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For an almost contact metric manifold N , we find conditions under which
either the total space of an S1-bundle over N or the Riemannian cone over
N admit a strong Kähler with torsion (SKT) structure. In so doing, we
construct new 6-dimensional SKT manifolds. Moreover, we study the geo-
metric structure induced on a hypersurface of an SKT manifold and use it
to construct new SKT manifolds via appropriate evolution equations. We
also study hyper-Kähler with torsion (HKT) structures on the total space of
an S1-bundle over manifolds with three almost contact structures.

1. Introduction

On any Hermitian manifold (M2n, J, h) there exists a unique Hermitian connection
∇

B with totally skew-symmetric torsion, which is called the Bismut connection
after [Bismut 1989]. The torsion 3-form h(X, T B(Y, Z)) of ∇B can be identified
with the 3-form

−J dF( · , · , · )=−dF(J · , J · , J · ),

where F( · , · ) = h( · , J · ) is the fundamental 2-form associated to the Hermitian
structure (J, h).

Hermitian structures with closed J dF are called strong Kähler with torsion (in
short, SKT) or pluriclosed [Egidi 2001]. Since ∂∂̄ acts as 1

2 d J d on forms of
bidegree (1, 1), the latter condition is equivalent to ∂∂̄F = 0. SKT structures have
been recently studied by many authors, and they also have applications in type II
string theory and in 2-dimensional supersymmetric σ -models [Gates et al. 1984;
Strominger 1986; Ivanov and Papadopoulos 2001].

The class of SKT metrics includes of course the Kähler metrics, but as in [Fino
et al. 2004], we are interested on non-Kähler geometry, so by an SKT metric we
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will mean a Hermitian metric h whose fundamental 2-form F is ∂∂̄-closed but not
d-closed.

Gauduchon [1984] showed that on a compact complex surface, an SKT metric
can be found in the conformal class of any given Hermitian metric, but in higher
dimensions the situation is more complicated.

SKT structures on 6-dimensional nilmanifolds, that is, on compact quotients of
nilpotent Lie groups by discrete subgroups, were classified in [Fino et al. 2004;
Ugarte 2007]. Simply connected examples of 6-dimensional SKT manifolds have
been found in [Grantcharov et al. 2008] by using torus bundles, and recently Swann
[2010] has reproduced them via the twist construction, by extending them to higher
dimensions and finding new compact simply connected SKT manifolds. Moreover,
Fino and Tomassini [2009] showed that the SKT condition is preserved by the
blow-up construction.

The odd-dimensional analogue of a Hermitian structure is given by a normal
almost contact metric structure. Indeed, on the product N 2n+1

×R of a (2n+1)-
dimensional almost contact metric manifold N 2n+1 by the real line R, it is possible
to define a natural almost complex structure, which is integrable if and only if
the almost contact metric structure on N 2n+1 is normal [Sasaki and Hatakeyama
1961]. More generally, it is possible to construct Hermitian manifolds starting from
an almost contact metric manifold N 2n+1 by considering a principal fiber bundle P
with base space N 2n+1 and structural group S1, that is, an S1-bundle over N 2n+1;
see [Ogawa 1963]. Indeed, by using the almost contact metric structure on N 2n+1

and the connection 1-form θ , Ogawa constructed an almost Hermitian structure
(J, h) on P and found conditions under which J is integrable and (J, h) is Kähler.

In Section 2, we determine in Theorem 2.3 general conditions under which an
S1-bundle over an almost contact metric (2n+1)-dimensional manifold N 2n+1 is
SKT. We study the particular case when N 2n+1 is quasi-Sasakian, that is, when it
has an almost contact metric structure for which the fundamental form is closed
(Corollary 2.4). In this way, we are able to construct some new 6-dimensional SKT
examples, starting from 5-dimensional quasi-Sasakian Lie algebras, and also from
Sasakian ones.

A Sasakian structure can be also seen as the analogue, in odd dimensions, of
a Kähler structure. Indeed, by [Boyer and Galicki 1999], a Riemannian manifold
(N 2n+1, g) of odd dimension 2n+1 admits a compatible Sasakian structure if and
only if the Riemannian cone N 2n+1

× R+ is Kähler. In Section 3, Theorem 3.1
gives the conditions that must be satisfied by the compatible almost contact metric
structure on a Riemannian manifold (N 2n+1, g) in order that the Riemannian cone
N 2n+1

×R+ be SKT. We provide an example of an SKT manifold constructed as
a Riemannian cone, and in Section 4 we consider the case when the Riemannian
cone is 6-dimensional. This case is interesting since one can impose that the SKT
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structure is in addition an SKT SU(3)-structure, and one can find relations with
the SU(2)-structures studied by Conti and Salamon [2007].

In Section 5, we study the geometric structure induced naturally on any oriented
hypersurface N 2n+1 of a (2n+2)-dimensional manifold M2n+2 carrying an SKT
structure, and in Section 6, we use such structures in Theorem 6.4 to construct
new SKT manifolds via appropriate evolution equations [Hitchin 2001; Conti and
Salamon 2007] starting from a 5-dimensional manifold endowed with an SU(2)-
structure.

A good quaternionic analogue of Kähler geometry is given by hyper-Kähler
with torsion (in short, HKT) geometry. An HKT manifold is a hyper-Hermitian
manifold (M4n, J1, J2, J3, h) admitting a hyper-Hermitian connection with totally
skew-symmetric torsion, that is, one in which the three Bismut connections asso-
ciated with the three Hermitian structures (Jr , h) coincide for r = 1, 2, 3. This
geometry was introduced by Howe and Papadopoulos [1996] and later studied in
[Grantcharov and Poon 2000; Fino and Grantcharov 2004; Barberis et al. 2009;
Barberis and Fino 2008; Swann 2010].

In the interesting special case in which the torsion 3-form of such a hyper-
Hermitian connection is closed, the HKT manifold is called strong.

In Section 7, Theorem 7.1 gives conditions under which an S1-bundle over a
(4n+3)-dimensional manifold endowed with three almost contact metric struc-
tures is HKT and in particular when it is strong HKT.

2. SKT structures arising from S1-bundles

Consider a (2n+1)-manifold N 2n+1 endowed with an almost contact metric struc-
ture (I, ξ, η, g); that is, I is a tensor field of type (1, 1), ξ is a vector field, η is a
1-form, and g is a Riemannian metric on N 2n+1, satisfying together the conditions

I 2
=− Id+η⊗ ξ, η(ξ)= 1, g(IU, I V )= g(U, V )− η(U )η(V )

for any vector fields U and V on N 2n+1. Denote by ω the fundamental 2-form of
(I, ξ, η, g); that is, ω is the 2-form on N 2n+1 given by

ω( · , · )= g( · , I · ).

Given the tensor field I , consider its Nijenhuis torsion [I, I ], defined by

(1) [I, I ](X, Y )= I 2
[X, Y ] + [I X, I Y ] − I [I X, Y ] − I [X, I Y ].

On the product N 2n+1
×R, one can define a natural almost complex structure

J
(

X, f d
dt

)
=

(
I X + f ξ, −η(X) d

dt

)
,

where f is a C∞-function on N 2n+1
×R and t is the coordinate on R.
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Definition 2.1 [Sasaki and Hatakeyama 1961]. We call an almost contact met-
ric structure (I, ξ, η, g) on N 2n+1 normal if the almost complex structure J on
N 2n+1

×R is integrable, or equivalently if

[I, I ](X, Y )+ 2dη(X, Y )ξ = 0

for any vector fields X, Y on N 2n+1.

By [Blair 1967, Lemma 2.1], one has iξdη= 0 for a normal almost contact metric
structure (I, ξ, η, g).

Remark 2.2. The normality of the almost contact structure implies as well that
I dη= dη. Indeed, d(η− i dt)= dη has no (0, 2)-part and therefore has no (2, 0)-
part since dη is real. Thus, J dη = dη, but Jdη = I dη as well since iξdη = 0.

We recall that a Hermitian manifold (M, J, h) is SKT if and only if the 3-form
J dF is closed, where F is the fundamental 2-form of (J, h). We will use the
convention that J acts on r -forms β by

(Jβ)(X1, . . . , Xr )= β(J X1, . . . , J Xr ) for any vector fields X1, . . . , Xr .

We now show general conditions under which an S1-bundle over an almost
contact metric (2n+1)-dimensional manifold is SKT.

Let (N 2n+1, I, ξ, η) be a (2n+1)-dimensional almost contact manifold, and
let � be a closed 2-form on N 2n+1 that represents an integral cohomology class
on N 2n+1. From the well-known result of Kobayashi [1956], we can consider the
circle bundle S1 ↪→ P→ N 2n+1 and the connection 1-form θ on P whose curvature
form is dθ = π∗(�), where π : P→ N 2n+1 is the projection.

By using the almost contact structure (I, ξ, η) and the connection 1-form θ , one
can define an almost complex structure J on P as follows [Ogawa 1963]. For any
right-invariant vector field X on P, the vector field J X is given by

(2) θ(J X)=−π∗(η(π∗X)) and π∗(J X)= I (π∗X)+ θ̃ (X)ξ,

where θ̃ (X) is the unique function on N 2n+1 such that

(3) π∗θ̃ (X)= θ(X).

This definition can be extended to an arbitrary vector field X on P since X can
be written in the form X =

∑
j f j X j , with f j smooth functions on P , and X j

right-invariant vector fields. Then J X =
∑

j f j J X j .
Ogawa [1963] showed that when (N 2n+1, I, ξ, η) is normal, the almost complex

structure J on P defined by (2) is integrable if and only if dθ is J -invariant, that
is, if J (dθ)= dθ or equivalently dθ(J X, Y )+dθ(X, JY )= 0 for any vector fields
X and Y on P . That is, dθ is a complex 2-form on P having bidegree (1, 1) with
respect to J .
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In terms of the 2-form �, whose lift to P is the curvature of the circle bundle
S1 ↪→ P → N 2n+1, the previous condition means that � is I -invariant, that is,
I (�)=�. Therefore iξ�= 0.

If {e1, . . . , e2n, η} is an adapted coframe on a neighborhood U on N 2n+1, that
is,

I e2 j−1
=−e2 j and I e2 j

= e2 j−1 for 1≤ j ≤ n,

then we can take {π∗e1, . . . , π∗e2n, π∗η, θ} as a coframe in π−1(U ). By using
the coframe {π∗e1, . . . , π∗e2n

}, we may write

dθ = π∗α+π∗β ∧π∗η,

where α is a 2-form in
∧2
〈e1, . . . , e2n

〉, and β ∈
∧1
〈e1, . . . , e2n

〉.
Suppose that N 2n+1 has a normal almost contact metric structure (I, ξ, η, g). We

consider a principal S1-bundle P with base space N 2n+1 and connection 1-form θ ,
and endow P with the almost complex structure J (associated to θ ) defined by (2).
Since N 2n+1 has a Riemannian metric g, a Riemannian metric h on P compatible
with J (see [Ogawa 1963]) is given by

(4) h(X, Y )= π∗g(π∗X, π∗Y )+ θ(X) θ(Y )

for any right-invariant vector fields X and Y . This definition can be extended to
any vector field on P .

Theorem 2.3. Consider a (2n+1)-dimensional almost contact metric manifold
(N 2n+1, I, ξ, η, g), and let � be a closed 2-form on N 2n+1 that represents an
integral cohomology class. Consider the circle bundle S1 ↪→ P → N 2n+1 with
connection 1-form θ , whose curvature form is dθ = π∗(�) for the projection
π : P→ N 2n+1.

The almost Hermitian structure (J, h) on P defined by (2) and (4) is SKT if and
only if (I, ξ, η, g) is normal, dθ is J -invariant, and

(5)
d(π∗(I (iξdω)))= 0,

d(π∗(I (dω)− dη∧ η))= (−π∗(I (iξdω))+π∗�)∧π∗�,

where ω is the fundamental form of the almost contact metric structure (I, ξ, η, g).

Proof. As we mentioned, a result of Ogawa [1963] asserts that the almost complex
structure J is integrable if and only if (I, ξ, η, g) is normal and J (dθ)= dθ . Thus,
(J, h) is SKT if and only if the 3-form J dF is closed. Using the first equality
in (2), we find that the fundamental 2-form F on P is

F(X, Y )= h(X, JY )

= π∗g(π∗X, π∗ JY )+ θ(X) θ(JY )

= π∗g(π∗X, π∗ JY )− θ(X) π∗η(π∗Y ).
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Therefore, taking into account that we are working with a circle bundle (whose
fiber is thus 1-dimensional), we have

(6)

F = π∗ω+π∗η∧ θ,

d F = π∗(dω)+π∗(dη)∧ θ −π∗η∧ dθ,

J dF = J (π∗(dω))− J (π∗(dη))∧π∗η− θ ∧ dθ

since J (π∗η)= θ and J is integrable, and so J (dθ)= dθ . Moreover,

(7) J (π∗(dω))= π∗(I (dω))+π∗(I (iξdω))∧ θ.

Indeed, locally and in terms of the adapted basis {e1, . . . , e2n+1
} with

I e2 j−1
=−e2 j for 1≤ j ≤ n, I e2n+1

= 0, and η = e2n+1,

we can write dω = α + β ∧ η, where the local forms α ∈
∧3
〈e1, . . . , e2n

〉 and
β ∈

∧2
〈e1, . . . , e2n

〉 are generated only by e1, . . . , e2n . Furthermore, we have
Iα = I (dω) and β = iξdω. Thus

J (π∗(dω))= J (π∗(α))+ J (π∗(iξdω))∧ θ.

Now, by using (2) and (3), we see that J (π∗(α)) = π∗(Iα) and J (π∗(iξdω)) =
π∗(I (iξdω)), which proves (7). As a consequence of Remark 2.2,

(8) J (π∗(dη))= π∗(I (dη))−π∗(I (iξdη))∧ θ = π∗(dη)

since iξdη = 0 and I dη = dη.
Using (7) and (8), we get

(9) J dF = π∗(I (dω))+π∗(I (iξdω))∧ θ −π∗(dη)∧π∗η− θ ∧ dθ.

Therefore,

d(J dF)= d(π∗(I (dω)))+ d(π∗(I (iξdω)))∧ θ +π∗(I (iξdω))∧ dθ

− d(π∗(dη))∧π∗η−π∗(dη)∧ dπ∗η− dθ ∧ dθ.

Consequently, d(J dF)= 0 if and only if

d(π∗(I (iξdω)))= 0,

d(π∗(I (dω)− dη∧ η))= (π∗(−I (iξdω))+ dθ)∧ dθ. �

An almost contact metric manifold (N 2n+1, I, ξ, η, g) is quasi-Sasakian if it is
normal and its fundamental form ω is closed. In particular, if dη = α ω, then the
almost contact metric structure is called α-Sasakian. When α =−2, the structure
is said to be Sasakian.

By [Friedrich and Ivanov 2002, Theorem 8.2], an almost contact metric manifold
(N 2n+1, I, ξ, η, g) admits a connection ∇c that preserves the almost contact metric
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structure and has totally skew-symmetric torsion tensor if and only if the Nijenhuis
tensor of I , given by (1), is skew-symmetric and ξ is a Killing vector field. This
connection is unique.

In particular, on any quasi-Sasakian manifold (N 2n+1, I, ξ, η, g) there exists a
unique connection ∇c with totally skew-symmetric torsion, such that

∇
c I = 0, ∇cg = 0, ∇cη = 0.

Such a connection ∇c is uniquely determined by

(10) g(∇c
X Y, Z)= g(∇g

X Y, Z)+ 1
2(dη∧ η)(X, Y, Z),

where ∇g is the Levi-Civita connection and 1
2(dη∧η) is the torsion 3-form of ∇c.

Corollary 2.4. Let (N 2n+1, I, ξ, η, g) be a quasi-Sasakian (2n+1)-manifold, and
let � be a closed 2-form on N 2n+1 that represents an integral cohomology class.
Consider the circle bundle S1 ↪→ P → N 2n+1 with connection 1-form θ whose
curvature form is dθ = π∗(�) for the projection π : P → N 2n+1. The almost
Hermitian structure (J, h) on P defined by (2) and (4) is SKT if and only if � is
I -invariant, iξ�= 0, and

(11) dη∧ dη =−�∧�.

The Bismut connection ∇B of (J, h) on P and the connection ∇c on N given by
(10) are related by

(12) h(∇B
X Y, Z)= π∗g(∇c

π∗Xπ∗Y, π∗Z)

for any vector fields X, Y, Z ∈ Ker θ .

Proof. Since dω = 0, if we impose the SKT condition, then we get by using the
previous theorem the equation (11).

The Bismut connection ∇B associated to the Hermitian structure (J, h) on P is

(13) h(∇B
X Y, Z)= h(∇h

X Y, Z)− 1
2 dF(J X, JY, J Z)

for any vector fields X, Y, Z on P , where ∇h is the Levi-Civita connection asso-
ciated to h. Then, for any X, Y, Z in the kernel of θ , we have

h(∇B
X Y, Z)= π∗g(∇h

X Y, Z)+ 1
2(π
∗(dη)∧π∗η)(X, Y, Z).

By [Ogawa 1963, Lemma 3] and the definition of ∇c, we get

h(∇B
X Y, Z)= π∗g(∇g

π∗Xπ∗Y, π∗Z)+
1
2(π
∗(dη)∧π∗η)(X, Y, Z)

= π∗g(∇c
π∗Xπ∗Y, π∗Z)

for any X, Y, Z in the kernel of θ . �



56 MARISA FERNÁNDEZ, ANNA FINO, LUIS UGARTE AND RAQUEL VILLACAMPA

Remark 2.5. If the structure (I, ξ, η, g) is α-Sasakian, equation (11) reads

�∧�=−α2ω∧ω.

In the case of a trivial S1-bundle, that is, if we consider the natural almost
Hermitian structure on the product N 2n+1

×R, we get this:

Corollary 2.6. Let (N 2n+1, I, ξ, η, g) be a (2n+1)-dimensional almost contact
metric manifold. Impose on the product N 2n+1

×R the almost complex structure J
given by

J X = I X for X ∈ Ker η and Jξ =− d
dt
,

and the metric h given by h = g + (dt)2. The Hermitian structure (J, h) is SKT
if and only if (I, ξ, η, g) is normal, d(I (dω)) = d(dη ∧ η) and d(I (iξdω)) = 0,
where ω denotes the fundamental 2-form of the almost contact metric structure
(g, I, ξ, η).

Corollary 2.7. Let (N 2n+1, I, ξ, η, g) be a (2n+1)-dimensional quasi-Sasakian
manifold with dη∧ dη = 0. The Hermitian structure (J, h) on N 2n+1

×R is SKT.
Moreover, its Bismut connection ∇B coincides with the unique connection ∇c on
N 2n+1 given by (10).

Proof. In this case, since dω = 0 we get d(J dF) = −d(dη ∧ η). By using (12),
we get h(∇B

X Y, Z)= g(∇c
X Y, Z) for any vector fields X, Y, Z on N 2n+1. �

2.1. Examples. We will present three examples of quasi-Sasakian Lie algebras
satisfying the condition dη∧dη= 0. By applying Corollary 2.7, one gets an SKT
structure on the product of the corresponding simply connected Lie group by R.

Example 2.8. Let s be the 5-dimensional Lie algebra with structure equations

de1
= e13

+ e23
+ e25

− e34
+ e35,

de2
= 2e12

− 2e13
+ e14

− e15
− e24

+ e34
+ e45,

de3
=−e12

+ e13
+ e14

− e15
+ 2e24

− 2e34
+ e45,

de4
=−e12

− e23
+ e24

− e25
− e35,

de5
= e12

− e13
− e24

+ e34,

where ei j
= ei
∧ e j . On s, take the quasi-Sasakian structure (I, ξ, η, g) given by

(14) η = e5, I e1
=−e2, I e3

=−e4, ω =−e12
− e34, g =

∑5
j=1(e

j )2.

This quasi-Sasakian structure satisfies the condition d(dη ∧ η) = 0. The Lie
algebra s is 2-step solvable since the commutator

s1
= [s, s] = R〈e1− e4, e2+ e3, e1− e2+ 2e3− e5〉
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is abelian, where {e1, . . . , e5} denotes the dual basis of {e1, . . . , e5
}. Moreover, s

has trivial center, is irreducible and nonunimodular, since the trace of ade1 is −3.

Example 2.9. Consider the family of 2-step solvable Lie algebras sa for a∈R−{0},
given by

de1
= a e23

+ 3e25, de3
= a e34,

de2
=−a e13

− 3e15, de4
= 0,

de5
=−

1
3a2 e34.

The almost contact metric structure (I, ξ, η, g) defined in (14) is quasi-Sasakian
and satisfies the condition dη ∧ dη = 0. The second cohomology group of sa is
generated by e12 and e45.

Example 2.10. Another family of quasi-Sasakian Lie algebras that satisfies the
condition dη∧ dη = 0 is gb for b ∈ R−{0}, with structure equations

de1
= b(e13

+ e14
− e23

+ e24)+ e25, de3
= 2e45,

de2
= b(−e13

+ e14
− e23

− e24)− e15, de4
=−2e35,

de5
=−4b2e34,

and endowed with the quasi-Sasakian structure given by (14). The second coho-
mology group of gb is generated by e12. The Lie algebras gb are not solvable since
the commutators are [gb, gb] = gb.

The Lie groups underlying Examples 2.9 and 2.10 also satisfy the conditions of
Corollary 2.4 with �∧� = 0, by just taking as connection 1-form the 1-form e6

such that de6
= λe12. Then, �= λe12. With this expression of de6, we have

d2e6
= 0, J (de6)= de6, and de6

∧ de6
= 0.

Therefore, equation (11) is satisfied. Observe that λ = 0 provides examples of
trivial S1-bundles.

The next example allows us to recover one of the 6-dimensional nilmanifolds
found in [Fino et al. 2004]:

Example 2.11. Consider the 5-dimensional nilpotent Lie algebra with structure
equations

de j
= 0 for j = 1, . . . , 4,

de5
= e12

+ e34,

and endowed with the quasi-Sasakian structure given by (14). If we consider the
closed 2-form � = e13

+ e24 and apply Corollary 2.4, we see that there exists
a nontrivial S1-bundle over the corresponding 5-dimensional nilmanifold. Since
de5
∧de5

=−�∧� 6= 0, the total space of this S1-bundle is an SKT nilmanifold.
More precisely, according to the classification given in [Fino et al. 2004] (see also
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[Ugarte 2007]), the nilmanifold is the one with underlying Lie algebra isomorphic
to h3⊕h3, where by h3 we denote the real 3-dimensional Heisenberg Lie algebra.

Since the starting Lie algebra from Example 2.11 is Sasakian, it is natural to start
with other 5-dimensional Sasakian Lie algebras to construct new SKT structures in
dimension 6. A classification of 5-dimensional Sasakian Lie algebras was obtained
in [Andrada et al. 2009].

Example 2.12. Consider the 5-dimensional Lie algebra k3 with structure equations

de1
= 0, de4

= 0,

de2
=−e13, de5

= λe14
+µe23,

de3
= e12,

where λ,µ<0. By [Andrada et al. 2009], this algebra admits the Sasakian structure
given by

I e1
= e4, I e2

= e3, η = e5,

g =− 1
2λ(e1)

2
−

1
2λ(e2)

2
−

1
2µ(e3)

2
−

1
2µ(e4)

2
+ (e5)

2,

and is isomorphic to R n (h3 ×R); moreover, the corresponding solvable simply
connected Lie group admits a compact quotient by a discrete subgroup.

Consider on k3 the closed 2-form�=λe14
−µe23. The form� is I -invariant and

satisfies�∧�=−2λµe1234. Since e5 is the contact form and de5
∧de5

=2λµe1234,
we get again by Corollary 2.4 an SKT structure on a nontrivial S1-bundle over the
5-dimensional solvmanifold. We denote by e6 the connection 1-form.

The orthonormal basis {α1
= e1, α2

= e4, α3
= e2, α4

= e3, α5
= e5, α6

= θ}

for the SKT metric satisfies the equations

dα1
= dα2

= 0, dα3
=−α14, dα4

= α13,

dα5
= λα12

+µα34, dα6
= λα12

−µα34,

and the complex structure is given by J (X1)= X2, J (X3)= X4 and J (X5)= X6,
where {X i }

6
i=1 denotes the basis dual to {αi

}
6
i=1. Since the fundamental 2-form is

F = α12
+α34

+α56, the 3-form torsion T of the SKT structure is

T = λα12(α5
+α6)+µα34(α5

−α6).

Moreover, ∗T = λα12(α5
+ α6)− µα34(α5

− α6), where ∗ denotes the metric’s
Hodge operator; this implies that the torsion form is also coclosed.

The only nonzero curvature forms (�B)ij of the Bismut connection ∇B are

(�B)12 =−2λ2α12 and (�B)34 =−2µ2α34.
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A direct calculation shows that the 1-forms α5 and α6 and the 2-forms α12 and α34

are parallel with respect to the Bismut connection, which implies that ∇B T = 0.
Finally, Hol(∇B)=U (1)×U (1)⊂U (3) since ∇Bαi

6= 0 for i = 1, 2, 3, 4.

3. SKT structures arising from Riemannian cones

Let N 2n+1 be a (2n+1)-dimensional manifold endowed with an almost contact
metric structure (I, ξ, η, g), and denote by ω its fundamental 2-form.

The Riemannian cone of N 2n+1 is defined as the manifold N 2n+1
×R+ equipped

with the cone metric

(15) h = t2g+ (dt)2.

The cone N 2n+1
×R+ has a natural almost Hermitian structure defined by

(16) F = t2ω+ tη∧ dt.

The almost complex structure J on N 2n+1
×R+ defined by (F, h) is given by

J X = I X for X ∈ Ker η and Jξ =−t d
dt
.

In terms of a local orthonormal adapted coframe {e1, . . . , e2n
} for g with

(17) ω =−

n∑
j=1

e2 j−1
∧ e2 j ,

we have

(18)
Je2 j−1

=−e2 j , Je2 j
= e2 j−1 for j = 1, . . . , n,

J (te2n+1)= dt, J (dt)=−te2n+1.

The almost Hermitian structure (J, h) on N 2n+1
×R+ is Kähler if and only if the

almost contact metric structure (I, ξ, η, g) on N 2n+1 is Sasakian, that is, a normal
contact metric structure.

If we impose that the almost Hermitian structure (J, h) on N 2n+1
×R+ is SKT,

we can prove the following:

Theorem 3.1. Consider a (2n+1)-dimensional almost contact metric manifold
(N 2n+1, I, ξ, η, g). The almost Hermitian structure (J, h) given by (15) and (16)
on the Riemannian cone (N 2n+1

×R+, h) is SKT if and only if (I, ξ, η, g) is normal
and

(19) −4η∧ω+ 2 I (dω)− 2dη∧ η = d(I (iξdω)),

where ω denotes the fundamental 2-form of the almost contact metric structure
(I, ξ, η, g).
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Proof. J is integrable if and only if the almost contact metric structure is normal.
We compute J dF . We have

d F = 2tdt ∧ω+ t2dω+ t dη∧ dt, and so

JdF =−2t2η∧ω+ t2 J (dω)− t2dη∧ η

since Jω=ω, J (dt)=−tη and J dη= dη. Moreover, with respect to an adapted
basis {e1, . . . , e2n+1

} we can get, in a way similar to the proof of Theorem 2.3, that

(20) J dω = I (dω)+ I (iξdω)∧ Jη.

As a consequence, we get J dF =−2t2η∧ω+t2 I (dω)+t dt∧ I (iξdω)−t2 dη∧η.
Therefore, by imposing that d(J dF)= 0, we obtain

−4η∧ω+ 2I (dω)− 2dη∧ η− d(I (iξdω))= 0,

−2d(η∧ω)+ d(I (dω))− d(dη∧ η)= 0.

Since the second equation is a consequence of the first, the Hermitian structure
(F, h) on the Riemannian cone N 2n+1

× R+ is SKT if and only if the almost
contact metric structure (I, η, ξ, g, ω) on N 2n+1 satisfies equation (19). �

Remark 3.2. As a consequence of previous theorem, when n = 1, equation (19)
is satisfied if and only if the 3-dimensional manifold N is Sasakian. On the other
hand, if n > 1 and the almost contact metric structure on N 2n+1 is quasi-Sasakian
(that is, dω = 0), then the structure has to be Sasakian, that is, dη =−2ω.

Example 3.3. Consider the 5-dimensional Lie algebras ga,b,c with structure equa-
tions

de1
= a e23

+ 2e25
+

(
−

1
2ab+ b3

2a
+ 2b

a

)
e34
+ be45,

de2
=−a e13

− 2e15
−

1
2 bce34

− be35,

de3
=

(
−

4
a
−

b2

a

)
e34,

de4
= ce34,

de5
= 2e12

+ be14
− be23

+ (2+ b2)e34,

where a, b, c ∈ R and a 6= 0. They are endowed with the normal almost contact
metric structure (I, ξ, η, g, ω) with

I e1
=−e2, I e3

=−e4, η = e5, ω =−e12
− e34.

This structure satisfies (19), and therefore the Riemannian cones over the corre-
sponding simply connected Lie groups are SKT.
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4. SKT SU(3)-structures

Let (M6, J, h) be a 6-dimensional almost Hermitian manifold. An SU(3)-structure
on M6 is determined by the choice of a (3, 0)-form 9 = 9++ i9− of unit norm.
If 9 is closed, then the underlying almost complex structure J is integrable and
the manifold is Hermitian. We will denote the SU(3)-structure (J, h, 9) simply by
(F, 9), where F is the fundamental 2-form, since from F and9 we can reconstruct
the almost Hermitian structure.

Definition 4.1. We say that an SU(3)-structure (F, 9) on M6 is SKT if

(21) d9 = 0 and d(J dF)= 0,

where J is the associated complex structure.

We will see the relation between SKT SU(3)-structures in dimension 6 and
SU(2)-structures in dimension 5.

First, we recall some facts about SU(2)-structures on a 5-dimensional mani-
fold. An SU(2)-structure on a 5-dimensional manifold N 5 is an SU(2)-reduction
of the principal bundle of linear frames on N 5. By [Conti and Salamon 2007,
Proposition 1], these structures are in one-to-one correspondence with quadru-
plets (η, ω1, ω2, ω3), where η is a 1-form and ωi are 2-forms on N 5 satisfying
ωi ∧ω j = δi jv and v∧η 6= 0 for some 4-form v, and ω2(X, Y )≥ 0 if iX ω3= iY ω1,
where iX denotes the contraction by X . Equivalently, an SU(2)-structure on N 5

can be viewed as the datum of (η, ω1,8), where η is a 1-form, ω1 is a 2-form, and
8= ω2+ i ω3 is a complex 2-form such that

η∧ω1 ∧ω1 6= 0, 8∧8= 0, ω1 ∧8= 0, 8∧8= 2ω1 ∧ω1,

and 8 is of type (2, 0) with respect to ω1.
Conti and Salamon [2007] locally characterize an SU(2)-structure as follows. If

(η, ω1, ω2, ω3) is an SU(2)-structure on a 5-manifold N 5, then locally there exists
an orthonormal basis of 1-forms {e1, . . . , e5

} such that

ω1 = e12
+ e34, ω2 = e13

− e24, ω3 = e14
+ e23, η = e5 .

We can also consider the local tensor field I given by

I e1
=−e2, I e2

= e1, I e3
=−e4, I e4

= e3, I e5
= 0.

This tensor gives rise to a global tensor field of type (1, 1) on the manifold N 5,
defined by ω1(X, Y )= g(X, I Y ) for any vector fields X and Y on N 5, where g is
the Riemannian metric on N 5 underlying the SU(2)-structure. The tensor field I
satisfies I 2

=− Id+η⊗ ξ , where ξ is the vector field on N 5 dual to the 1-form η.
Therefore, given an SU(2)-structure (η, ω1, ω2, ω3)we also have an almost con-

tact metric structure (I, ξ, η, g) on the manifold, where ω1 is its fundamental form.
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Remark 4.2. Notice that we have two more almost contact metric structures when
we consider ω2 and ω3 as fundamental forms.

If N 5 has an SU(2)-structure (η, ω1, ω2, ω3), the product N 5
×R has a natural

SU(3)-structure given by

(22) F = ω1+ η∧ dt and 9 = (ω2+ iω3)∧ (η− i dt).

By Corollary 2.6, the previous SU(3)-structure is SKT if and only if

(23)
d(I (dω1))= d(dη∧ η), dω2 =−3ω3 ∧ η,

d(I (iξ dω1))= 0, dω3 = 3ω2 ∧ η,

proving this:

Theorem 4.3. Suppose N 5 is a 5-dimensional manifold endowed with an SU(2)-
structure (η, ω1, ω2, ω3). The SU(3)-structure (F, 9) given by (22) on the product
N 5
×R is SKT if and only if the equations (23) are satisfied.

Example 4.4. On the 5-dimensional Lie algebras introduced in Examples 2.8, 2.9
and 2.10, consider the SU(2)-structure given by

ω = ω1 = e12
+ e34, ω2 = e13

− e24, ω3 = e14
+ e23.

For Example 2.8, we have

dω2 =−2ω3 ∧ η− 4(e124
− e134) and dω3 = 2ω2 ∧ η+ 4(e123

+ e234).

For Examples 2.9 and 2.10, we get dω2 = −3ω3 ∧ η and dω3 = 3ω2 ∧ η.

Therefore one gets an SKT SU(3)-structure on the product of the corresponding
simply connected Lie groups by R.

We will study the existence of SKT SU(3)-structures on a Riemannian cone over
a 5-dimensional manifold N 5 endowed with an SU(2)-structure (η, ω1, ω2, ω3).
Then N 5 has an induced almost contact metric structure (I, ξ, η, g), and ω1 is its
fundamental form.

The Riemannian cone (N 5
× R+, h) of (N 5, g) has a natural SU(3)-structure

defined by

F = t2ω1+ tη∧ dt and 9 = t2(ω2+ iω3)∧ (tη− idt).

In terms of a local orthonormal coframe {e1, . . . , e5
} for g such that

ω1 =−e12
− e34, ω2 =−e13

+ e24, ω3 =−e14
− e23, η = e5,

we have
Je1
=−e2, Je2

= e1, Je3
=−e4,

Je4
= e3, J (te5)= dt, J (dt)=−te5.
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We recall that the SU(3)-structure (F, 9) on N 5
×R+ is integrable if and only

if the SU(2)-structure (η, ω1, ω2, ω3) on N 5 is Sasaki–Einstein, or equivalently if
and only if

dη =−2ω1, dω2 =−3ω3 ∧ η, dω3 = 3ω2 ∧ η.

For the Riemannian cones, we can prove the following

Corollary 4.5. Let N 5 be a 5-dimensional manifold endowed with an SU(2)-
structure (η, ω1, ω2, ω3). The SU(3)-structure (F, 9) on the Riemannian cone
(N 5
×R+, h) is SKT if and only if

(24)

−4η∧ω1+ 2I (dω1)− 2dη∧ η = d(I (iξdω1)),

dω2 = 3ω3 ∧ η,

dω3 =−3ω2 ∧ η.

Proof. By imposing that d9 = 0, we get the conditions dω2 = −3ω3 ∧ η and
dω3= 3ω2∧η. By imposing d(J dF)= 0, we get, as in the proof of Theorem 3.1,
equation (19) for ω = ω1. �

5. Almost contact metric structure induced on a hypersurface

We study the almost contact metric structure induced naturally on any oriented
hypersurface N 2n+1 of a (2n+2)-manifold M2n+2 equipped with an SKT structure.

Let f : N 2n+1
→ M2n+2 be an oriented hypersurface of a (2n+2)-dimensional

manifold M2n+2 endowed with an SKT structure (J, h, F), and denote by U the
unitary normal vector field. It is well known that N 2n+1 inherits an almost contact
metric structure (I, ξ, η, g) such that η and the fundamental 2-form ω are given by

(25) η =− f ∗(iU F) and ω = f ∗F,

where F is the fundamental 2-form of the almost Hermitian structure; see, for
instance, [Blair 2002].

Proposition 5.1. Suppose f : N 2n+1
→ M2n+2 is an immersion of an oriented

(2n+1)-dimensional manifold into a (2n+2)-dimensional Hermitian manifold. If
the Hermitian structure (J, h) on M2n+2 is SKT , then the induced almost contact
metric structure (I, ξ, η, g) on N 2n+1, with η and ω given by (25), satisfies

(26) d(I dω− I ( f ∗(iU d F))∧ η)= 0.

Proof. Locally we can choose an adapted coframe {e1, . . . , e2n+2
} for the Hermit-

ian structure so that the unitary normal vector field U is dual to e2n+2. Since the
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almost complex structure J is given in this adapted basis by

Je2 j−1
=−e2 j , Je2 j

= e2 j−1 for j= 1, . . . , n,

Je2n+1
= e2n+2, Je2n+2

=−e2n+1,

it follows that the tensor field I on N 2n+1 has I f ∗ei
= f ∗ Jei for i = 1, . . . , 2n+1.

That is,

I f ∗e2 j−1
=− f ∗e2 j , I f ∗e2 j

= f ∗e2 j−1 for j = 1, . . . , n, I f ∗e2n+1
= 0.

However, I f ∗e2n+2
= 0 6= f ∗e2n+1

=− f ∗ Je2n+2.
We compute f ∗ J dF . First, we decompose (locally and in terms of the adapted

basis) the differential of F as

dF = α+β ∧ e2n+1
+ γ ∧ e2n+2

+µ∧ e2n+1
∧ e2n+2,

where the local forms

α ∈
∧3
〈e1, . . . , e2n

〉, β, γ ∈
∧2
〈e1, . . . , e2n

〉, µ ∈
∧1
〈e1, . . . , e2n

〉

are generated only by e1, . . . , e2n . Then,

J dF = Jα+ Jβ ∧ e2n+2
− Jγ ∧ e2n+1

+ Jµ∧ e2n+1
∧ e2n+2.

Since f ∗e2n+2
= 0 and f ∗e2n+1

= η, we have f ∗ J dF = f ∗ Jα − ( f ∗ Jγ ) ∧ η.
However, f ∗(iU dF)= f ∗γ + f ∗µ∧ η, which implies that

I ( f ∗(iU dF))= I f ∗γ = f ∗ Jγ.

On the other hand, I dω = I d f ∗F = I f ∗dF = I f ∗α = f ∗ Jα. We conclude that

f ∗ J dF = f ∗ Jα− ( f ∗ Jγ )∧ η = I dω− I ( f ∗(iU d F))∧ η.

Now, if the Hermitian structure is SKT, then JdF is closed and the induced struc-
ture satisfies (26). �

Remark 5.2. Notice that, using iU d F = LU F − diU F , we can write (26) as

d(I dω− I ( f ∗(LU F)+ dη)∧ η)= 0.

Therefore, if f ∗(LU F)= 0, then the induced almost contact metric structure has to
satisfy the equation d(I dω− I (dη)∧η)= 0. In the case of the product N 2n+1

×R,
the condition f ∗(LU F) = 0 is satisfied. In the case of the Riemannian cone, we
have Ld/dt F = 2tω + dt ∧ η and therefore f ∗(Ld/dt F) = 2ω. In this way, we
recover some of the equations obtained in Corollary 2.6 and Theorem 3.1.

Now we study the structure that is induced naturally on any oriented hypersur-
face N 5 of a 6-manifold M6 equipped with an SKT SU(3)-structure.
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Let f : N 5
→ M6 be an oriented hypersurface of a 6-manifold M6 endowed

with an SU(3)-structure (F, 9 =9++ i 9−), and denote by U the unitary normal
vector field. Then N 5 inherits an SU(2)-structure (η, ω1, ω2, ω3) given by

(27) η =− f ∗(iU F), ω1 = f ∗F, ω2 =− f ∗(iU9−), ω3 = f ∗(iU9+).

Corollary 5.3. Let f : N 5
→ M6 be an immersion of an oriented 5-dimensional

manifold into a 6-dimensional manifold with an SU(3)-structure. If the SU(3)-
structure is SKT , then the induced SU(2)-structure on N 5 given by (27) satisfies

d(I dω1− I f ∗(iU d F)∧ η)= 0,(28)

d(ω2 ∧ η)= 0 and d(ω3 ∧ η)= 0.(29)

Proof. Equation (28) follows from Proposition 5.1 by taking ω = ω1. Locally,
we can choose an adapted coframe {e1, . . . , e5, e6

} for the SU(3)-structure such
that the unitary normal vector field U is dual to e6. From (27), it follows that
ω2∧η= f ∗9+ and ω3∧η= f ∗9−. If 9 =9++ i 9− is closed, then the induced
structure satisfies (29). �

5.1. A simple example. Consider the 6-dimensional nilmanifold M6 whose un-
derlying nilpotent Lie algebra has structure equations

de j
= 0 for j = 1, 2, 3, 6, de4

= e12, de5
= e14,

and is endowed with the SU(3)-structure given by

F =−e14
− e26

− e53 and 9 = (e1
− ie4)∧ (e2

− ie6)∧ (e5
− ie3).

The oriented hypersurface with normal vector field dual to e2 is a 5-dimensional
nilmanifold N 5 that by [Conti and Salamon 2007] has no invariant hypo structures.
However, the SU(2)-structure on N 5, namely,

(30) η = e2, ω1 =−e14
− e53, ω2 =−e15

− e34, ω3 =−e13
− e45,

satisfies (28) and (29). In Section 6, we will show that by using this SU(2)-structure
and appropriate evolution equations, we can construct an SKT SU(3)-structure on
the product of N 5 with an open interval.

6. SKT evolution equations

The goal here is to construct SKT SU(3)-structures by using appropriate evolution
equations, starting from a suitable SU(2)-structure on a 5-dimensional manifold.
We follow ideas of [Hitchin 2001] and [Conti and Salamon 2007].

Lemma 6.1. Let (η(t), ω1(t), ω2(t), ω3(t)) be a family of SU(2)-structures on a
5-dimensional manifold N 5 for t ∈ (a, b). The SU(3)-structure on M6

= N 5
×(a, b)
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given by F =ω1(t)+η(t)∧dt and9 = (ω2(t)+iω3(t))∧
(
η(t)−i dt

)
satisfies the

condition d9 = 0 if and only if (η(t), ω1(t), ω2(t), ω3(t)) is an SU(2)-structure
such that, for any t in the open interval (a, b),

(31)
d̂(ω2(t)∧ η(t))= 0, ∂t(ω2(t)∧ η(t))=−d̂ω3(t),

d̂(ω3(t)∧ η(t))= 0, ∂t(ω3(t)∧ η(t))= d̂ω2(t).

Here, d̂ denotes the exterior differential on N 5 and d is the exterior differential
on M6. We now present the additional evolution equations to be added to the last
two of (31) in order to ensure that d Jd F = 0.

Proposition 6.2. Let (η(t), ω1(t), ω2(t), ω3(t)) be a family of SU(2)-structures on
N 5 for t ∈ (a, b). The SU(3)-structure on M6

= N 5
× (a, b) given by

(32) F = ω1(t)+ η(t)∧ dt and 9 = (ω2(t)+ iω3(t))∧ (η(t)− i dt),

has J dF closed if and only if (η(t), ω1(t), ω2(t), ω3(t)) satisfies the evolution
equations

(33)

d̂
(
It d̂ω1(t)− It(∂tω1(t)+ d̂η(t))∧ η(t)

)
= 0,

∂t
(
It d̂ω1(t)− It(∂tω1(t)+ d̂η(t))∧ η(t)

)
=−d̂

(
It(iξ d̂ω1(t))− It(iξ (∂tω1(t)+ d̂η(t)))∧ η(t)

)
,

where ξ(t) denotes the vector field on N 5 dual to η(t) for each t ∈ (a, b).

Proof. Since F = ω1(t) + η(t) ∧ dt , we have dF = d̂ω1 + (∂tω1 + d̂η) ∧ dt .
Define {e1(t), . . . , e4(t), η(t)} to be a local adapted basis for the SU(2)-structure
(η(t), ω1(t), ω2(t), ω3(t)). Then, {e1(t), . . . , e4(t), η(t), dt} is an adapted basis
for the SU(3)-structure (32), and J is given by

Je1(t)=−e2(t), Je2(t)= e1(t), Jη(t)= dt,

Je3(t)=−e4(t), Je4(t)= e3(t), J dt =−η(t).

For each t , the structures It induced on N 5 are given by

It e1(t)=−e2(t), It e2(t)= e1(t),

It e3(t)=−e4(t), It e4(t)= e3(t), Itη(t)= 0.

Now, we can locally decompose a given τ(t) ∈�k(N 5) for t ∈ (a, b) as

τ(t)= α(t)+β(t)∧ η(t),

where α(t) ∈
∧k
〈e1(t), . . . , e4(t)〉 and β(t) ∈

∧k−1
〈e1(t), . . . , e4(t)〉. Therefore,

Jτ(t)= Jα(t)+ Jβ(t)∧ Jη(t)= Itα(t)+ Itβ(t)∧ dt

= Itτ(t)− (−1)k It(iξ(t)τ(t))∧ dt.
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Applying this to J dF , we get

J dF = J d̂ω1− J (∂tω1+ d̂η)∧ η(t)

= It d̂ω1− It(∂tω1+ d̂η)∧ η(t)+ It(iξ(t)d̂ω1)∧ dt

− It(iξ (∂tω1+ d̂η))∧ η(t)∧ dt.

Finally, taking the differential of J dF , we get

d J dF = d̂
(
It d̂ω1− It(∂tω1+ d̂η)∧ η(t)

)
+ ∂t

(
It d̂ω1− It(∂tω1+ d̂η)∧ η(t)

)
∧ dt

+ d̂
(
It(iξ(t)d̂ω1)− It(iξ (∂tω1+ d̂η))∧ η(t)

)
∧ dt. �

Remark 6.3. Observe that the first equation in (33) is exactly condition (28) for
F = ω1(t)+ η(t)∧ dt . See Remark 5.2.

As a consequence of Lemma 6.1 and Proposition 6.2, we get the following:

Theorem 6.4. For t ∈ (a, b), let (η(t), ω1(t), ω2(t), ω3(t)) be a family of SU(2)-
structures on a 5-dimensional manifold N 5 such that

(34) d̂(ω2(t)∧ η(t))= 0 and d̂(ω3(t)∧ η(t))= 0

for any t. If the evolution equations

(35)

d̂(It d̂ω1(t)− It(∂tω1(t)+ d̂η(t))∧ η(t))= 0,

∂t(It d̂ω1(t)− It(∂tω1(t)+ d̂η(t))∧ η(t))

=−d̂(It(iξ d̂ω1(t))− It(iξ (∂tω1(t)+ d̂η(t)))∧ η(t)),

∂t(ω2(t)∧ η(t))=−d̂ω3(t),

∂t(ω3(t)∧ η(t))= d̂ω2(t),

are satisfied, then the SU(3)-structure on M = N × (a, b) given by

(36) F = ω1(t)+ η(t)∧ dt and 9 = (ω2(t)+ iω3(t))∧ (η(t)− idt)

is SKT.

Example 6.5. Consider the Lie algebra with structure equations

de j
= 0 for = 1, 2, 3, de4

= e12, de5
= e14,

which underlies the 5-dimensional nilmanifold N 5 considered in Section 5.1. We
endow it with the SU(2)-structure given by (30). It is easy to verify that

d(ω2 ∧ η)= d(ω3 ∧ η)= d(ω1 ∧ω1)= 0.
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We evolve this SU(2)-structure by

ω1(t)=−e14
− e53, ω2(t)=−(1+ 3

2 t)1/3e15
− (1+ 3

2 t)−1/3e34,

η(t)= (1+ 3
2 t)1/3e2, ω3(t)=−(1+ 3

2 t)1/3e13
− (1+ 3

2 t)−1/3e45,

where t ∈ (−2/3,∞).
For any t ∈ (−2/3,∞), the family (ω1(t), ω2(t), ω3(t), η(t)) satisfies equations

(34) and the last two equations of (35). Moreover, it satisfies the conditions

∂tω1(t)= 0, d̂(η(t))= 0, iξ (d̂(ω1(t)))= 0, ∂t(It(d̂ω1(t)))= 0,

which implies that the evolution equations (33) are also satisfied.
On the product N 5

×R, we consider the local basis of 1-forms

β1
= (1+ 3

2 t)1/3e1, β2
= (1+ 3

2 t)−1/3e4, β3
= e5,

β4
= e3, β5

= (1+ 3
2 t)1/3e2, β6

= dt.

The structure equations are

dβ1
=−

1
2(1+

3
2 t)−1β16, dβ4

= 0,

dβ2
= (1+ 3

2 t)−1(β15
+

1
2β

26), dβ5
=−

1
2(1+

3
2 t)−1β56,

dβ3
= β12, dβ6

= 0.

Locally, J is given by Jβ1
=−β2, Jβ3

=−β4 and Jβ5
= β6. The fundamental

form F = −β12
− β34

+ β56 satisfies d(J dF) = 0, and the (3, 0)-form 9 =

(β1
+ iβ2)∧ (β3

+ iβ4)∧ (β5
− iβ6) is closed. Therefore, (F, 9) is a local SKT

SU(3)-structure on N 5
×R.

Remark 6.6. A Hermitian structure (J, h) on a 6-dimensional manifold M6 is
called balanced if F∧F is closed, F being the associated fundamental 2-form. The
paper [Fernández et al. 2009] introduced the notion of balanced SU(2)-structures
on 5-dimensional manifolds, together with appropriate evolution equations whose
solution gives rise to a balanced SU(3)-structure in six dimensions.

If M6 is compact, then a balanced structure cannot be SKT; see, for instance,
[Fino et al. 2004].

The SU(2)-structure (30) from the previous example is also balanced, and it
gives rise to a balanced metric on the product of N 5 with a open interval; see
[Fernández et al. 2009, (11)]. However, one can check directly that this solution is
not SKT.

If G is the nilpotent Lie group underlying N 5, the product G × R has no left-
invariant SKT structures and does not admit any left-invariant complex structures;
however, we can find a local SKT SU(3)-structure on it.
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7. HKT structures

We will now find conditions under which an S1-bundle over a (4n+3)-dimensional
manifold endowed with three almost contact metric structures is hyper-Kähler with
torsion (HKT, for short). Recall that a 4n-dimensional hyper-Hermitian manifold
(M4n, J1, J2, J3, h) is a hypercomplex manifold (M4n, J1, J2, J3) endowed with a
Riemannian metric h compatible with the complex structures Jr for r = 1, 2, 3;
that is, h satisfies

h(Jr X, Jr Y )= h(X, Y )

for any r = 1, 2, 3 and any vector fields X and Y on M4n .
A hyper-Hermitian manifold (M4n, J1, J2, J3, h) is called HKT if and only if

(37) J1 dF1 = J2 dF2 = J3 dF3,

where Fr denotes the fundamental 2-form associated to the Hermitian structure
(Jr , h); see [Grantcharov and Poon 2000].

We consider a (4n+3)-dimensional manifold N 4n+3 endowed with three almost
contact metric structures (Ir , ξr , ηr , g) for r = 1, 2, 3, and satisfying

(38)
Ik = Ii I j − η j ⊗ ξi =−I j Ii + ηi ⊗ ξ j ,

ξk = Iiξ j =−I jξi , ηk = ηi I j =−η j Ii .

By applying Theorem 2.3, we can construct hyper-Hermitian structures on S1-
bundles over N 4n+3 and study when they are strong HKT.

Theorem 7.1. Let N 4n+3 be a (4n+3)-dimensional manifold with three normal
almost contact metric structures (Ir , ξr , ηr , g) for r = 1, 2, 3, and satisfying (38).
Let � be a closed 2-form on N 4n+3 that represents an integral cohomology class,
and that is Ir -invariant for every r = 1, 2, 3. Consider the circle bundle S1 ↪→

P → N 4n+3 with a connection 1-form θ whose curvature form is dθ = π∗(�),
where π : P→ N is the projection. The hyper-Hermitian structure (J1, J2, J3, h)
on P defined by (2) and (4) is HKT if and only if

(39)

π∗(I1(dω1))−π
∗(dη1)∧π

∗η1 = π
∗(I2(dω2))−π

∗(dη2)∧π
∗η2

= π∗(I3(dω3))−π
∗(dη3)∧π

∗η3,

π∗(I1(iξ1dω1))= π
∗(I2(iξ2dω2))= π

∗(I3(iξ3dω3)),

where ωr is the fundamental form of the almost contact structure (Ir , ξr , ηr , g).
Moreover, the HKT structure is strong if and only if

(40)
d(π∗(Ir (iξr dωr )))= 0,

d(π∗(Ir (dωr )− dηr ∧ ηr ))= (π
∗(−Ir (iξr dωr ))+π

∗�)∧π∗�

for every r = 1, 2, 3.
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Proof. The almost hyper-Hermitian structure (J1, J2, J3, h) on P defined by (2)
and (4) is hyper-Hermitian if and only (Ir , ξr , ηr , g) is normal and dθ is Jr -invariant
for every r = 1, 2, 3. The HKT condition is equivalent to (37). By (9), we have

Jr d Fr = π
∗(Ir (dωr ))+π

∗(Ir (iξr dωr ))∧ θ −π
∗(dηr )∧π

∗ηr − θ ∧ dθ,

where Fr is the fundamental 2-form of (Jr , h). Therefore, condition (37) is satisfied
if and only if (39) holds. Finally, the Jr dFr are closed if and only if (40) holds. �

On N 4n+3
×R, consider the almost Hermitian structures (Jr , Fr , h) defined by

(41)
h = g+ (dt)2, Fr = ωr + ηr ∧ dt,

Jr (ηr )= dt, Jr (X)= Ir (X) for X ∈ Ker ηr .

By (38), we have

J1 J2 = J3 =−J2 J1,

J1η2 = I1η2 =−η3, J2η3 = I2η3 =−η1, J3η1 = I3η1 =−η2.

Therefore, (Jr , Fr , h) for r = 1, 2, 3 is a hyper-Hermitian structure on N 4n+3
×R

if and only if the structures (Ir , ξr , ηr , g) are normal.

Corollary 7.2. Let N 4n+3 be a (4n+3)-dimensional manifold endowed with three
normal almost contact metric structures (Ir , ξr , ηr , g) for r = 1, 2, 3. On the
product N 4n+3

×R, consider the hyper-Hermitian structure (J1, J2, J3, h) defined
by (41). Then, (J1, J2, J3, h) is HKT if and only if

I1(dω1)− dη1 ∧ η1 = I2(dω2)− dη2 ∧ η2 = I3(dω3)− dη3 ∧ η3,

I1(iξ1dω1)= I2(iξ2dω2)= I3(iξ3dω3).

The HKT structure is strong if and only if

d(Ir (iξr dωr ))= 0 and d(Ir (dωr )− dηr ∧ ηr )= 0 for every r = 1, 2, 3.

Moreover, if (J1, J2, J3, h) is such that dη1∧η1 = dη2∧η2 = dη3∧η3 and one of
the conditions

(a) dωr = 0 for any r = 1, 2, 3, that is, (Ir , ξr , ηr , g) is quasi-Sasakian for any
r = 1, 2, 3; or

(b) dωi ∧ η j ∧ ηk 6= 0, where (i, j, k) is a permutation of (1, 2, 3), as well as

I1(dω1)= I2(dω2)= I3(dω3) and I1(iξ1dω1)= I2(iξ2dω2)= I3(iξ3dω3),

is satisfied, then (J1, J2, J3, h) is HKT. In case (a), the HKT structure is strong. In
case (b), the HKT structure is strong if and only if d(I1(dω1))= d(I1(iξ1dω1))= 0.
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Proof. By Theorem 7.1, the hyper-Hermitian structure (Jr , Fr , h) for r = 1, 2, 3 is
HKT if and only if

(42)
I1(dω1)− dη1 ∧ η1 = I2(dω2)− dη2 ∧ η2 = I3(dω3)− dη3 ∧ η3,

I1(iξ1dω1)= I2(iξ2dω2)= I3(iξ3dω3).

Locally, we write

(43) dωr = αr +

3∑
i=1

βr
i ∧ ηi +

3∑
i< j=1

γ r
i j ∧ ηi ∧ η j + ρrη1 ∧ η2 ∧ η3,

where ρr are smooth functions, while αr , β
r
i , and γ r

i j are respectively 3-forms,
2-forms, and 1-forms in

⋂3
i=1 Ker ηi .

By first using the normality of the three almost contact metric structures, and
then that iξr dηr = 0 and Ir (dηr )= dηr , locally we can write

(44)

dη1 = A1+ B1 ∧ η2− I1 B1 ∧ η3+C1η2 ∧ η3,

dη2 = A2+ B2 ∧ η1+ I2 B2 ∧ η3+C2η1 ∧ η3,

dη3 = A3+ B3 ∧ η1− I3 B3 ∧ η2+C3η1 ∧ η2,

where Ir Ar = Ar . Here, the Ar and Br are respectively 2-forms and 1-forms in⋂3
i=1 Ker ηi , while the Cr are smooth functions. We have

Jr (dFr )= Jr (dωr )+ Jr (dηr ∧ dt)= Jr (dωr )− dηr ∧ ηr .

Therefore, by using (43) and (44), we obtain

J1(dF1)= I1α1+ I1β
1
1 ∧ dt − A1 ∧ η1− I1β

1
3 ∧ η2− I1β

1
2 ∧ η3

− I1γ
1
13 ∧ η2 ∧ dt + I1γ

1
12 ∧ η3 ∧ dt + B1 ∧ η1 ∧ η2− I1 B1 ∧ η1 ∧ η3

+ I1γ
1
23 ∧ η2 ∧ η3+ ρ1η2 ∧ η3 ∧ dt −C1η1 ∧ η2 ∧ η3,

J2(dF2)= I2α2+ I2β
2
2 ∧ dt − I2β

2
3 ∧ η1− A2 ∧ η2+ I2β

2
1 ∧ η3

+ I2γ
2
23 ∧ η1 ∧ dt + I2γ

2
12 ∧ η3 ∧ dt − B2 ∧ η1 ∧ η2+ I2γ

2
13 ∧ η1 ∧ η3

+ I2 B2 ∧ η2 ∧ η3− ρ2η1 ∧ η3 ∧ dt +C2η1 ∧ η2 ∧ η3,

J3(dF3)= I3α3+ I3β
3
3 ∧ dt + I3β

3
2 ∧ η1− I3β

3
1 ∧ η2− A3 ∧ η3

+ I3γ
3
23 ∧ η1 ∧ dt − I3γ

3
13 ∧ η2 ∧ dt + I3γ

3
12 ∧ η1 ∧ η2− B3 ∧ η1 ∧ η3

+ I3 B3 ∧ η2 ∧ η3+ ρ3η1 ∧ η2 ∧ dt −C3η1 ∧ η2 ∧ η3.
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The conditions (42) are satisfied if and only if

(45)

γ 1
12 = γ

1
13 = γ

2
12 = γ

2
23 = γ

3
13 = γ

3
23 = 0,

ρr = 0, C1 =−C2 = C3,

I1α1 = I2α2 = I3α3, I1β
1
1 = I2β

2
2 = I3β

3
3 ,

A1 = I2β
2
3 =−I3β

3
2 , A2 =−I1β

1
3 = I3β

3
1 , A3 = I1β

1
2 =−I2β

2
1 ,

B1 =−B2 = I3γ
3
12, −I1 B1 =−B3 = I2γ

2
13, I2 B2 = I3 B3 = I1γ

1
23.

Since Ir Ar = Ar the coefficients βr
i for r 6= i = 1, 2, 3 must satisfy the conditions

Ii (β
i
j − Ikβ

i
j )= 0 for all i, j, k = 1, 2, 3 with i 6= j , j 6= k and k 6= i.

The last three equations in (45) are satisfied if and only if γ 1
23 = γ

2
13 = γ

3
12 = 0.

Thus, finally, we obtain

(46)

dωr = αr +
∑3

i=1 β
r
i ∧ ηi , dηi = Ai + λ η j ∧ ηk,

0= Ii (β
i
j − Ikβ

i
j ) for all i, j, k = 1, 2, 3 with i 6= j , j 6= k and k 6= i,

I1α1 = I2α2 = I3α3,

A1 = I2β
2
3 =−I3β

3
2 , A2 =−I1β

1
3 = I3β

3
1 , A3 = I1β

1
2 =−I2β

2
1

for any even permutation of (1, 2, 3).
The expression for d(J1dF1) is

d(J1d F1)= d(I1(dω1)+ I1(iξ 1dω1)∧ dt)− d((dη1)∧ η1)

= d(I1(dω1))+ d(I1(iξ 1dω1))∧ dt − dη1 ∧ dη1

= d(I1(dω1)− dη1 ∧ η1)+ d(I1(iξ 1dω1))∧ dt,

and thus the HKT structure is strong if and only if

d(I1(dω1)− dη1 ∧ η1)= 0 and d(I1(iξ 1dω1))= 0.

To prove the last part of the corollary it suffices to consider coefficients β i
r = 0 if

r 6= i in expression (43). �

Example 7.3. Consider the 7-dimensional Lie group G = SU(2)nR4, with struc-
ture equations

de1
=−

1
2 e25
−

1
2 e36
−

1
2 e47, de5

= e67,

de2
=

1
2 e15
+

1
2 e37
−

1
2 e46, de6

=−e57,

de3
=

1
2 e16
−

1
2 e27
+

1
2 e45, de7

= e56.

de4
=

1
2 e17
+

1
2 e26
−

1
2 e35,
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By [Fino and Tomassini 2008], G admits a compact quotient M7
=0\G by a uni-

form discrete subgroup 0, and is endowed with a weakly generalized G2-structure.
By [Barberis and Fino 2008], M7

× S1 admits a strong HKT structure. We can
show that M7 has three normal almost contact metric structures (Ir , ξr , ηr , g) for
r = 1, 2, 3 that are given by

I1e1
= e2, I1e3

= e4, I1e5
= e6, η1 = e7,

I2e1
= e3, I2e2

=−e4, I2e5
=−e7, η2 = e6,

I3e1
= e4, I3e2

= e3, I3e6
= e7, η3 = e5

and that satisfy the conditions of Corollary 7.2(a).
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symmetric nonlinear σ -models”, Nuclear Phys. B 248:1 (1984), 157–186. MR 87b:81108

[Gauduchon 1984] P. Gauduchon, “La 1-forme de torsion d’une variété hermitienne compacte”,
Math. Ann. 267:4 (1984), 495–518. MR 87a:53101 Zbl 0523.53059

[Grantcharov and Poon 2000] G. Grantcharov and Y. S. Poon, “Geometry of hyper-Kähler connec-
tions with torsion”, Comm. Math. Phys. 213:1 (2000), 19–37. MR 2002a:53059

[Grantcharov et al. 2008] D. Grantcharov, G. Grantcharov, and Y. S. Poon, “Calabi–Yau connec-
tions with torsion on toric bundles”, J. Differential Geom. 78:1 (2008), 13–32. MR 2009g:32052
Zbl 1171.53044

[Hitchin 2001] N. Hitchin, “Stable forms and special metrics”, pp. 70–89 in Global differential
geometry: The mathematical legacy of Alfred Gray (Bilbao, 2000), edited by M. Fernández and
J. A. Wolf, Contemp. Math. 288, Amer. Math. Soc., Providence, RI, 2001. MR 2003f:53065
Zbl 1004.53034

[Howe and Papadopoulos 1996] P. S. Howe and G. Papadopoulos, “Twistor spaces for hyper-Kähler
manifolds with torsion”, Phys. Lett. B 379:1-4 (1996), 80–86. MR 97h:53073

[Ivanov and Papadopoulos 2001] S. Ivanov and G. Papadopoulos, “Vanishing theorems and string
backgrounds”, Classical Quantum Gravity 18:6 (2001), 1089–1110. MR 2002h:53076 Zbl 0990.
53078

[Kobayashi 1956] S. Kobayashi, “Principal fibre bundles with the 1-dimensional toroidal group”,
Tôhoku Math. J. (2) 8 (1956), 29–45. MR 18,328a Zbl 0075.32103

[Ogawa 1963] Y. Ogawa, “Some properties on manifolds with almost contact structures”, Tôhoku
Math. J. (2) 15 (1963), 148–161. MR 27 #704 Zbl 0147.41002

[Sasaki and Hatakeyama 1961] S. Sasaki and Y. Hatakeyama, “On differentiable manifolds with
certain structures which are closely related to almost contact structure, II”, Tôhoku Math. J. (2) 13
(1961), 281–294. MR 25 #1513 Zbl 0112.14002

[Strominger 1986] A. Strominger, “Superstrings with torsion”, Nuclear Phys. B 274:2 (1986), 253–
284. MR 87m:81177

[Swann 2010] A. Swann, “Twisting Hermitian and hypercomplex geometries”, Duke Math. J. 155
(2010), 403–431.

[Ugarte 2007] L. Ugarte, “Hermitian structures on six-dimensional nilmanifolds”, Transformation
Groups 12:1 (2007), 175–202. MR 2008e:53139 Zbl 1129.53052

Received September 23, 2009.

MARISA FERNÁNDEZ

UNIVERSIDAD DEL PAÍS VASCO

DEPARTAMENTO DE MATEMÁTICAS

FACULTAD DE CIENCIA Y TECNOLOGÍA

APARTADO 644
48080 BILBAO

SPAIN

marisa.fernandez@ehu.es



STRONG KÄHLER WITH TORSION STRUCTURES 75

ANNA FINO

UNIVERSITÀ DI TORINO

DIPARTIMENTO DI MATEMATICA

VIA CARLO ALBERTO 10
I-10123 TORINO

ITALY

annamaria.fino@unito.it

LUIS UGARTE

UNIVERSIDAD DE ZARAGOZA

DEPARTAMENTO DE MATEMÁTICAS-IUMA
CAMPUS PLAZA SAN FRANCISCO

50009 ZARAGOZA

SPAIN

ugarte@unizar.es

RAQUEL VILLACAMPA

CENTRO UNIVERSITARIO DE LA DEFENSA

ACADEMIA GENERAL MILITAR

CRTA. DE HUESCA S/N

50090 ZARAGOZA

SPAIN

raquelvg@unizar.es



PACIFIC JOURNAL OF MATHEMATICS
http://www.pjmath.org

Founded in 1951 by
E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Darren Long
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

long@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Alexander Merkurjev
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

merkurev@math.ucla.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Jonathan Rogawski
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

jonr@math.ucla.edu

PRODUCTION
pacific@math.berkeley.edu

Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or www.pjmath.org for submission instructions.

The subscription price for 2011 is US $420/year for the electronic version, and $485/year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of
Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company,
11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt
MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans
Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA
94704-0163.

PJM peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS
at the University of California, Berkeley 94720-3840

A NON-PROFIT CORPORATION
Typeset in LATEX

Copyright ©2011 by Pacific Journal of Mathematics

http://www.pjmath.org
mailto:chari@math.ucr.edu
mailto:finn@math.stanford.edu
mailto:liu@math.ucla.edu
mailto:pacific@math.ucla.edu
mailto:long@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:merkurev@math.ucla.edu
mailto:popa@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:jonr@math.ucla.edu
mailto:pacific@math.berkeley.edu
http://www.pjmath.org
http://www.periodicals.com/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.emis.de/ZMATH/
http://www.inist.fr/PRODUITS/pascal.php
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/


PACIFIC JOURNAL OF MATHEMATICS

Volume 249 No. 1 January 2011

1Metabelian SL(n, C) representations of knot groups, II: Fixed points
HANS U. BODEN and STEFAN FRIEDL

11Lewis–Zagier correspondence for higher-order forms
ANTON DEITMAR

23Topology of positively curved 8-dimensional manifolds with symmetry
ANAND DESSAI

49Strong Kähler with torsion structures from almost contact manifolds
MARISA FERNÁNDEZ, ANNA FINO, LUIS UGARTE and RAQUEL

VILLACAMPA

77Connections between Floer-type invariants and Morse-type invariants of Legendrian
knots

MICHAEL B. HENRY

135A functional calculus for unbounded generalized scalar operators on Banach spaces
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