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Let R be a Noetherian commutative ring with dim R = d and let l be an
ideal of R. For an integer n such that 2n ≥ d+ 3, we define a relative Euler
class group En(R, l; R). Using this group, in analogy to homology sequence
of the K0-group, we construct an exact sequence

En(R, l; R)
E( p2)
−−−→ En(R; R)

E(ρ)
−−→ En(R/ l; R/ l),

called the homology sequence of the Euler class group. The excision the-
orem in K-theory has a corresponding theorem for the Euler class group.
An application is that for polynomial and Laurent polynomial rings, we get
short split exact sequences

0→ En(R[t], (t); R[t])
E( p2)
−−−→ En(R[t]; R[t])

E(ρ)
−−→ En(R; R)→ 0

and

0→ En(R[t, t−1
], (t − 1); R[t, t−1

])
E( p2)
−−−→ En(R[t, t−1

]; R[t, t−1
])

E(ρ)
−−→ En(R; R)→ 0.

1. Introduction

Let R be a Noetherian commutative ring of dimension d. The notion of the Euler
class group of R was introduced by Nori around 1990, with the aim of develop-
ing an obstruction theory for algebraic vector bundles over smooth affine varieties
[Mandal 1992]. Later, the Nori’s definition was extended by S. M. Bhatwadekar
and Raja Sridharan [2000]. Given a Noetherian commutative ring R with dimen-
sion d ≥ 2, they defined an obstruction group Ed(R; R) also called the Euler
class group (ECG). For Q ⊆ R and any projective R-module P of rank d with
orientation χ : R ∼=

∧d P , they defined an obstruction class e(P;χ) ∈ Ed(R; R)
and proved that P ∼= Q ⊕ R if and only if e(P;χ) = 0. After that, much work
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on ECGs and weak ECGs was done. K. D. Das [2003; 2006] defined the ECG
Ed(R[t]; R[t]) for a Noetherian commutative ring R with dim R = d , and proved
that for a general such ring, the ECG Ed(R; R) of R is a direct summand of the
ECG Ed(R[t]; R[t]), whereas if R is a smooth affine domain over some perfect
field k, then Ed(R[t]; R[t]) ∼= Ed(R; R). The ECG Ed(R[t, t−1

]; R[t, t−1
]) of a

Laurent polynomial ring R[t, t−1
] was defined in [Keshari 2007].

On the other hand, in K-theory we have a homology theory for the category
of projective R-modules. The K0-group K0(R) is closely related to the ECG
of R. For example, Murthy’s Chern class of the projective R-module P , which
is one of the sources of Euler class theory, is defined by an element in the K0-
group. For any Noetherian commutative ring R of dimension d , there is a sub-
group Fd K0(R) of K0(R) [Mandal 1998]. If R is regular and contains the field of
rational numbers Q, we have a Riemann–Roch theorem saying that Ed

0 (R)⊗Q∼=

Fd K0(R)⊗Q∼=C H d(R)⊗Q, in which Ed
0 (R) is the weak ECG of R and C H d(R)

is the Chow group of codimension d of Spec(R) [Das and Mandal 2006].
Now let l ⊆ R be an ideal of R. K-theory gives for K0-groups the homology

sequence K0(R, l)→ K0(R)→ K0(R/ l). If the ring homomorphism ρ : R→ R/ l
is split, then this homology sequence reduces to the short split exact sequence

0→ K0(R, l) // K0(R) // K0(R/ l)→ 0 ,

which is said to be the excision sequence for K0-groups.
Inspired by the correspondence between K-theory and ECGs, in this paper we

establish ECG counterparts to the homology sequence and excision theorem of
K0-groups. These counterparts are Theorem 4.2 and Theorem 4.3, respectively.

Let R be a Noetherian commutative ring with dimension d , and let l be an ideal
of R with dim R/ l = d −m. For any integer n such that 2n ≥ d + 3, we define in
Section 3 a group homomorphism E(ρ) : En(R; R)→ En(R/ l; R/ l), called the
restriction map of the ECG. In analogy to the relative K0-group K0(R, l) (denoted
by K0(l) in [Rosenberg 1994]), we define in Section 4 the relative ECG En(R, l; R)
and the relative weak ECG En

0 (R, l). In particular, when l = R the relative ECG
En(R, l; R) and the relative weak ECG En

0 (R, l) are the same as the generalized
ECG En(R; R) and the weak ECG En

0 (R), respectively. Using these groups, we
construct an exact sequence

En(R, l; R)
E(p2) // En(R; R)

E(ρ) // En(R/ l; R/ l),

the homology sequence of the ECG. If the ring homomorphism ρ : R→ R/ l has a
splitting β satisfying a dimensional condition (see Theorem 4.3 and Remark 4.4),
then the homology sequence above reduces to the short split exact sequence

0→ En(R, l; R)
E(p2) // En(R; R)

E(ρ) // En(R/ l; R/ l)→ 0,
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called the excision sequence of the ECG. Under these conditions, we have an iso-
morphism En(R; R) ∼= En(R, l; R) ⊕ En(R/ l; R/ l). In Section 5, we use the
results in Section 4 to get the excision sequences of the ECG for the polynomial
extension and the Laurent polynomial extension:

0→ En(R[t], (t); R[t])
E(p2) // En(R[t]; R[t])

E(ρ) // En(R; R)→ 0

and

0→ En(R[t, t−1
], (t − 1); R[t, t−1

])
E(p2) // En(R[t, t−1

]; R[t, t−1
])

E(ρ) // En(R; R)→ 0.

Both of these are split exact; see Corollaries 5.1 and 5.3.

2. Some preliminary results

Here, recall the definition of the generalized ECG and collect some related results.

Definition 2.1. Let R be a Noetherian commutative ring, n be an integer such that
2n ≥ d + 3. In [Bhatwadekar and Sridharan 2002], the generalized Euler class
group En(R; R) is defined as follows:

Let J ⊂ R be an ideal of height n, such that J/J 2 is generated by n elements.
Two surjections α and β from (R/J )n to J/J 2 are said to be related if and only if
there exists an elementary matrix δ ∈ Eln(R/J ) such that αδ = β. This defines an
equivalence relation on the set of surjections from (R/J )n to J/J 2.

• Let Gn be the free Abelian group on the set of pairs (J ;ωJ ), where J ⊆ R
is an ideal of height n, having the property that Spec(R/J ) is connected and
J/J 2 is generated by n elements, and ωJ : (R/J )n � J/J 2 is an equivalence
class of surjections.

• Now assume that J ⊆ R be an ideal of height n and J/J 2 is generated by
n elements. By [Bhatwadekar and Sridharan 2002, Lemma 4.1], J has a
unique decomposition J =

⋂r
i=1 Ji where ideals Ji are pairwise comaximal

and Spec(R/Ji ) is connected. Let ωJ : (R/J )n→ J/J 2 be a surjection. Then
ωJ gives rise in a natural way to surjections ωJi : (R/Ji )

n
→ Ji/J 2

i . By
(J ;ωJ ) we mean the element

∑r
i=1(Ji ;ωJi ) in Gn , and (J ;ωJ ) is called a

local orientation.

• Let H n be the subgroup of Gn generated by set of pairs (J ;ωJ ), where J is
an ideal of height n generated by n elements and ωJ : (R/J )n � J/J 2 has
the property that ωJ can be lifted to a surjection2 : Rn � J . The generalized
Euler class group En(R; R) is defined by En(R; R)= Gn/H n .
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Let {ei } be the standard basis of Rn and α : Rn � J/J 2 be a surjection from Rn

to J/J 2 that sends ēi to āi for 1≤ i ≤ n, where ai ∈ J and {āi } generate J/J 2. In
rest of this paper, we always use (a1, . . . , an) to denote α.

The generalized weak ECG was defined in [Mandal and Yang 2010]:

• Let Ln
0 denote the set of all ideals J of height n such that Spec(J/J 2) is

connected and there is a surjection α : (R/J )n � J/J 2. Let Gn
0 be the free

group generated on the set Ln
0 .

• For any ideal J ⊆ R of height n such that J/J 2 is generated by n elements,
there is a unique decomposition J =

⋂r
i=1 Ji , where the ideals Ji are pair-

wise comaximal and Spec(R/Ji ) is connected. By (J ) we mean the element∑r
i=1(Ji ) in Gn

0 .

• Let H n
0 be the subgroup of Gn

0 generated by (J ), where J could be generated
by n elements. Then the generalized weak Euler class group is defined by
En

0 = Gn
0/H n

0 .

Theorem 2.2 [Bhatwadekar and Sridharan 2002, Theorem 4.2]. Suppose R is a d-
dimensional Noetherian commutative ring, and let n be an integer with 2n≥ d+3.
Let J ⊆ R be an ideal of height n such that J/J 2 is generated by n elements, and let
ωJ : (R/J )n � J/J 2 be an equivalence class of surjections. Suppose that (J ;ωJ )

is zero in the ECG En(R; R). Then, J is generated by n elements and ωJ can be
lifted to a surjection 2 : Rn � J .

The following lemma is easy to prove, so we omit the proof.

Lemma 2.3. Let (I ;ωI ) and (J ;ωJ ) be two elements of En(R; R). Let surjections

ωI : Rn (a1,...,an) // // I/I 2 and ωJ : Rn (b1,...,bn) // // J/J 2

be representatives of the equivalence classes of ωI and ωJ , respectively. Suppose
I and J are comaximal ideals of R. Then by the Chinese remainder theorem, we
can find a unique surjection

ωI∩J : Rn (c1,...,cn)// // I ∩ J/(I ∩ J )2,

where the ci are elements of I ∩ J such that ci = ai (mod I 2) and ci = bi (mod J 2).
Then (I ∩ J ;ωI∩J ) ∈ En(R; R) is independent of choice representative in the
equivalence classes ωI and ωJ , and (I ;ωI )+(J ;ωJ )= (I∩ J ;ωI∩J )∈ En(R; R).

The next lemma is an adapted version of [Mandal and Yang 2010, Lemma 4.3].
We give a proof for this new form.

Lemma 2.4 (transversal lemma). Suppose R is a Noetherian commutative ring
with dim R = d. Assume I is an ideal of R with height I = n and ω : Rn � I/J is
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a surjection in which J is an ideal of R contained in I 2. Let l1, . . . , lr be finitely
many ideals of R. Then we can find a surjective lift v : Rn � I ∩K such that

K + J = R, height K ≥ n, height((K + li )/ li )≥ n for any li with 1≤ i ≤ r .

Proof. We use standard generalized dimension theory. First, there is a lift v0 :

Rn
→ I of ω. Then I = (v0(Rn), a) for some a ∈ J

Let Pn−1 ⊆ Spec(R) be the set of all prime ideals p with height p ≤ n − 1
and a /∈ p. For any li such that 1 ≤ i ≤ r , let Qi,n−1 ⊆ Spec(R) be the set of
all prime ideals p such that p ⊇ li and a /∈ p, and height(p/li ) ≤ n − 1. Write
P=

⋃r
i=1 Qi,n−1 ∪Pn−1.

Let d0 : Pn−1 → N be the restriction of the usual dimension function and let
di : Qi,n−1 → N be the dimension function induced by that on Spec(Ra/lia) for
1 ≤ i ≤ r . Then d0 and di for 1 ≤ i ≤ r induce a generalized dimension function
d : P→ N; see [Mandal 1997] or [Plumstead 1983].

Now (v0, a) ∈ Rn∗
⊕ R is a basic element on P. Since rank(Rn)= n > d(p) for

all p ∈ P, there is a φ ∈ Rn∗ such that v = v0+ aφ is basic on P. Clearly, v is a
lift of ω and I = (v(Rn), a).

Since v is a lift of ω, we can write v(Rn) = I ∩K, such that K + J = R. It is
routine to check that height(K )≥ n and height((K + li )/ li )≥ n for 1≤ i ≤ r . �

Lemma 2.5 (avoid lemma). Let R be a Noetherian commutative ring such that
dim R = d , and let l ⊆ R be an ideal of R. Assume that I is an ideal of R and
φ : Rn � I/I 2 is a surjective map. If there is a surjective map ψ : Rn � (I + l)/ l
such that φ̃=ψ⊗(R/(I+l))=ψ⊗(R/ Ī ), in which the bar denotes the reduction
modulo l, and φ̃ is the surjective map φ̃ : Rn � (I + l)/(I 2

+ l) ∼= Ī/ Ī 2 induced
by φ, then we can find a surjective lift φ̂ : Rn � I/(I 2l) of φ.

Proof. Let φ1 : Rn
→ I and ψ1 : Rn

→ I be lifts of φ and ψ , respectively. Since
φ̃ = ψ ⊗ R/(I + l), we have φ1 − ψ1 ∈ Hom(Rn, I 2

+ l). Then we can find
α ∈Hom(Rn, I 2) and β ∈Hom(Rn, l) such that φ1−ψ1= α+β. This can be seen
from the commutative diagram

Rn

φ1−ψ1
��

(α,β)

zzu u
u

u
u

I 2
⊕ l // // I 2

+ l,

in which (α, β) ∈ Hom(Rn, I 2
⊕ l) is a lift of φ1−ψ1.

Now we construct a map φ2 = φ1−α ∈Hom(Rn, I ). Of course, φ2 is still a lift
of φ. Let the bar denote the reduction modulo l. Then since φ2= φ1−α=ψ1+β,
and β ∈ Hom(Rn, l), we have φ2 = ψ1 = ψ . Recall that ψ is surjective, so it
is clear that φ2(Rn) + I ∩ l = I . Now consider the ideal φ2(R2) + I 2l. Since
φ2(Rn)+ I ∩ l = φ2(Rn)+ I 2

= I , it follows that any prime ideal p of R contains
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I if and only if it contains φ2(R2)+ I 2l. Note that since φ2(Rn)+ I 2
= I , we

have (φ2(R2)+ I 2l)p = Ip for any prime ideal p of R containing I . So we get
φ2(Rn)+ I 2l = I .

Now let φ̂ : Rn � I/(I 2l) be the map induced by φ2. It’s obvious that φ̂ is a
surjective lift of φ. �

3. Restriction and extension map

In this section, we construct two group homomorphisms, the restriction map and
extension map for the ECG.

Let φ : R→ A be a ring homomorphism and I ⊆ R be an ideal of R. In the rest
of the paper, φ(I ) without special decorations will always denote the ideal φ(I )A,
which is the ideal of A generated by φ(I ).

Definition 3.1 (restriction map). Let R be a Noetherian commutative ring with
dim R=d , and l⊆ R be an ideal of R with dim R/ l=d−m. Let the bar denote the
reduction modulo l, and let ρ : R→ R/ l denote the natural ring homomorphism.
For an integer n such that 2n ≥ d + 3, let En(R; R) and En(R/ l; R/ l) denote
the generalized ECG of R and R/ l, respectively, as defined in [Bhatwadekar and
Sridharan 2002]. Then we can define a group homomorphism E(ρ) : En(R; R)→
En(R; R), called the restriction map of ECG, as follows:

For any element x ∈ En(R; R), from the properties of the group En(R; R), we
know that x can be written as a pair of (I ;ωI ) ∈ En(R; R), where I is an ideal of
R with height I ≥ n, and ωI is an equivalence class of surjections ωI : Rn � I/I 2.
Moreover by Lemma 2.4, we can find (I ;ωI ) = (I ′;ωI ′) ∈ En(R; R) such that
height I ′+ l ≥ n in R. Then we define E(ρ)(I ;ωI )= (I ′+ l;ωI ′+l) ∈ En(R; R),
in which ωI ′+l is the equivalence class of induced surjection defined as

ωI ′+l : R
n ωI ′ // // I ′

I ′ 2
γ̄ // // I ′+l

I ′ 2+l
∼=
(I ′+l)
(I ′+l)2

,

where γ̄ is the natural map from I ′/I ′ 2 to (I ′+ l)/(I ′ 2+ l), and ωI ′ is any repre-
sentative of the equivalence class ωI ′ .

(1) Since the map Eln(R)→ Eln(R/I ′) is surjective, we know that the element
E(ρ)(I ;ωI ) is independent of choice of the representative of ωI ′ .

(2) If (I ;ωI )= 0 ∈ En(R; R), then E(ρ)(I ;ωI )= 0 ∈ En(R; R).

Proof of (2). Since (I ;ωI )=0∈ En(R; R), there exists by Theorem 2.2 a surjective
lift of ωI ′ , denoted by vI ′ . Then it is easy to check that v̄I ′ : Rn � I ′� (I ′+ l)/ l
is a surjective lift of ωI ′+l . So we have E(ρ)(I ;ωI )= 0 ∈ En(R; R). �

(3) E(ρ)(I ;ωI ) is independent of choice of the element (I ′;ωI ′).
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Proof of (3). If there is another element (I ′′;ωI ′′) ∈ En(R; R) such that (I ′′;ωI ′′)

= (I ;ωI ), and height I ′′+ l ≥ n in R, then by Lemma 2.4 we can find (K ;ωK ) in
En(R; R) such that

K + I = K + I ′ = K + I ′′ = R,

height K + l ≥ n,

(K ;ωK )+ (I ;ωI )= 0 ∈ En(R; R).

By Lemma 2.3, (K ;ωK )+ (I ′, ωI ′) = (K ∩ I ′;ωK∩I ′) = (K ;ωK )+ (I ′′;ωI ′′) =

(K ∩ I ′′;ωK∩I ′′) = 0 ∈ En(R; R). Then, from the properties of the ECG and the
result (2) above, it can be easily checked that

E(ρ)(K ∩ I ′;ωK∩I ′)= (K ∩ I ′+ l;ωK∩I ′+l)= (K + l;ωK+l)+ (I ′+ l;ωI ′+l)

= E(ρ)(K ;ωK )+E(ρ)(I ′;ωI ′)= E(ρ)(K ∩ I ′′;ωK∩I ′′)= (K ∩ I ′′+ l;ωK∩I ′′+l)

= E(ρ)(K ;ωK )+ E(ρ)(I ′′;ωI ′′)= (K + l;ωK+l)+ (I ′′+ l;ωI ′′+l),

which is equal to zero. Therefore, E(ρ)(I ′;ωI ′)= E(ρ)(I ′′;ωI ′′). This shows that
E(ρ)(I, ωI ) is independent of the choice of the element (I ′;ωI ′). �

(4) If (I ;ωI )= (J ;ωJ ) ∈ En(R; R), then

E(ρ)(I ;ωI )= E(ρ)(J ;ωJ ) ∈ En(R/ l; R/ l).

(5) For any elements x, y ∈ En(R; R), we have

E(ρ)(x)+ E(ρ)(y)= E(ρ)(x + y).

Proof of (5). Let x = (I ;ωI ), y = (J ;ωJ ) be two elements of En(R; R). By the
method we used above, we may further assume that I + J = R. Now define maps

ωI : Rn (i1,...,in) // I/I 2 , where ir ∈ I for 1≤ r ≤ n,

ωJ : Rn ( j1,..., jn) // // J/J 2 , where jr ∈ J for 1≤ r ≤ n,

Since I and J are comaximal, by Lemma 2.3, we can find a surjection

ωI∩J : Rn (k1,...,kn) // // I∩ J
(I∩ J )2

such that kr ∈ I ∩ J and kr = ir (mod I 2) and kr = jr (mod J 2) for 1 ≤ r ≤ n,
that is, x + y = (I ∩ J ;ωI∩J ) ∈ En(R; R). Hence, if the bar denotes reduction
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modulo l, we get

E(ρ)(x)+ E(ρ)(y)= ( Ī ; (ī1, . . . , īn))+ ( J̄ ; ( j̄1, . . . , j̄n))

= ( Ī ; (k̄1, . . . , k̄n))+ ( J̄ ; (k̄1, . . . , k̄n))= (I ∩ J ; (k̄1, . . . , k̄n))

= E(ρ)(I ∩ J ;ωI∩J )= E(ρ)(x + y). �

(6) If n > d −m, the map E(ρ) vanishes.

Proof of (6). This comes from the fact that in this case En(R/ l; R/ l)= 0. �

By all of the above, the group homomorphism E(ρ) : En(R; R)→ En(R; R) is
well-defined.

Definition 3.2 (extension map). Let R and A be Noetherian commutative rings
with dimension d and s, respectively. Let n be an integer with 2n ≥ d + 3 and
2n ≥ s+ 3. If there is a ring homomorphism φ : R→ A such that

(∗) heightφ(I )≥ n for any local n-orientation ωI : Rn � I/I 2.

then similarly to the above definition, we can construct a group homomorphism
E(φ) : En(R; R)→ En(A; A), called the extension map of the ECG, as follows

Let x = (I ;ωI ) ∈ En(R; R) be any element, and suppose that ωI is the sur-
jective map

Rn (i1,...,in) // // I/I 2 in which it ∈ I for 1≤ t ≤ n.

Then we define E(φ)(x) by (φ(I );ωφ(I )) ∈ En(A; A), where ωφ(I ) is the
surjection

An (φ(i1),...,φ(in))// // φ(I )/φ(I )2 .

By a method similar to the one used in Definition 3.1, it can be checked that
E(φ) is indeed a group homomorphism.

By forgetting the orientation in Definitions 3.1 and 3.2, we have the following
for the weak ECG.

Definition 3.3. Let R and l be as in Definition 3.1. Let φ : R → R/ l be the
natural ring homomorphism. For an integer n with 2n ≥ d + 3, there is a group
homomorphism E0(φ) : En

0 (R)→ En
0 (R/ l), which is called the restriction map of

the weak ECG.
Similarly, let R, A and n be as in Definition 3.2, and let φ : R→ A be a ring

homomorphism satisfying the condition (∗). Then there is a group homomorphism
E0(φ) : En

0 (R)→ En
0 (A), which is called the extension map of the weak ECG.
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4. The relative ECG and homology sequence

In this section, in analogy to related notions in K-theory, we define the relative and
relative weak ECGs. Using these groups, we construct homology sequences for
the ECG, which are the counterparts of homology sequence for K0-groups. Also
we will give excision theorems for the ECG, which are the counterparts of excision
theorem for K0-groups.

Definition 4.1. Let R be a Noetherian commutative ring with dim R = d , and let
l be an ideal of R. Then we have the double D(R, l) of R along l as the subring
of the Cartesian product R× R, given by

D(R, l)= {(x, y) ∈ R× R : x − y ∈ l}.

Note that if p1 denotes the projection onto the first coordinate, then there is a split
exact sequence

0→ l // D(R, l)
p1 // R→ 0

in the sense that p1 is split surjective (with splitting map given by the diagonal
embedding of R in D(R, l) and with ker p1 identified with l.)

Since D(R, l) is finite over the subring R (given by the diagonal embedding),
we get D(R, l) that is Noetherian and is integral over the subring R. Moreover, we
have dim D(R, l)=dim R= d , and height(ker p1)= 0 (with ker p1 being regarded
as an ideal of D(R, l)).

Then for any integer n with 2n ≥ d + 3, the relative ECG of R and l is defined
by

En(R, l; R)= ker(E(p1) : En(D(R, l); D(R, l))→ En(R; R)).

and the relative weak ECG of R and l is defined by

En
0 (R, l)= ker(E0(p1) : En

0 (D(R, l))→ En
0 (R)).

in which E(p1) and E0(p1) are the restriction map of the ECG of Definition 3.1
and the restriction map of the weak ECG of Definition 3.3, respectively.

It can be seen easily that when l = R, the relative ECG En(R, R; R) and the
relative weak ECG En

0 (R, R) are the same as the generalized ECG En(R; R) and
the generalized weak ECG En

0 (R), respectively.

Theorem 4.2 (homology sequence). Let R be a Noetherian commutative ring with
dim R = d , and let l ⊆ R be an ideal of R with dim R/ l = d −m. Let p2 denote
the projection from D(R, l) to the second coordinate. Then, for any integer n such
that 2n ≥ d + 3, we have the exact sequence

En(R, l; R)
E(p2) // En(R; R)

E(ρ) // En(R/ l; R/ l),

called the homology sequence of the ECG.
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Proof. Step I: First, we check that E(ρ)◦E(p2)= 0. Let ker p1 and ker p2 denote
the kernels of projections p1 and p2. Then height(ker p1) = height(ker p2) = 0.
On the other hand, we have ring homomorphisms ρ ◦ p1, ρ ◦ p2 : D(R, l)� R/ l.
By the definition of D(R, l), it can be seen easily that ρ ◦ p1 = ρ ◦ p2. Hence for
any element x ∈ En(R, l; R), by the method of used construction of the restriction
map and by Lemma 2.4, we can assume that x = (Z;ωZ ), in which Z is an ideal
of D(R, l) with properties

height p1(Z)≥ n, height p2(Z)≥ n in R,

height ρ ◦ p1(Z)= height ρ ◦ p2(Z)≥ n in R/ l.

Write ωZ as (z1, . . . , zn), where zi = (xi , yi ) ∈ D(R, l) for 1 ≤ i ≤ n, and let
the bar denote the reduction modulo l. Then it can be seen that

E(ρ) ◦ E(p1)(Z;ωZ )= (p1(Z); (x̄1, . . . , x̄n)),

E(ρ) ◦ E(p2)(Z;ωZ )= (p2(Z); (ȳ1, . . . , ȳn)).

Since Z is an ideal of D(R, l) and (xi , yi ) ∈ D(R, l) for 1 ≤ i ≤ n, we have
p1(Z) = p2(Z) and x̄i = ȳi for 1 ≤ i ≤ n. On the other hand, from the definition
of En(R, l; R), we know that

E(ρ) ◦ E(p1)(Z;ωZ )= E(ρ)(p1(Z); (x1, . . . , xn))= (p1(Z); (x̄1, . . . , x̄n))= 0.

Thus we get

E(ρ) ◦ E(p2)(Z;ωZ )= (p2(Z); (ȳ1, . . . , ȳn))= (p1(Z); (x̄1, . . . , x̄n))= 0.

This establishes that E(ρ) ◦ E(p2)= 0, that is, ker E(ρ)⊇ Im E(p2).

Step II: Next we check that the kernel of E(ρ) is contained in the image of E(p2),
that is, ker E(ρ)⊆ Im E(p2).

Let x ∈ En(R; R) such that E(ρ)(x) = 0 ∈ En(R/ l; R/ l). By the method we
used in the construction of restriction map, we can assume that x = (I ;ωI ), in
which I is an ideal of R such that properties height I ≥ n, and height(I + l)/ l ≥ n
in R.

By the assumption that E(ρ)(x) = 0 ∈ En(R/ l; R/ l), we have ( Ī ;ω Ī ) =

0 ∈ En(R/ l; R/ l), in which ω Ī : Rn � Ī/ Ī 2 is the map induced by ωI . By
[Bhatwadekar and Sridharan 2000, Theorem 4.2], there exists a surjective map
v Ī : Rn � Ī such that v Ī ⊗ R/ Ī = ω Ī . So by Lemma 2.4, ωI : Rn � I/I 2 can be
lifted to a surjective map ω̂I : Rn � I/(I 2l). Then by Lemma 2.3, we can find a
surjective lifting v : Rn � I∩K of ω̂I such that K+I 2l= R and height K ≥n. Since
K+I 2l= R, v induces a surjective mapωK : Rn � K/K 2, which defines an element
(K ;ωK )∈ En(R; R). It can be seen easily that (K ;ωK )+(I ;ωI )= 0∈ En(R; R).
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Now write ωK as (x1, . . . , xn), where xi ∈ K for 1≤ i ≤ n. Then we can define
an element (Z;ωZ ) ∈ En(R, l; R) as follows:

• Define Z ⊆ D(R, l) to be the ideal of D(R, l) that is generated by pairs
(r1, r2) ∈ R× R such that r2 ∈ K and r1− r2 ∈ l.

• Define the map ωZ : D(R, l)n
(z1,...,zn) // Z/Z2 , in which zi = (xi , xi ) ∈ Z

for 1≤ i ≤ n.

By the facts that ker p1∩ker p2 = (0, l)∩ (l, 0) = 0 ⊆ D(R, l) and p1(Z) = R
and height p2(Z)=height K ≥ n, we have height I ≥ n.

We should check that ωZ is surjective. Let z = (k + l1, k) ∈ Z , where k ∈ K
and l1 ∈ l. Since ωK is surjective, there exist ri ∈ R for 1 ≤ i ≤ n and k1 ∈ K 2,
such that k =

∑n
i=1 ri xi + k1. Since K 2

+ l2
= R contains l, there exist k2 ∈ K 2

and l2 ∈ l2 such that k2+ l2 = l1. By the fact k2 = l1− l2 ∈ K 2
∩ l = K 2l, we get

k3t ∈ K 2, and l3t ∈ l for 1≤ t ≤ m, such that k2 =
∑m

t=1 l3t k3t . Finally,

z = (k+ l1, k)=
n∑

i=1

(ri , ri )(xi , xi )+ (k1, k1)+ (l1, 0)

=

n∑
i=1

(ri , ri )(xi , xi )+ (k1, k1)+ (l2, 0)+
m∑

t=1

(l3t , 0)(k3t , k3t).

This shows that ωZ is surjective.
Since K + l = R, we have p1(Z) = R by the construction of Z . This implies

that E(p1)(Z;ωZ )= 0 ∈ En(R; R). Putting all of these together, we see (Z;ωZ )

is indeed an element of En(R, l; R).
It can be seen easily that E(p2)(Z;ωZ ) = (K ;ωK ) ∈ En(R; R). Now let y ∈

En(R, l; R) be such that y+ (Z;ωZ )= 0. Since

E(p2)(y)+ E(p2)(Z;ωZ )= (I ;ωI )+ (K ;ωK )= 0,

we see that E(p2)(y)= (I ;ωI ). This shows that ker E(ρ)⊆ImE(p2).
By steps I and II, the sequence is indeed an exact sequence. �

Theorem 4.3 (excision theorem). Let R be a Noetherian commutative ring with
dim R = d , and let l ⊆ R be an ideal of R with dim R/ l = d −m. Let p2 denote
the projection from D(R, l) to the second coordinate. If there exists a splitting β of
the ring homomorphism ρ : R→ R/ l such that β satisfies condition (∗), then for
any integer n with 2n ≥ d + 3, we have the split exact sequence

0→ En(R, l; R)
E(p2) // En(R; R)

E(ρ) // En(R/ l; R/ l)→ 0,

called the excision sequence of the ECG. In particular, we have an isomorphism
En(R; R)∼= En(R, l; R)⊕ En(R/ l; R/ l).
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Proof. Step I: First,we check that E(ρ) is a split surjection. Since the ring homo-
morphism β : R/ l→ R satisfies the condition (∗), by Definition 3.2 there is a group
homomorphism E(β) : En(R/ l; R/ l)→ En(R; R). By the fact that β is a splitting
of ρ, it is easy to check that E(β) has the property E(ρ) ◦ E(β) = I dEn(R/ l;R/ l).
This shows that E(ρ) is split surjective.

Step II: We check that E(p2) is injective. Now we have a surjective ring homo-
morphism ρ ◦ p2 : D(R, l)→ R/ l and an exact sequence

0→ l × l→ D(R, l)
ρ◦p2
−−−→ R/ l→ 0

in which l × l ⊂ D(R, l) is the ideal of D(R, l) generated by elements (l1, l2) ∈

R×R, where l1, l2 ∈ l. Then we have the restriction map E(ρ◦ p2) : En(R, l; R)→
En(R/ l; R/ l) of the ECG. It can be easily checked that E(ρ)◦E(p2)= E(ρ◦ p2).

Let x = (Z;ωZ ) ∈ En(R, l; R) be such that E(p2)(x) = 0 ∈ En(R; R). By
the method we used in the construction of restriction map, we can assume that
height p1(Z)≥ n, height p2(Z)≥ n and height ρ ◦ p2(Z)≥ n. On the other hand,
since E(ρ ◦ p2)= E(ρ) ◦ E(p2)= 0, by the same method we used in the proof of
Theorem 4.2, we can find (K ;ωK ) ∈ En(R, l; R) such that

• (K ;ωK )+ (Z;ωZ )= 0,

• K + Z2(l × l)= D(R, l),

• height K ≥ n, height p1(K )≥ n and height p2(K )≥ n.

By the assumption that E(p2)(Z;ωZ )= 0, we get E(p2)(K ;ωK )= 0∈ En(R; R).
Now, write ωK : D(R, l)n � K/K 2 as (k1, . . . , kn) where ki = (xi , yi ) ∈ K for

1≤ i ≤ n. We have the following.

• E(p1)(K ;ωK ) = (p1(K );ωp1(K )) = (I1;ωI1), where I1 denotes the ideal
p1(K ), and ωI1 denotes the surjection induced by ωK , that is,

ωp1(K ) : R
n (x1,...,xn) // // I1/I 2

1 .

• E(p2)(K ;ωK ) = (p2(K );ωp2(K )) = (I2;ωI2), where I2 denotes the ideal
p2(K ), and ωI2 denotes the surjection induced by ωK , that is,

ωp2(K ) : R
n (y1,...,yn) // // I2/I 2

2

Since K + (l × l)= D(R, l), we see that I1+ l = I2+ l = R.
By the fact that E(p1)(K ;ωK ) = E(p2)(K ;ωK ) = 0 ∈ En(R; R), there exist

surjective lifts

vI1 : R
n

(x ′1,...,x
′
n) // // I1 and vI2 : R

n
(y′1,...,y

′
n) // // I2

of ωI1 and ωI2 , respectively, in which x ′i ∈ I1, and y′i ∈ I2 for 1≤ i ≤ n.
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Since vI1 is a lift of ωI1 , we have x ′i − xi ∈ I 2
1 for 1 ≤ i ≤ n. Let x ′i − xi = ai ,

with ai ∈ I 2
1 for 1 ≤ i ≤ n. Since I1 = p1(K ), there exist bi ∈ I 2

2 such that
(ai , bi ) ∈ K 2 for 1 ≤ i ≤ n. Now let y′′i = yi + bi for 1 ≤ i ≤ n. It follows from
the facts (xi , yi ) ∈ K and (ai , bi ) ∈ K 2 that (x ′i , y′′i ) = (xi + ai , yi + bi ) ∈ K and
(x ′i , y′′i ) = (xi + ai , yi + bi ) = (xi , yi ) (mod K 2) for 1 ≤ i ≤ n. So we obtain a
surjection

ω1
K : R

n
(k′1,...,k

′
n) // // K/K 2

in which k ′i = (x
′

i , y′′i ) ∈ K for 1≤ i ≤ n. Clearly, (K ;ω1
K )= (K ;ωK ).

By the same method, we can get a surjection

ω2
K : R

n
(k′′1 ,...,k

′′
n ) // // K/K 2

in which k ′′i = (x
′′

i , y′i ) ∈ K for 1≤ i ≤ n, such that (K ;ω2
K )= (K ;ωK ).

Now we construct two elements (I1;ωI1) and (I2;ωI2) of En(R, l; R). Let
the bar denote reduction modulo l.

(I) Define I1 to be the ideal of D(R, l) that is generated by pairs (β(ā), b), where
(a, b) ∈ K.

(II) Define the map ωI1 : D(R, l)
n
(k̂′′1 ,...,k̂

′′
n ) // I1/I

2
1 , where k̂ ′′i = (β(x̄

′′

i ), y′i )∈I1

for 1≤ i ≤ n.

(I∗) Define I2 to be the ideal of D(R, l) that is generated by pairs (a, β(b̄)), where
(a, b) ∈ K.

(II∗) Define the map ωI2 : D(R, l)
n
(k̂′1,...,k̂

′
n) // I2/I

2
2 , where k̂ ′i = (x

′

i , β(ȳ
′′

i ))∈I2

for 1≤ i ≤ n.

We check that height I1≥ n and height I2≥ n. By the fact that ker p1∩ker p2=

(0, l)∩ (l, 0)= 0⊂ D(R, l) and

p1(I1)= β( Ī1)= R and height p2(I1)= height I2 ≥ n,

we get height I1 ≥ n. Similarly, we have height I2 ≥ n.
We check that (I1;ωI1) and (I2;ωI2) equate to zero in En(R, l; R).
In fact we have a map

vI1 : D(R, l)
n

(k̂′′1 ,...,k̂
′′
n ) // I1,

which is defined by vI1(ei )= k̂ ′′i ∈I1, where {ei } for 1≤ i ≤ n is the standard basis
of Rn . It is obviously a lift of ωI1 . Now let (β(ā), b) ∈ I1 for (a, b) ∈ K . Since
I2 is generated by {y′i }, there exist ri ∈ R for 1 ≤ i ≤ n such that

∑n
i=1 ri y′i = b.
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On the other hand, it follows from the facts (a, b) ∈ K and (x ′′i , y′i ) ∈ K that ā = b̄
and x̄ ′′i = ȳ′i for 1≤ i ≤ n. So we get

β(ā)= β(b̄)=
n∑

i=1

β(r̄i )β(ȳ′i )=
n∑

i=1

β(r̄i )β(x̄ ′′i ).

Thus (β(ā), b) =
∑n

i=1(β(r̄i ), ri )(β(x̄ ′′i ), y′i ). This shows that vI1 is a surjective
lift of ωI1 . So (I1;ωI1) = 0 ∈ En(R, l; R). By the same method, we can prove
that (I2;ωI2)= 0 ∈ En(R, l; R).

Next we check that (I1;ωI1)+ (I2;ωI2)= (K ;ωK ).
We first check that I1+I2= R. Since I1+l= I2+l= R, there exists (i1, i2)∈K

such that β(ī1) = 1. So (1, i2) ∈ I1, and 1− i2 ∈ l. By the same method, we can
find i ′1 ∈ I1 such that (i ′1, 1) ∈ I2. So (0, 1− i2)(i ′1, 1)= (0, 1− i2) ∈ I2. It follows
that (1, i2)+ (0, 1− i2)= (1, 1) ∈ I1+I2. Hence I1+I2 = R.

Second, we check that I1∩I2= K . Let (i1, i2)∈ K . Then (β(ī1), i2)∈I1. Now
let i1−β(ī1)= l1 ∈ l. Since I1+l = R, there exists (i ′i , i ′2)∈ K such that β(ī ′1)= 1.
So we have (l1, 0)(β(ī ′1), i ′2)= (l1, 0)∈I1. Since (β(ī1), i2)+(l1, 0)= (i1, i2)∈I1,
we get K ⊆ I1. Similarly, we can prove K ⊆ I2. Thus K ⊆ I1 ∩I2.

Let (i1, i2)∈I1. Then there exist r1t , r2t ∈ R, with r1t−r2t ∈ l, and (x1t , x2t)∈ K
for 1≤ t ≤ m, where m ∈ Z is an integer such that

(i1, i2)=

m∑
t=1

(r1t , r2t)(β(x̄1t), x2t)=
( m∑

t=1

r1tβ(x̄1t),

m∑
t=1

r2t x2t

)
.

So we get i2 ∈ I2. Thus if (i1, i2) ∈ I1 ∩ I2, we will also have i1 ∈ I1. Now we
have (

∑m
t=1 r1t x1t ,

∑m
t=1 r2t x2t) ∈ K and (i1, i2) − (

∑m
t=1 r1t x1t ,

∑m
t=1 r2t x2t) =

(l1, 0) ∈ D(R, l). It follows that i1−
∑m

t=1 r1t x1t = l1 ∈ l ∩ I1 = l I1. Hence there
exist i ′1λ ∈ I1, i ′2λ ∈ I2 and l2λ ∈ l such that l1 =

∑s
λ=1 l2λi ′1λ and (i ′1λ, i ′2λ) ∈ K for

1 ≤ λ ≤ s, with s ∈ Z. Thus (l1, 0) =
∑s

λ=1(l2λ, 0)(i ′1λ, i ′2λ) ∈ K and (i1, i2) =

(
∑m

t=1 r1t x1t ,
∑m

t=1 r2t x2t)+ (l1, 0) ∈ K . This shows that K ⊇ I1∩I2. So we get
I1 ∩I2 = K .

Third, we check that

ωK ⊗ D(R, l)/I1 = ωI1 and ωK ⊗ D(R, l)/I2 = ωI2 .

Since (K ;ω1
K ) = (K ;ωK ), to prove ωK ⊗ D(R, l)/I2 = ωI2 , we only need to

show that (x ′i , y′′i )− (x
′

i , β(ȳ
′′

i )) ∈ I2
2.

In fact let (x ′i , y′′i )−(x
′

i , β(ȳ
′′

i ))= (0, l1)∈D(R, l), where l1∈ l. Since I 2
2+l= R,

there exist a ∈ I 2
1 and b ∈ I 2

2 , such that (a, b) ∈ K 2 and (a, β(b̄)) = (a, 1) ∈ I2
2.

So we have (0, l1)(a, 1) = (0, l1) ∈ I2
2. This shows that ωK ⊗ D(R, l)/I2 = ωI2 .

By the same way, we can prove ωK ⊗ D(R, l)/I1 = ωI1 .
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By all of the results above, (I1;ωI1)+ (I2;ωI2) = (K ;ωK ) = 0 holds in the
group En(R, l; R). This shows that E(p2) is injective.

Putting these results together with those from Step I and Step II, we have a split
exact sequence

0→ En(R, l; R)
E(p2) // En(R; R)

E(ρ) // En(R/ l; R/ l)→ 0.

In particular, En(R; R)∼= En(R, l; R)⊕En(R/ l; R/ l). The proof is complete. �

Remark 4.4. The proof shows that if the ring homomorphism ρ : R→ R/ l has a
splitting β, which may not satisfy condition (∗), the map E(p2) is still injective.

5. Applications for polynomial and Laurent polynomial extensions

In this section, we will use Theorem 4.3 to get excision sequences for Euler class
groups of polynomial rings and Laurent polynomial rings.

Excision sequence of polynomial rings. Let R be a Noetherian commutative ring
with dim R = d. Let R[t] be the polynomial ring over R. Then for any integer n
with 2n ≥ d+ 4, we get the following corollary by setting l = (t) in Theorem 4.3.

Corollary 5.1. Let R be a Noetherian commutative ring with dim R = d , and let
R[t] be the polynomial ring over R. Then for any integer n with 2n ≥ d + 4, we
have the short split exact sequence

0→ En(R[t], (t); R[t])
E(p2) // En(R[t]; R[t])

E(ρ) // En(R; R)→ 0

and an isomorphism

En(R[t]; R[t])∼= En(R[t], (t); R[t])⊕ En(R; R).

Das [2006] constructed a map 9 : Ed(R[t]; R[t]) → Ed(R; R) that is split
surjective. In fact, this map is the map E(ρ).

Proposition 5.2 [Das 2003]. Let R be a smooth affine domain containing the field
of rational numbers, with dim R = d. Then there is an isomorphism

8 : Ed(R[t]; R[t])∼= Ed(R; R).

Using [Bhatwadekar and Keshari 2003, theorem 4.13], and Corollary 5.1, this
result can generalized:

Corollary 5.3. Let k be an infinite perfect field, and let R be a d-dimensional
regular domain that is essentially of finite type over k. Let n be an integer such that
2n ≥ d + 4. Then En(ρ) : En(R[t]; R[t])→ En(R; R) is an isomorphism.
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Proof. By Corollary 5.1, we only need to prove that E(p2)(x)= 0 for any element
x ∈ En(R[t], (t); R[t]). Suppose (Z;ωZ ) ∈ En(R[t], (t); R[t]), where Z is an
ideal of D(R[t], (t)) and ωZ : D(R[t], (t))n � Z/Z2 is a surjection. Let p1, p2

denote projections from D(R[t], (t)) to respective coordinates. We may assume
further that height p1(Z)=height p2(Z)= n in R[t].

Let

E(p1)(Z;ωZ )= (p1(Z);ωp1(Z)) and E(p2)(Z;ωZ )= (p2(Z);ωp2(Z)),

where ωp1(Z) and ωp2(Z) are respectively surjections R[t]n � p1(Z)/p1(Z)2 and
R[t]n � p2(Z)/p2(Z)2 induced by ωZ . Since (Z;ωZ ) ∈ En(R[t], (t); R[t]), we
have (p1(Z);ωp1(Z))= 0∈ En(R[t]; R[t]). For any ideal I ⊆ R[t], let I (0) denote
the reduction modulo (t), which is the same as setting t = 0 in I . Now we get
(p1(Z)(0);ωp1(Z)(0)) = 0 ∈ En(R; R), where ωp1(Z)(0) is the surjection Rn �
p1(Z)(0)/(p1(Z)(0))2 that the surjection ωp1(Z) induces by setting t = 0. By
[Bhatwadekar and Sridharan 2002, Theorem 4.2], this means that ωp1(Z)(0) can be
lifted to a surjection vp1(Z)(0) : Rn � p1(Z)(0). On the other hand, since (Z;ωZ )

is in En(R[t], (t); R[t]), we have p1(Z)(0)= p2(Z)(0) and ωp1(Z)(0) = ωp2(Z)(0).
So we get

ωp2(Z) : R[t]
n � p2(Z)/p2(Z)2 and vp1(Z)(0) : R

n � p2(Z)(0),

such that ωp2(Z) ⊗ R[t]/(t) = vp1(Z)(0) ⊗ R/p2(Z)(0). We can find a surjective
lift of ωp2(Z) by [Bhatwadekar and Keshari 2003, Theorem 4.13]. This shows that
(p2(Z);ωp2(Z))= E(p2)(Z;ωZ )= 0 ∈ En(R[t]; R[t]). �

Excision sequence of Laurent polynomial rings.

Corollary 5.4. Let R be a Noetherian commutative ring with dim R = d , and let
n be an integer such that 2n ≥ d+ 4. Let R[t, t−1

] be the Laurent polynomial ring
over R. Then by setting l = (t − 1) in Theorem 4.3, we get the short split exact
sequence

0→ En(R[t, t−1
], (t − 1); R[t, t−1

])
E(p2) // En(R[t, t−1

]; R[t, t−1
])

E(ρ) // En(R; R)→ 0

and an isomorphism

En(R[t, t−1
]; R[t, t−1

])∼= En(R[t, t−1
], (t − 1); R[t, t−1

])⊕ En(R; R).

Postscript. In K-theory, we have the following results: When R is a regular Noe-
therian commutative ring, the homology sequences for the K0-groups of the poly-
nomial ring R[t] and the Laurent polynomial ring R[t, t−1

] reduce to isomorphisms
K0(R[t])∼= K0(R) and K0(R[t, t−1

])∼= K0(R), respectively [Rosenberg 1994]. In
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light of this result and the correspondence between excision sequence for K-theory
and the excision sequence for the ECGs, we ask if there exist isomorphisms

En(R[t]; R[t])∼= En(R; R) and En(R[t, t−1
]; R[t, t−1

])∼= En(R; R).

For the case of polynomial extension, Corollary 5.3 gives an affirmative answer.
For the case of Laurent polynomial extension, we wonder if there is also an isomor-
phism En(R[t, t−1

]; R[t, t−1
]) ∼= En(R; R) if the ring R satisfies the conditions

of Corollary 5.3.
In fact, for the weak ECG, we can prove the following result using Suslin’s

cancellation theorem [1977] and [Murthy 1994, Theorem 2.2].
Let R be a smooth affine algebra over some algebraically closed field k, with

dim R = d . Let R[t, t−1
] be the Laurent polynomial ring over R. Then we have

Ed
0 (R[t, t−1

])⊗Q ∼= Ed
0 (R)⊗Q, which corresponds to what the Riemann–Roch

theorem tells us in geometry.
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