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The Lewis–Zagier correspondence attaches period functions to Maaß wave
forms. We extend this correspondence to wave forms of higher order, which
are higher-order invariants of the Fuchsian group in question. The key
ingredient, an identification of higher-order invariants with ordinary in-
variants of unipotent twists, makes it possible to apply standard methods of
automorphic forms to higher-order forms.

Introduction

The Lewis–Zagier correspondence — [Lewis 1997; Lewis and Zagier 1997; 2001];
see also [Bruggeman 1997] — is a bijection between the space of Maaß wave forms
of a fixed Laplace-eigenvalue λ and the space of real-analytic functions on the line,
satisfying a functional equation that involves the eigenvalue. The latter functions
are called period functions. In [Deitmar and Hilgert 2007], this correspondence
was extended to subgroups 0 of finite index in the full modular group 0(1). One
can assume 0 to be normal in 0(1). The central idea of the latter paper is to
consider the action of the finite group 0(1)/0 and, in this way, to consider Maaß
forms for 0 as vector-valued Maaß forms for 0(1). This technique can be applied
to higher-order forms as well [Chinta et al. 2002; Deitmar 2009; Deitmar and
Diamantis 2009; Diamantis and Sreekantan 2006; Diamantis et al. 2006; Diamantis
and O’Sullivan 2008; Diamantis and Sim 2008], turning the somewhat unfamiliar
notion of a higher-order invariant into the notion of a classical invariant of a twist
by unipotent representation. In the case of Eisenstein series, this viewpoint has
already been used in [Jorgenson and O’Sullivan 2008]. The general framework of
higher-order invariants and unipotent twists is described in Section 1. This way of
viewing higher-order forms has the advantage that it allows techniques of classical
automorphic forms to be applied in the context of higher-order forms. The example
of the trace formula will be treated in forthcoming work. This paper only applies
this technique to extend the Lewis–Zagier correspondence to higher-order forms.
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We define the corresponding spaces of automorphic forms of higher order in
Section 2. Various authors have defined holomorphic forms of higher order. Maaß
forms are more subtle, as it is not immediately clear how to establish the L2

structure on higher-order invariants. Deitmar and Diamantis [2009] resorted to
the obvious L2 structure for the quotient spaces of consecutive higher-order forms;
however, this is unsatisfactory because one wishes to view L2 higher-order forms
as higher-order invariants themselves. In this paper this flaw is remedied: we
give a space of locally square-integrable functions on the universal cover of the
Borel–Serre compactification, whose higher-order invariants give the sought-for
L2 invariants.

We use a common definition of higher-order forms that insists on full invariance
under parabolic elements. In the language of Section 1, that means that we take the
subgroup P to be the subgroup generated by all parabolic elements. It is an open
question whether the results here can be extended to the case P={1}, that is, to full
higher-order invariants. In this case, Fourier expansions have to be replaced with
Fourier–Taylor expansions, and thus it is unclear how the correspondence should
be defined.

1. Higher-order invariants and unipotent representations

We describe higher-order forms by using invariants in unipotent representations.
Let 0 be a group and let W be a C[0]-module. We take the field C of complex

numbers as the base ring. Most of the general theory works over any ring, but
our applications are over C. Let I0 be the augmentation ideal in C[0]; that is, the
kernel of the augmentation homomorphism

A : C[0] → C,
∑
γ

cγ γ 7→
∑
γ

cγ .

The ideal I0 is a vector space with basis {γ − 1}γ∈0\{1}.
We will need two simple properties of the augmentation ideal that, for the

reader’s convenience, we will prove in the next lemma. A set S of generators
of the group 0 is called symmetric when s ∈ S if and only if s−1

∈ S. It is easy to
see that C[0] = C⊕ I0 and that I0 =

∑
s∈S C[0](s − 1) for any set of generators

S of 0. We also fix a normal subgroup P of 0. We let IP denote the augmentation
ideal of P , and ĨP =C[0] IP . As P is normal, ĨP is a two-sided ideal of C[0]. For
any integer q ≥ 0, we set Jq = I q

0 + ĨP . The set of 0-invariants W0
= H 0(0,W )

in W can be described as the set of all w ∈W with I0w= 0. For q = 1, 2, . . . , we
define the set of invariants of type P and order q to be

H 0
q,P(0,W )= {w ∈W : Jqw = 0}.
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Then H 0
q,P = H 0

q,P(0,W ) is a submodule of W , and we have a natural filtration

0⊂ H 0
1,P ⊂ H 0

2,P ⊂ · · · ⊂ H 0
q,P ⊂ · · · .

Since I0H 0
q,P ⊂ H 0

q−1,P , the group 0 acts trivially on H 0
q,P/H 0

q−1,P .
A representation (η, Vη) of 0 on a complex vector space Vη is called a unipotent

length-q representation if Vη has a 0-stable filtration 0 ⊂ Vη,1 ⊂ · · · ⊂ Vη,q = Vη
such that 0 acts trivially on each quotient Vη,k/Vη,k−1, where k = 1, . . . , q and
Vη,0 = 0.

Let (η, Vη) be a unipotent length-q representation. Assume that it is P-trivial,
that is, its restriction to the subgroup P is the trivial representation. There is a
natural map 8η : Hom0(Vη,W )⊗ Vη→W given by α⊗ v 7→ α(v).

Lemma 1.1. Let W be a C[0]-module. The submodule H 0
q,P(0,W ) constitutes a

P-trivial, unipotent length-q representation of 0. If the group 0 is finitely gener-
ated, then the space H 0

q,P(0,W ) is the sum of all images8η, when η runs over the
set of all P-trivial, unipotent length-q representations that are finite-dimensional
over C.

Proof. The first assertion is clear. Assume now that 0 is finitely generated.
The space H 0

q,P(0,W ) needn’t be finite-dimensional. We use induction on q to
show that for each w ∈ H 0

q,par(0,W ) the complex vector space C[0]v is finite-
dimensional. For q = 1, we have C[0]w = Cw, and the claim follows. Next, let
w ∈ H 0

q+1,P(0,W ) and let S be a finite set of generators of 0. Then

C[0]w = Cw+ I0w = Cw+
∑
s∈S

C[0](s− 1)w.

Since (s−1)w ∈ H 0
q,P(0,W ), the claim follows from the induction hypothesis. �

From now on, assume that 0 is finitely generated. The philosophy pursued in
the rest of the paper is this:

Once you know Hom0(Vη,W ) for every P-trivial finite-dimensional uni-
potent length-q representation, you know the space H 0

q,P(0,W ).

So, instead of investigating H 0
q,P(0,W ), one should rather look at

Hom0(Vη,W )∼= (V ∗η ⊗W )0,

which is often easier to handle. In fact, it is enough to restrict to a generic set of η.
As an example of this approach, consider the case q = 2. For each group homo-

morphism χ :0/P→ (C,+), one gets a P-trivial unipotent length-q representation
ηχ on C2 given by

ηχ (γ )=
( 1 χ(γ )

0 1

)
.



14 ANTON DEITMAR

We introduce the notation

H 0
q,P = H 0

q,P(0,W )= H 0
q,P(0,W )/H 0

q−1,P(0,W )= H 0
q,P/H 0

q−1,P .

Proposition 1.2. The space H 0
2,P(0,W ) is the sum of all images 8ηχ when χ

ranges over Hom(0/P,C) \ {0}. For any two χ 6= χ ′, one has

Im(8ηχ )∩ Im(8ηχ ′ )= H 0(0,W ).

In other words,
H 0

1 =
⊕
χ

Im(8ηχ )/H 0.

Proof. We the order-lowering operator

3 : H 0
q,P → Hom(0/P, H 0

q−1,P)
∼= Hom(0/P,C)⊗ H 0

q−1,P ,

where the last isomorphism exists because 0 is finitely generated. This operator is
defined by 3(w)(γ )= (γ −1)w. One sees that it is indeed a homomorphism in γ
by using the fact that (γ τ −1)≡ (γ −1)+ (τ −1) mod I 2 for any two γ, τ ∈ 0.
The map 3 is clearly injective.

Pick now w ∈ Im(8ηχ )∩Im(8ηχ ′ ) for χ 6=χ ′. Then3(w)∈χ⊗H 0
∩ χ ′⊗H 0,

and the latter space is zero since χ 6= χ ′. For surjectivity, pick w ∈ H 0
1 . Then

3(w)=
∑n

i=1 χi ⊗wi with wi ∈ H 0, and so w ∈
∑n

i=1 Im(ϕηχi
). �

2. Higher-order forms

We now remedy the aforementioned shortcoming of [Deitmar and Diamantis 2009].
We also give a guide on how to set up higher-order L2 invariants in more general
cases (like general lattices in locally compact groups) when there is no gadget such
as the Borel–Serre compactification around. In that case, Lemma 2.1 tells you how
to define the L2 structure once you have chosen a fundamental domain for the group
action.

Let G denote the group PSL2(R) = SL2(R)/{±1} and K its maximal compact
subgroup PSO(2)= SO(2)/{±1}. Let 0(1)= PSL2(Z) be the full modular group
and 0 ⊂ 0(1) be a normal subgroup of finite index that is torsion-free. For every
cusp c of 0, fix σc ∈ 0(1) such that σc∞= c and

σ−1
c 0c σc =±

( 1 NcZ

0 1

)
.

The number Nc ∈ N is uniquely determined and is called the width of the cusp c.
Let H = {z ∈ C : Im(z) > 0} be the upper half plane, and let O(H) be the set of
holomorphic functions on H. We fix a weight k ∈ 2Z and define a (right) action
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of G on functions f on H by

f |k γ (z)= (cz+ d)−k f
( az+ b

cz+ d

)
for γ =

( a b
c d

)
.

We define the space OM
0,k(H) to be the set of all f ∈ O(H) such that for every

cusp c of 0, the function f |kσc is bounded on the domain {Im(z)>1} by a constant
times Im(z)A for some A > 0.

Further, we consider the space OS
0,k(H) of all f ∈ O(H) such that for every cusp

c of 0, the function f |k σc is bounded on the domain {Im(z) > 1} by a constant
times e−A Im(z) for some A > 0.

These two spaces are preserved not only by 0, but also by the action of the full
modular group 0(1).

The normal subgroup P of 0 will be the subgroup 0par generated by all parabolic
elements. We write H 0

q,par for H 0
q,P , and we consider the space

Mk,q(0)= H 0
q,par(0,OM

0,k(H))

of modular functions of weight k and order q, as well as the corresponding space

Sk,q(0)= H 0
q,par(0,OS

0,k(H))

of cusp forms. Then, every f ∈ Mk,q(0) possesses a Fourier expansion at each
cusp c of the form

f |k σc(z)=
∞∑

n=0

ac,n e2π i(n/Nc)z.

A function f ∈ Mk,q(0) belongs to the subset Sk,q(0) if and only if ac,0 = 0 for
every cusp c of 0.

Since the group 0 is normal in 0(1), the latter acts on the finite-dimensional
spaces Mk,q(0) and Sk,q(0). These therefore give examples of finite-dimensional
representations of 0(1) that become unipotent length-q when restricted to 0.

By a Maaß wave form for the group 0 and parameter ν ∈C, we mean a function
u ∈ L2(0\H) that is twice continuously differentiable and satisfies

1u = ( 1
4 − ν

2)u.

By the regularity of solutions of elliptic differential equations, this condition im-
plies that u is real analytic. Let Mν =Mν(0) be the space of all Maaß wave forms
for 0. Sometimes in the definition of Maaß forms, instead of the L2 condition, a
weaker condition on the growth at the cusps is imposed.

Next, we define Maaß wave forms of higher order. First, we need the higher-
order version of the Hilbert space L2(0\H). For this, recall the construction of
the Borel–Serre [1973] compactification 0\H of 0\H. One constructs a space
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H0 ⊃ H by attaching to H a real line at each cusp c of 0, and then one equips
this set with a suitable topology such that 0 acts properly discontinuously. The
quotient 0\H0 is the Borel–Serre compactification.

The space H0 is constructed so that, for a given (closed) fundamental domain
D ⊂ H of 0\H with finitely many geodesic sides, the closure D in H0 is a fun-
damental domain for 0\H0. By the discontinuity of the group action, this has the
consequence that for every compact set K ⊂ H0, there exists a finite set F ⊂ 0
such that K ⊂ F D =

⋃
γ∈F γ D.

Now we extend the hyperbolic measure to H0 so that the boundary ∂H0=H0\H

is a nullset. Let L2
loc(H0) be the space of local L2 functions on H0. Then, 0 acts

on L2
loc(H0). Since 0 acts discontinuously with compact quotient on H0, one has

L2
loc(H0)

0
= L2(0\H).

We define L2
q(0\H) as the space of all f ∈ L2

loc(H0) such that Jq f = 0; in other
words,

L2
q(0\H)= H 0

q,par(0, L2
loc(H0)).

Then, L2
1(0\H)= L2(0\H) is a Hilbert space in a natural way.

We want to endow the spaces L2
q(0\H)with Hilbert space structures when q≥2

as well. For this, we introduce the space Fq of all measurable functions f :H→C

such that Jq f = 0 modulo nullfunctions. Then, L2
q(0\H) is a subset of Fq .

Lemma 2.1. Let S ⊂ 0 be a finite set of generators, assumed to be symmetric and
to contain the unit element. Let D ⊂ H be a closed fundamental domain of 0 with
finitely many geodesic sides.

Any f ∈ Fq is uniquely determined by its restriction to

Sq−1 D =
⋃

s1,...,sq−1∈S

s1 . . . sq−1 D.

Further, one has
Fq ∩ L2(Sq−1 D)= L2

q(0\H),

where on both sides we mean the restriction to Sq D, which is unambiguous by
the first assertion. In this way the space L2

q(0\H) is a closed subspace of the
Hilbert space L2(Sq−1 D). The induced Hilbert-space topology on L2

q(0\H) is
independent of the choices of S and D, although the inner product is not. The
action of the group 0(1) on L2

q(0\H) is continuous, but not unitary unless q = 1.

Proof. We have to show that any f ∈ Lq = L2
q(0\H) that vanishes on Sq−1 D

is zero. We use induction on q . The case q = 1 is clear. Take q ≥ 2 and write
Lq = Lq/Lq−1. Consider the order-lowering operator

3 : Lq → Hom(0, Lq−1)∼= Hom(0,C)⊗ Lq−1,
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given by
3( f )(γ )= (γ − 1) f.

The kernel of 3 is Lq−1. Assume f (Sq−1 D)= 0. Then, for every s ∈ S, we have
(s − 1) f (Sq−2 D) = 0, and hence by the induction hypothesis we conclude that
(s − 1) f = 0. However, since S generates 0, this means that 3( f ) = 0 and so
f ∈ Lq−1, so again by the induction hypothesis, we get f = 0.

We next show that

Fq ∩ L2(Sq−1 D)= Fq ∩ L2(Sq−1+ j D) for every j ≥ 0.

The inclusion “⊃” is clear. We show the other inclusion by induction on q and j .
For q = 1 or j = 0, there is no problem. So, assume the claim proved for q. Let
f ∈ Fq+1∩L2(Sq+ j D) and s ∈ S. Then f (sz)= f (z)+ f (sz)− f (z), the function
f (z) is in L2(Sq+ j D), and the function f (sz)− f (z) is in Fq ∩ L2(Sq+ j−1 D) =
L2(Sq+ j D) by the induction hypothesis. It follows that f ∈ L2(s−1Sq+ j D), and
since this holds for every s, we get f ∈ L2(Sq+ j+1 D) as claimed.

We now come to
Fq ∩ L2(Sq−1 D)= L2

q(0\H).

Let f ∈ Fq ∩ L2(Sq−1 D). For every compact subset K of H0, there exists j ≥ 0
such that K ⊂ Sq−1+ j D. Therefore f is in L2(K ) for every compact subset K
of H0. Since the latter space is locally compact, f is in L2

loc(H0). Since I q
0 f = 0,

we get f ∈ L2
q(0\H). For the other inclusion, let f ∈ L2

q(0\H). Since Sq−1 D is
relatively compact in H0, it follows that f ∈ L2(Sq−1 D) as claimed.

We next prove the independence of the topology of S. Let S′ be another set of
generators. There exists l ∈N such that S′ ⊂ Sl . Hence, it suffices to show that for
every j ≥ 0, the topology from the inclusion L2

q(0\H) ⊂ L2(Sq−1 D) coincides
with the topology from the inclusion L2

q(0\H)⊂ L2(Sq+ j D). If a sequence tends
to zero in the latter topology, it clearly tends to zero in the first as well. The other
way around is proved by an induction on j similar to the one above. In particular,
the continuity of the 0(1)-action follows.

Finally, we prove the independence of D. Let D′ be another closed fundamen-
tal domain with finitely many geodesic sides. Then there exists l ∈ N such that
D′ ⊂ Sl D, and the claim follows along the same lines as before. �

We define the space Mν,q =Mν,q(0) of Maaß wave forms of order q to be the
space of all u ∈ L2

q(0\H) that are twice continuously differentiable and satisfy

1u = (1
4 − ν

2)u.

Fix a finite-dimensional representation (η, Vη) of 0(1) that is 0par-trivial and that
becomes a unipotent length-q representation on restriction to 0.
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We set Mν,q,η equal to (Vη ⊗Mν,q)
0(1). Likewise, we define M̃ν,q(0) = M̃ν,q

as the space of all u ∈ Fq(0) that are twice continuously differentiable and satisfy
1u = (1

4 − ν
2)u, and we set M̃ν,q,η = (Vη⊗ M̃ν,q)

0(1).

Lemma 2.2. If D′ν is the space of all distributions u on H with 1u = (1
4 − ν

2)u,
then

M̃ν,q,η = (Vη⊗ M̃ν,q)
0(1)
= (Vη⊗D′ν)

0(1) and

Mν,q,η = (Vη⊗Mν,q)
0(1)
= (Vη⊗ (D′ν ∩ L2

loc(H0)))
0(1).

Proof. The inclusion “⊂” is obvious in both cases. We show “⊃”. In the first
case, the space on the left can be described as the space of all smooth functions
u :H→ Vη satisfying1u= (1

4−ν
2)u, as well as Jq+1u= 0 and u(γ z)= η(γ )u(z)

for every γ ∈ 0(1). Let u ∈ (Vη ⊗D′ν)
0(1). As u satisfies an elliptic differential

equation with smooth coefficients, u is a smooth function with1u= ( 1
4−ν

2)u. The
condition u(γ z) = η(γ )u(z) is obvious. Finally, the condition Jq+1u = 0 follows
from the fact that η|0 satisfies η(Jq+1) = 0 since it is 0par-trivial and unipotent of
length q . Hence, the first claim is proven. The second is similar. �

As in the holomorphic case, every Maaß form f ∈ Mν,q(0) has a Fourier ex-
pansion

f (σcz)=
∞∑

n=0

ac,n(y) e2π i(n/Nc)x

at each cusp c, with smooth functions ac,n(y).
We define the space Sν,q of Maaß cusp forms to be the space of all f ∈ Mν,q

with ac,0(y)= 0 for every cusp c. We also set Sν,q,η = (Vη⊗Sν,q)
0(1).

Note that since η is unipotent of length q on 0, we have Sν,q,η= (Vη⊗Sν,q ′)
0(1)

for every q ′ ≥ q .

3. Setting up the transform

It is the aim of this note to extend the Lewis correspondence [Deitmar and Hilgert
2007; Lewis 1997; Lewis and Zagier 1997; Lewis and Zagier 2001] to the case of
higher-order forms. We will first explain our approach in the case of cusp forms.

Throughout, (η, Vη) will be a finite-dimensional representation of 0(1) that be-
comes 0par-trivial and unipotent of length q when restricted to 0.

For the canonical generators of 0(1), we fix the notation

S =±
( 0 1
−1 0

)
and T =±

( 1 1
0 1

)
.

The, S2
= 1= (ST )3 and T is of infinite order. Note that since 0(1)/0 is a finite

group, there exists N ∈ N such that T N
∈ 0; let N be minimal with this property.
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Then, N = N∞ is the width of the cusp ∞ of 0. We have η(T )N
= η(T N ) = 1

since η is trivial on the parabolic elements of 0.
Let 9ν,η be the space of all holomorphic functions ψ : C \ (−∞, 0] → Vη

satisfying the Lewis equation

(1) η(T ) ψ(z)= ψ(z+ 1)+ (z+ 1)−2ν−1η(ST−1) ψ
( z

z+1

)
,

and the asymptotic formula

(2) 0= e+π iν lim
Im(z)→∞

(
ψ(z)+ z−2ν−1η(S)ψ

(
−1
z

))
+ e−π iν lim

Im(z)→−∞

(
ψ(z)+ z−2ν−1η(S)ψ

(
−1
z

))
,

where both limits are assumed to exist.
Let A denote the subgroup of G consisting of diagonal matrices, and let N be

the subgroup of upper-triangular matrices with±1 on the diagonal. As a manifold,
the group G is a direct product G = AN K . For ν ∈ C and a =± diag(t, t−1) ∈ A
with t > 0, let aν = t2ν . (We insert the factor 2 for compatibility reasons.)

Let (πν, Vπν ) denote the principal series representation of G with parameter ν.
The representation space Vπν is the Hilbert space of all functions ϕ : G→ C with
ϕ(anx) = aν+1/2ϕ(x) for a ∈ A, n ∈ N , x ∈ G, and

∫
K |ϕ(k)|

2dk <∞ modulo
nullfunctions. The representation is πν(x)ϕ(y)= ϕ(yx). There is a special vector
ϕ0 in Vπν given by ϕ0(ank) = aν+1/2. This vector is called the basic spherical
function with parameter ν.

For a continuous G-representation (π, Vπ ) on a topological vector space Vπ ,
let πω denote the subrepresentation on the space of analytic vectors; that is, Vπω
consists of all vectors v in Vπ such that for every continuous linear map α :Vπ→C,
the map g 7→ α(π(g)v) is real analytic on G. This space comes with a natural
topology. Let π−ω be its topological dual. In the case of π = πν , it is known that
πων and π−ων are in perfect duality; that is, they are each other’s topological duals.
The vectors in π−ων are called hyperfunction vectors of the representation πν .

As a crucial tool, we will use the space

A−ων,η = (π
−ω
ν ⊗ η)

0(1)
= H 0(0(1), π−ων ⊗ η)

and call it the space of η-automorphic hyperfunctions.
For an automorphic hyperfunction α∈ A−ων,η , we consider the function u :G→Vη

given by
u(g)= 〈π−ν(g) ϕ0, α〉 .

Here, 〈 · , · 〉 is the canonical pairing πω
−ν × π

−ω
−ν ⊗ η→ Vη. Then, u is right K -

invariant, and hence can be viewed as a function on H. As such, it lies in M̃ν,η since
α is 0-equivariant, and the Casimir operator on G (which induces1) is scalar on πν
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with eigenvalue 1
4 − ν

2. The transform P : α 7→ u is called the Poisson transform.
It follows from [Schlichtkrull 1984, Theorem 5.4.3] that the Poisson transform

P : A−ων,η → M̃ν,η

is an isomorphism for ν 6∈ 1
2 +Z.

For α ∈ A−ων,η , set

ψα(z)= fα(z)− z−2ν−1η(S) fα
(
−1
z

)
,

with fα such that the function z 7→ (1+z2)ν+1/2 fα(z) represents the restriction α|R.
Then, the Bruggeman transform B : α 7→ ψα maps A−ων,η to 9ν,η. It is a bijection
if ν /∈ 1

2 + Z, as can be seen in a manner similar to [Deitmar and Hilgert 2007,
Proposition 2.2].

When ν 6∈ 1
2+Z, we finally define the Lewis transform as the map L :Mν,η→9ν,η

given by L = B ◦ P−1.

Theorem 3.1 (Lewis transform; see [Lewis and Zagier 2001, Theorem 1.1]). When
ν 6∈ 1

2 +Z and <(ν) > −1
2 , the Lewis transform is a bijective linear map from the

space of Maaß cusp forms Sν,q,η to the space 9o
ν,η of period functions.

Proof. The proof runs, with small obvious changes, along the lines of the corre-
sponding result [Deitmar and Hilgert 2007, Theorem 3.3]. �
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