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We study the semidirect product of a Lie algebra with a representation up to
homotopy and provide various examples coming from Courant algebroids,
Lie 2-algebras of string type, and omni-Lie algebroids. In the end, we study
the semidirect product of a Lie group with a representation up to homotopy
and use it to give an integration of a certain Lie 2-algebra of string type.

1. Introduction

This paper is the first part of our project to integrate representations up to homotopy
of Lie algebras (algebroids). Our original motivation is to integrate the standard
Courant algebroid T M⊕T ∗M , since it is this Courant algebroid that is much used
in Hitchin and Gualtieri’s program of generalized complex geometry. Courant alge-
broids are Lie 2-algebroids in the sense of Roytenberg [2002] and Ševera [2005].
The general procedure to integrate Lie n-algebras (algebroids) is already described
in [Getzler 2009; Henriques 2008; Ševera 2005]. We want to pursue some explicit
formulas for the special case of the standard Courant algebroid. It turns out that the
sections of the Courant algebroid T M ⊕ T ∗M form a semidirect product of a Lie
algebra with a representation up to homotopy. Abad and Crainic [2009] recently
studied the representations up to homotopy of Lie algebras, Lie groups, and even
Lie algebroids, Lie groupoids, in general. Just as one can form the semidirect
product of a Lie algebra with a representation, one can form the semidirect prod-
uct with representations up to homotopy too. In our case, the semidirect product
coming from the standard Courant algebra is a Lie 2-algebra. But using the fact
that it is also a semidirect product, the integration becomes easier. The integration
result is related to the semidirect product of Lie groups with its representation up
to homotopy, as will be discussed in Section 3. However it turns out that Abad
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and Crainic’s concept of representations up to homotopy of Lie groups will not
be general enough to cover all the integration results. This we will continue in a
forthcoming paper [Sheng and Zhu 2010].

In this paper we focus on exhibiting more examples of representations up to
homotopy and their semidirect products in order to demonstrate the importance of
our integration procedure. The examples are all variations of Courant algebroids.
One is Chen and Liu’s omni-Lie algebroids, which generalize Weinstein’s omni-
Lie algebras. Hence we expect in [Sheng and Zhu 2010] to give an integration to
Weinstein’s omni-Lie algebras via Lie 2-algebras.

Another example comes from a more general string Lie 2-algebra, which we call
the Lie 2-algebra of string type. It is essentially a Courant algebroid over a point
(see Example II), namely a Lie algebra with an adjoint-invariant inner product.
This sort of Lie algebra is usually called a quadratic Lie algebra. This concept
also appears in the context of Manin triples and double Lie algebras. The example
R→ g⊕ g∗ that we consider in this paper is an analogue of the standard Courant
algebroid, and is basically a special case taken from [Lu and Weinstein 1990].1 We
give an integration of the Lie 2-algebra of string type R→ g⊕ g∗ at the end.

Usually people require the base Lie algebra of a string Lie 2-algebra to be
semisimple and of compact type (see Remark 2.11). For such string Lie 2-algebras,
Baez and Lauda [2004] have proved a no-go theorem: such string Lie 2-algebras
cannot be integrated to finite-dimensional semistrict Lie 2-groups. Here a semistrict
Lie 2-group is a group object in DiffCat, where DiffCat is the 2-category consist-
ing of categories, functors, and natural transformations in the category of differ-
ential manifolds, or equivalently DiffCat is a 2-category with Lie groupoids as
objects, strict morphisms of Lie groupoids as morphisms, and 2-morphisms of
Lie groupoids as 2-morphisms. Our semistrict Lie 2-group is actually called a
Lie 2-group by Baez and Lauda. However, we call it a semistrict Lie 2-group
because compared to the Lie 2-group in the sense of Henriques [2008], or equiva-
lently (the equivalency was proved in [Zhu 2009]) the stacky group in the sense of
Blohmann [2008], it is stricter. Basically, their Lie 2-group is a group object in the
2-category with objects as Lie groupoids, morphisms as Hilsum–Skandalis bimod-
ules (or generalized morphisms), 2-morphisms as 2-morphisms of Lie groupoids.
Schommer-Pries [2010] realizes the string 2-group as such a Lie 2-group with a
finite-dimensional model; the integration of a string Lie 2-algebra to such a model
is work in progress [Schommer-Pries et al. ≥ 2011].

It is not needed in the definition of the string Lie 2-algebra for the base Lie
algebra to be semisimple of compact type. One only needs a quadratic Lie algebra.
As soon as we relax this condition, we find out that one can integrate R→ g⊕ g∗

1private conversation with Jiang-Hua Lu
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to a finite dimensional semistrict Lie 2-group in the sense of Baez and Lauda.
The integrating object is actually a special Lie 2-group (very close to a strict Lie
2-group) in the sense of Baez and Lauda.

Of course, as we relax the condition, we are in danger that the class correspond-
ing to this Lie 2-algebra in H 3(g⊕g∗,R)might be trivial, and consequently our Lie
2-algebra might be trivially strictified. Then what we have done would not have
been a big surprise because a strict Lie 2-algebra corresponds to a crossed module
of Lie algebras, and it easily integrates to a strict Lie 2-group by integrating the
crossed module. However, we verify that when g itself (not g⊕g∗) is semisimple,
this class is not trivial.

2. Representations up to homotopy of Lie algebras

Here, we first consider the 2-term representation up to homotopy of Lie algebras.
We give explicit formulas of the corresponding 2-term L∞-algebra, which is their
semidirect product. Then we give several interesting examples including Courant
algebroids and omni-Lie algebroids.

2a. Representations up to homotopy of Lie algebras and their semidirect prod-
ucts. L∞-algebras, sometimes called strongly homotopy Lie algebras, were intro-
duced by Drinfeld and Stasheff [Stasheff 1992] as a model for “Lie algebras that
satisfy Jacobi identity up to all higher homotopies”. The following convention of
L∞-algebras has the same grading as in [Henriques 2008] and [Roytenberg and
Weinstein 1998].

Definition 2.1. An L∞-algebra is a graded vector space L= L0⊕L1⊕· · · equipped
with a system {lk | 1≤ k <∞} of linear maps lk :

∧k L→ L with degree deg(lk)=

k− 2, where the exterior powers are interpreted in the graded sense and the sum∑
i+ j=n+1

(−1)i( j−1)
∑
σ

sgn(σ )Ksgn(σ )l j (li (xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n))

vanishes for all n ≥ 0, where Ksgn is the Koszul sign and the sum is taken over all
(i, n− i)-unshuffles with i ≥ 1.

Letting n = 1, we have

l2
1 = 0, l1 : L i+1→ L i ,

which means that L is a complex; we usually write d= l1. Letting n = 2, we have

dl2(x, y)= l2(dx, y)+ (−1)pl2(x, dy) for all x ∈ L p, y ∈ Lq ,

which means that d is a derivation with respect to l2. We usually view l2 as a
bracket [ · , · ]. However, it is not a Lie bracket: the obstruction of the Jacobi
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identity is controlled by l3:

(1) l2(l2(x, y), z)+ (−1)(p+q)r l2(l2(y, z), x)+ (−1)qr+1l2(l2(x, z), y)

=−dl3(x, y, z)− l3(dx, y, z)+ (−1)pql3(dy, x, z)− (−1)(p+q)r l3(dz, x, y),

where x ∈ L p, y ∈ Lq , z ∈ Lq and l3 also satisfies higher coherence laws.
In particular, if the k-th brackets are zero for all k > 2, we recover the usual

notion of differential graded Lie algebras (DGLA). If L is concentrated in degrees
less than n, then L is called an n-term L∞-algebra.

In this paper, we mainly consider 2-term L∞-algebras, which are equivalent to
the Lie 2-algebras given by John Baez and Alissa Crans [2004]. In this special
case, l4 is always zero. Thus by restricting the coherence law satisfied by l3 on
degree 0, we obtain

(2) l3(l2(x, y), z, w)+ c.p.− (l2(l3(x, y, z), w)+ c.p.)= 0

for all x, y, z, w ∈ L0,

where c.p. stands for cyclic permutation. Lie 2-algebras are categorified versions of
Lie algebras. In a Lie 2-algebra, the Jacobi identity is replaced by an isomorphism
called the Jacobiator. The Jacobiator satisfies a certain law of its own. Given a
2-term L∞-algebra L1

d
−→ L0, the underlying 2-vector space of the corresponding

Lie 2-algebra is made up by L0 as the vector space of objects and L0⊕ L1 as the
vector space of morphisms. See [Baez and Crans 2004, Theorem 4.3.6] for details.

Recall from [Baez and Crans 2004] that a Lie 2-algebra is skeletal if isomorphic
objects are equal. Viewing a Lie 2-algebra as a 2-term L∞-algebra, explicitly we
have this:

Definition 2.2. A 2-term L∞-algebra L1
d
−→ L0 is called skeletal if d= 0.

Theorem 2.3 [Baez and Crans 2004]. There is a bijection between 2-term skeletal
L∞-algebra L1

d
−→ L0 and quadruples (k1, k2, φ, θ), where k1 is a Lie algebra, k2

is a vector space, φ is a representation of k1 on k2, and θ is a 3-cocycle on k1 with
values in k2.

Given a 2-term skeletal L∞-algebra L1
d
−→ L0, recall that k1 is L0, k2 is L1, the

representation φ comes from l2, and the 3-cocycle θ is obtained from l3.
See [Abad and Crainic 2009; Abad 2008] for the general theory of representa-

tion up to homotopy of Lie algebroids. In this paper we only consider the 2-term
representations up to homotopy of Lie algebras.

Definition 2.4 [Abad and Crainic 2009]. A 2-term representation up to homotopy
of a Lie algebra g consists of the following:

(i) A 2-term complex of vector spaces V1
d
−→ V0.
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(ii) Two linear maps µi : g→ End(Vi ) that are compatible with d. That is, for
any X ∈ g and ξ ∈ V1, we have

(3) d ◦µ1(X)(ξ)= µ0(X) ◦ d(ξ).

(iii) A linear map ν :
∧2 g→ Hom(V0, V1) such that

µ0[X1, X2] − [µ0(X1), µ0(X2)] = d ◦ ν(X1, X2),(4)

µ1[X1, X2] − [µ1(X1), µ1(X2)] = ν(X1, X2) ◦ d,(5)

and

(6) [µ0(X1)+µ1(X1), ν(X2, X3)] + c.p.= ν([X1, X2], X3)+ c.p.

We usually write µ=µ0+µ1 and denote a 2-term representation up to homotopy
of a Lie algebra g by (V1

d
−→ V0, µ, ν).

In [2009, Example 3.25], Abad and Crainic proved that one can associate to any
representation up to homotopy V• of a Lie algebra g a new L∞-algebra g n V•,
which is their semidirect product. Here we make this construction explicit in the
2-term case.

Let (V1
d
−→ V0, µ, ν) be a 2-term representation up to homotopy of g. Then we

can form a new 2-term complex

(g n V•, d) : V1
d
−→ (g⊕ V0).

Define l2 :
∧2
(g n V•)→ g n V• by setting

(7)

l2(X + ξ, Y + η)= [X, Y ] +µ0(X)(η)−µ0(Y )(ξ),

l2(X + ξ, f )= µ1(X)( f ),

l2( f, g)= 0

for any X + ξ, Y + η ∈ g⊕ V0 and f, g ∈ V1. Note that l2 is not a Lie bracket, but
instead

l2(l2(X + ξ, Y + η), Z + γ )+ c.p.= d(ν(X, Y )(γ ))+ c.p.

Define l3 :
∧3
(g n V•)→ g n V• by setting

(8) l3(X + ξ, Y + η, Z + γ )=−ν(X, Y )(γ )+ c.p.

Then:

Proposition 2.5. With the notations above, if (V1
d
−→ V0, µ, ν) is a 2-term rep-

resentation up to homotopy of a Lie algebra g, then (V1
d
−→ (g⊕ V0), l2, l3) is a

2-term L∞-algebra.
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Example I (Courant algebroids T M ⊕ T ∗M). Courant algebroids, introduced in
[Liu et al. 1997] to study the double of Lie bialgebroids, each consist of a vector
bundle E → M equipped with a nondegenerate symmetric bilinear form 〈 · , · 〉
on the bundle, an antisymmetric bracket [[ · , · ]] on the section space 0(E) and a
bundle map ρ : E→ T M such that a set of axioms are satisfied. One can be viewed
as a Lie 2-algebroid with a “degree-2 symplectic form” [Roytenberg 2002]. The
first example is the standard Courant algebroid (T=T M⊕T ∗M, 〈 · , · 〉, [[ · , · ]], ρ)
associated to a manifold M , where ρ : T→ T M is the projection, the canonical
pairing 〈 · , · 〉 is given by

(9) 〈X + ξ, Y + η〉 = 1
2(ξ(Y )+ η(X)) for all X, Y ∈ X(M), ξ, η ∈�1(M),

and the antisymmetric bracket [[ · , · ]] is given by

(10) [[X + ξ, Y + η]], [X, Y ] + L Xη− LY ξ +
1
2 d(ξ(Y )− η(X))

for all X + ξ, Y + η ∈ 0(T).

This is not a Lie bracket, but we have

(11) [[[[e1, e2]], e3]] + c.p.= dT (e1, e2, e3) for all e1, e2, e3 ∈ 0(T),

where T (e1, e2, e3) is given by

(12) T (e1, e2, e3)=
1
3(〈[[e1, e2]], e3〉+ c.p.).

Now we realize the section space of T as the semidirect product of the Lie
algebra X(M) of vector fields with the natural 2-term deRham complex

(13) C∞(M) d
−→�1(M).

For this we need to define a representation up to homotopy of X(M) on this com-
plex. For any X ∈ X(M), define linear actions µ0 and µ1 by

µ0(X)(ξ), [[X, ξ ]] = L Xξ −
1
2 d(ξ(X)) for all ξ ∈�1(M),(14)

µ1(X)( f ), 〈X, d f 〉 = 1
2 X ( f ) for all f ∈ C∞(M).(15)

Define ν :
∧2 X(M)→ Hom(�1(M),C∞(M)) by

(16) ν(X, Y )(ξ)= T (X, Y, ξ) for all X, Y ∈ X(M), ξ ∈�1(M).

Proposition 2.6. With the above notations, (C∞(M) d
−→�1(M), µ=µ0+µ1, ν)

is a representation up to homotopy of the Lie algebra X(M).

Proof. For any f ∈ C∞(M), we have

µ0(X)(d f )= L X d f − 1
2 d X ( f )= 1

2 d X ( f ),
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which implies µ0◦d = d ◦µ1, that is, the µi are compatible with the differential d.
By straightforward computations, we have

µ0[X, Y ](ξ)− [µ0(X), µ0(Y )](ξ)= [[[[X, Y ]], ξ ]] + c.p.

= dT (X, Y, ξ)= d(ν(X, Y )(ξ)),

µ1[X, Y ]( f )− [µ1(X), µ1(Y )]( f )= 1
2 [X, Y ]( f )− 1

4(X (Y ( f ))− Y (X ( f )))

=
1
4 [X, Y ]( f ),

ν(X, Y )(d f )= T (X, Y, d f )= 1
3(

1
2 [X, Y ]( f )+ 1

4(X (Y ( f ))− Y (X ( f )))

=
1
4 [X, Y ]( f ),

which implies (4) and (5). At last we need to prove (6), which is obviously equiv-
alent to

(17) µ1(X)T (Y, Z , ξ)− T (Y, Z , µ0(X)(ξ))+ c.p.(X, Y, Z)

= T ([X, Y ], Z , ξ)+ c.p.(X, Y, Z).

Observe that since µ0(X)(ξ)= [[X, ξ ]], we have

T (Y, Z , µ0(X)(ξ))+ c.p.(X, Y, Z)+ T ([X, Y ], Z , ξ)+ c.p.(X, Y, Z)

= T ([X, Y ], Z , ξ)+ c.p.(X, Y, Z , ξ).

Furthermore, since µ1(X)( f ) = 〈X, d f 〉 for any f ∈ C∞(M) and the cotangent
bundle T ∗M is isotropic under the pairing (9), we have

µ1(X)T (Y, Z , ξ)+ c.p.(X, Y, Z)= 〈X, dT (Y, Z , ξ)〉+ c.p.(X, Y, Z , ξ).

Thus, (17) is equivalent to

〈X, dT (Y, Z , ξ)〉+ c.p.(X, Y, Z , ξ)= T ([X, Y ], Z , ξ)+ c.p.(X, Y, Z , ξ),

which holds by [Roytenberg and Weinstein 1998, Lemma 4.5]. �

By Proposition 2.5, we have this:

Corollary 2.7. (C∞(M) d=0⊕d
−−−−→ (X(M)⊕�1(M)), l2, l3) is a 2-term L∞-algebra,

where l2 and l3 are given by (7) and (8), in which µ0, µ1 and ν are given by
(14), (15) and (16), respectively.

Remark 2.8. Roytenberg and Weinstein [1998] have proved that the sections of
a Courant algebroid (C, 〈 · , · 〉, [[ · , · ]], ρ) form an L∞-algebra. In the case when
C= T the standard Courant algebroid, the 2-term L∞-algebra is given by

C∞(M)
d=0⊕d
−−−−→ X(M)⊕�1(M)= 0(T),
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with brackets given by

l2(e1, e2)= [[e1, e2]], l2(e1, f )= 〈e1, d f 〉, l3(e1, e2, e3)=−T (e1, e2, e3),

and li≥4 = 0 for any e1, e2, e3 ∈0(T) and f ∈C∞(M). Here T is defined by (12).
It is easy to verify that this is the same as our 2-term L∞-algebra in Corollary 2.7.

We can also modify our complex (13) to �1(M) Id
−−→�1(M). Following the

same procedure, we get another representation up to homotopy of the Lie algebra
X(M) and therefore obtain another 2-term L∞-algebra that is also totally deter-
mined by the Courant algebroid (T, 〈 · , · 〉, [[ · , · ]], ρ). More precisely, µ0 = µ1 is
given by

µ0(X)(ξ), [[X, ξ ]],

and ν : X(M)→�2(X2(M),End(�1(M),�1(M))) is given by

ν(X, Y )(ξ), dT (X, Y, ξ)

for any X, Y ∈ X(M) and ξ ∈�1(M).

Proposition 2.9. With the above notations, (�1(M) Id
−−→�1(M), µ=µ0 =µ1, ν)

is a representation up to homotopy of the Lie algebra X(M).

Example II (Courant algebroids over a point and Lie 2-algebras of string type). A
Courant algebroid over a point is literally a quadratic Lie algebra, namely a Lie
algebra k together with nondegenerate inner product 〈 · , · 〉 that is invariant under
the adjoint action. People often think of a Courant algebroid over a point as a string
Lie 2-algebra.2 Here we justify this thinking.

Definition 2.10. The Lie 2-algebra of string type associated to a quadratic Lie
algebra (k, 〈 · , · 〉) is a 2-term L∞-algebra R 0

−→ k, whose degree-0 part is k and
whose degree-1 part is R, with l2, l3 given by

l2((e1, c1), (e2, c2))= ([e1, e2], 0),

l3((e1, c1), (e2, c2), (e3, c3))= (0, 〈[e1, e2], e3〉),

where e1, e2, e3 ∈ k and c1, c2, c3 ∈ R.

The representation φ of k on R and the 3-cocycle θ :
∧3 k→ R in the corre-

sponding quadruple in Theorem 2.3 is given by

ρ(e)(c)= l2(e, c),

θ(e1, e2, e3)= 〈[e1, e2], e3〉.(18)

2Private conversation with John Baez and Urs Schreiber.



SEMIDIRECT PRODUCTS OF REPRESENTATIONS UP TO HOMOTOPY 219

Remark 2.11. In the definition of string Lie 2-algebras [Baez and Rogers 2010;
Henriques 2008], the base Lie algebra k is usually required to be semisimple and of
compact type, such that the Jacobiator gives rise to the generator of H 3(k,Z)= Z.
This is because Witten’s original motivation was to obtain a 3-connected cover of
Spin(n), and so(n) is simple and of compact type. However, to write down the
structure of the string Lie 2-algebra, we only need a quadratic Lie algebra. This is
how we obtain the definition above on Lie 2-algebras of string type. Then H 3(k,Z)

is not necessarily Z for a general quadratic Lie algebra k. For example, for the
abelian Lie algebra R, any inner product is adjoint-invariant, and H 3(R,Z) = 0.
We thus face the danger that sometimes a Lie 2-algebra of string type might be
trivial, that is, the Jacobiator might correspond to the trivial element in H 3(k,Z).
Then what we have can be trivially strictified to a strict Lie 2-algebra, which is a
crossed module of Lie algebras. Then the integration of a crossed module of Lie
algebras is simply a crossed module of Lie groups. However, we will verify that
the example we consider is not such a case.

The standard Courant algebroid motivates us to consider the case of the direct
sum k = g⊕ g∗ of a Lie algebra g and its dual with the semidirect product Lie
algebra structure:

[X + ξ, Y + η] = [X, Y ]g+ ad∗X η− ad∗Y ξ,

where [ · , · ]g is the Lie bracket of g. The nondegenerate invariant pairing 〈 · , · 〉
on g⊕ g∗ is given by

〈X + ξ, Y + η〉 = 1
2(η(X)+ ξ(Y )) for all X + ξ, Y + η ∈ g⊕ g∗.

With these definitions, (g⊕ g∗, [ · , · ], 〈 · , · 〉) is a quadratic Lie algebra. In fact,
we have

〈[X1+ ξ1, X2+ ξ2], X3+ ξ3〉 = 〈[X1, X2]g+ ad∗X ξ2− ad∗Y ξ1, X3+ ξ3〉

= 〈[X1, X2]g, ξ3〉+ c.p.

Similarly, we have

〈X2+ ξ2, [X1+ ξ1, X3+ ξ3]〉 = 〈[X1, X3]g, ξ2〉+ c.p.,

which implies 〈X2+ ξ2, [X1+ ξ1, X3+ ξ3]〉 + 〈[X1+ ξ1, X2+ ξ2], X3+ ξ3〉 = 0,
that is, the nondegenerate inner product 〈 · , · 〉 is invariant under the adjoint action.
This example is a special case of [Lu and Weinstein 1990, Theorem 1.12] with g∗

equipped with the 0 Lie bracket. Thus (g, g∗) forms a Lie bialgebra or equivalently
(g⊕ g∗, g, g∗) is a Manin triple. However, honestly we have not found other Lie
bialgebras (Manin triples) giving rise to Lie 2-algebras of the form of semidirect
products.
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We denote by

(19) R 0
−→ g⊕ g∗.

the corresponding Lie 2-algebra of string type of (g⊕g∗, [ · , · ], 〈 · , · 〉). We denote
by ν̃ :

∧3
(g⊕ g∗)→ R the corresponding 3-cocycle (see (18))

(20)
ν̃(X1+ ξ1, X2+ ξ2, X3+ ξ3)= 〈[X1+ ξ1, X2+ ξ2], X3+ ξ3〉

= 〈[X1, X2]g, ξ3〉+ c.p.

Proposition 2.12. (R 0
−→ g∗, µ1 = 0, µ0 = ad∗, ν = [ · , · ]g) is a 2-term represen-

tation up to homotopy of the Lie algebra g. Moreover the Lie 2-algebra of string
type R 0

−→ g⊕ g∗ is the semidirect product of g and the complex R 0
−→ g∗.

Proof. Since d=0, we only need to verify thatµ0 andµ1 are Lie algebra morphisms
and (6). Both ad∗ : g→ End(g∗) and 0 are Lie algebra morphisms, and (6) follows
from Jacobi identity of [ · , · ]g.

Then it is not hard to see that the Lie 2-algebra of string type R 0
−→ g⊕g∗ with

formulas in Definition 2.10 is exactly the semidirect product of g with the complex
(R 0
−→ g∗, µ1 = 0, µ0 = ad∗, ν = [ · , · ]g) with the formulas (7) and (8). �

Proposition 2.13. If the Lie algebra g is semisimple, the Lie algebra 3-cocycle ν̃
given by (20) is not exact.

Proof. Let 〈 · , · 〉k be the Killing form on g. The proof follows from the fact that
the Cartan 3-form 〈[ · , · ], · 〉k on a semisimple Lie algebra is not exact. Since g is
semisimple, the Killing form 〈 · , · 〉k is nondegenerate. Identify g∗ and g by using
the Killing form 〈 · , · 〉k and let K be the corresponding isomorphism,

〈K(ξ), X〉k = 〈ξ, X〉.

Assume that ν̃ = dφ for some φ :
∧2
(g⊕ g∗)→ R; define ϕ :

∧2
(g⊕ g)→ R by

φ(X + ξ, Y + η)= ϕ(X +K(ξ), Y +K(η)).

Then we have

ν̃(X, Y, ξ)= dφ(X, Y, ξ)

=−φ([X, Y ], ξ)+φ(ad∗X ξ, Y )−φ(ad∗Y ξ, X)

=−ϕ([X, Y ],K(ξ))+ϕ([X,K(ξ)], Y )−ϕ([Y,K(ξ)], X)

= dϕ(X, Y,K(ξ)).

On the other hand, we have

ν̃(X, Y, ξ)= 〈[X, Y ], ξ〉 = 〈[X, Y ],K(ξ)〉k,
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which implies that the Cartan 3-form

〈[X, Y ],K(ξ)〉k = dϕ(X, Y,K(ξ))

is exact. This is a contradiction. �

In Section 4, we will give the integration of the Lie 2-algebra of string type
R 0
−→ g⊕ g∗ by using the semidirect product of a Lie group with its 2-term repre-

sentation up to homotopy. It turns out that this Lie 2-algebra of string type can be
integrated to a special Lie 2-group with a finite-dimensional model.

Example III (Omni-Lie algebroids DE ⊕ JE). Chen and Liu [2010] introduced
omni-Lie algebroids to generalize Weinstein’s omni-Lie algebras. Just as Dirac
structures of an omni-Lie algebra characterize Lie algebra structures on a vec-
tor space, Dirac structures of an omni-Lie algebroid characterize Lie algebroid
structures on a vector bundle. See [Chen et al. 2008] for more details. In fact,
the role of the omni-Lie algebroids DE ⊕ JE in E-Courant algebroids, which
were introduced in [Chen et al. 2010], is the same as the role of standard Courant
algebroids T M ⊕ T ∗M in Courant algebroids.

We briefly recall the notion of omni-Lie algebroids. We will see that it gives
rise to a 2-term L∞-algebra that is a semidirect product. In this subsection E is a
vector bundle over a smooth manifold M , and 0(E) is the section space of E .

Let DE be the covariant differential operator bundle of a vector bundle E . The
associated Atiyah sequence is given by

(21) 0→ gl(E) i // DE a // T M→ 0.

We define the associated 1-jet vector bundle JE as follows. For any m ∈ M , we
define (JE)m as a quotient of local sections of E . Two local sections u1 and u2

are equivalent (we denote this by u1 ∼ u2) if

u1(m)= u2(m) and d〈u1, ξ〉m = d〈u2, ξ〉m for all ξ ∈ 0(E∗).

So any µ ∈ (JE)m has a representative u ∈ 0(E) such that µ = [u]m . Let p be
the projection that sends [u]m to u(m). Then Kerp∼=Hom(T M, E) and there is a
short exact sequence

(22) 0→ Hom(T M, E) e // JE
p // E→ 0,

called the jet sequence of E . From this it is straightforward to see that JE is a finite
dimensional vector bundle. Also, 0(JE) is isomorphic to 0(E)⊕0(T ∗M⊗E) as
an R-vector space, and any u∈0(E) has a liftdu∈0(JE) by taking its equivalence
class, such that

(23) d( f u)= f du+ d f ⊗ u for all f ∈ C∞(M).
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Chen and Liu [2010] proved that

JE ∼= {ν ∈ Hom(DE, E) | ν(8)=8 ◦ ν(IdE) for all 8 ∈ gl(E)} .

Therefore, there is an E-pairing between JE and DE obtained by setting

(24) 〈µ, d〉E , d(u) for all µ ∈ (JE)m, d ∈ (DE)m,

where u ∈ 0(E) satisfies µ= [u]m . Particularly, one has

〈µ,8〉E =8 ◦p(µ) for all 8 ∈ gl(E), µ ∈ JE;(25)

〈y, d〉E = y ◦ a(d) for all y ∈ Hom(T M, E), d ∈DE .(26)

Furthermore, we claim that 0(JE) is an invariant subspace of the Lie derivative
Ld for any d ∈ 0(DE), which is defined by the Leibniz rule as follows:

〈Ldµ, d
′
〉E , d〈µ, d′〉E −〈µ, [d, d

′
]D〉E for all µ ∈ 0(JE), d′ ∈ 0(DE).

Define a nondegenerate symmetric E-valued 2-form ( · , · )E on E,DE⊕JE by

(d+µ, r+ ν)E ,
1
2(〈d, ν〉E +〈r, µ〉E) for all d, r ∈DE, µ, ν ∈ JE .

Define an antisymmetric bracket [[ · , · ]] on 0(E) by

[[d+µ, r+ ν]], [d, r]D+Ldν−Lrµ+
1
2(d〈µ, r〉E −d〈ν, d〉E).

Chen and Liu [2010] call the quadruple (E, [[ · , · ]], ( · , · )E , ρε) the omni-Lie
algebroid associated to the vector bundle E , where ρ is the projection of E onto
DE .3 Even though [[ · , · ]] is antisymmetric, it is not a Lie bracket. More precisely,
we have

[[[[X, Y ]], Z ]] + c.p.= dT (X, Y, Z) for any X, Y, Z ∈ 0(E),

where T : 0(
∧3 E)→ 0(E) is defined by

(27) T (X, Y, Z)= 1
3(([[X, Y ]], Z)E + c.p.).

Let us construct a 2-term L∞-algebra from the omni-Lie algebroid E. Obviously,
0(DE) is a Lie algebra and there is a natural 2-term complex

0(E) 0⊕d
−−−→ 0(JE).

For any d ∈ 0(DE), define linear actions µ0 and µ1 by

(28)
µ0(d)(µ), [[d, µ]] = Ldµ−d(µ, d)E for all µ ∈ 0(JE),

µ1(d)(u), (d,du)E =
1
2d(u) for all u ∈ 0(E).

3This is slightly different from the notion given in [Chen and Liu 2010], where the bracket is not
skew symmetric.
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Define ν :
∧2
0(DE)→ Hom(0(JE), 0(E)) by

(29) ν(d, t)(ξ)= T (d, t, µ) for all d, t ∈ 0(DE), µ ∈ 0(JE).

Similarly to Proposition 2.6, we prove:

Proposition 2.14. With the notations above, (0(E) 0⊕d
−−−→ 0(JE), µ=µ0+µ1, ν)

is a representation up to homotopy of the Lie algebra 0(DE).

Corollary 2.15. (0(E) 0⊕d
−−−→ 0(DE) ⊕ 0(JE), l2, l3) is a 2-term L∞-algebra,

where l2 and l3 are given by (7) and (8), and µ and ν are given by (28) and (29),
respectively.

Remark 2.16. If the base manifold M is a point, that is, E is a vector space,
for which we use a new notation V , then DV = gl(V ) and JV = V , and we
recover the notion of omni-Lie algebras. The complex 0(V ) 0⊕d

−−−→ 0(JV ) reduces
to V Id
−−→ V , which is a representation up to homotopy of gl(V ) with (µ0 =µ1, ν)

given by

(30) µ0(A)(u)= 1
2 Au, ν(A, B)= 1

4 [A, B] for all A, B ∈ gl(V ), u ∈ V .

Hence even though an omni-Lie algebra gl(V )⊕ V is not a Lie algebra, we can
extend it to a 2-term L∞-algebra, of which L0 = gl(V )⊕V, L1 = V , l2 and l3 are
given by (7) and (8), in which µ and ν are given by (30). This 2-term L∞-algebra
is a semidirect product of gl(V ) with V Id

−−→ V .
We will study the global object of the 2-term L∞-algebra associated to an omni-

Lie algebra in the forthcoming paper [Sheng and Zhu 2010].

3. Representations up to homotopy of Lie groups and semidirect products

The representation up to homotopy of a Lie group was introduced in [Abad 2008].
In this section we define the semidirect product of a Lie group with a 2-term rep-
resentation up to homotopy and prove that the semidirect product is a Lie 2-group.
Thus we first recall some background on Lie 2-groups.

A group is a monoid where every element has an inverse. A 2-group is a
monoidal category where every object has a weak inverse and every morphism has
an inverse. Denote the category of smooth manifolds and smooth maps by Diff,
a semistrict4 Lie 2-group is a 2-group in DiffCat, where DiffCat is the 2-category
consisting of categories, functors, and natural transformations in Diff. For more
details, see [Baez and Lauda 2004]. Here we only recall the expanded definition:

Definition 3.1 [Baez and Lauda 2004]. A semistrict Lie 2-group consists of an
object C in DiffCat, that is,

C1
s //
t

// C0,

4See the introduction for the reason we call it a semistrict Lie 2-group.
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where C1 and C0 are objects in Diff, s and t are the source and target maps, and
there is a vertical multiplication ·v : C ×C→ C , together with

• a functor (horizontal multiplication) ·h : C ×C→ C ,

• an identity object 1,

• a contravariant functor inv : C→ C

and the following natural isomorphisms:

• the associator ax,y,z : (x ·h y) ·h z→ x ·h (y ·h z),

• the left and right unit lx : 1 ·h x→ x and rx : x ·h 1→ x ,

• the unit and counit ix : 1→ x ·h inv(x) and ex : inv(x) ·h x→ 1,

which are such that the following diagrams commute.

• The pentagon identity for the associator:

(w ·h x) ·h (y ·h z)
aw,x,y·hz

++
((w ·h x) ·h y) ·h z

a(w·hx),y,z
33

aw,x,y ·h1z %%

w ·h (x ·h (y ·h z))

(w ·h (x ·h y)) ·h z
aw,x ·h y,z // w ·h ((x ·h y) ·h z)

1w ·hax,y,z

88

• The triangle identity for the left and right unit lows:

(x ·h 1) ·h y
ax,1,y //

rx ·h1y

&&

x ·h (1 ·h y)

1x ·hlyxx
x ·h y

• The first zig-zag identity:

(x ·h inv(x)) ·h x
ax,inv(x),x // x ·h (inv(x) ·h x)

1x ·hex

''
1 ·h x

lx

++

ix ·h1x
77

x ·h 1

x

r−1
x

33
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• The second zig-zag identity:

inv(x) ·h (x ·h inv(x))
ainv(x),x,inv(x)// (inv(x) ·h x) ·h inv(x)

ex ·h1inv(x)

''
inv(x) ·h 1

rinv(x)

++

1inv(x)·hix
77

1 ·h inv(x)

inv(x)

l−inv(x)−1
33

In the special case where ax,y,z , lx , rx , ix and ex are all identity isomorphisms,
we call such a Lie 2-group a strict Lie 2-group.5

Definition 3.2 [Baez and Lauda 2004]. A special Lie 2-group is a Lie 2-group of
which the source and target coincide and the left unit law l, the right unit law r ,
the unit i and the counit e are identity isomorphisms.

For classification of special Lie 2-groups, we need the group cohomology with
smooth cocycles, that is, we consider the cochain complex with smooth morphisms
G×n
→ M with G a Lie group and M its module. The differential is defined as

usual for group cohomology. We denote this cohomology by H•sm(G,M).

Theorem 3.3 [Baez and Lauda 2004, Theorem 8.3.7]. There is a one-to-one corre-
spondence between special Lie 2-groups and quadruples (K1, K2,8,2) consist-
ing a Lie group K1, an abelian group K2, an action 8 of K1 as automorphisms of
K2 and a normalized smooth 3-cocycle 2 : K 3

1 → K2. Two special Lie 2-groups
are isomorphic if and only if they correspond to the same6 (K1, K2,8) and the
corresponding 3-cocycles represent the same element in H 3

sm(K1, K2).

Remark 3.4. Given a quadruple (K1, K2,8,2), the corresponding semistrict Lie
2-group has the Lie group K1 as the space of objects and the semidirect product
Lie group K1 n8 K2 as the space of morphisms. The associator is given by 2.

Definition 3.5. A unital 2-term representation up to homotopy of a Lie group G
consists of

(a) a 2-term complex of vector spaces V1
d
−→ V0;

(b) a nonassociative action F1 on V0 and V1 satisfying dF1= F1d and F1(1G)= Id;
and

(c) a smooth map F2 : G×G→ End(V0, V1) such that

(31) F1(g1) · F1(g2)− F1(g1 · g2)= [d, F2(g1, g2)]

5The notion of strict Lie 2-groups is the same as in [Baez and Lauda 2004].
6up to isomorphisms of groups, of course
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and

(32) F1(g1)◦F2(g2, g3)−F2(g1 ·g2, g3)+F2(g1, g2 ·g3)−F2(g1, g2)◦F1(g3)=0.

We denote this 2-term representation up to homotopy of the Lie group G by
(V1

d
−→ V0, F1, F2). One should be careful: Even if F1 is a usual associative action,

(32) is not equivalent to F2 being a 2-cocycle. This is strangely different from the
Lie algebra case (see Section 4). Define F̃2 : (G n V0)

3
→ V1 by

(33) F̃2((g1, ξ1), (g2, ξ2), (g3, ξ3))= F2(g1, g2)(ξ3).

If F1 is a usual associative action, we form the semidirect product G n V0. Then
V1 is a G n V0-module with an associated action F̃1 of G n V0 on V1 given by

F̃1(g, ξ)(m)= F1(g)(m) for all m ∈ V1.

Proposition 3.6. If F1 is the usual associative action of the Lie group G on the
complex V1

d
−→ V0, then F̃2 defined by (33) is a group 3-cocycle representing an

element in H 3
sm(G n V0, V1).

Proof. By direct computation, we have

d F̃2((g1, ξ1), (g2, ξ2), (g3, ξ3), (g4, ξ4))

= F̃1(g1, ξ1)F̃2((g2, ξ2), (g3, ξ3), (g4, ξ4))

−F̃2((g1, ξ1)·(g2, ξ2), (g3, ξ3), (g4, ξ4))+F̃2((g1, ξ1), (g2, ξ2)·(g3, ξ3), (g4, ξ4))

−F̃2((g1, ξ1), (g2, ξ2), (g3, ξ3)·(g4, ξ4))+F̃2((g1, ξ1), (g2, ξ2), (g3, ξ3))

= F1(g1)F2(g2, g3)(ξ4)−F2(g1·g2, g3)(ξ4)+F2(g1, g2·g3)(ξ4)

−F2(g1, g2)(ξ3+F1(g3)(ξ4))+F2(g1, g2)(ξ3)

=
(
F1(g1)◦F2(g2, g3)−F2(g1·g2, g3)+F2(g1, g2·g3)−F2(g1, g2)◦F1(g3)

)
(ξ4).

By (32), F̃2 is a Lie group 3-cocycle. �

Just as we can associate to any representation of a Lie group a new Lie group
that is their semidirect product, we can use a 2-term representation up to homotopy
of a Lie group to form a Lie 2-group.

Theorem 3.7. Given a 2-term representation up to homotopy (V1
d
−→ V0, F1, F2)

of a Lie group G, its semidirect product with G is defined to be

(34)

G× V0× V1

s
��

t
��

G× V0.

Then it is a Lie 2-group with the following structure maps:
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The source and target are given by

(35) s(g, ξ,m)= (g, ξ) and t (g, ξ,m)= (g, ξ + dm).

The vertical multiplication ·v is given by

(h, η, n) ·v (g, ξ,m)= (g, ξ,m+ n), where h = g, η = ξ + dm.

The horizontal multiplication ·h of objects is given by

(36) (g1, ξ) ·h (g2, η)= (g1 · g2, ξ + F1(g1)(η)).

The horizontal multiplication ·h of morphisms is given by

(37) (g1, ξ,m) ·h (g2, η, n)= (g1 · g2, ξ + F1(g1)(η),m+ F1(g1)(n)).

The inverse map inv is given by

(38) inv(g, ξ)= (g−1,−F1(g−1)(ξ)).

The identity object is (1G, 0).
The associator

a(g1,ξ),(g2,η),(g3,γ ) :
(
(g1, ξ) ·h (g2, η)

)
·h (g3, γ )→ (g1, ξ) ·h

(
(g2, η) ·h (g3, γ )

)
is given by

(39) a(g1,ξ),(g2,η),(g3,γ )= (g1·g2·g3, ξ+F1(g1)(η)+F1(g1·g2)(γ ), F2(g1, g2)(γ )).

The unit i(g,ξ) : (1G, 0)→ (g, ξ) ·h inv(g, ξ) is given by

(40) i(g,ξ) = (1G, 0,−F2(g, g−1)(ξ)).

All the other natural isomorphisms are identity isomorphisms.

Proof. By (35), (36) and (37), it is straightforward to see that

s
(
(g1, ξ,m) ·h (g2, η, n)

)
= s(g1, ξ,m) ·h s(g2, η, n),

t
(
(g1, ξ,m) ·h (g2, η, n)

)
= t (g1, ξ,m) ·h t (g2, η, n).

Thus the multiplication ·h respects the source and target map. Furthermore, it is
not hard to check that the horizontal and vertical multiplications commute, that is,(
(g, ξ + dm, n) ·h (g′, η+ dp, q)

)
·v
(
(g, ξ,m) ·h (g′, η, p)

)
=
(
(g, ξ + dm, n) ·v (g, ξ,m)

)
·h
(
(g′, η+ dp, q) ·v (g′, η, p)

)
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or, in terms of a diagram,

(41) • •

(g, ξ)

��
(g, ξ + dm)oo

(g, ξ + d(m+ n))

YY

m
��

n
��

•.

(g′, η)

��
(g′, η+ dp)oo

(g′, η+ d(p+ q))

YY

p
��

q
��

It follows from (31) that the associator a(g1,ξ),(g2,η),(g3,γ ) defined by (39) is in-
deed a morphism from ((g1, ξ) ·h (g2, η)) ·h (g3, γ ) to (g1, ξ) ·h ((g2, η) ·h (g3, γ )).
To see that it is natural, we need to show that

(42) a(g1,ξ+dm),(g2,η+dn),(g3,γ+dk) ·h (((g1, ξ,m) ·h (g2, η, n)) ·h (g3, γ, k))

is equal to

(43)
(
(g1, ξ,m) ·h ((g2, η, n) ·h (g3, γ, k))

)
·h a(g1,ξ),(g2,η),(g3,γ ),

that is, the following diagram commutes:

((g1, ξ) ·h (g2, η)) ·h (g3, γ )

��

a
,,

(g1, ξ) ·h ((g2, η) ·h (g3, γ ))

��

((g1, ξ + dm) ·h (g2, η+ dn)) ·h (g3, γ + dk)
a

,,
(g1, ξ + dm) ·h ((g2, η+ dn) ·h (g3, γ + dk)).

By straightforward computations, we obtain that (42) is equal to

(g1 · g2 · g3,

ξ+F1(g1)(η)+F1(g1·g2)(γ ),m+F1(g1)(n)+F1(g1·g2)(k)+F2(g1, g2)(γ+dk)),

and (43) is equal to

(g1 · g2 · g3,

ξ+F1(g1)(η)+F1(g1·g2)(γ ),m+F1(g1)(n)+F1(g1)·F1(g2)(k)+F2(g1, g2)(γ )).

Hence (42) is equal to (43) by (31). This implies that a(g1,ξ),(g2,η),(g3,γ ) as defined
by (39) is a natural isomorphism.
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By (31) and the fact that F1(1G)= Id, the unit given by (40) is indeed a morphism
from (1G, 0) to (g, ξ) ·h inv(g, ξ). To see that it is natural, we need to prove that(

(g, ξ,m) ·h inv(g, ξ,m)
)
·h i(g,ξ) = i(g,ξ+dm),

that is, that the diagram

(1G, 0)
i(g,ξ)

''

i(g,ξ+dm)

uu
(g, ξ + dm) ·h inv(g, ξ + dm) (g, ξ) ·h inv(g, ξ)

(g,ξ,m)·hinv(g,ξ,m)oo

commutes. This follows from

F2(g, g−1)(dm)= F1(g) ·F1(g−1)(m)−F1(g ·g−1)(m)= F1(g) ·F1(g−1)(m)−m,

which is a special case of (31).
Since F(1G)= Id, we have

(1G, 0) ·h (g, ξ)= (g, ξ) and (g, ξ) ·h (1G, 0)= (g, ξ).

Hence the left unit and the right unit can also be taken as the identity isomorphism.
The counit e(g,ξ) : inv(g, ξ) ·h (g, ξ) → (1G, 0) can be taken as the identity

morphism since

inv(g, ξ) ·h (g, ξ)= (g−1,−F1(g−1)(ξ)) ·h (g, ξ)= (1G, 0).

Finally, we need to show the pentagon identity for the associator, the triangle iden-
tity for the left and right unit laws, and the first and second zig-zag identities. We
only give the proof of the pentagon identity; we leave the similar proofs of the
others to the reader. In fact, the pentagon identity is equivalent to

a(g1,ξ),(g2,η),(g3,γ )·h(g4,θ) ·v a(g1,ξ)·h(g2,η),(g3,γ ),(g4,θ)

=

((g1, ξ)·ha(g2,η),(g3,γ ),(g4,θ))·va(g1,ξ),(g2,η)·h(g3,γ ),(g4,θ)·v(a(g1,ξ),(g2,η),(g3,γ )·h(g4, θ)).

By straightforward computations, the left hand side is equal to

(g1 · g2 · g3 · g4, ξ + F1(g1)(η)+ F1(g1 · g2)(γ )+ F1(g1 · g2 · g3)(θ),

F2(g1 · g2, g3)(θ)+ F2(g1, g2)(γ + F1(g3)(θ))),

and the right hand side is equal to

(g1 · g2 · g3 · g4, ξ + F1(g1)(η)+ F1(g1 · g2)(γ )+ F1(g1 · g2 · g3)(θ),

F2(g1, g2)(γ )+ F2(g1, g2 · g3)(θ)+ F1(g1) ◦ F2(g2, g3)(θ)).

By (32), they are equal. �
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4. Integrating the Lie 2-algebra of string type R→ g⊕g∗

As an application of Theorem 3.7, we consider the integration of the Lie 2-algebra
of string type R→ g⊕ g∗ given by (19). Now we restrict to the case that g is
finite-dimensional. Obviously, given a quadruple (K1, K2,8,2) that represents a
special Lie 2-group (see Theorem 3.3), we obtain by differentiation a quadruple
(k1, k2, φ, θ), which represents a 2-term skeletal L∞-algebra.

Definition 4.1. A special Lie 2-group that is represented by (K1, K2,8,2) is an
integration of a 2-term skeletal L∞-algebra that is represented by (k1, k2, φ, θ) if
the differentiation of (K1, K2,8,2) is (k1, k2, φ, θ).

If the differential d in a 2-term complex V1
d
−→ V0 is 0, a representation up

to homotopy of Lie algebra g on V1
0
−→ V0 consists of two strict representations

µ1 and µ0, and a linear map ν : g ∧ g → Hom(V0, V1) satisfying equation (6).
This equation implies that ν is a Lie algebra 2-cocycle representing an element
in H 2(g,Hom(V0, V1)), with the representation [µ( · ), · ] of g on Hom(V0, V1)

defined by

[µ( · ), · ](X)(A), [µ(X), A]

= µ1(X) ◦ A− A ◦µ0(X) for all X ∈ g, A ∈ Hom(V0, V1).

Lemma 4.2. Define ν̃ :
∧3
(g⊕ V0)→ V1 by

ν̃(X1+ ξ1, X2+ ξ2, X3+ ξ3)= ν(X1, X2)(ξ3)+ c.p.

Then ν is a 2-cocycle if and only if ν̃ is a 3-cocycle where the representation µ̃ of
g⊕ V0 on V1 is given by µ̃(X + ξ)(m)= µ(X)(m).

Proof. By direct computations, for any X i+ξi ∈ g⊕V0 with i = 1, 2, 3, 4, we have

d ν̃(X1+ ξ1, X2+ ξ2, X3+ ξ3, X4+ ξ4)= dν(X1, X2, X3)(ξ4)+ c.p. �

The Lie algebra homomorphism µ from g to End(V0)⊕ End(V1) integrates to
a Lie group homomorphism F1 from the simply connected Lie group G of g to
GL(V0)⊕GL(V1), with

µ(X)= d
dt

∣∣∣
t=0

F1(exp t X) for all X ∈ g.

Consequently, Hom(V0, V1) is a G-module with G action

g · A = F1(g) ◦ A ◦ F1(g)−1 for all g ∈ G, A ∈ Hom(V0, V1).

The Lie algebra 2-cocycle ν : g∧ g→ Hom(V0, V1) can integrate to a smooth Lie
group 2-cocycle F2 : G×G→ Hom(V0, V1), satisfying

(44) F1(g1) ◦ (F2)(g2, g3) ◦ F1(g1)
−1

− (F2)(g1 · g2, g3)+ (F2)(g1, g2 · g3)− (F2)(g1, g2)= 0,
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and F2(1G, 1G)= 0. Let us explain how.
The classical theory of cohomology of discrete groups says that the equivalence

classes of extensions of G by a G module M are in bijection with the elements
of H 2(G,M). In our case, the same theory tells us that H 2

sm(G,Hom(V0, V0))

classifies the equivalence classes of splitting extensions of G by the G-module
Hom(V0, V1), which is a splitting short exact sequence of Lie groups in which
Hom(V0, V1) is endowed with an abelian group structure

(45) Hom(V0, V1)→ Ĝ→ G.

In a general extension, Ĝ is a principal bundle over G; thus it usually does not
permit a smooth lift G σ

−→ Ĝ. It permits such a lift if and only if the sequence
splits. However in our case, since the abelian group Hom(V0, V1) is a vector space,
we have H 1(X,Hom(V0, V1)) = 0 for any manifold X . The proof makes use
of a partition of unity and is similar to the proof showing that H 1(X,R) = 0
for the sheaf cohomology. Hence all Hom(V0, V1) principal bundles are trivial.
Therefore (45) always splits. On the other hand it is well known that when G is
simply connected, there is a one-to-one correspondence between extensions of G
[Brahic 2010, Theorem 4.15] and extensions of its Lie algebra g, which in turn
are classified by the Lie algebra cohomology H 2(g,Hom(V0, V1)). Hence in our
case the differentiation map H 2

sm(G,Hom(V0, V1))→ H 2(g,Hom(V0, V1)) is an
isomorphism. Hence ν always integrates to a smooth Lie group 2-cocycle unique
up to exact 2-cocycles. Then F2(1G, 1G)= 0 can be arranged too, because we can
always modify the section σ : G→ Ĝ to satisfy σ(1G)= 1Ĝ and the modification
of sections results in an exact term. Then combined with (44), it is not hard to see
that

(46) F2(1G, g)= F2(g, 1G)= 0 for all g ∈ G.

Thus F2 is a normalized 2-cocycle.

Proposition 4.3. For any 2-term representation up to homotopy (µ, ν) of a Lie
algebra g on the complex V1

0
−→ V0, there is an associated representation up to

homotopy (F1, F2) of the Lie group G on the complex V1
0
−→ V0, where F1 is the

integration of µ and F2 : G×G→ End(V0, V1) is defined by

(47) F2(g1, g2)= F2(g1, g2) ◦ F1(g1 · g2).

Proof. Obviously, (31) is satisfied. To see (32) is also satisfied, combine (47) with
(44). By the fact that F1 is a homomorphism, we obtain

F1(g1)◦F2(g2, g3)◦F1(g2 ·g3)
−1
◦F1(g1)

−1
−F2(g1 ·g2, g3)◦F1(g1 ·g2 ·g3)

−1

+F2(g1, g2 ·g3)◦F1(g1 ·g2 ·g3)
−1
−F2(g1, g2)◦F1(g1 ·g2)

−1
= 0.
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Composing this with F1(g1 · g2 · g3) on the right hand side, we obtain (32). �

By Proposition 4.3 and Theorem 3.7, we have:

Theorem 4.4. Let G be the simply connected Lie group integrating g. Then the Lie
2-algebra of string type R 0

−→ g⊕ g∗ given by (19) integrates to the Lie 2-group

(48)

G× g∗×R

s
��

t
��

G× g∗,

in which the source and target are given by

(49) s(g, ξ,m)= t (g, ξ,m)= (g, ξ),

the vertical multiplication ·v is given by

(h, η, n) ·v (g, ξ,m)= (g, ξ,m+ n), where h = g, η = ξ,

the horizontal multiplication ·h of objects is given by

(g1, ξ) ·h (g2, η)= (g1 · g2, ξ +Ad∗g1
η),

the horizontal multiplication ·h of morphisms is given by

(g1, ξ,m) ·h (g2, η, n)= (g1 · g2, ξ +Ad∗g1
η,m+ n),

the inverse map inv is given by

inv(g, ξ)= (g−1,−Ad∗g−1 ξ), inv(g, ξ,m)= (g−1,−Ad∗g−1 ξ,−m),

the identity object is (1G, 0), and the associator

a(g1,ξ),(g2,η),(g3,γ ) :
(
(g1, ξ) ·h (g2, η)

)
·h (g3, γ )→ (g1, ξ) ·h

(
(g2, η) ·h (g3, γ )

)
is given by

a(g1,ξ),(g2,η),(g3,γ ) = (g1 · g2 · g3, ξ +Ad∗g1
η+Ad∗g1·g2

γ, F2(g1, g2)(γ )).

All the other structures are identity isomorphisms.

Proof. Since F1 is a usual associative action, we may modify the unit (40) given
in Theorem 3.7 to be the identity natural transformation. It turns out that (48) is a
special Lie 2-group and is represented by (G ng∗,R, Id, F̃2), where G ng∗ is the
semidirect product with the coadjoint action of G on g∗, Id is the constant map
G n g∗→ Aut(R) that maps everything to Id ∈ Aut(R), and F̃2 is given by

(50) F̃2((g1, ξ1), (g2, ξ2), (g3, ξ3))= F2(g1, g2)(ξ3)= F2(g1, g2)◦F1(g1·g2)(ξ3).
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Since F2 is normalized, so is F̃2. The Lie 2-algebra of string type R 0
−→ g⊕ g∗ is

skeletal and is represented by (g⊕ g∗,R, 0, ν̃), where ν̃ is given by (20). Thus to
show that our Lie 2-group is one of its integrations, we only need to show that the
differential of the Lie group 3-cocycle F̃2 is the Lie algebra 3-cocycle ν̃. By direct
computations [Brylinski 1993, Lemma 7.3.9], we have

∂3

∂t1∂t2∂t3

∣∣∣∣∣
ti=0

∑
σ∈S3

ε(σ )F̃2
(
(etσ(1)Xσ(1) , tσ(1)ξσ(1)), (etσ(2)Xσ(2) , tσ(2)ξσ(2)), (etσ(3)Xσ(3) , tσ(3)ξσ(3))

)

=
∂3

∂t1∂t2∂t3

∣∣∣∣
ti=0

(
F2(et1 X1 , et2 X2) ◦ F1(et1 X1 · et2 X2)(t3ξ3)

)
+ c.p.

=
∂2

∂t1∂t2

∣∣∣∣
ti=0

(
F2(et1 X1 , et2 X2) ◦ F1(et1 X1 · et2 X2)(ξ3)

)
+ c.p.

=
∂

∂t1

∣∣∣∣
t1=0

(
∂

∂t2

∣∣∣∣
t2=0

F2(et1 X1 , et2 X2) ◦ F1(et1 X1)(ξ3)

+ F2(et1 X1 , 1G) ◦
∂

∂t2

∣∣∣∣
t2=0

F1(et1 X1 · et2 X2)
)
+ c.p.

=
∂

∂t1

∂

∂t2

∣∣∣∣
ti=0

F2(et1 X1 , et2 X2)(ξ3)+
∂

∂t2

∣∣∣∣
t2=0

F2(1G, et2 X2) ◦
∂

∂t1

∣∣∣∣
t1=0

F1(et1 X1)(ξ3)

+ c.p. (by (46))

= ν(X1, X2)(ξ3)+ c.p.

= ν̃(X1+ ξ1, X2+ ξ2, X3+ ξ3) (by (20)),

which completes the proof. �

Corollary 4.5. If Lie algebra g is semisimple, the Lie group 3-cocycle F̃2 is not
exact, that is, [F̃2] 6= 0 in H 3

sm(G n g∗,R).

Proof. By Theorem 4.4, the differentiation of the Lie group 3-cocycle F̃2 is the
Lie algebra 3-cocycle ν̃. We only need to show that when g is semisimple, the Lie
algebra 3-cocycle ν̃ is not exact. This fact is proved in Proposition 2.13. �

Remark 4.6. Since Gng∗ is a fibration over G, the spectral sequence with E p,q
2 =

H p
sm(G, Hq

sm(g
∗,R)) calculates the group cohomology H 3

sm(G n g∗,R). Since g∗

is an abelian group, we have Hq
sm(g

∗,R) =
∧q g∗. Thus when G is compact,

H p
sm(G, Hq

sm(g
∗,R))= (

∧q g∗)G if p=0 and 0 otherwise, where (
∧q g∗)G denotes

the set of invariant elements of
∧q g∗ under the coadjoint action of G. Thus when

G is compact, H 3
sm(G n g∗,R) = (

∧3 g∗)G 6= 0 because the Cartan 3-form is an
element of (

∧3 g∗)G .

Our 2-cocycle F2 is unique only up to exact terms. Hence by Theorem 3.3, we
need this lemma to verify that our construction is unique up to isomorphism:
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Lemma 4.7. If F2 = dα is exact, then F̃2 = dβ is also exact with

β((g1, ξ1), (g2, ξ2))= α(g1)F1(g1)(ξ2).

Proof. It is a direct calculation. Since F2 = dα, we have

F2(g1, g2)= F1(g1)α(g2)F1(g1)
−1
−α(g1g2)+α(g1).

From the definition of F2, we know that

F2(g1, g2)= F1(g1)α(g2)F1(g1)
−1 F1(g1g2)−α(g1g2)F1(g1g2)+α(g1)F1(g1g2).

By (50), we have

F̃2((g1, ξ1), (g2, ξ2), (g3, ξ3))

= F1(g1)α(g2)F1(g1)
−1 F1(g1g2)(ξ3)−α(g1g2)F1(g1g2)(ξ3)+α(g1)F1(g1g2)(ξ3)

= dβ((g1, ξ1), (g2, ξ2), (g3, ξ3)),

since F1 is a group homomorphism. �

Remark 4.8. Our Lie 2-group as a stacky group has the underlying differential
stack G× g∗× BR. Thus it is 0, 1, 2-connected (that is, it has π0 = π1 = π2 = 0)
since π2(BR)= π1(R)= 0 and π1(BR)= π0(R)= 0. Thus it is the unique 0, 1, 2-
connected stacky Lie group integrating the Lie 2-algebra of string type R 0

−→ g⊕g∗

in the sense of [Zhu 2007].
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