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HANS U. BODEN AND STEFAN FRIEDL

Given a knot K in an integral homology sphere 6 with exterior NK , there is
a natural action of the cyclic group Z/n on the space of SL(n,C) represen-
tations of the knot group π1(NK ), which induces an action on the SL(n,C)

character variety. We identify the fixed points of this action in terms of
characters of metabelian representations, and we apply this in order to show
that the twisted Alexander polynomial 1α

K,1(t) associated to an irreducible
metabelian SL(n,C) representation α is actually a polynomial in tn.

1. Introduction

The study of metabelian representations and metabelian quotients of knot groups
goes back to the pioneering work of Neuwirth [1965], de Rham [1967], Burde
[1967], and Fox [1970]; see also [Burde and Zieschang 2003, Section 14]. The
theory was further developed by many authors, including Hartley [1979; 1983],
Livingston [1995], Letsche [2000], Lin [2001], Nagasato [2007], and Jebali [2008].
In [Boden and Friedl 2008], we proved a classification theorem for irreducible
metabelian representations and in this paper we continue our study of metabelian
representations of knot groups.

Throughout this paper, when we say that K is a knot, we will always understand
that K is an oriented, simple closed curve in an integral homology 3-sphere 6. We
write NK =6

3
\ τ(K ), where τ(K ) denotes an open tubular neighborhood of K .

Given a topological space M , let Rn(M) be the space of SL(n,C) representa-
tions of π1(M), and let Xn(M) be the associated character variety. We use ξα to
denote the character of the representation α : π1(M)→ SL(n,C). We will often
make use of the important fact that two irreducible representations determine the
same character if and only if they are conjugate; see [Lubotzky and Magid 1985,
Corollary 1.33].

Now suppose K is a knot. The group Z/n has an action on the representation
variety Rn(NK ), given by twisting by the n-th roots of unity ωk

= e2π ik/n
∈ U(1).
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(This is a special case of the more general twisting operation described in [Lubotzky
and Magid 1985, Chapter 5].) More precisely, we write Z/n = 〈σ | σ n

= 1〉 and
set (σ ·α)(g)=ωε(g)α(g) for each g ∈ π1(NK ), where ε : π1(NK )→ H1(NK )=Z

is determined by the given orientation of the knot.
This constructs an action of Z/n on Rn(NK ) which, in turn, descends to an

action on the character variety Xn(NK ). Our main result identifies the fixed points
of Z/n in X∗n(NK )— the irreducible characters — as those associated to metabelian
representations.

Theorem 1. The character ξα of an irreducible representation α : π1(NK ) →

SL(n,C) is fixed under the Z/n action if and only if α is metabelian.

In proving this result, we will actually characterize the entire fixed point set
Xn(NK )

Z/n in terms of characters ξα of the metabelian representations α = α(n,χ)
described in Section 2.3 (see Theorem 4). When n = 2, it turns out that every
metabelian SL(2,C) representation is dihedral. For this case, Theorem 1 was first
proved by F. Nagasato and Y. Yamaguchi [2008, Proposition 4.8].

As an application of Theorem 1, we prove a result about the twisted Alexander
polynomials associated to metabelian representations. This result was first shown
by C. Herald, P. Kirk and C. Livingston [2010] using completely different methods.
Our approach is elementary and natural, and is explained in Section 3.2, where we
apply it to give an answer to a question raised by Hirasawa and Murasugi [2009].

2. The classification of metabelian representations of knot groups

We recall some results from [Boden and Friedl 2008] regarding the classification
of metabelian representations of knot groups.

2.1. Preliminaries. Given a group π , we write π (n) for the n-th term of the derived
series of π . These subgroups are defined inductively by setting π (0) = π and
π (i+1)

= [π (i), π (i)]. The group π is called metabelian if π (2) = {e}.
Suppose V is a finite-dimensional vector space over C. A representation % :

π→ Aut(V ) is called metabelian if % factors through π/π (2). The representation
% is called reducible if there exists a proper subspace U ⊂ V invariant under %(γ )
for all γ ∈ π . Otherwise, % is called irreducible or simple. If % is the direct sum
of simple representations, then % is called semisimple.

Two representations %1 : π→Aut(V ) and %2 : π→Aut(W ) are called isomor-
phic if there exists an isomorphism ϕ : V →W such that ϕ−1

◦ %1(g) ◦ϕ = %2(g)
for all g ∈ π .

2.2. Metabelian quotients of knot groups. Let K ⊂ 63 be a knot in an integral
homology 3-sphere. Denote by ÑK the infinite cyclic cover of NK corresponding
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to the abelianization π1(NK )→ H1(NK )∼= Z. Thus, π1(ÑK )= π1(NK )
(1) and

H1
(
NK ;Z[t±1

]
)
= H1(ÑK )∼= π1(NK )

(1)/π1(NK )
(2).

The Z[t±1
]-module structure is given on the right hand side by tn

· g := µ−ngµn ,
where µ is a meridian of K .

For a knot K , we set π := π1(NK ) and consider the short exact sequence

1→ π (1)/π (2)→ π/π (2)→ π/π (1)→ 1.

Since π/π (1) = H1(NK )∼= Z, this sequence splits, and we get isomorphisms

π/π (2) ∼= π/π (1) nπ (1)/π (2) ∼= Z nπ (1)/π (2) ∼= Z n H1(NK ;Z[t±1
]),

g 7→ (µε(g), µ−ε(g)g) 7→ (ε(g), µ−ε(g)g),

where the semidirect products are taken with respect to the Z actions defined by
letting n ∈ Z act on π (1)/π (2) by conjugation by µn , and on H1(NK ;Z[t±1

]) by
multiplication by tn .

2.3. Irreducible metabelian SL(n,C) representations of knot groups. Let K be
a knot and write H = H1(NK ;Z[t±1

]). The discussion of the previous section
shows that irreducible metabelian SL(n,C) representations of π1(NK ) correspond
precisely to the irreducible SL(n,C) representations of Z n H .

Let χ : H→C∗ be a character that factors through H/(tn
−1), and take z ∈ S1

with zn
= (−1)n+1. It follows from [Boden and Friedl 2008, Section 3] that, for

( j, h) ∈ Z n H ,

α(χ,z)( j, h)=


0 0 · · · z

z 0 · · · 0
...
. . .

. . .
...

0 · · · z 0


j 

χ(h) 0 · · · 0

0 χ(th) · · · 0
...

...
. . .

...

0 0 · · · χ(tn−1h)


defines an SL(n,C) representation whose isomorphism type does not depend on the
choice of z. In our notation we will not normally distinguish between metabelian
representations of π1(NK ) and representations of Z n H .

We say that a character χ : H→C∗ has order n if it factors through H/(tn
−1)

but not through H/(t`−1) for any `< n. Given a character χ : H→C∗, let t iχ be
the character defined by (t iχ)(h)=χ(t i h). Any character χ : H→C∗ that factors
through H/(tn

−1) must have order k for some divisor k of n. The next statement
is a combination of [Boden and Friedl 2008, Lemma 2.2 and Theorem 3.3].

Theorem 2. Suppose χ : H → C∗ is a character that factors through H/(tn
− 1).

(i) α(n,χ) : Z n H → SL(n,C) is irreducible if and only if the character χ has
order n.
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(ii) Given two characters χ, χ ′ : H → C∗ of order n, the representations α(n,χ)
and α(n,χ ′) are conjugate if and only if χ = tkχ ′ for some k.

(iii) For any irreducible representation α :Zn H→ SL(n,C), there is a character
χ : H → C∗ of order n such that α is conjugate to α(n,χ).

3. Main results

3.1. Metabelian characters as fixed points. Set ω = e2π i/n and recall the action
of the cyclic group Z/n = 〈σ | σ n

= 1〉 on representations α : π1(NK )→ SL(n,C)

obtained by setting (σ ·α)(g)=ωε(g)α(g) for all g ∈π1(NK ), where ε :π1(NK )→

H1(NK )= Z.

Lemma 3. Suppose α : π1(NK )→ SL(n,C) is a representation whose associated
character ξα ∈ Xn(NK ) is a fixed point of the Z/n action. Up to conjugation,

(1) α(µ)=


0 0 · · · z
z 0 · · · 0
...
. . .

. . .
...

0 · · · z 0


for some (in fact, any) z ∈ U(1) such that zn

= (−1)n+1.

Proof. Let c(t) = det(α(µ)− t I ) denote the characteristic polynomial of α(µ),
which we can write as

c(t)= (−1)ntn
+ cn−1tn−1

+ · · ·+ c1t + 1.

Note that c(t) is determined by the character ξα ∈ Xn(NK ) and so, assuming ξα is
a fixed point of the Z/n action, we conclude that α(µ) and ωkα(µ) have the same
characteristic polynomials for all k. In particular,

c(t)= det(α(µ)− t I )= det(ω−1α(µ)− t I )

= det(ω−1α(µ)− (ω−1ω)t I )= det(ω−1 I ) det(α(µ)−ωt I )

= det(α(µ)− tωI )= c(ωt).

However, ωk
6= 1 unless n divides k, and this implies 0= cn−1 = cn−2 = · · · = c1

and c(t)= (−1)ntn
+1. In particular, the matrix α(µ) and the matrix appearing in

Equation (1) have the same set of n distinct eigenvalues. This implies that the two
matrices are conjugate. �

To prove Theorem 1, we establish the following more general result:

Theorem 4. The fixed point set of the Z/n action on Xn(NK ) consists of characters
ξα of the metabelian representations α = α(n,χ) described in Section 2.3. In other
words, Xn(NK )

Z/n
= {ξα | α = α(n,χ) for χ : H1(NK ;Z[t±1

])→ C∗}.
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Theorem 1 can be viewed as the special case of Theorem 4 when α is irreducible.
(Recall that irreducible representations are conjugate if and only if they define the
same character.) Note that not every reducible metabelian representation is of the
form α(n,χ).

Proof. We first show that if α : π1(NK )→ SL(n,C) is given as α = α(n,χ), then
σ ·α is conjugate to α. This of course implies that ξα = ξσ ·α.

Assume then that α = α(n,χ). We have

α(µ)=


0 0 · · · z
z 0 · · · 0
...
. . .

. . .
...

0 · · · z 0

 ,
where z satisfies zn

= (−1)n+1. Also α(g) is diagonal for all g∈[π1(NK ), π1(NK )].
From the definition of σ ·α, we see that

(σ ·α)(µ)= ω α(µ)=


0 0 · · · ωz
ωz 0 · · · 0
...
. . .

. . .
...

0 · · · ωz 0


and that (σ · α)(g) = α(g) for all g ∈ [π1(NK ), π1(NK )]. It follows easily from
Theorem 2(ii) that σ · α and α(n,χ) are conjugate; however, it is easy to see this
directly too. Simply take

P =


1 0
ω

. . .

0 ωn−1

 ,
and compute that σ ·α = PαP−1 as claimed.

We now show the other implication, namely, that each point ξ ∈ Xn(NK )
Z/n

in the fixed point set can be represented as the character ξ = ξα of a metabelian
representation α = α(n,χ), where χ : H1(NK ;Z[t±1

]) → C∗ is a character that
factors through H1(NK ;Z[t±1

])/(tn
− 1) and hence has order k for some k that

divides n. (Note that Theorem 2(i) tells us that α(n,χ) is irreducible if and only if
χ has order n.)

From the general results on representation spaces and character varieties (see
[Lubotzky and Magid 1985]), it follows that every point in the character vari-
ety Xn(NK ) can be represented as ξα for some semisimple representation α :
π1(NK )→SL(n,C). Further, two semisimple representations α1 and α2 determine
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the same character if and only if α1 is conjugate to α2. (This is evident from the
fact that the orbits of the semisimple representations under conjugation are closed.)

Given ξ ∈ Xn(NK )
Z/n , we can therefore suppose that ξ=ξα for some semisimple

representation α. Clearly σ ·α is also semisimple, and since ξα= ξσ ·α, we conclude
from the previous argument that α and σ · α are conjugate representations. This
means that there exists a matrix A ∈ SL(n,C) such that AαA−1

= σ · α. In other
words, for all g ∈ π1(NK ), we have

(2) Aα(g)A−1
= ωε(g)α(g).

Lemma 3 implies that α(µ) is conjugate to the matrix in Equation (1). It is conve-
nient to conjugate α so that α(µ) is diagonal, meaning that

α(µ)=


z 0
ωz

. . .

0 ωn−1z

 ,
where z satisfies zn

= (−1)n+1.
We now apply (2) to the meridian to conclude that

Aα(µ)= ω α(µ)A,

which implies that A= (ai j ) satisfies ai j = 0 unless j = i+1 mod (n). Thus, we
see that

A =


0 λ1 0 · · · 0
0 0 λ2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 λn−1

λn 0 · · · 0 0


for some λ1, . . . , λn satisfying λ1 · · · λn = (−1)n+1.

It is completely straightforward to see that the characteristic polynomial of A is

det(A− t I )= (−1)n(tn
− (−1)n+1).

From this, we conclude that A has as its eigenvalues the n distinct n-th roots of
(−1)n+1. In particular, the subset of matrices in SL(n,C) that commute with A is
just a copy of the unique maximal torus TA

∼= (C∗)n−1 containing A.
For any g ∈ [π1(NK ), π1(NK )], we have α(g)= (σ ·α)(g). Thus it follows that

Aα(g)A−1
= α(g), and this implies that α(g) ∈ TA for all g ∈ [π1(NK ), π1(NK )].

This shows that the restriction of α to the commutator subgroup [π1(NK ), π1(NK )]

is abelian. We conclude from this that α is indeed metabelian. Notice that this,
and an application of Theorem 2(iii), completes the proof in case α is irreducible.
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In the general case, it follows from the discussion in Section 2.2 that α factors
through Z n H1(NK ;Z[t±1

]). Let H = H1(NK ;Z[t±1
]). Given a character χ :

H → C∗, we define the associated weight space Vχ by setting

Vχ = {v ∈ Cn
| χ(h) · v = α(h)v for all h ∈ H}.

Recall that A · α(h) · A−1
= α(h) for any h ∈ H . It is straightforward to show

that A restricts to an automorphism of Vχ . Since H is abelian, there exists at least
one character χ : H → C∗ such that Vχ is nontrivial. For any i , denote by t iχ the
character given by (t iχ)(h)= χ(t i h) for h ∈ H .

Note that A has n distinct eigenvalues and therefore is diagonalizable. Since A
restricts to an automorphism of Vχ , there is an eigenvector v of A that lies in Vχ .
Let λ be the corresponding eigenvalue. By the proof of [Boden and Friedl 2008,
Theorem 2.3], the map α(µ) induces an isomorphism Vχ→ Vtχ . We now calculate

A ·α(µ)v = (Aα(µ)A−1) · Av = ω α(µ) · λv = λω ·α(µ)v;

that is, α(µ)v ∈ Vtχ is an eigenvector of A with eigenvalue ωλ.
Iterating this argument, we see that α(µ)iv lies in Vt iχ and is an eigenvector

of A with eigenvalue ωiλ. Since ω is a primitive n-th root of unity, the eigen-
values λ, ωλ, . . . , ωn−1λ are all distinct, and this implies that the corresponding
eigenvectors v, α(µ)v, . . . , α(µ)n−1v form a basis for Cn .

Let m be the order of χ ; that is, m is the minimal number such that χ = tmχ .
From the previous argument, we see that Cn is generated by Vχ , Vtχ , . . . , Vtmχ .
Since the characters χ, tχ, . . . , tmχ are pairwise distinct, it follows that Cn is
given as the direct sum Vχ ⊕ Vtχ ⊕ · · ·⊕ Vtm−1χ .

We write k = dimC(Vχ ) and note that n = km. We note further that α(µ)m has
eigenvalues

(3) {zm, zme2π i/k, . . . , zme2π i(k−1)/k
},

and each eigenvalue has multiplicity m. Clearly α(µ)m restricts to an automor-
phism of Vt iχ for i = 0, . . . ,m−1, and equally clearly we see that the restrictions
all give conjugate representations. This implies that the restriction of α(µ)m to
Vχ has eigenvalues in the set (3) above, each occurring with multiplicity 1. In
particular, we can find a basis {v1, . . . , vk} for Vχ in which the matrix of α(µ)m

has the form

α(µm)=


0 0 · · · zm

zm 0 · · · 0
...
. . .

. . .
...

0 · · · zm 0

 .
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It is now straightforward to verify that, with respect to the ordered basis

v1, z−1α(µ)v1, · · · , z−(m−1)α(µ)m−1v1,

v2, z−1α(µ)v2, · · · , z−(m−1)α(µ)m−1v2,

...
...

...

vk, z−1α(µ)vk, · · · , z−(m−1)α(µ)m−1vk


,

α is given by α(n, χ). �

3.2. Application to twisted Alexander polynomials. As an application, we prove a
the following result regarding twisted Alexander polynomials of knots correspond-
ing to metabelian representations. Denote by 1αK ,i (t) the i-th twisted Alexander
polynomial for a given representation α : π1(NK ) → SL(n,C), as presented in
[Friedl and Vidussi 2009].

Proposition 5. Let α be a metabelian representation of the form α = α(n,χ) :

π1(NK )→ SL(n,C). Then

1αK ,0(t)=
{

1− tn if χ is trivial,
1 otherwise.

Further, the twisted Alexander polynomial 1αK ,1(t) is actually a polynomial in tn .

Remark 6. In their paper, C. Herald, P. Kirk, and C. Livingston prove the same re-
sult using an entirely different approach; compare with [Herald et al. 2010, page 10]
We also point out that Proposition 5 gives a positive answer to [Hirasawa and
Murasugi 2009, Conjecture A].

Proof. The proof of the first statement is not difficult. It is immediate when χ is
trivial, and it follows by a direct calculation when χ is nontrivial.

We turn to the proof of the second statement. For θ ∈ U (1) and any repre-
sentation β : π1(NK ) → GL(n,C), define the θ -twist of β to be the represen-
tation that sends g ∈ π1(NK ) to θ ε(g)β(g), where ε : π1(NK ) → Z is deter-
mined by the orientation of K . We denote the newly obtained representation by
βθ :π1(NK )→GL(n,C). Note that in case α :π1(NK )→SL(n,C) and θ = e2π ik/n

is an n-th root of unity, αθ is again an SL(n,C) representation. The proof of the
proposition relies on the formula

(4) 1
βθ
K ,1(t)=1

β

K ,1(θ t).

This formula is well known, and follows directly from the definition of the twisted
Alexander polynomial. Equation (4) combines with Theorem 1 to complete the
proof, as we now explain. Take ω= e2π i/n . If α= α(n,χ) is metabelian, Theorem 1
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shows that its conjugacy class is fixed under the Z/n action. In particular, since α
and αω are conjugate, Equation (4) shows that

1αK ,1(t)=1
αω
K ,1(t)=1

α
K ,1(ωt).

Expanding 1αK ,1(t) =
∑

ai t i and using the fact that tk
= (ωt)k if and only if k is

a multiple of n, this shows that ak = 0 unless k is a multiple of n. �
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