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GEOMETRIC FORMALITY
OF HOMOGENEOUS SPACES AND OF BIQUOTIENTS

D. KOTSCHICK AND S. TERZIĆ

We provide examples of homogeneous spaces that are neither symmetric
spaces nor real cohomology spheres, yet have the property that every invari-
ant metric is geometrically formal. We also extend the known obstructions
to geometric formality to some new classes of homogeneous spaces and of
biquotients, and to certain sphere bundles.

1. Introduction

The notion of geometric formality was implicitly considered by Sullivan in the
1970s (see [Deligne et al. 1975; Sullivan 1975]), but the systematic study of this
concept began only comparatively recently [Kotschick 2001]. A smooth manifold
is geometrically formal if it admits a Riemannian metric for which all exterior
products of harmonic forms are harmonic. Such a metric is then also called formal.
Geometric formality clearly implies formality in the sense of Sullivan, and is even
more restrictive. Since compact symmetric spaces are the classical examples of
geometrically formal manifolds, it is natural to explore this notion in the context
of homogeneous spaces, or, more generally, of manifolds with large symmetry
groups.

Trying to come up with generalizations of symmetric spaces, one might think
first of isotropy irreducible spaces. These are the homogeneous spaces G/H for
which the isotropy representation of H on TeH (G/H) is irreducible. Such a space
is strongly isotropy irreducible if the restriction of the isotropy representation to
the identity component of H is also irreducible. These manifolds were originally
classified by Manturov, and were further studied by Wolf and others, cf. [Besse
1987]. They share many properties of symmetric spaces, and indeed irreducible
symmetric spaces are isotropy irreducible. A conceptual relationship between sym-
metric spaces and isotropy irreducible ones is explained in [Wang and Ziller 1993].
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However, the similarities between symmetric spaces and isotropy irreducible ones
do not extend to (geometric) formality. Indeed, there are a number of strongly
isotropy irreducible spaces which, by the results of [Kuin’ 1968], are not of Cartan
type and therefore [Kotschick and Terzić 2003] are not formal in the sense of
Sullivan. A fortiori, they cannot be geometrically formal.

Example 1. The compact homogeneous spaces SU(pq)/(SU(p) × SU(q)) for
p, q ≥ 3, SO(78)/E6, and SO(n2

−1)/SU(n) for n ≥ 3 are strongly isotropy
irreducible, but are not formal in the sense of Sullivan.

Another class of homogeneous spaces generalizing the symmetric ones con-
sists of the so-called generalized symmetric spaces, sometimes called k-symmetric
spaces. These are defined by replacing the involution in the definition of symmetric
spaces by a symmetry of order k; see [Wolf and Gray 1968a; 1968b; Terzich 2001].
In [Kotschick and Terzić 2003] we proved that all generalized symmetric spaces
of compact simple Lie groups are formal in the sense of Sullivan, and that many
of them are not geometrically formal.

The main purpose of this paper is to prove that, in spite of all these negative
results, there are homogeneous spaces that are neither (homotopy equivalent to)
symmetric spaces nor products of real homology spheres (which are trivially geo-
metrically formal [Kotschick 2001]), yet are geometrically formal. We shall prove
the following:

Theorem 2. All homogeneous metrics on the following homogeneous spaces are
geometrically formal:

(1) the real Stiefel manifolds V4(R
2n+1)= SO(2n+ 1)/SO(2n− 3) for n ≥ 3,

(2) the real Stiefel manifolds V3(R
2n)= SO(2n)/SO(2n− 3) for n ≥ 3,

(3) the complex Stiefel manifolds V2(C
n)= SU(n)/SU(n− 2) for n ≥ 5,

(4) the quaternionic Stiefel manifolds V2(H
n)= Sp(n)/Sp(n− 2) for n ≥ 3,

(5) the octonionic Stiefel manifold V2(O
2)= Spin(9)/G2, and

(6) the space Spin(10)/Spin(7).

Moreover, none of these spaces is homotopy equivalent to a symmetric space. They
are not homotopy equivalent to products of real cohomology spheres, except pos-
sibly for V3(R

2n) with n even.

The space Spin(10)/Spin(7) above corresponds to a nonstandard embedding of
Spin(7) in Spin(10), so that the quotient is not V3(R

10) but a manifold with the
same real homology and different integral homology. The homology of this space,
unlike that of V3(R

10), is torsion-free.
In Section 2, we exhibit a very simple mechanism to prove that G-invariant

metrics on certain homogeneous spaces G/H with simple cohomology rings are
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geometrically formal. This mechanism in fact gives a new proof that certain
symmetric spaces are geometrically formal, without using the symmetric space
structure, but only the description of the cohomology ring. The argument applies
to all homogeneous spaces that have the real cohomology of a product of odd-
dimensional spheres. The examples (3)–(6) in Theorem 2 are all the homogeneous
spaces that have the integral cohomology of such a product, but are not obviously
diffeomorphic to products or to symmetric spaces. There are many more examples
with the real cohomology of such a product, but different integral cohomology. We
discuss the two infinite sequences of real Stiefel manifolds occurring in (1) and (2),
leaving aside the other, sporadic, examples. Also in Section 2, by considering the
Aloff-Wallach spaces [Aloff and Wallach 1975], we show that our results do not
extend to all homogeneous spaces with the cohomology algebra of a product of
spheres, if one does not insist that the spheres be odd-dimensional. In Section 3
we show that the homogeneous spaces listed in Theorem 2 are not homotopy equiv-
alent to symmetric spaces or to nontrivial products, thereby completing the proof
of the theorem.

In the final two sections of this paper we add to the negative results of [Kotschick
2001; Kotschick and Terzić 2003; 2009] by providing further examples of man-
ifolds that, though formal in the sense of Sullivan, are not geometrically formal.
All the examples we give here are simply connected and of dimension six. In
Section 4 we consider certain classes of biquotients in the sense of Eschenburg
[1992b; 1992a] and in Section 5 we consider two-sphere bundles over CP2. Many
of these two-sphere bundles are known to carry special metrics of cohomogeneity
one by the results of [Grove and Ziller 2008]. Both these collections of examples
generalize the discussion of the flag manifold SU(3)/T 2 carried out in [Kotschick
and Terzić 2003]. A different generalization, to certain partial flag manifolds of
higher dimensions, is contained in [Kotschick and Terzić 2009].

2. Examples of geometrically formal homogeneous spaces

In this section, we describe a class of homogeneous spaces for which any homo-
geneous metric is formal.

First, we recall the well-known fact that, on a compact homogeneous space
G/H , the harmonic forms of any homogeneous metric are invariant. To check this,
let h be a harmonic form with respect to some homogeneous metric on G/H . Then
h and ∗h can be written as h = hi + dα, and ∗h = (∗h)i + dβ, where hi =

∫
G g∗h

and (∗h)i =
∫

G g∗(∗h) with respect to Haar measure with total volume 1. Since hi

and (∗h)i are invariant forms, we have

∗hi = ∗

∫
G

g∗h =
∫

G
∗(g∗h)=

∫
G

g∗(∗h)= (∗h)i .



160 D. KOTSCHICK AND S. TERZIĆ

It follows that d(∗hi ) = d(∗h)i = 0 and thus hi is harmonic. This means that
h = hi , that is, h is an invariant form.

As a first application of this fact, we have the following:

Proposition 3. If G is a compact connected Lie group and H is a closed connected
subgroup with the property that G/H is of even dimension 2k, and all its real
cohomology is in degrees 0, k and 2k, then any homogeneous metric on G/H is
formal.

Proof. Because of the cohomology structure of G/H , to prove that it is geomet-
rically formal with respect to some metric, it is enough to prove that x ∧ y is a
harmonic form for any two harmonic k-forms x and y. If the metric g is homoge-
neous, then according to the previous observation, x ∧ y is an invariant form and
being of top degree, we have x ∧ y = c · dvol, where c is constant. Thus, x ∧ y is
harmonic and g is formal. �

Example 4. The complex projective plane CP2
= SU(3)/S(U(2) × U(1)), the

quaternionic projective plane HP2
= Sp(3)/(Sp(2) × Sp(1)), the Cayley plane

OP2
= F4/Spin(9), and G2/SO(4) are examples to which the proposition applies;

cf. [Borel and Hirzebruch 1958].

These spaces are all symmetric, but the argument proving geometric formality does
not use the symmetric space structure. Unfortunately, there are no nonsymmetric
homogeneous spaces to which we could apply Proposition 3. Indeed, if the number
k is even, then such spaces belong to the class of rank one homogeneous spaces
in the terminology of Onishchik [1995], while for odd k they belong to the class
of rank two homogeneous spaces. Examining the classification of homogeneous
spaces of rank one and two given by Onishchik [1995], one sees that there are no
examples other than the symmetric spaces mentioned in Example 4.

To get new examples, we need the following slight variation of Proposition 3:

Proposition 5. If G is a compact connected Lie group and H is a closed connected
subgroup with the property that H∗(G/H ;R)=

∧
(x, y), where x and y are of odd

degrees, then any homogeneous metric on G/H is formal.

The spaces listed in Theorem 2 all have cohomology rings of this form; cf.
[Onishchik 1963; Kramer 2002]. Thus Proposition 5 shows that those spaces are
geometrically formal.

Proof. Because of the cohomology structure of G/H , to prove that it is geomet-
rically formal with respect to some metric, it is enough to prove that x ∧ y is a
harmonic form, where x and y are the harmonic representatives of the cohomology
generators. If the metric g is homogeneous, then as before, x ∧ y is an invariant
form and, being of top degree, we have x ∧ y = c · dvol, where c is constant. It
follows that x ∧ y is harmonic and g is formal. �
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Remark 6. At this point it is useful to recall that if G is simple and we endow G/H
with the submersion metric g of a biinvariant metric on G, then the Riemannian
homogeneous space (G/H, g) is irreducible as a Riemannian manifold [Kobayashi
and Nomizu 1963]. This means that such a g cannot be a product metric. These
are examples of normal homogeneous metrics.

As a simple application of our discussion so far, we can prove the following:

Proposition 7. The group SU(4) acts transitively on S5
× S7. All SU(4)-homo-

geneous metrics for this action are formal. Furthermore, the normal homogeneous
metrics are not symmetric.

Proof. First, it is clear that SU(4) acts transitively on S7, with isotropy group SU(3).
Second, SU(4) acts transitively on S5 via the double covering SU(4)→SO(6). The
isotropy group of this action is the preimage of SO(5) under the covering, which
can be identified with Sp(2). Now take the product action on S5

× S7. This is
still transitive, for example because the restriction of the action of SU(4) on S5 to
SU(3) is still transitive. It follows that S5

× S7 is a homogeneous space of SU(4)
with isotropy group Sp(2)∩SU(3)= SU(2).

Proposition 5 implies that all SU(4)-homogeneous metrics on S5
×S7 are formal.

By Remark 6, it follows that we cannot get the normal homogeneous metrics as
product metrics. In particular, the metric on S5

× S7 that is the product of the
symmetric space metrics on the factors, though also formal, is not normal homo-
geneous for the SU(4)-action. �

To end this section, we want to show that Proposition 5 is sharp in the sense that
it does not extend to arbitrary homogeneous spaces with a cohomology algebra of
the form

∧
(x, y) with x of even degree and y of odd degree.

A convenient class of examples to consider for this purpose are the so-called
Aloff–Wallach spaces. These are homogeneous spaces of the form

Nk,l = SU(3)/T 1,

where T 1 is embedded as the diagonal matrices D(zk, zl, z−k−l), with k and l
coprime integers with kl(k + l) 6= 0. Obviously, they are all homogeneous spaces
of Cartan type, and are therefore [Kotschick and Terzić 2003] formal in the sense of
Sullivan. It is also easy to see that they all have the real cohomology of S2

×S5. The
name derives from [Aloff and Wallach 1975], where it proved that these spaces have
homogeneous metrics of positive sectional curvature. The numerical conditions on
k and l are there to make sure that T 1 acts on C3 without nonzero fixed points.

Since SU(3) endowed with a biinvariant metric is geometrically formal, it is
natural to consider the submersion metrics on SU(3)/T 1 which we get from the
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principal circle fibration

(1) T 1
→ SU(3)

π
−→ Nk,l .

Such a metric is often called a normal homogeneous metric.

Theorem 8. The normal homogeneous metrics on Aloff–Wallach spaces are not
formal.

Proof. Assume that M = SU(3)/T 1 is geometrically formal for some embedding
T 1
⊂ SU(3). Since M has the real cohomology of S2

× S5, it carries two harmonic
forms ω2 and ω5 such that ω2

2 = 0 and ω2 ∧ω5 is a volume form. Since SU(3) is
simply connected, the Euler class e of the principal bundle (1) is not zero, so that
e= λ[ω2] with λ 6= 0. We now normalize our form so that λ= 1. In the following
calculation we also ignore nonzero constants.

There exists a connection form α on the principal bundle (1) such that

(2) π∗(ω2)= dα,

where π is the projection in (1).
Let η5 = π

∗(ω5) and η2 = π
∗(ω2). Then η2 and η5 are closed and

(3) η2
2 = 0.

Also,

(4) ∗η5 = ∗π
∗(ω5)= α∧π

∗(∗ω5)= α∧ η2.

Then (2) gives

(5) d(∗η5)= dα∧ η2 = η
2
2 = 0.

This implies that η3=∗η5 is a harmonic form on SU(3)with the biinvariant metric.
Since the harmonic forms on SU(3) coincide with the biinvariant ones, we get that
η3 has the form

η3(X, Y, Z)= 〈X, [Y, Z ]〉 for X, Y, Z ∈ su(3).

On the other hand, we have a natural direct sum decomposition

(6) su(3)= t1
⊕ (su(3)/t1),

and (3) implies that there exists a 5-dimensional subspace K in su(3)/t1 such that
iv(η3)= 0 for any vector v ∈ K.

Let H1, H2, E1, E2, F1, F2 be canonical (Chevalley) generators of the Lie alge-
bra su(3). Consider the subspace L spanned by the vectors H1, H2, E1, F1. We
are going to show that iX (η3) 6= 0 for any X ∈L. Any X ∈L can be written in the
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form X = aH1+bH2+cE1+d F1. To prove our claim, we consider the following
cases:

Case 1: If d 6= 0, then using the well-known relation between canonical generators
of a simple Lie algebra and the root spaces related to the Killing form, we get
η3(E1, H1, X)=−2d〈E1, F1〉 6= 0.

Case 2: If d = 0 and c 6= 0, then we have η3(F1, H1, X)= 2c〈F1, E1〉 6= 0.

Case 3: If c = d = 0, then we have

η3(F1, X, E1)= (2a− b)〈F1, E1〉 and η3(F2, X, E2)= (2b− a)〈F2, E2〉,

so there are always Ei and Fi for which η3(Fi , X, Ei ) 6= 0.
This implies that L∩K= 0, which is impossible for dimension reasons. �

Remark 9. There are exactly two fibrations with fiber S2 over S5; cf. Section 5.
The trivial bundle S2

×S5 is of course geometrically formal with respect to product
metrics. The nontrivial bundle is the 3-symmetric space SU(3)/T 1, where T 1 is
embedded inside an SU(2)⊂ SU(3). In the above notation, this is the case k =−l,
which is excluded in the definition of Aloff–Wallach spaces. Nevertheless, the
argument above applies to show that a normal homogeneous metric is not geomet-
rically formal.

Remark 10. The Aloff–Wallach spaces have interesting homogeneous metrics that
are not normal homogeneous. These include metrics of positive sectional curva-
ture [Aloff and Wallach 1975] and Einstein metrics, some of which admit Killing
spinors. The latter metrics are not geometrically formal because of the following
result, communicated to us by U. Semmelmann: A metrically formal Riemannian
spin manifold M of dimension ≥ 5 admitting a nontrivial Killing spinor must have
vanishing second Betti number.

It is known that a metric admitting a nontrivial Killing spinor must be Einstein,
and thus is very special.

3. Some algebraic topology of Stiefel manifolds

In this section we prove that the homogeneous spaces listed in Theorem 2 are
not homotopy equivalent to symmetric spaces or to products of real homology
spheres, except for the second property in the case of V3(R

2n) with n even. To-
gether with Proposition 5 proved in the previous section, this completes the proof
of Theorem 2.

Let us consider first the complex Stiefel manifolds V2(C
n)= SU(n)/SU(n−2)

consisting of orthonormal pairs of vectors for the standard Hermitian inner product
on Cn , with n ≥ 3. Projecting such a pair to its first entry, we obtain a smooth
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fibration of V2(C
n) over S2n−1 with fiber S2n−3. It is a classical problem in homo-

topy theory to determine when the total space of such a fiber bundle is homotopy
equivalent to the product of base and fiber. In the case at hand, for even n the
action of the quaternions on Cn

= Hn/2 defines a section of the fibration, which
splits the long exact homotopy sequence and makes V2(C

n) indistinguishable from
S2n−1

× S2n−3 at the level of homotopy groups. However, the following result
was proved by James and Whitehead [1954] modulo Adams’s solution of the Hopf
invariant-one problem:

Theorem 11 [James and Whitehead 1954; Adams 1960]. For n ≥ 3, the Stiefel
manifold V2(C

n)=SU(n)/SU(n−2) is not homotopy equivalent to S2n−1
×S2n−3,

unless possibly if n = 4.

In fact, James and Whitehead proved that if V2(C
n)= SU(n)/SU(n−2) is homo-

topy equivalent to S2n−1
× S2n−3, then π4n−1(S2n) contains an element of Hopf

invariant one. By the result of Adams, it follows that n is in {1, 2, 4}. This
combination of results is also mentioned in [James 1971, Theorem 1.7], but the
exceptional case is misstated there. In the notation of [James 1971], the exceptional
case should be denoted n = 4 and k = 2, not n = k = 2.

Remark 12. Some years after the results of [James and Whitehead 1954] and
[Adams 1960], Gilmore [1967] showed that π2n−2(V2(C

n)) is trivial for odd n.
Since π2n−2(S2n−1

× S2n−3) = π2n−2(S2n−3) = Z2, this gives another proof of
Theorem 11 for odd n. As we remarked earlier, there is no such proof in the case
of even n.

The arguments of James and Whitehead only show that the existence of an
element of Hopf invariant one is necessary for V2(C

n) = SU(n)/SU(n − 2) to
be homotopy equivalent to S2n−1

× S2n−3. It turns out that this condition is in
fact sufficient not just for homotopy equivalence, but for diffeomorphism. This
following result completes the proof of case (3) in Theorem 2.

Theorem 13. If a complex Stiefel manifold V2(C
n)=SU(n)/SU(n−2) with n≥ 3

is homotopy equivalent to a symmetric space or to a product of real homology
spheres, then n= 3 or n= 4. In the first case, V2(C

3)=SU(3) is a symmetric space
not homotopy equivalent to a product of real homology spheres. In the second case,
V2(C

4)= SU(4)/SU(2) is diffeomorphic to S5
× S7.

Proof. Suppose that V2(C
n) is homotopy equivalent to a product X1× X2 of real

homology spheres. Then because V2(C
n) is simply connected, so are both the X i .

Moreover, because V2(C
n) has the integral homology of a product of spheres, it

follows that each X i is an integral homology sphere. Thus the X i are homotopy
spheres.
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Now, if V2(C
n) is homotopy equivalent to a product of (homotopy) spheres, then

Theorem 11 gives n= 4. Conversely, V2(C
4) is an S5 bundle over S7 with structure

group SU(4). The corresponding clutching map gives an element of π6(SU(4)),
which is trivial [Borel and Serre 1953]. Thus V2(C

4) is diffeomorphic to the total
space of the trivial bundle S5

× S7; compare with Proposition 7.
Next suppose that V2(C

n) is homotopy equivalent to a symmetric space. On-
ishchik [1963] and Kramer [2002] have classified the homogeneous spaces with
the cohomology of a product of odd-dimensional spheres. If we assume that G/H
has the integral cohomology of such a product, then apart from products of spheres
and a handful of symmetric spaces of dimension ≤ 14, the remaining examples are
exactly the spaces listed as (3)–(6) in Theorem 2 and the symmetric space E6/F4

with the cohomology of S9
× S17. If n ≥ 5, then the dimension of V2(C

n) is
≥ 16, so we do not have to consider the sporadic irreducible symmetric spaces of
dimension ≤ 14 arising in the classification of Onishchik and Kramer. Similarly,
V2(C

n) cannot be homotopy equivalent to E6/F4 for dimension reasons. If V2(C
n)

were homotopy equivalent to a reducible symmetric space, then each factor would
be a homotopy sphere, and we would be in the case excluded already.

Finally, V2(C
3)= SU(3) is of course a symmetric space, but it is not homotopy

equivalent to a product of spheres. For if it were, then the spheres would have
dimensions 3 and 5, leading to a contradiction with π6(SU(3)) = Z6 (cf. [Borel
and Serre 1953]), since π6(S3)= Z12. �

In a similar way one proves the corresponding result for the quaternionic Stiefel
manifolds. The statement is cleaner since an exceptional case not excluded by the
Hopf invariant does in fact not occur. This following result completes the proof of
case (4) in Theorem 2.

Theorem 14. No quaternionic Stiefel manifold V2(H
n) = Sp(n)/Sp(n − 2) with

n ≥ 2 is homotopy equivalent to a product of real homology spheres. If it is homo-
topy equivalent to a symmetric space, then n = 2.

Proof. If V2(H
n) is homotopy equivalent to a nontrivial product, then as in the

previous proof, we may assume that each factor is a sphere. Assuming that V2(H
n)

is homotopy equivalent to S4n−5
× S4n−1, James and Whitehead proved in [1954,

Theorem 1.21] that π8n−1(S4n) contains an element of Hopf invariant one. The
result of Adams [1960] then implies that n = 2. However, for n = 2, we have
V2(H

2) = Sp(2), and this is not homotopy equivalent to a product of spheres, for
example because π6(Sp(2)) is trivial as first proved by Borel and Serre [1953].

Next suppose that V2(H
n) is homotopy equivalent to a symmetric space. If n≥3,

then the dimension of V2(H
n) is≥18, so that, again, we do not have to consider the

sporadic irreducible symmetric spaces of dimension ≤ 14 arising in the classifica-
tion due to Onishchik [1963] and Kramer [2002]. For dimension reasons, E6/F4



166 D. KOTSCHICK AND S. TERZIĆ

cannot occur either. In the reducible case V2(H
n) would be homotopy equivalent

to a product of spheres, and this we have excluded already. Finally, for n = 2 we
have the symmetric space V2(H

2)= Sp(2). �

Remark 15. Instead of using the results of James–Whitehead [1954] and Adams
[1960], we could, in most cases, appeal to the calculations of Oguchi [1969]. On
the one hand we have π4n−2(S4n−1

× S4n−5)= π4n−2(S4n−5)= Z24 for n ≥ 3. On
the other, by [Ōguchi 1969], π4n−2(V2(H

n)) = Zd , where d = gcd{n, 24}. Thus,
whenever n is not divisible by 24, one concludes that V2(H

n) is not homotopy
equivalent to a product of spheres.

To complete the proof of case (5) in Theorem 2, we prove the following:

Theorem 16. The octonionic Stiefel manifold V2(O
2)= Spin(9)/G2 is not homo-

topy equivalent to a symmetric space, or to a product of real homology spheres.

Proof. This manifold has the integral homology of S7
× S15. As in the previous

proofs, if V2(O
2) were homotopy equivalent to a nontrivial product, then this prod-

uct would have to be S7
× S15. We now prove that V2(O

2) and S7
× S15 are in fact

not homotopy equivalent, distinguished by their homotopy groups.
On the one hand, we have

π14(S7
× S15)= π14(S7)= Z120.

On the other hand, we will show that π14(V2(O
2)) has order at most 16. For this

we consider the principal G2 bundle with total space Spin(9) over V2(O
2), and the

following piece of its exact homotopy sequence:

· · · → π14(Spin(9))→ π14(V2(O
2))→ π13(G2)→ · · ·

The group on the right is trivial and the group on the left is Z8⊕Z2, by calculations
of [Mimura 1967].

The proof that V2(O
2) is not homotopy equivalent to a symmetric space is the

same as for the complex and quaternionic Stiefel manifolds. First of all, reducible
symmetric spaces cannot arise because V2(O

2) is not homotopy equivalent to a
product, as we just proved. Second of all, there is no irreducible symmetric space
with the correct cohomology. �

Next we deal with the space Spin(10)/Spin(7), case (6) in Theorem 2.

Theorem 17. The quotient Spin(10)/Spin(7) is not homotopy equivalent to a sym-
metric space, or to a product of real homology spheres.

Proof. Consider the principal Spin(9) bundle Spin(10)→ Spin(10)/Spin(9)= S9.
The spin representation of Spin(9) on R16 associates to this principal bundle a real
vector bundle V of rank 16. Our homogeneous space X = Spin(10)/Spin(7) is
the unit sphere bundle in V , with fiber Spin(9)/Spin(7)= S15.
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The manifold X has the integral homology of S9
× S15. As in the previous

proofs, if X were homotopy equivalent to a nontrivial product, then this product
would have to be Y = S9

× S15. We will show below that in fact X and Y are not
homotopy equivalent. The proof that X is not homotopy equivalent to a symmetric
space is then the same as for the complex and quaternionic Stiefel manifolds. First,
reducible symmetric spaces cannot arise because X is not homotopy equivalent
to a product. Second, there is no irreducible symmetric space with the correct
cohomology.

Now we begin the proof that X and Y = S9
× S15 are not homotopy equivalent.

The principal bundle Spin(10)→ S9 corresponds to an element of π8(Spin(9)),
whose image in π8(SO(16)) classifies V . Since V is nontrivial, this element is the
nontrivial element of π8(SO(16))= Z2.

Recall that the fibration X −→ S9 has a section for dimension reasons. Now
[James and Whitehead 1954, Corollary 1.9] tells us that X is homotopy equivalent
to Y = S9

× S15 if and only if a certain invariant λ(X) vanishes. This invariant is
an element in the group 39,15 = Im J/ Im P , where J : π8(SO(15))→ π23(S15)

is the classical J -homomorphism and P : π9(S15)→ π23(S15) is, in our case, the
zero map, as its domain is zero. Thus, in our case, λ(X) ∈ J (π8(SO(15)), and we
only have to determine whether this is zero. Unravelling the definition of λ given
in [James and Whitehead 1954], we find the following: if we identify π8(SO(15))
with π8(SO(16)), then λ(X) is just the image under the classical J -homomorphism
of the classifying element of V in π8(SO(16)). Now π8(SO(15)) has order 2, and
we know that the image of the J -homomorphism in this degree is the group J (S9),
also of order 2, cf. [Bott 1969; Husemoller 1975]. Thus the J -homomorphism is
an isomorphism, and λ(X) 6= 0 because the classifying map of V represents the
nonzero element of π8(SO(16)). �

Remark 18. The existence of a section to the fibration S15
→ X

π
−→ S9 implies

that X and Y = S9
× S15 have isomorphic homotopy groups. Thus there can be no

easy argument to prove that they are not homotopy equivalent.

It remains to discuss the homotopy types of the real Stiefel manifolds occurring
in cases (1) and (2) of Theorem 2. They are geometrically formal by Proposition 5,
and they are not homotopy equivalent to products of spheres because of the pres-
ence of torsion in their integral homology. However, for these manifolds it is
more difficult to exclude the homotopy equivalence to products of real homology
spheres, because the factors in such a decomposition would not necessarily be
homotopy spheres. The following result completes the proof of Theorem 2.

Theorem 19. The real Stiefel manifolds V4(R
2n+1) and V3(R

2n) with n ≥ 3 are
not homotopy equivalent to symmetric spaces. They are not homotopy equivalent
to nontrivial products, except possibly for V3(R

2n) with n even.
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Proof. These manifolds have the real cohomology algebras of S4n−5
× S4n−1 and

S2n−1
× S4n−5, respectively. Therefore, if one of them is homotopy equivalent to a

nontrivial product, then the factors are real homology spheres of dimensions 4n−5
and 4n− 1, respectively 2n− 1 and 4n− 5.

For the real Stiefel manifolds the cohomology with coefficients in Z2 and the
Steenrod operations on it were determined by Borel [1953a]. From the structure
of the Steenrod operations, Hsiang and Su [1968] deduced that V4(R

2n+1) and
V3(R

2n) cannot be homotopy equivalent to nontrivial products, except possibly in
the second case, when n is even.

Suppose that one of these manifolds is homotopy equivalent to a symmetric
space. Then this symmetric space is reducible, and we are in the exceptional case
where V3(R

2n) could be homotopy equivalent to a product. To see this, consider
the irreducible symmetric spaces. Computations of their real cohomology algebras
[Borel 1953b; Takeuchi 1962] or of their rational homotopy groups [Terzić 2003]
show that, among them, only

SU(5)/SO(5), SU(6)/Sp(3), E6/F4, Sp(2), SU(3), G2, Spin(4)

have the real cohomology algebra of a product of odd-dimensional spheres, with
the dimensions given by the pairs

(5, 9), (5, 9), (9, 17), (3, 7), (3, 5), (3, 11), (3, 3),

respectively. None of these dimension pairs is of the form (4n−5, 4n−1) or
(2n−1, 4n−5) with n ≥ 3. Therefore, V4(R

2n+1) or V3(R
2n) cannot be homotopy

equivalent to any irreducible compact simply connected symmetric space.
Finally we have to consider the possibility that V3(R

2n) with n even could be
homotopy equivalent to a reducible symmetric space. Then each factor would
be a compact symmetric space with the real cohomology of S2n−1, respectively
S4n−5. Since V3(R

2n) has torsion in its integral homology, at least one of the
factors has to be a simply connected symmetric space having the real cohomology
of a sphere, but different integral cohomology. According to the classification, due
to Onishchik [1963; 1995], of homogeneous spaces whose real cohomology is that
of a sphere, the only possibility is SU(3)/SO(3), of dimension 5. For even n,
neither 2n− 1 nor 4n− 1 can equal 5, and this contradiction completes the proof.

�

Remark 20. Projection of a 3-frame onto its first entry defines a smooth fibration
of V3(R

2n) over S2n−1, with fiber V2(R
2n−1). Note that the fiber V2(R

2n−1) is a
real homology sphere, but not an integral one. As far as we know, it is still an
open problem whether for some even n the total space could be homotopy equiva-
lent, or even diffeomorphic, to the product of base and fiber; see the discussion in
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[James 1971]. If this happens for some n, then by a result of James [1971], this n
is not just even, but a power of 2.

Onishchik [1963] and Kramer [2002] have classified all the compact homoge-
neous spaces with the real cohomology of a product of odd-dimensional spheres.
In addition to nontrivial products and the spaces we have discussed already in
Theorem 2 and its proof, there is a large number of sporadic cases that have the
real cohomology of a product of spheres but different integral cohomology. All
these spaces are geometrically formal by Proposition 5. To end this section, we
discuss the diffeomorphism type of one of these sporadic examples.

Consider the composition of standard inclusions SO(3)⊂ SU(3)⊂ SU(4). The
quotient X = SU(4)/SO(3) has the real cohomology of S5

× S7, but different
integral cohomology.

Proposition 21. The manifold X = SU(4)/SO(3) is not diffeomorphic to a non-
trivial product, nor to a symmetric space.

Proof. Suppose X were diffeomorphic to some nontrivial product. Then the factors
would have to be simply connected real homology spheres of dimensions 5 and 7,
respectively. Since we are assuming that X is diffeomorphic to the product, not just
homotopy equivalent to it, the factors must in fact be homogeneous spaces. There-
fore, all the candidates must occur in the classification of Onishchik and Kramer.
In dimension 5, the candidates are S5 and SU(3)/SO(3); in dimension 7, they
are S7, V2(R

5) and Sp(2)/Sp(1) with a nonstandard embedding of the subgroup.
Looking at the third homotopy groups, we have π3(X)= π3(SU(3)/SO(3))= Z4,
but π3(V2(R

5)) = Z2 and π3(Sp(2)/Sp(1)) = Z10; cf. [Kramer 2002, page 65].
Thus, on the one hand, the only product of homogeneous spaces that has the same
third homotopy group as X is S7

× SU(3)/SO(3). On the other hand, X and
S7
×SU(3)/SO(3) have different sixth homotopy groups. This is so because the ex-

act homotopy sequence of the fibration SU(4)→ X shows that π6(X)=π5(SO(3)),
which is of order 2, whereas π6(SU(3)/SO(3)) is known to be of order 4; see
[Lundell 1992].

Finally, if X were diffeomorphic to a symmetric space, then by what we just
proved, that symmetric space would have to be irreducible. However, by the clas-
sification of irreducible symmetric spaces, there is no such space with the real
cohomology of S5

× S7. �

Note that if we discuss only the homotopy type of X = SU(4)/SO(3), then
we have to consider products of real homology spheres that are not necessarily
homogeneous, and the argument breaks down.
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4. Biquotients

Let G be a compact Lie group, and U a closed subgroup of G×G that acts freely
on G by (u1, u2) ·g= u1gu−1

2 . Then the orbit space is a smooth manifold denoted
by G/U and is called a biquotient of G. A biinvariant metric on G descends to a
metric on any biquotient. More generally, one can consider subgroups U ⊂ ISO(G)
acting freely. In some cases ISO(G) is strictly larger than G×G, so one gets more
examples.

Biquotients were first studied systematically by Eschenburg [1992a; 1992b] as
a source of examples of manifolds with positive sectional curvature. Among Es-
chenburg’s biquotients in [Eschenburg 1992a] there are several examples for which
we can prove easily that they are not geometrically formal.

Example 22. There is a 6-dimensional example M=G/U whose real cohomology
is very similar but not isomorphic to that of SU (3)/T 2, considered in [Kotschick
and Terzić 2003]. Moreover, M and SU(3)/T 2 have the same integral homology
groups and the same cohomology algebra mod 2. We can show that this biquotient
is not geometrically formal by using almost the same argument as the one we used
for SU(3)/T 2 in [Kotschick and Terzić 2003].

Let G =U (3) and

U ⊂ {(D(a, a, ā), D(b, c, 1)); a, b, c ∈ S1
} ⊂ G×G.

Eschenburg [1992a] proved that H∗(G/U ) is generated by two generators x and y
of degree 2 with the relations xy= y2

−x2 and x3
= 0. Setting z= (1/

√
5)(x−2y),

we get z2
= x2 and z3

=−(2/
√

5) xy2
6= 0. If G/U is geometrically formal, then

it has two 2-forms x and z, such that x3
= 0, x2

= z2, and z3 is a volume form.
If G/U were geometrically formal, then for a formal metric these relations

would hold pointwise for the harmonic forms representing the cohomology classes
x and z and their products. The form x would then have rank 4 everywhere. If v
were a vector in its kernel, the relation x2

= z2 would show that ivz∧ z = 0, which
would contradict the fact that z3 would have to be a volume form.

The second example uses a different argument to obstruct geometric formality,
related to symplectic structures defined by harmonic forms of formal metrics.

Example 23. Let G = SU(3) and

U = T 1
× T 1

= {D(ak, al, a−k−l), D(bm, bn, b−m−n); a, b ∈ S1
}.

Using the results of [Eschenburg 1992a] on the cohomology of biquotients, it is
easy to compute H∗(G/U ). We get the following algebra structure: There are
two linearly independent generators x and y in degree 2, subject to the relations
x2
= y2 and x3

= y3. Then H 4 is spanned by xy and x2
= y2, and H 6 is spanned
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by x3
= y3

= x2 y = xy2. If we assume that M is geometrically formal, then
the harmonic form representing x + y is a symplectic form. It then follows from
(x − y)(x + y)= 0 that x − y vanishes, which contradicts the linear independence
of x and y, because on a symplectic six-manifold the wedge product with the
symplectic form is an isomorphism between two-forms and four-forms. Thus M
cannot be geometrically formal.

Next we consider Totaro’s biquotients of S3
×S3
×S3, which he studied in [2003]

as an example of a family of 6-manifolds with nonnegative sectional curvature, but
with infinitely many distinct isomorphism classes of rational cohomology rings.
For all these manifolds we prove that they cannot be geometrically formal because
of the structure of their cohomology rings.

Theorem 24. The biquotients studied in [Totaro 2003] are not geometrically for-
mal.

Proof. The rational cohomology ring of the biquotients that Totaro considers has
three generators x1, x2 and x3 in degree 2, satisfying the relations

(7)

x2
1 = 0,

ax1x2+ x2x3+ x2
2 = 0,

bx1x3+ 2x2x3+ x2
3 = 0,

for some integers a and b; see [Totaro 2003]. If we assume that these manifolds are
geometrically formal, then the same relations (7) hold at the level of their represen-
tative harmonic forms, which we denote by the same letters. In order to prove that
geometric formality leads to a contradiction, we differentiate the following cases
according to the values of the constants a and b.

Case 1: We first consider the case when a·b 6=0. Then we can obviously normalize
x1 so that a becomes 1. Consider the forms

y1 = x1+
3
b x2 and y2 = x1+

3
2 x3.

Using the relations (7), we see that y3
1 = y3

2 = 0, while x1 y2
1 , x1 y2

2 and y1 y2
2 are

volume forms.
Since the cubes of y1 and y2 vanish, we have dim Ker(y1) = dim Ker(y2) = 2

and, since y1 y2
2 is a volume form on M , it follows that Ker(y1)∩Ker(y2)= 0.

If we rewrite the relations (7) in terms of x1, y1 and y2, we find, after some
straightforward calculations, that

x2
1 = 0,

(1− 2b)x1 y1− 2x1 y2+ 2y1 y2+ by2
1 = 0,

−2bx1 y1+ (b− 4)x1 y2+ 2by1 y2+ 2y2
2 = 0.
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If we multiply the first relation by b− 4, and add it to the second one multiplied
by 2, we get

(8) (5b− 2b2
− 4)x1 y1+ (6b− 8) y1 y2+ b(b− 4) y2

1 + 4y2
2 = 0.

Let u1 ∈ Ker(y1) and u2 ∈ Ker(y2) be such that u2 /∈ R{u1} ⊕ Ker(x1) (such
a u2 always exists, otherwise we would have Ker(x1) ∩ Ker(y2) 6= 0 which is a
contradiction with the fact that x1 y2

2 is a volume form).
In other words, Tp M = {u1, u2}⊕Ker(x1). Then if we contract the equation (8)

with u1 and u2, we get

(9) (5b− 2b2
− 4)iu2(y1 ∧ iu1 x1)+ (6b− 8)iu2 y1 ∧ iu1 y2 = 0.

Look at the 1-forms iu2 y1 and iu1 y2. Since the dimension of the kernel of each of
them is ≥ 5, it follows that the intersection L of their kernels has dimension ≥ 4.
Since x2

1 = 0, it follows that dim Ker(x1)= 4, and thus dim(Ker(x1)∩ L)≥ 2.
Let w ∈ Ker(x1) ∩ L . If we contract (9) with w, we get x1(u1, u2) iwy1 = 0,

since the coefficient 5b− 2b2
− 4 has no real zeros.

This is in contradiction with the fact that x1 y2
1 is a volume form. Namely, take

w1, w2, w3 ∈Ker(x1) such that together with u1, u2, w, they form a basis of Tp M .
Then we have x1 y2

1(u1, u2, w,w1, w2, w3)= 0, which is impossible.

Case 2: If a = 0 and b 6= 0, we first normalize x1 to get b = 1 and proceed as in
the previous case, taking y1 = x1+ 3x2 and y2 = x1+ 6x3.

Case 3: If a 6= 0 and b = 0, we again first normalize x1 to have a = 1, and take
y1 = x2 and y2 = x1+

3
2 x3.

Case 4: For a = b = 0, we have the following relations in cohomology:

x2
1 = 0, x2x3+ x2

2 = 0, 2x2x3+ x2
3 = 0.

Take y1 = x2 + x3 and y2 = x2 +
1
2 x3. The cohomology relations imply that

y3
1 = y3

2 = 0, and that y1 y2
2 is a volume form on M . If we rewrite these relations

in terms of y1 and y2, we obtain

y2
2 − y1 y2 = 0 and y2

1 − 2y1 y2 = 0.

Now take u ∈ Ker(y1). The relations imply that iu y2
2 = 0, which contradicts that

y1 y2
2 is a volume form. �

5. Two-sphere bundles over the complex projective plane

For our calculations in [Kotschick and Terzić 2003], the example SU(3)/T 2 was
the crucial case, from which all others were derived by various generalizations.
The inclusions T 2 ↪→ U (2) ↪→ SU(3) show that SU(3)/T 2 fibers over CP2 with
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fiber S2. In fact, this fibration is well known as the twistor fibration of CP2; com-
pare with [Kotschick and Terzić 2009]. We now generalize to arbitrary 2-sphere
fibrations over CP2.

Assume first that we have an arbitrary smooth oriented fibration with fiber S2.
Because the orientation-preserving diffeomorphism group of S2 is homotopy equiv-
alent to SO(3), we may assume that the structure group is SO(3). Then M is the
unit sphere bundle in the associated rank-3 vector bundle V .

As SO(3) coincides with the projective unitary group PU(2), every 2-sphere
bundle is the projectivization of a complex rank-2 vector bundle E . One can re-
cover V by passing to the adjoint bundle. We have

w2(V )= c1(E) (mod 2) and p1(V )= c2
1(E)− 4c2(E).

In many cases, for example whenw2(V ) is nontrivial and p1(V ) is divisible by 8, it
follows from [Grove and Ziller 2008, Theorem C] that M admits a cohomogeneity-
one action of SO(3)× SO(3). Thus, these manifolds are highly symmetric, and
are, in this sense, close to homogeneous.

Theorem 25. Let M6 be the total space of an S2 bundle E over CP2. Then M is
geometrically formal if and only if it is the trivial bundle S2

×CP2.

Proof. Assume M6 is the total space of the projectivization of a complex rank-2
vector bundle E over CP2. Then the cohomology of M is multiplicatively gen-
erated by two degree 2 classes x and y, where we use x for the generator pulled
back from CP2 and y for a class that restricts as a generator to every fiber. By the
definition of Chern classes we choose y so that

(10) y2
+ c1(E)xy+ c2(E)x2

= 0,

where, by an obvious abuse of notation, we use ci (E) for the Chern numbers
〈ci (E), [CPi

]〉. We also have x3
= 0.

After replacing y by a linear combination of x and y we may assume that

(11) y2
+ cx2

= 0,

where c = −1
4 p1(V ) vanishes if and only if M is the trivial bundle. To pass

from (10) to (11), we can twist E by a line bundle. This does not affect the
projectivization, but we can kill the first Chern class if w2(V )= 0. If this is not the
case, we can still make the required base change, which amounts to twisting by a
virtual line bundle whose Chern class is half-integral. In this case the constant c is
not integral.

Now (11) together with x3
=0 implies that xy2

=0. We also have y3
+cx2 y=0.

If c 6= 0, we conclude that y3
6= 0, for otherwise there would be no degree 6

cohomology in M . Thus, if c 6=0 and M is geometrically formal, then the harmonic
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2-form representing y is nondegenerate. However, since x3
= 0 the harmonic form

representing x has a nontrivial kernel and, if we contract (11) with an element v in
this kernel, we deduce 2 iv y ∧ y = 0, which contradicts the nondegeneracy of y.

Thus we have proved that a nontrivial M cannot be geometrically formal. Con-
versely, the trivial bundle S2

×CP2 is geometrically formal with respect to a product
of Kähler metrics; cf. [Kotschick 2001]. In fact, it is a symmetric space. �
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