φ :M→ R.
We let 〈 · , · 〉 be the scalar product induced by ḡ. Given a vector field X , we

also write |X | =
√
〈X, X〉.

MSC2000: 35B05.
Keywords: geometric analysis, PDEs on manifolds.

475

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2010.248-2


476 YANNICK SIRE AND ENRICO VALDINOCI

Also (see, for instance [Jost 1998, Definition 3.3.5]), it is customary to define
the Hessian of a smooth function φ as the symmetric 2-tensor given in a local patch
by

(Hḡφ)i j = ∂
2
i jφ−0

k
i j∂kφ,

where 0k
i j are the Christoffel symbols, namely

0k
i j =

1
2 ḡhk(∂i ḡhj + ∂ j ḡih − ∂h ḡi j ).

Given a tensor A, we define its norm by |A| =
√

AA∗, where A∗ is the adjoint.
This paper studies special solutions of elliptic equations on manifolds with

boundary and is, in some sense, a follow up to the paper by the authors and Farina
[Farina et al. 2008b], which studied the case without boundary. In a Euclidean
context, that is, M = Rn+1

+ with the flat metric, the rigidity features of the stable
solutions has been investigated in [Sire and Valdinoci 2009; Cabré and Sire 2010;
Cabré and Solà-Morales 2005].

More precisely, we study rigidity properties of stable solutions of nonlinear
problems for which the nonlinearity is prescribed on the boundary of M. Via
a theorem of Caffarelli and Silvestre [2007], boundary problems are related to
nonlocal equations involving fractional powers of the Laplacian. An analogue of
their results has been obtained in a more geometric context by means of scattering
theory [Fefferman and Graham 2002; Graham et al. 1992; Graham and Zworski
2003; Chang and del Mar González 2010].

In this paper, we will mainly focus on the two specific models:

• Product manifolds of the type

(M= M ×R+, ḡ = g+ |dx |2),

where (M, g) is a complete, smooth Riemannian manifold without boundary.
The boundary of M is precisely the manifold M .

• The hyperbolic halfspace, that is,

(M= Hn+1, ḡ = (|dy|2+ |dx |2)/x2),

where x > 0 and y ∈ Rn .

These models comprise both the positive and the negative curvature cases. Also,
we will use here that the manifold Hn+1 with metric ḡ = (|dy|2 + |dx |2)/x2 is
conformal to Rn+1

+ with the flat metric, and, in fact, (Hn+1, ḡ) is the main example
of a conformally compact Einstein manifold, as we discuss in Section 5.1.

We also want to deal with nonlocal equations. More precisely, let (M, g) be a
smooth connected Riemannian manifold without boundary, and consider (−1g)

γ
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for γ ∈ (0, 1), the pseudodifferential operator with symbol |ξ |2γ (a practical con-
struction is provided starting on 482). We investigate the problem

(1-3) (−1g)
γ u = f (u) on M,

where f is a C1(R) nonlinearity (in fact, up to minor modifications, the proofs
we present also work for locally Lipschitz nonlinearities). Problem (1-3) is clearly
nonlocal, which makes its analysis challenging. To study it special solutions, we
will realize the nonlocal operators as boundary operators of a suitable extension
on M. More precisely, we will make explicit the link between (1-3) and the bound-
ary problem

(1-4)
{
∇ḡ · (x1−2γ

∇ḡu)= 0 in M= M ×R+,

−x1−2γ ∂x u = f (u) on M ×{0}.

Remark. It would be interesting, and we leave it as an open problem, to investigate
problem (1-4) in a more general context than product manifolds. Indeed, it has
been shown in [Chang and del Mar González 2010] that one can relate fractional-
order conformally covariant operators on manifolds M to extension operators on
manifolds M when M is the conformal infinity of M. These extension operators
have a form similar to (1-4) except that they involve lower-order terms. This makes
their study with our method more involved.

2. A weighted Poincaré inequality for stable solutions of (1-4) for γ = 1/2

Definition 2.1. We call u a weak solution of (1-4) if, for every ξ ∈ C∞0 (M ×R),
we have

(2-1)
∫

M
〈∇ḡu,∇ḡξ〉 dVḡ =

∫
∂M

f (u)ξ dVg.

We focus on an important class of solutions of (1-4), namely the so-called stable
solutions. These solutions play an important role in the calculus of variations and
are characterized by the fact that the second variation of the energy functional
is nonnegative definite. This condition may be explicitly written in the case of
problem (1-4) by saying that a weak solution u of (1-4) is stable if

(2-2)
∫

M
|∇ḡξ |

2dVḡ −

∫
∂M

f ′(u)ξ 2 dVg > 0

for every ξ ∈ C∞0 (M ×R).
To simplify notation, we write ∇ instead of ∇ḡ for the gradient on M×R+, but

we will keep the notation ∇g for the Riemannian gradient on M .
Recalling (1-2), we have

(2-3) ∇ = (∇g, ∂x).
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In Theorem 2.2, we obtain a formula involving the geometry, in a quite implicit
way, of the level sets of stable solutions of (1-4).

Such a formula may be considered a geometric version of the Poincaré inequal-
ity, since the L2 norm of the gradient of any test function bounds the L2 norm of
the test function itself. Remarkably, these L2 norms are weighted and the weights
have a neat geometric interpretation.

These type of geometric Poincaré inequalities were first obtained by Sternberg
and Zunbrun [1998a; 1998b] in the Euclidean setting, and similar estimates have
been recently widely used for rigidity results in PDEs; see, for instance, [Farina
et al. 2008a; Sire and Valdinoci 2009; Ferrari and Valdinoci 2009].

Theorem 2.2. Let u be a stable weak solution of (1-4) such that ∇gu is bounded.
Then, for every ϕ ∈ C∞0 (M ×R),

(2-4)
∫

M×R+
(Ricg(∇gu,∇gu)+|Hgu|2−|∇g|∇gu||2)ϕ2 6

∫
M×R+

|∇gu|2|∇ϕ|2.

Proof. Recall the classical Bochner–Weitzenböck formula for a smooth function φ :
M→ R (see for instance [Berger et al. 1971] and references therein):

(2-5) 1
21ḡ|∇ḡφ|

2
= |Hḡφ|

2
+〈∇ḡ1ḡφ,∇ḡφ〉+Ricḡ(∇ḡφ,∇ḡφ).

The proof of Theorem 2.2 consists in plugging the test function ξ = |∇gu|ϕ into
the stability condition (2-2): After a simple computation, this gives

(2-6)
∫

M
ϕ2
|∇|∇gu||2+ 1

2〈∇|∇gu|2,∇ϕ2
〉+ |∇gu|2|∇ϕ|2−

∫
M

f ′(u)|∇gu|2ϕ2

> 0.
Also, by recalling (2-3), we have

(2-7) 〈∇|∇gu|2,∇ϕ2
〉 = 〈∇g|∇gu|2,∇gϕ

2
〉+ ∂x |∇gu|2∂xϕ

2.

Moreover, since M is boundaryless, we can use on M the Green formula — see,
for example, [Gallot et al. 1990, page 184] — and obtain

(2-8)

∫
M
〈∇g|∇gu|2,∇gϕ

2
〉 =

∫
R+

∫
M
〈∇g|∇gu|2,∇gϕ

2
〉

= −

∫
R+

∫
M
1g|∇gu|2ϕ2

=−

∫
M
1g|∇gu|2ϕ2.

Hence, using (2-5), (2-7) and (2-8), we conclude that

(2-9) 1
2

∫
M
〈∇|∇gu|2,∇ϕ2

〉 =
1
2

∫
M
∂x |∇gu|2∂xϕ

2

−

∫
M
ϕ2(|Hgu|2+〈∇g1gu,∇gu〉+Ricg(∇gu,∇gu)).
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Using the first equation in (1-4), we obtain 1gu =−∂xx u, so (2-9) becomes

(2-10) 1
2

∫
M
〈∇|∇gu|2,∇ϕ2

〉 =
1
2

∫
M
∂x |∇gu|2∂xϕ

2

−

∫
M
ϕ2
|Hgu|2+

∫
M
ϕ2
〈∇g∂xx u,∇gu〉−

∫
M
ϕ2 Ricg(∇gu,∇gu).

Furthermore, integrating by parts, we see that∫
M
∂x |∇gu|∂xϕ

2
=

∫
M

∫
+∞

0
∂x |∇gu|∂xϕ

2

=−

∫
M
(∂x |∇gu|ϕ2)|x=0−

∫
M

∫
+∞

0
∂xx |∇gu|ϕ2

=−

∫
M
(∂x |∇gu|ϕ2)|x=0−

∫
M
∂xx |∇gu|ϕ2.

Consequently, (2-10) becomes

(2-11) 1
2

∫
M
〈∇|∇gu|2,∇ϕ2

〉

= −

∫
M
ϕ2( 1

2∂xx |∇gu|2+ |Hgu|2+Ricg(∇gu,∇gu))

+

∫
M
ϕ2
〈∇g∂xx u,∇gu〉− 1

2(∂x |∇gu|2ϕ2)|x=0.

Now, we use the boundary condition in (1-4) to obtain that, on M ,

f ′(u)∇gu =∇g( f (u))=∇g∂νu =−∇g∂x u.

Therefore,

(2-12) −
1
2

∫
M
(∂x |∇gu|2ϕ2)|x=0−

∫
M
〈∇gux ,∇gu〉ϕ2

=

∫
M

f ′(u)|∇gu|2ϕ2.

All in all, by collecting the results in (2-6), (2-11), and (2-12), we obtain

(2-13)
∫

M
ϕ2
|∇|∇gu||2−

∫
M
ϕ2( 1

2∂xx |∇gu|2+ |Hgu|2+Ricg(∇gu,∇gu))

+

∫
M
ϕ2
〈∇g∂xx u,∇gu〉+

∫
M
|∇gu|2|∇ϕ|2 > 0.

Also, we observe that

|∂x |∇gu||2+〈∇g∂xx u,∇gu〉− 1
2∂xx |∇gu|2 = |∂x |∇gu||2− |∂x∇gu|2 6 0

by the Cauchy–Schwarz inequality.
Accordingly, we get (2-4) using (2-13) and

|∇|∇gu||2 = |∇g|∇gu||2+ |∂x |∇gu||2 6 1
2∂xx |∇gu|2−〈∇g∂xx u,∇gu〉. �
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3. The case of product manifolds

Now we present our results in the case of product manifolds M= M ×R+.

Theorem 3.1. Let γ = 1/2. Assume that the metric on M = M × R+ is given
by ḡ = g + |dx |2. Assume furthermore that M is compact and satisfies Ricg > 0
with Ricg not vanishing identically. Then every bounded stable weak solution u
of (1-4) is constant.

The assumption on the boundedness of u is needed. For example, the function
u(x, y)= x is a stable solution of{

1ḡu = 0 in M ×R+,

∂νu =−1 on M ×{0} .

From Theorem 3.1, one also obtains the following Liouville-type theorem for
the half-Laplacian on compact manifolds; for the definition and basic functional
properties of fractional operators, see for example [Kato 1995].

Theorem 3.2. Let (M, g) be a compact manifold and let u : M→ R be a smooth
bounded solution of

(3-1) (−1g)
1/2u = f (u),

with

(3-2)
∫

M
(|∇gξ |

2
+ |∇xξ |

2)−

∫
∂M

f ′(u)ξ 2 > 0,

for every ξ ∈C∞0 (M). Assume furthermore that Ricg > 0 and Ricg does not vanish
identically. Then u is constant.

Remark. Results for (−1g)
γ with γ ∈ (0, 1) may be obtained similarly. See

Section 4.

Theorem 3.3. Let γ = 1/2. Assume that the metric on M = M × R+ is given
by ḡ = g + |dx |2, that M is complete, and Ricg > 0, with Ricg not vanishing
identically. Assume also that, for any R > 0, the volume of the geodesic ball BR

in M (measured with respect to the volume element dVg) is bounded by C(R+1)2

for some C > 0. Then every bounded stable weak solution u of (1-4) is constant.

Next theorem is a flatness result when the Ricci tensor of M vanishes identically.

Theorem 3.4. Let γ =1/2. Assume that the metric on M=M×R+ is ḡ= g+|dx |2

and Ricg vanishes identically. Assume also that, for any R > 0, the volume of
the geodesic ball BR in M (measured with respect to the volume element dVg) is
bounded by C(R + 1)2 for some C > 0. Then for every x > 0 and c ∈ R, every
connected component of the submanifold Sx = {y ∈ M : u(x, y)= c} is a geodesic,
where u is a bounded stable solution of (1-4).
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With (2-4) in hand, one can prove Theorems 3.1–3.4. First, we recall a lemma.

Lemma 3.5 [Farina et al. 2008b, Lemma 9, Section 2]. For any smooth φ :M→R,

(3-3) |Hḡφ|
2 > |∇ḡ|∇ḡφ||

2 almost everywhere.

Lemma 3.6. Let u be a bounded solution of (1-4). Assume that Ricg > 0 and
that Ricg does not vanish identically on M. Suppose that

(3-4) Ricg(∇gu,∇gu) vanishes identically on M.

Then, u is constant on M.

Proof. By assumption, Ricg is strictly positive definite in a suitable nonempty open
set U ⊆ M . Then, (3-4) gives that ∇gu vanishes identically in U ×R+.

This means that, for any fixed x ∈R+, the map U 3 y 7→u(x, y) does not depend
on y. Accordingly, there exists a function ũ : R+→ R such that u(x, y) = ũ(x),
for any y ∈U . Thus, from (1-4),

0=1ḡu = ũxx in U ×R+

and so there exist a, b ∈ R for which

u(x, y)= ũ(x)= a+ bx for any x ∈ R+ and any y ∈U .

Since u is bounded, we have that b = 0, so u is constant in U ×R+.
By the unique continuation principle (see [Kazdan 1988, Theorem 1.8]), the

solution u is constant on M ×R+. �

Proof of Theorem 3.1. Points in M will be denoted here as (x, y), with x ∈ R+

and y ∈ M .
Take ϕ in (2-4) to be the function ϕ(x, y) = φ(x/R), where R > 0 and φ is a

smooth cut-off, that is φ = 0 on |x | > 2 and φ = 1 on |x | 6 1. We stress that this
is an admissible test function, since M is assumed to be compact in Theorem 3.1.
Moreover,

(3-5) |∇ϕ(x, y)|6 ‖φ‖C1(R) χ(0,2R)(x)/R.

Also, since u is bounded, elliptic regularity gives that ∇u is bounded in M ×R+.
Therefore, using (2-4), Lemma 3.5 and (3-5), we obtain

(3-6)
∫

M×R+
(Ricg(∇gu,∇gu))ϕ2 6 C

R2

∫
M×(0,2R)

dVḡ 6
C
R

for some constant C > 0. Sending R→+∞ and using the fact that Ricg > 0, we
conclude that Ricg(∇gu,∇gu) vanishes identically.

Thus, by Lemma 3.6, we deduce that u is constant. �



482 YANNICK SIRE AND ENRICO VALDINOCI

Proof of Theorem 3.2. We put coordinates (y, x) ∈M= M ×R+.
Given a smooth and bounded uo : M → R, we can define the harmonic exten-

sion Euo : M ×R+→ R as the unique bounded function solving

(3-7)
{
1ḡ(Euo)= 0 in M ×R+,

Euo = uo on M ×{0}.

See [Cabré and Solà-Morales 2005, Section 2.4] for further details.
Then, we define

(3-8) Luo := ∂ν(Euo)|x=0.

We claim that, for any point in M→ R,

(3-9) −∂x(Euo)= E(Luo).

Indeed, by differentiating the PDE in (3-7), we get 1ḡ∂x(Euo) = 0. On the other
hand, −∂x(Euo)(0, y)= ∂ν(Euo)(0, y)=Luo, thanks to (3-8). Moreover, ∂x(Euo)

is bounded by elliptic estimates, since so is uo. Consequently, −∂x(Euo) is a
bounded solution of (3-7) with uo replaced by Luo. Thus, by the uniqueness of
bounded solutions of (3-7), we obtain (3-9).

By exploiting (3-8) and (3-9), we see that

(3-10)
L2uo = ∂ν(E(Luo))|x=0 =−∂x(E(Luo))|x=0

=−∂x(−∂x(Euo))|x=0 = ∂xx(Euo)|x=0.

On the other hand, using the PDE in (3-7), we get

0=1ḡ(Euo)=1g(Euo)+ ∂xx(Euo),

so (3-10) becomes

L2uo(y)= ∂xx(Euo)(0, y)=−1g(Euo)(0, y)=−1guo(y),

for any y ∈ M , that is

(3-11) L= (−1g)
1/2.

With these observations in hand, we now take u as in the statement of Theorem 3.2
and define v := Eu.

From (3-8) and (3-11), we have ∂νv|x=0 = ∂ν(Eu)|x=0 = Lu = (−1g)
1/2u.

Consequently, recalling (3-1), we obtain that v is a bounded solution of (1-4).
Furthermore, the function v is stable, thanks to (4-12). Hence v is constant by
Theorem 3.1, and so we obtain the desired result for u = v|x=0. �
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Proof of Theorem 3.3. Given p = (m, x) ∈ M × R+, we define dg(m) to be the
geodesic distance of m in M (with respect to a fixed point) and

d(p) :=
√

dg(m)2+ x2.

Let also B̂R := {p ∈ M × R+ : d(p) < R}, for any R > 0. Notice that |∇gu| ∈
L∞(M ×R+) by elliptic estimates, and that B̂R ⊆ BR × [0, R], where BR is the
corresponding geodesic ball in M .

As a consequence, by our assumption on the volume of BR , we obtain∫
B̂R

|∇gu|2 dVḡ 6
∫

B̂R

|∇ḡu|2 dVḡ =

∫
∂ B̂R

uuν 6 C(R+ 1)2 ‖∇gu‖L∞(M×R+)‖u‖∞.

That is,

(3-12)
∫

B̂R

|∇gu|2 dVḡ 6 C R2 for any R > 1.

Also, since dg is a distance function on M (see [Petersen 1998, pages 34 and 123]),
we have

(3-13) |∇d(p)| = |(dg(m)∇gdg(m), x)|/d(p)6 1.

Also, given R > 1, we define

φR(p) :=


1 if d(p)6

√
R,

(log
√

R)−1
(

log R− log(d(p))
)

if d(p) ∈ (
√

R, R),
0 if d(p)> R.

Notice that by (3-13), up to a set of zero Vḡ-measure,

|∇φR(p)|6
χB̂R\B̂√R

(p)

log
√

R d(p)
.

As a consequence,

(log
√

R)2
∫

M×R+
|∇gu|2|∇φR|

2 dVḡ 6
∫

B̂R\B̂√R

|∇gu(p)|2

d(p)2
dVḡ(p)

=

∫
B̂R\B̂√R

|∇gu(p)|2
( 1

R2 +

∫ R

d(p)

2 dt
t3

)
dVḡ(p)

6 1
R2

∫
B̂R

|∇gu(p)|2 dVḡ(p)+
∫ R

√
R

∫
B̂t

2|∇gu(p)|2

t3 dVḡ(p) dt.

Therefore, by (3-12),

(log
√

R)2
∫

M×R+
|∇gu|2|∇φR|

2 dVḡ 6 C
(

1+
∫ R

√
R

2 dt
t

)
6 3C log R.
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Consequently, from (2-4),

(3-14)
∫

M×R+
(Ricg(∇gu,∇gu)+ |Hgu|2− |∇g|∇gu||2)φ2

R 6
12C
log R

.

From this and (3-3), we conclude that∫
M×R+

Ricg(∇gu,∇gu)φ2
R 6

12C
log R

.

By sending R→+∞, we obtain that Ricg(∇gu,∇gu) vanishes identically.
Hence, u is constant, thanks to Lemma 3.6, proving Theorem 3.3. �

Proof of Theorem 3.4. The proof of Theorem 3.3 can be carried out in this case
too, up to formula (3-14).

Then, (3-14) in this case gives that∫
M×R+

(|Hgu|2− |∇g|∇gu||2)φ2
R 6

12C
log R

.

By sending R→+∞, and by recalling (3-3), we conclude that |Hgu| is identically
equal to |∇g|∇gu|| on (M ×{x})∩ {∇gu 6= 0} for any fixed x > 0.

Consequently, by [Farina et al. 2008b, Lemma 5], for any k = 1, . . . , n there
exist κk

: M→ R such that

∇g(∇gu)k(p)= κk(p)∇gu(p) for any p ∈ (M ×{x})∩ {∇gu 6= 0}.

From this and [Farina et al. 2008b, the computation starting on formula (23)], we
see that every connected component of {y ∈ M : u(x, y)= c} is a geodesic. �

4. The case γ 6= 1/2

In this section, we provide the suitable adaptations of the previous arguments to
deal with the case γ 6= 1/2. We also construct the nonlocal operators. Recall here
that M is boundaryless, so that we do need to take care of the traces.

Given γ ∈ (0, 1), let α=1−2γ ∈ (−1, 1). Using variables (x, y)∈ (0,+∞)×M ,
the space Hγ (M) coincides with the trace on ∂M of

H 1(xα) :=
{

u ∈ H 1
loc(M) :

∫
M

xα(u2
+ |∇u|2ḡ)dxdy <+∞

}
.

In other words, v := u|∂M ∈ Hγ (M) for any function u ∈ H 1(xα)∩C(M), and there
exists a constant C>0 such that ‖v‖Hγ (M)6C‖u‖H1(xα). So, by a standard density
argument (see [Chiadò Piat and Serra Cassano 1994] in the case of M =Rn), every
u ∈ H 1(xα) has a well-defined trace v ∈ Hγ (M). Conversely, any v ∈ Hγ (M) is
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the trace of a function u ∈ H 1(xα). In addition, the function u ∈ H 1(xα) defined
by

(4-1) u := arg min
{∫

M
xα|∇w|2ḡ dx : w|∂M = v

}
solves the PDE

(4-2)
{

divḡ(xα∇ḡu)= 0 in M,
u = v on ∂M.

By standard elliptic regularity, u is smooth in M. It turns out that xαux(x, · ) con-
verges in H−γ (M) to a distribution f ∈ H−γ (M), as x→ 0+, that is, u solves

(4-3)
{

divḡ(xα∇ḡu)= 0 in M,
−xαux = f on ∂M.

Consider the Dirichlet-to-Neumann operator

0α : Hγ (M)→ H−γ (M), v 7→ 0α(v)= f := −xαux |∂M,

where u is the solution of (4-1)–(4-3).

Definition 4.1. There exists a constant dn,γ > 0 defined by the condition that
(−1g)

γ v = dn,γ0α(v) for every v ∈ Hγ (M), where α = 1− 2γ .

In other words, given f ∈ H−γ (M), a function v ∈ Hγ (M) solves the equation

(4-4) 1
dn,γ

(−1g)
γ v = f in M

if and only if its lifting u ∈ H 1(xα) solves u = v on ∂M and (4-3). For a proof of
the claims that lead us to Definition 4.1, see [Caffarelli and Silvestre 2007] where
such a construction is provided for M = Rn .

Observe that Definition 4.1 does not give a proper way of defining (−1)sv
for arbitrary v ∈ C2(M). However, Definition 4.1 can be extended to the class
of bounded functions v ∈ C2(M) and they coincide, using the construction in
Section 3. Several works have been devoted to equations of the type (4-3), starting
with the pioneering work of Cabré and Sola-Morales [2005] in the case α= 0. Sire
and Cabré [2010] have extended their techniques to any power α ∈ (−1, 1).

The previous discussion, in addition to the techniques in [Cabré and Sire 2010;
Cabré and Solà-Morales 2005] and Section 3, allows us to prove the following
results.

We first provide the weighted Poincaré inequality.

Theorem 4.2. Let u be a stable solution of

(4-5)
{

divḡ(xα∇ḡ)u = 0 in M= M ×R+,

−xα∂x u = f (u) on M ×{0}
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such that xα∇gu is bounded. Then, for every ϕ ∈ C∞0 (M ×R), we have

(4-6)
∫

M×R+
xα(Ricg(∇gu,∇gu)+ |Hgu|2− |∇g|∇gu||2)ϕ2

6
∫

M×R+
xα|∇gu|2|∇ϕ|2.

Proof. We use the technique used to prove Theorem 2.2, just making sure that we
are able to control all the terms because of the weight xα. We plug the test function
test function ξ = |∇gu|ϕ into the stability condition, giving

(4-7)
∫

M
xα(ϕ2

|∇|∇gu||2+ 1
2〈∇|∇gu|2,∇ϕ2

〉+ |∇gu|2|∇ϕ|2)

−

∫
M

f ′(u)|∇gu|2ϕ2 > 0.

We have also∫
M

xα〈∇g|∇gu|2,∇gϕ
2
〉 =

∫
R+

xα
∫

M
〈∇g|∇gu|2,∇gϕ

2
〉

= −

∫
R+

xα
∫

M
1g|∇gu|2ϕ2

=−

∫
M

xα1g|∇gu|2ϕ2.

Hence, using the Bochner formula (2-5), we have

(4-8) 1
2

∫
M
〈xα∇|∇gu|2,∇ϕ2

〉 =
1
2

∫
M

xα∂x |∇gu|2∂xϕ
2

−

∫
M

xαϕ2(|Hgu|2+〈∇g1gu,∇gu〉+Ricg(∇gu,∇gu)).

Using the equation for u, the first term on the right becomes, by just integrating by
parts,∫

M
xα∂x |∇gu|2∂xϕ

2
=

∫
M

∫
+∞

0
xα∂x |∇gu|2∂xϕ

2

=−

∫
M
(xα∂x |∇gu|2ϕ2)|x=0−

∫
M

∫
+∞

0
∂x(xα∂x |∇gu|2)ϕ2

Consequently, (4-8) becomes

(4-9) 1
2

∫
M

xα〈∇|∇gu|2,∇ϕ2
〉

= −

∫
M

xαϕ2(〈∇g1gu,∇gu〉+ |Hgu|2+Ricg(∇gu,∇gu))

−
1
2

∫
M
ϕ2∂x(xα∂x |∇gu|2)− 1

2

∫
M
(xα∂x |∇gu|2ϕ2)|x=0.
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We use the equation, noticing that 1gu =−(α/x)∂x u on M. This gives

(4-10) 1
2

∫
M

xα〈∇|∇gu|2,∇ϕ2
〉

= −

∫
M

xαϕ2(|Hgu|2+Ricg(∇gu,∇gu))

−
1
2

∫
M
ϕ2xα∂xx |∇gu|2− 1

2

∫
M
(xα∂x |∇gu|2ϕ2)|x=0.

Finally, we use the boundary condition to obtain that

f ′(u)∇gu =∇g( f (u))=∇g(xα∂x u)=−∇g(xα∂x)u on M . �

As a consequence of the previous theorem and adapting the proof of the case
γ = 1/2, one has the following series of results.

Theorem 4.3. Let α ∈ (−1, 1). Assume that the metric on M = M ×R+ is given
by ḡ = g+ |dx |2. Assume furthermore that M is compact and satisfies Ricg > 0,
with Ricg not vanishing identically. Then every bounded stable weak solution u
of (4-5) is constant.

Theorem 4.4. Let γ ∈ (0, 1). Let (M, g) be a compact manifold and let u :M→R

be a smooth bounded solution of

(4-11) (−1g)
γ u = f (u),

with

(4-12)
∫

M
(|∇gξ |

2
+ |∇xξ |

2)−

∫
∂M

f ′(u)ξ 2 > 0 for every ξ ∈ C∞0 (M).

Assume that Ricg > 0 and Ricg does not vanish identically. Then u is constant.

Theorem 4.5. Let α ∈ (−1, 1). Assume that the metric on M = M ×R+ is given
by ḡ = g + |dx |2, that M is complete, and Ricg > 0, with Ricg not vanishing
identically. Assume also that, for any R > 0, the volume of the geodesic ball BR

in M (measured with respect to the volume element dVg) is bounded by C(R+1)2

for some C > 0. Then every bounded stable weak solution u of (4-5) is constant.

Theorem 4.6. Let α ∈ (−1, 1). Assume that the metric on M = M ×R+ is given
by ḡ = g+ |dx |2 and Ricg vanishes identically. Assume also that, for any R > 0,
the volume of the geodesic ball BR in M (measured with respect to the volume
element dVg) is bounded by C(R + 1)2 for some C > 0. Then for every x > 0
and c ∈ R, every connected component of the submanifold

Sx = {y ∈ M : u(x, y)= c}

is a geodesic, where u is a bounded stable solution of (4-5).
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5. The case of hyperbolic space

We now turn to a boundary problem in hyperbolic space. To do so we start with
the construction of the nonlocal operators.

5.1. Scattering theory and construction of the nonlocal operators. Let M be a
compact manifold of dimension n. Given a metric g on M , the conformal class [g]
of g is defined as the set of metrics ĝ that can be written as ĝ = ϕg for a positive
conformal factor ϕ.

Let M be a smooth manifold of dimension n + 1 with boundary ∂M = M . A
function x is a defining function of ∂M in M if

x > 0 in M, x = 0 on ∂M, dx 6= 0 on ∂M.

We say that h is a conformally compact metric on M with conformal infinity
(M, [g]) if there exists a defining function x such that the manifold (M, h̄) is
compact for h̄ = x2g, and h̄|M ∈ [g].

Given a conformally compact, asymptotically hyperbolic manifold (Mn+1, h)
and a representative ĝ in [g] on the conformal infinity M , there is a uniquely de-
fined function x such that h has the normal form h = x−2(dx2

+ gx) on M× (0, ε)
in M, where gx is a one-parameter family of metrics on M such that gx |M = ĝ; see
[Graham and Zworski 2003] for precise statements and further details.

In this setting, the scattering matrix of M is defined as follows. Consider the
following eigenvalue problem in (M, h):

(5-1) −1hu− s(n− s)u = 0 in M,

where s ∈ C. Problem (5-1) is solvable unless s(n − s) belongs to the spectrum
of −1h .

However, we have σ(−1h) = [(n/2)2,∞) ∪ σpp(1h), where the pure point
spectrum σpp(1h), that is, the set of L2 eigenvalues, is finite and is contained in
(0, (n/2)2).

Moreover, given any f ∈C∞(M), Graham and Zworski [2003] obtained a mero-
morphic family of solutions u = P(s) f such that P(s) f = Fxn−s

+ H x s , where
F, H ∈C∞(M) and F |M = f . The scattering operator is defined as S(s) f = H |M ,
which is a meromorphic family of pseudodifferential operators in Re(s)>n/2 with
poles at s = n/2+N of finite rank residues. The relation between f and S(s) f is
like that of the Dirichlet to Neumann operator in standard harmonic analysis. Note
that the principal symbol is

σ(S(s))= 2n−2s 0(n/2− s)
0(s− n/2)

σ ((−1g)
s−n/2).
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The operators obtained when s = n/2+ γ and γ ∈ (0, n/2) \N have been well
studied; one defines S(n/2+ γ ) = cγ Pγ [h, g], and Pγ [h, g] are the conformally
invariant powers of the Laplacian constructed by [Fefferman and Graham 2002;
Graham et al. 1992]. For a change of metric gu = u4/(n−2γ )g, we have

Pγ [h, gu] f = u−(n+2γ )/(n−2γ )Pγ [h, g](u f ).

In particular, when γ = 1 we have the conformal Laplacian

P1 =−1g +
n−2

4(n−1)
Rg

and when γ = 2, the Paneitz operator

P2 = (−1g)
2
+ δ(an Rgg+ bn Ricg)d + 1

2(n− 4)Q2.

See [del Mar González et al. 2010], where some geometric properties associated
to these operators are investigated.

Remark. An important feature of these operators is their dependence on the metric
on M and the metric on M.

The following result, found in [Chang and del Mar González 2010], establishes
a link between scattering theory on M and a local problem in the half-space.

Theorem 5.1. Fix 0 < γ < 1 and let s = n/2+ γ . Assume that u is a smooth
solution of

(5-2)
{
−1hu− s(n− s)u = 0 in Hn+1,

Pγ [h, |dy|2]u = v on ∂Hn+1

for some smooth function v defined on ∂Hn+1. Then the function U = x s−nu solves

(5-3)


div(x1−2γ

∇U )= 0 for y ∈ Rn, x ∈ (0,+∞),

U (0, · )= u in Rn,

− lim
x→0

x1−2γ ∂xU = Cv

for some constant C.

We consider the problem (−1|dy|2)
γ u = f (u) on ∂Hn+1. Chang and del Mar

González [2010] proved that

(−1g)
γ
= Pγ

[
dx2
+ |dy|2

x2 , |dy|2
]
.

We consider then the nonlinear problem

(5-4)
{
−1hu− s(n− s)u = 0 in M= Hn+1,

Pγ [h, |dy|2]u = f (u) on ∂Hn+1.
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where f is C1(R) and the real parameter s in (5-4) is chosen to be s = n/2+ γ ,
where γ ∈ (0, 1) and the metric h is given by h = (dx2

+ |dy|2)/x2.

5.2. Results for the hyperbolic space. The next theorem provides a flatness result
when the manifold M is H3.

Theorem 5.2. Let n = 2. Let u be a smooth solution of (5-4) and let s = n/2+ γ ,
where γ ∈ (0, 1). We assume furthermore that the function xn−su is bounded.
Suppose that u is a monotone function, that is,

(5-5) ∂y2u > 0.

Then, for every x > 0 and c ∈ R, each of the submanifolds

Sx = {y ∈ Rn
| u(x, y)= cxn−s

}

is a Euclidean straight line.

The proof of Theorem 5.2 contains two main ingredients:

(1) We first notice that the metric on Hn+1 is conformal to the flat metric on Rn+1
+ .

(2) We then use some results from [Sire and Valdinoci 2009] (see also [Cabré
and Sire 2010; Cabré and Solà-Morales 2005] for related problems) to get the
desired result.

Remark. The results do not depend on the nonlinearity f . This feature was
already known in the case of standard interior reactions; see [Alberti et al. 2001].

Remark. The assumption on the Ricci curvature for the case of product manifolds
is important. Indeed, already for Ricci flat manifolds such as Rn , very little is
known, as far as stable solutions are concerned, for dimensions n > 3.

Proof of Theorem 5.2. Let u be a solution as stated. By Theorem 5.1, the function
U = x s−nu satisfies in a weak sense

(5-6)


div(x1−2γ

∇U )= 0 for y ∈ R2, x ∈ (0,+∞),
U (0, · )= u,

− limx→0 x1−2γ ∂xU = f (U ).

Notice that ∂y2U > 0, thanks to (5-5). Furthermore, U is bounded.
Therefore, we can apply the following theorem in [Sire and Valdinoci 2009]:

Theorem 5.3. Let v ∈ C2
loc(R

n) be a bounded solution of

(5-7)
{

div(x1−2γ
∇v)= 0 for y ∈ R2, x ∈ (0,+∞),

− limx→0 x1−2γ ∂xv = f (v),

with f locally Lipschitz. Suppose that

(5-8) ∂y2v > 0.
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Then, there exist ω ∈ S1 and vo : R
+
×R→ R such that v(x, y)= vo(x, ω · y) for

any y ∈ R2.

Therefore, U (x, y)=Uo(x, ω·y) for suitable Uo : [0,+∞)×R→R and ω∈ S1.
This gives directly the desired result. �

Remark. This result on the hyperbolic space cannot be obtained directly by the
methods of the previous section. Indeed, it is an open problem to use weighted
Poincaré inequalities for manifolds with negative curvature. As mentioned in the
introduction, the general case of conformally compact manifolds is still open.
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