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Let G be one of the classical groups GL(n), U(n), O(n) or Sp(2n), over a
nonarchimedean local field of characteristic zero. It is well known that the
contragredient of an irreducible admissible smooth representation of G is
isomorphic to a twist of it by an automorphism of G. We prove that similar
results hold for double covers of G that occur in the study of local theta
correspondences.

1. Introduction and the results

Fix a nonarchimedean local field k of characteristic zero. We introduce the notation
in order to treat the four classes of classical groups GL(n), U(n), O(n) and Sp(2n)
simultaneously. Let A be a k-algebra and τ be a k-algebra involution of A such
that

(A, τ )=


(k× k, the nontrivial automorphism),
(a quadratic field extension of k, the nontrivial automorphism), or
(k, the trivial automorphism).

Let ε =±1 and let E be an ε-Hermitian A-module; namely, E is a free A-module
of finite rank equipped with a nondegenerate k-bilinear map

〈 · , · 〉E : E × E→ A

satisfying 〈u, v〉E = ε〈v, u〉τE and 〈au, v〉E = a〈u, v〉E for a ∈ A and u, v ∈ E .
Denote by U(E) the group of all A-module automorphisms of E that preserve the
form 〈 · , · 〉E . Depending on the choice of A and ε, it is either a general linear
group, a unitary group, an orthogonal group or a symplectic group.

Following Mœglin, Vigneras and Waldspurger [1987, Proposition 4.I.2], we
extend U(E) to a larger group Ŭ(E) consisting of pairs (g, δ) ∈ GLk(E)× {±1}
such that either

δ = 1 and g ∈ U(E),
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or
δ =−1,

g(au)= aτ g(u) for a ∈ A, u ∈ E, and

〈gu, gv〉E = 〈v, u〉E for u, v ∈ E .

Clearly Ŭ(E) contains U(E) as a subgroup of index two.
In general, if π is a representation of a group H and g is an element of a group

that acts on H as automorphisms, we define the twist π g to be the representation
of H that has the same underlying space as that of π , and whose action is given by
π g(h) := π(gh) for h ∈ H . If H̆ is a group containing H as a subgroup of index
two, we always let it act on H by conjugation:

Ad : H̆ × H → H, (ğ, x) 7→ Adğ(x) := ğx ğ−1.

It is a classical result in linear algebra that

(1) ğx ğ−1 is conjugate to x−1 inside U(E)

for all ğ ∈ Ŭ(E) \U(E) and all x ∈ U(E). For example, when U(E) is a general
linear group, this amounts to saying that every square matrix is conjugate to its
transpose. For orthogonal groups, this says that every element of an orthogonal
group is conjugate to its inverse. The following considerations (which lead to
Theorem 1.1 below) appear in [Mœglin et al. 1987]. By the localization principle
of Bernšteı̆n and Zelevinskiı̆ [1976, Theorem 6.9 and Theorem 6.15.A], result (1)
implies that

(2) f (ğx ğ−1)= f (x−1) (as generalized functions on U(E))

for all Ad-invariant generalized functions f on U(E) and all ğ ∈ Ŭ(E)\U(E). For
the usual notion of generalized functions, see [Sun 2009, Section 2]. We get the
following well known result by (2) and by considering characters of irreducible
admissible smooth representations (which are conjugation invariant generalized
functions).

Theorem 1.1 [Mœglin et al. 1987, Theorem 4.II.1]. Let ğ ∈ Ŭ(E) \ U(E), and
let π be an irreducible admissible smooth representation of U(E). Then π∨ is
isomorphic to π ğ.

Here and as usual, we use “∨” to indicate the contragredient of an admissible
smooth representation of a totally disconnected locally compact group.

If E is a symplectic space, that is, if ε =−1 and A= k, then S̆p(E) := Ŭ(E) is
equal to the subgroup of GSp(E) with similitudes ±1. Denote by

(3) 1→ {±1} → S̃p(E)→ Sp(E)→ 1



DUAL PAIRS AND CONTRAGREDIENTS OF IRREDUCIBLE REPRESENTATIONS 487

the metaplectic cover of the symplectic group Sp(E). It is shown in [Mœglin et al.
1987, page 36] that there is a unique continuous action

(4) Ãd : S̆p(E)× S̃p(E)→ S̃p(E)

of S̆p(E) on S̃p(E) as group automorphisms that lifts the adjoint action

Ad : S̆p(E)×Sp(E)→ Sp(E)

and leaves the central element −1 ∈ S̃p(E) fixed.
We first extend Theorem 1.1 to the case of metaplectic groups:

Theorem 1.2. Assume that E is a symplectic space. Let ğ ∈ S̆p(E) \ Sp(E), and
let π be a genuine irreducible admissible smooth representation of S̃p(E). Then
π∨ is isomorphic to π ğ.

Here and henceforth, “genuine” means that the central element−1∈ S̃p(E) acts
via the scalar multiplication by −1.

Remark. In the case that the character of π is a locally integrable function,
Theorem 1.2 is proved in [Mœglin et al. 1987, Theorem 4.II.2].

Harish-Chandra [1999] proved locally integrability of irreducible characters for
p-adic linear reductive groups, but he did not treat metaplectic groups.

The proofs of Theorem 1.1 in [Mœglin et al. 1987] and Theorem 1.2 in Section 2
do not depend on locally integrability of irreducible characters.

Now we consider dual pairs. Write ε′ := −ε, and let (E ′, 〈 · , · 〉E ′) be an ε′-
Hermitian A-module. Then E := E ⊗A E ′ is a skew-Hermitian A-module under
the form 〈u ⊗ u′, v ⊗ v′〉E := 〈u, v〉E 〈u′, v′〉E ′ . Write Ek := E, viewed as a k-
symplectic space under the form 〈u, v〉Ek

:= trA/k(〈u, v〉E). Put

G := U(E), Ğ := Ŭ(E), G ′ := U(E ′), Ğ ′ := Ŭ(E ′).

The group G obviously maps to the symplectic group Sp(Ek). Define the fiber
product G̃ := S̃p(Ek)×Sp(Ek) G. This is a double cover of G that depends on both
E and E ′.

In what follows, we define an action

(5) Ãd : Ğ× G̃→ G̃

that lifts the adjoint action Ad : Ğ×G→G and fixes the central element −1 ∈ G̃.
Let ğ = (g, δ) ∈ Ğ. Choose an arbitrary element (g′, δ) ∈ Ğ ′. Then

ğ := (g⊗ g′, δ) ∈ S̆p(Ek),

and the automorphism

(6) Ãd ğ ×Adğ : S̃p(Ek)×G→ S̃p(Ek)×G
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leaves the subgroup G̃ stable. It restricts to an automorphism

(7) Ãdğ : G̃→ G̃

that is independent of the choice of g′. We obtain (5) by gluing (7) for all ğ ∈ Ğ.
The following is a generalization of Theorem 1.2 in the setting of dual pairs.

Theorem 1.3. Let ğ ∈ Ğ\G, and let π be a genuine irreducible admissible smooth
representation of G̃. Then π∨ is isomorphic to π ğ.

Remark. When E ′= A= k and ε=−1, Theorem 1.3 specializes to Theorem 1.2.
The statement for the general case reduces essentially to those of Theorem 1.1 and
Theorem 1.2. Theorem 1.3 is proved in Section 3.

Theorem 1.3 has the following consequence, which is known to experts (up to a
proof of Theorem 1.2). As far as the author knows, no proof of it in full generality
is found in the literature.

Theorem 1.4. Denote by ωψ the smooth oscillator representation of S̃p(Ek) cor-
responding to a nontrivial character ψ of k. Then for all genuine irreducible
admissible smooth representation π of G̃ and π ′ of G̃ ′, we have

dim HomG×G ′(ωψ ⊗π ⊗π
′,C)= dim HomG×G ′(ω

∨

ψ ⊗π
∨
⊗π ′∨,C).

Here G̃ ′ := S̃p(Ek)×Sp(Ek)G
′ is a double cover of G ′. Note that bothωψ⊗π⊗π ′

and ω∨ψ ⊗ π
∨
⊗ π ′∨, which are originally representations of G̃ × G̃ ′, descend to

representations of G×G ′.

Remark. In a follow-up paper [Li et al. 2009], Theorem 1.4 is used to prove
multiplicity preservations in theta correspondences (for all residue characteristics),
that is, the dimension in Theorem 1.4 is at most one. This is the main reason for
providing a detailed proof of Theorem 1.4 here.

In the archimedean case, the analog of Theorem 1.4 is proved by T. Przebinda
[1988, Theorem 5.5], while the analog of Theorem 1.3 is a consequence of [1988,
Theorem 2.6]. His method is different from ours in that he uses the Langlands
classification.

As shown in [Przebinda 1988], Theorem 1.4 together with the Howe duality
conjecture implies that theta lifting maps Hermitian representations to Hermitian
representations.

2. Theorem 1.2 and its analog

Throughout this section, we assume that ε =−1.
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2.1. Skew Hermitian modules and Jacobi groups. As in the last section, E is an
ε-Hermitian A-module, and Ek := E is a symplectic space under the form

〈u, v〉Ek := trA/k(〈u, v〉E).

Denote by H(E) := Ek× k the Heisenberg group associated to Ek, whose multi-
plication is given by (u, t)(u′, t ′) := (u + u′, t + t ′+ 〈u, u′〉Ek). The group Ŭ(E)
acts on H(E) as group automorphisms by

(8) (g, δ)(u, t) := (gu, δt).

It defines a semidirect product J̆(E) := Ŭ(E) n H(E), which contains J(E) :=
U(E)n H(E) as a subgroup of index two.

The results of this note depend heavily on the following.

Lemma 2.1 [Sun 2009, Theorem D]. Let f be a generalized function on J(E). If
f is invariant under conjugations by U(E), that is,

f (gxg−1)= f (x) for all g ∈ U(E),

then
f (ğx ğ−1)= f (x−1) for all ğ ∈ Ŭ(E) \U(E).

Actually, we only need the following lemma, which is much weaker.

Lemma 2.2. Let f be a conjugation-invariant generalized function on J(E). Then

f (ğx ğ−1)= f (x−1) for all ğ ∈ J̆(E) \ J(E).

A consequence of Lemma 2.2 is this:

Proposition 2.3. Let ğ∈ J̆(E)\J(E), and let π be an irreducible admissible smooth
representation of J(E). Then π∨ is isomorphic to π ğ.

Proof. Denote by f the character of π , which is thus a conjugation-invariant gen-
eralized function on J(E). Therefore

(9) f (ğx ğ−1)= f (x−1)

by Lemma 2.2. The left side of (9) is the character of π ğ, and the right side is the
character of π∨. Therefore π ğ and π∨ have the same character, and they are thus
isomorphic to each other. �

2.2. Proof of Theorem 1.2 and its analog. We reuse the notation of Section 2.1.
Denote by

Ũ(E) := S̃p(Ek)×Sp(Ek) U(E)

the double cover of U(E) induced by the metaplectic cover

(10) 1→ {±1} → S̃p(Ek)→ Sp(Ek)→ 1.
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As in (5), we have an action

(11) Ãd : Ŭ(E)× Ũ(E)→ Ũ(E).

The following theorem reduces to Theorem 1.2 when A = k.

Theorem 2.4. Assume that ε =−1. Let ğ ∈ Ŭ(E) \U(E), and let π be a genuine
irreducible admissible smooth representation of Ũ(E). Then π∨ is isomorphic
to π ğ.

Proof. Denote by ωψ the smooth oscillator representation of S̃p(Ek)n H(E) that
corresponds to a nontrivial character ψ of k. Up to isomorphism, this is the only
genuine smooth representation that, as a representation of H(E), is irreducible and
has central character ψ .

Both ωψ and π are viewed as smooth representations of J̃(E) := Ũ(E)nH(E),
via the restriction and the inflation, respectively. The tensor product ωψ ⊗ π
descends to an irreducible admissible smooth representation of J(E) [Sun 2009,
Lemma 5.3].

The actions of Ŭ(E) on Ũ(E), U(E) and H(E) induce its actions on the semi-
direct products J̃(E) and J(E). By Proposition 2.3,

(ωψ ⊗π)
ğ ∼= (ωψ ⊗π)

∨

as irreducible admissible smooth representations of J(E), or equivalently

ω
ğ
ψ ⊗π

ğ ∼= ω
∨

ψ ⊗π
∨.

Note that ωğ
ψ
∼= ω∨ψ as smooth representations of J̃(E). (This is a special case of

Lemma 3.3.) Therefore

(12) ω∨ψ ⊗π
ğ ∼= ω

∨

ψ ⊗π
∨.

As in the proof of [Sun 2009, Lemma 5.3], we have

(13) π ğ ∼= HomH(E)(ω
∨

ψ , ω
∨

ψ ⊗π
ğ).

Here the right side carries the action of Ũ(E) given by (g̃φ)(v) := g(φ(g̃−1v)),
where

g̃ ∈ Ũ(E), φ ∈ HomH(ω
∨

ψ , ω
∨

ψ ⊗π
ğ), v ∈ ω∨ψ ,

and g is the image of g̃ under the covering map Ũ(E)→ U(E). Similarly,

(14) π∨ ∼= HomH(ω
∨

ψ , ω
∨

ψ ⊗π
∨).

We finish the proof by combining (12), (13) and (14). �
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3. Proofs of Theorem 1.3 and Theorem 1.4

3.1. Proof of Theorem 1.3 for symplectic groups. Now we return to the notation
of Section 1. First assume that A = k and ε = −1. Then G is a symplectic group
and is thus perfect, that is, G equals its own commutator group. Consequently,
there is only one action of Ğ on G̃ that lifts the adjoint action and fixes the central
element −1 ∈ G̃. There are two cases.

Case 1. The covering map G̃→ G splits. Then G̃ = G×{±1}, and Theorem 1.3
is one case of Theorem 1.1.

Case 2. The covering map G̃→G does not split. Then G̃ = S̃p(E) [Moore 1968,
Theorem 10.4], and Theorem 1.3 is one case of Theorem 1.2.

3.2. Proof of Theorem 1.3 when A 6= k. Assume that A 6= k. Then U(E) is a
general linear group or a unitary group.

Lemma 3.1. There exists a genuine character on Ũ(E).

Proof. It is well known that the exact sequence

1→ C×→ (S̃p(Ek)×C×)/ diag({±1})→ Sp(Ek)→ 1

splits continuously over U(E) (this is trivial for general linear groups, and for
unitary groups, see [Kudla 1994, Proposition 4.1] or [Harris et al. 1996, Section 1]).
Write ι for such a splitting and write p : Ũ(E)→U(E) for the covering map. Then
x ∈ Ũ(E) 7→ x−1 ι(p(x)) ∈ C× is a genuine character. �

Lemma 3.2. There exists a genuine character χ of G̃ such that χ ğ
= χ−1 for all

ğ ∈ Ğ \G.

Proof. As in Section 1, let ğ = (g,−1) ∈ Ğ \G and (g′,−1) ∈ Ğ ′ \G ′, and write
ğ := (g⊗ g′,−1) ∈ Ŭ(E) \U(E). It is obvious that the diagram

(15)
Ũ(E)

Ãd ğ // Ũ(E)

G̃
Ãdğ //

OO

G̃

OO

commutes.
Take a character χE as in Lemma 3.1, and denote by χ its restriction to G̃. Then

χ ğ
= (χE|G̃)

ğ

= (χ
ğ
E)|G̃ by commutativity of (15)

= (χ−1
E )|G̃ by Theorem 2.4

= χ−1. �
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Fix χ as in Lemma 3.2. Let ğ ∈ Ğ \ G, and let π be a genuine irreducible
admissible smooth representation of G̃. Then π ⊗ χ descends to an irreducible
admissible smooth representation of G. By Theorem 1.1, (π ⊗ χ)ğ ∼= (π ⊗ χ)∨,
or equivalently, π ğ

⊗χ ğ ∼= π∨⊗χ−1. Therefore, π ğ ∼= π∨ since χ ğ
= χ−1. This

proves Theorem 1.3 when A 6= k.

3.3. Proof of Theorem 1.3 for orthogonal groups. Assume that A= k and ε = 1,
that is, G is an orthogonal group. In what follows, we show that Lemma 3.2 still
holds in this case. Fix a complete polarization E ′ = E ′

+
⊕ E ′

−
of the symplectic

space E ′. Then E= E+⊕E− is a complete polarization of the symplectic space E,
where E± := E⊗E ′

±
. Depending on this polarization, we define a skew-Hermitian

k×k-module E′ as follows. As an abelian group, E′= E. The scalar multiplication
is given by

(ae1+ be2)(u+ v) := au+ bv for a, b ∈ k, u ∈ E+, v ∈ E−,

where e1 := (1, 0) and e2 := (0, 1) are the two idempotent elements of k×k. The
skew-Hermitian form is given by

〈u++ u−, v++ v−〉E′ := 〈u+, v−〉E e1+〈u−, v+〉E e2,

where u+, v+ ∈ E+, u−, v− ∈ E−.
Let ğ = (g,−1) ∈ Ğ \ G. Choose an element (g′,−1) ∈ Ğ ′ \ G ′ such that

g′(E ′
+
)= E ′

−
and g′(E ′

−
)= E ′

+
. Then

ğ := (g⊗ g′,−1) ∈ Ŭ(E′) \U(E′),

and we have a commutative diagram

Ũ(E′)
Ãd ğ // Ũ(E′)

G̃
Ãdğ //

OO

G̃.

OO

Take a genuine character χE′ of Ũ(E′) as in Lemma 3.1, and denote by χ its
restriction to G̃. Then as in the proof of Lemma 3.2, we show that χ fulfills the
requirement of Lemma 3.2. Now we argue as in the end of the last subsection, and
prove Theorem 1.3 for orthogonal groups.

3.4. Proof of Theorem 1.4. The group

Ğ := Ğ×{±1} Ğ ′ = {(g, g′, δ) | (g, δ) ∈ Ğ, (g′, δ) ∈ Ğ ′}

contains G := G×G ′ as a subgroup of index two. Define a homomorphism

ξ : Ğ→ S̆p(Ek), (g, g′, δ) 7→ (g⊗ g′, δ).
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By using the covering map G̃×G̃ ′→G=G×G ′ and the map ξ |G :G→Sp(Ek),

we form the semidirect product (G̃ × G̃ ′)n H(E) as in Section 2.1. Let Ğ act on
(G̃× G̃ ′)n H(E) as group automorphisms by

(16) ğ(x, y, z) := (Ãdğ(x), Ãdğ′(y), ξ( ğ)z),

where
ğ = (g, g′, δ), ğ = (g, δ), ğ′ = (g′, δ),

and the last term of the right hand side of (16) is defined as in (8).
Let ωψ , π and π ′ be as in Theorem 1.4.

Lemma 3.3. View ωψ as an admissible smooth representation of (G̃× G̃ ′)nH(E)
(via the restriction). Then for every ğ ∈ Ğ \ G, we have

ω∨ψ
∼= ω

ğ
ψ .

Proof. Recall that the group S̆p(Ek) acts on S̃p(Ek)n H(E) diagonally through
its action on the two factors. We have

(17) ω∨ψ
∼= ω

ξ( ğ)
ψ

as smooth oscillator representations of S̃p(Ek)n H(E), since both correspond to
the character ψ−1. We prove the lemma by restricting both sides of (17) to the
group (G̃× G̃ ′)n H(E). �

Lemma 3.4. Via the inflations, view π and π ′ as admissible smooth representa-
tions of (G̃× G̃ ′)n H(E) . Then for every ğ ∈ Ğ \ G, we have

(18) π∨ ∼= π
ğ and π ′∨ ∼= π

′ ğ.

Proof. Write ğ= (g, g′,−1) and ğ= (g,−1). By Theorem 1.3, we have π∨ ∼= π ğ

as irreducible admissible smooth representations of G̃. By pulling back this iso-
morphism to the group (G̃× G̃ ′)nH(E), we obtain the first isomorphism of (18).
The second isomorphism follows similarly. �

Lemma 3.5. For every ğ ∈ Ğ \ G, we have

(19) ω∨ψ ⊗π
∨
⊗π ′∨ ∼= (ωψ ⊗π ⊗π

′) ğ

as smooth representations of (G̃× G̃ ′)n H(E).

Proof. This is a combination of Lemma 3.3 and Lemma 3.4. �

Fix an element ğ ∈ Ğ \G. Since the action of ğ stabilizes the subgroup G̃× G̃ ′

of (G̃× G̃ ′)n H(E), we have

(20) HomG̃×G̃ ′(ωψ ⊗π ⊗π
′,C)= HomG̃×G̃ ′((ωψ ⊗π ⊗π

′) ğ,C).

Now Theorem 1.4 is a consequence of (19) and (20).
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