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The Furstenberg recurrence theorem (or equivalently Szemerédi’s theorem)
can be formulated in the language of von Neumann algebras as follows:
given an integer k ≥ 2, an abelian finite von Neumann algebra (M, τ) with
an automorphism α :M→M, and a nonnegative a∈M with τ(a)>0, one has
lim infN→∞ N−1 ∑N

n=1 Re τ(aαn(a) · · ·α(k−1)n(a))> 0; a later result of Host
and Kra shows this limit exists. In particular, Re τ(aαn(a) · · ·α(k−1)n(a)) is
positive for all n in a set of positive density.

From the von Neumann algebra perspective, it is natural to ask to what
remains of these results when the abelian hypothesis is dropped. All three
claims hold for k = 2, and we show that all three claims hold for all k when
the von Neumann algebra is asymptotically abelian, and that the last two
claims hold for k = 3 when the von Neumann algebra is ergodic. However,
we show that the first claim can fail for k=3 even with ergodicity, the second
claim can fail for k ≥ 4 even when assuming ergodicity, and the third claim
can fail for k = 3 without ergodicity, or k ≥ 5 and odd assuming ergodicity.
The second claim remains open for nonergodic systems with k = 3, and the
third claim remains open for ergodic systems with k = 4.
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1. Introduction

1a. Multiple recurrence. Let (X,X, µ) be a probability space, and let T : X→ X
be a measure-preserving invertible transformation on X (that is, T and T−1 are
both measurable, and µ(T (A)) = µ(A) for all measurable A). From the mean
ergodic theorem we know that for any f ∈ L∞(X), the averages N−1∑N

n=1 f ◦T−n

converge in (say) L2(X) norm,1 which implies in particular that the averages
N−1∑N

n=1
∫

X f1( f2 ◦ T−n) dµ converge for all f1, f2 ∈ L∞(X). Furthermore,
if f1 = f2 = f is nonnegative with positive mean

∫
X f dµ > 0, then the Poincaré

recurrence theorem implies that this latter limit is strictly positive. In particular,
this implies that the mean

∫
X f ( f ◦ T−n) dµ is positive for all natural numbers

n in a set E ⊂ N of positive (lower) density (that is, the set E is a set such that
lim infN→∞ N−1#{1≤ n ≤ N : n ∈ E}> 0).

Thanks to a long effort starting with Furstenberg’s ground breaking new proof
[1977] of Szemerédi’s theorem on arithmetic progressions [1975], it is now known
that all of these single recurrence results extend to multiple recurrence:

Theorem 1.1 (abelian multiple recurrence). Let (X,X, µ) be a probability space,
let k ≥ 2 be an integer, and let T : X → X be a measure-preserving invertible
transformation.

• (Convergence in norm.) For any f1, . . . , fk−1 ∈ L∞(X), the averages

1
N

N∑
n=1

( f1 ◦ T−n) · · · ( fk−1 ◦ T−(k−1)n)

converge in L2(X) norm as N →∞.

• (Weak convergence.) For any f0, f1, . . . , fk−1 ∈ L∞(X), the averages

1
N

N∑
n=1

∫
X

f0( f1 ◦ T−n) · · · ( fk−1 ◦ T−(k−1)n) dµ

converge as N →∞.

• (Recurrence on average.) For any nonnegative f ∈ L∞(X) with
∫

X f dµ> 0,
one has

(1) lim inf
N→∞

1
N

N∑
n=1

∫
X

f ( f ◦ T−n) · · · ( f ◦ T−(k−1)n) dµ > 0.

1The minus sign here is not of particular significance (other than to conform to some minor
notational conventions) and can be ignored in the sequel if desired.
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• (Recurrence on a dense set.) For any nonnegative f ∈ L∞(X) such that∫
X f dµ > 0, one has

(2)
∫

X
f ( f ◦ T−n) · · · ( f ◦ T−(k−1)n) dµ > c > 0

for some c > 0 and all n in a set of natural numbers of positive lower density.

We have called this result the “abelian” multiple recurrence theorem in order to
emphasise the abelian nature of the algebra L∞(X).

Remarks 1.2. Clearly, convergence in norm implies weak convergence; also, be-
cause the averages (2) are bounded and nonnegative, recurrence on average implies
recurrence on a dense set. Using the weak convergence result, the limit inferior in
(1) can be replaced with a limit, but we have retained the limit inferior in order to
keep the two claims logically independent of each other.

As mentioned earlier, the k = 2 cases of Theorem 1.1 follow from classi-
cal ergodic theorems. Furstenberg [1977] established recurrence on average (and
hence recurrence on a dense set) for all k, and observed that this result was equiv-
alent (by what is now known as the Furstenberg correspondence principle) to
Szemerédi’s famous theorem [1975] on arithmetic progressions, thus providing an
important new proof of that theorem. Convergence in norm (and hence in mean)
was established for k = 3 by Furstenberg [1977], for k = 4 by Conze and Lesigne
[1984; 1988a; 1988b] assuming total ergodicity and by Host and Kra [2001] in
general, for k = 5 in some cases by Ziegler [2005], and for all k by Host and Kra
[2005] and subsequently also by Ziegler [2007]. See [Kra 2006] for a survey of
these results, and their relation to other topics such as dynamics of nilsequences,
and arithmetic progressions in number-theoretic sets such as the primes.

There is also a multidimensional generalisation of the results above to multiple
commuting shifts:

Theorem 1.3 (abelian multidimensional multiple recurrence). Let (X,X, µ) be a
probability space, let k ≥ 2 be an integer, and let T0, . . . , Tk−1 : X → X be a
commuting system of measure-preserving invertible transformations.

• (Convergence in norm.) For any f1, . . . , fk−1 ∈ L∞(X), the averages

1
N

N∑
n=1

T n
0 (( f1 ◦ T−n

1 ) · · · ( fk−1 ◦ T−n
k−1))

converge in L2(X) norm.
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• (Weak convergence.) For any f0, f1, . . . , fk−1 ∈ L∞(X), the averages

1
N

N∑
n=1

∫
X
( f0 ◦ T−n

0 )( f1 ◦ T−n
1 ) · · · ( fk−1 ◦ T−n

k−1) dµ

converge.

• (Recurrence on average.) For any nonnegative f ∈ L∞(X) with
∫

X f dµ> 0,
one has

(3) lim inf
N→∞

1
N

N∑
n=1

∫
X
( f ◦ T−n

0 )( f ◦ T−n
1 ) · · · ( f ◦ T−n

k−1) dµ > 0.

• (Recurrence on a dense set.) For any nonnegative f ∈ L∞(X) such that∫
X f dµ > 0, one has

(4)
∫

X
( f ◦ T−n

0 )( f ◦ T−n
1 ) · · · ( f ◦ T−n

k−1) dµ > c > 0

for some c > 0 and all n in a set of natural numbers of positive lower density.

Of course, Theorem 1.1 is the special case of Theorem 1.3 when Ti := T i . It
is often customary to normalise T0 to be the identity transformation (by replacing
each of the Ti with T−1

0 Ti ).

Remarks 1.4. The k = 2 case is again classical. Recurrence on average (and
hence on a dense set) in this theorem was established for all k by Furstenberg and
Katznelson [1978], which by the Furstenberg correspondence principle implies a
multidimensional version of Szemerédi’s theorem, a combinatorial proof of which
in full generality has only been obtained relatively recently in [Nagle et al. 2006]
and [Gowers 2006]. Convergence in norm (and weak convergence) was estab-
lished for k = 3 in [Conze and Lesigne 1984], for some special cases of k = 4 in
[Zhang 1996], for all k assuming total ergodicity in [Frantzikinakis and Kra 2005],
and for all k unconditionally in [Tao 2008], with subsequent proofs in [Towsner
2007; Austin 2010; Host 2009]. The results can fail if the shifts T0, . . . , Tk−1 do
not commute [Bergelson and Leibman 2004]. Note that noncommutativity of the
shifts should not be confused with the noncommutativity of the underlying algebra,
which is the focus of this paper.

1b. Noncommutative analogues. From the perspective of the theory of von Neu-
mann algebras, the space L∞(X) appearing in these theorems can be interpreted as
an abelian von Neumann algebra, with a finite trace τ( f ) :=

∫
X f dµ and with an

automorphism T : L∞(X)→ L∞(X) defined by T f := f ◦ T−1. It is then natural
to ask whether the results can be extended to nonabelian settings. More precisely,
we recall the following definitions.
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Definition 1.5 (noncommutative systems). A finite von Neumann algebra is a pair
(M, τ ), where M is a von Neumann algebra (that is, an algebra of bounded oper-
ators on a separable2 complex Hilbert space that contains the identity 1, is closed
under adjoints, and is closed in the weak operator topology), and τ : M→ C is a
finite faithful trace (that is, a linear map with τ(a∗) = τ(a), τ(ab) = τ(ba), and
τ(a∗a) ≥ 0 for all a, b ∈M, with τ(a∗a) = 0 if and only if a = 0 and τ(1) = 1).
The operator norm of an element a ∈ M is denoted ‖a‖. We say that an element
a ∈ M is nonnegative if one has a = b∗b for some b ∈ M. An element a ∈ M is
central if one has ab= ba for all b ∈M. The set of all central elements is denoted
Z(M) and referred to as the centre of M; the algebra M is abelian if Z(M)=M.

A shift α on a finite von Neumann algebra (M, τ ) is trace-preserving ∗-auto-
morphism, that is, α is an algebra isomorphism such that α(a∗) = α(a)∗ and
τ(α(a))= τ(a) for all a∈M. We say that the shift is ergodic if the invariant algebra
{a ∈M :α(a)=a} consists only of the constants C1. We refer to the triple (M, τ, α)
as a von Neumann Z-system, or a von Neumann dynamical system. More generally,
if α0, . . . , αk−1 are k commuting shifts on M , we refer to (M, τ, α0, . . . , αk−1) as
a von Neumann Zk-system.

It is easy to verify that if (X,X, µ) is a (classical) probability space with a
shift T : X → X , then (L∞(X),

∫
X · dµ, ◦T

−1) is an (abelian example of a) von
Neumann dynamical system, and more generally if T0, . . . , Tk−1 : X → X are
commuting shifts, then (L∞(X),

∫
X · dµ, ◦T

−1
0 , . . . , ◦T−1

k−1) is an abelian example
of a von Neumann Zk-system. In fact, all abelian von Neumann dynamical systems
arise (up to isomorphism of the algebras) as such examples; see [Kadison and
Ringrose 1997, Chapter 5].

A finite von Neumann algebra (M, τ ) gives rise to an inner product 〈a, b〉 :=
τ(a∗b) on M; the properties of the trace ensure that this inner product is positive
definite. (We use the convention for a scalar product to be conjugate linear in
the first coordinate.) The Hilbert space completion of M with respect to this inner
product will be referred to as L2(τ ). Note that α extends to a unitary transformation
on L2(τ ). In the abelian case when M = L∞(X,X, µ), the space L2(τ ) can be
canonically identified with L2(X,X, µ).

Inspired by Theorems 1.1 and 1.3, we now make the following definitions:

Definition 1.6 (noncommutative recurrence and convergence). Let k ≥ 2 be an
integer, (M, τ, α) be a von Neumann dynamical system, and (M, τ, α0, . . . , αk−1)

be a von Neumann Zk-system.

2In our applications, the hypothesis of separability can be omitted since one can always pass to
the separable subalgebra generated by a finite collection a0, . . . , ak−1 of elements and their shifts if
desired.
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• We say (M, τ, α) enjoys order k convergence in norm if for any a1, . . . , ak−1

in M, the averages

1
N

N∑
n=1

(αn(a1))(α
2n(a2)) · · · (α

(k−1)n(ak−1))

converge in L2(τ ) as N →∞.

• We say (M, τ, α) enjoys order k weak convergence if for any a0, a1, . . . , ak−1

in M, the averages

1
N

N∑
n=1

τ(a0(α
n(a1))(α

2n(a2)) · · · (α
(k−1)n(ak−1)))

converge as N →∞.

• We say (M, τ, α) enjoys order k recurrence on average if for any nonnegative
a ∈M with τ(a) > 0, one has

(5) lim inf
N→∞

1
N

N∑
n=1

Re τ(a(αn(a))(α2n(a)) · · · (α(k−1)n(a))) > 0.

• We say that (M, τ, α) enjoys order k recurrence on a dense set if for any
nonnegative a ∈M with τ(a) > 0, one has

(6) Re τ(a(αn(a))(α2n(a)) · · · (α(k−1)n(a))) > c > 0

for some c> 0 and all n in a set of natural numbers of positive lower density.

• We say (M, τ, α0, . . . , αk−1) converges in norm if for any a1, . . . , ak−1 ∈M,
the averages

1
N

N∑
n=1

α−n
0 ((αn

1 (a1))(α
n
2 (a2)) · · · (α

n
k−1(ak−1)))

converge in L2(τ ) as N →∞.

• We say (M, τ, α0, . . . , αk−1) converges weakly if for any a0, a1, . . . , ak−1∈M,
the averages

1
N

N∑
n=1

τ((αn
0 (a0))(α

n
1 (a1))(α

n
2 (a2)) · · · (α

n
k−1(ak−1)))

converge as N →∞.
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• We say that (M, τ, α0, . . . , αk−1) enjoys recurrence on average if for any non-
negative a ∈M with τ(a) > 0, one has

(7) lim inf
N→∞

1
N

N∑
n=1

Re τ((αn
0 (a))(α

n
1 (a)) · · · (α

n
k−1(a))) > 0.

• We say that (M, τ, α) enjoys order k recurrence on a dense set if for any
nonnegative a ∈M with τ(a) > 0, one has

(8) Re τ((αn
0 (a))(α

n
1 (a)) · · · (α

n
k−1(a))) > c > 0.

for some c> 0 and all n in a set of natural numbers of positive lower density.

Remark 1.7. As before, we may normalise α0 to be the identity. Of course, the
first four properties here are nothing more than the specialisations of the last four
to the case αi = α

i for 0≤ i ≤ k−1. The real part is needed in (5), (6), (7) and (8)
because there is no necessity for the traces here to be real-valued (the difficulty
being that the product of two nonnegative elements of a nonabelian von Neumann
algebra need not remain nonnegative). In the case of (5), one can omit the real part
by taking averages from −N to N , since one has the symmetry

τ(a(αn(a))(α2n(a)) · · · (α(k−1)n(a)))= τ((a(αn(a))(α2n(a)) · · · (α(k−1)n(a)))∗)

= τ((α(k−1)n(a)) · · · (α2n(a))(αn(a))a)

= τ(a(α−n(a)) · · · (α−(k−1)n(a)))

for any self-adjoint a.
Note however that it is quite possible for the expressions (6) or (8) to be negative

even when a is nonnegative. Because of this, while recurrence on average still
implies recurrence on a dense set, the converse is not true; one can have recurrence
on a dense set but end up with a zero or even negative average due to the presence
of large negative values of (6) or (8). We will see examples of this later.

Remark 1.8. As we said earlier, the Furstenberg correspondence principle equates
recurrence results with combinatorial statements (such as Szemerédi’s theorem)
that can be formulated in a purely finitary fashion. However, we do not know
whether the same is true for noncommutative recurrence results. Formulating a
finitary statement that would imply recurrence results for some nonabelian von
Neumann dynamical system probably requires some quite strong approximate em-
beddability of the system into finite-dimensional matrix algebras with approximate
shifts, together with a recurrence assertion for such finite-dimensional systems in
which the various parameters may all be chosen independent of the dimension.
Since many of the results we prove below in the infinitary setting are negative
anyway, we will not pursue this issue here.
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These properties (and related topics) for von Neumann dynamical systems have
been studied by Niculescu, Ströh and Zsidó [2003], Duvenhage [2009], Beyers,
Duvenhage and Ströh [2010], and Fidaleo [2009]. A variant of these questions, in
which one averages over a higher-dimensional range of shifts, was also studied in
[Fidaleo 2007]. In this paper we shall develop further positive and negative results
regarding these properties, which we now present.

1c. Positive results. When k = 2, all systems enjoy norm and weak convergence,
as well as recurrence on average and on a dense set, thanks to the ergodic theorem
for von Neumann algebras; see for example [Krengel 1985, Section 9.1]. Indeed,
from that theorem, we know that for any von Neumann dynamical system (M, τ, α)

and a ∈ M, the averages N−1∑N
n=1 α

n(a) converge in L2(τ ) to the orthogonal
projection of a to the invariant space L2(τ )α := { f ∈ L2(τ ) : α( f ) = f }, giving
the convergence results. If a is nonnegative and nonzero, this projection can be
verified to have a positive inner product with a, giving the recurrence results.

Now we consider the cases k ≥ 3. We have already seen from Theorems 1.1
and 1.3 that we have convergence and recurrence in those abelian systems arising
from ergodic theory, and have recalled above that in fact these include all examples
(up to isomorphism).

Proposition 1.9. Let k ≥ 2. If (M, τ, α) is an abelian von Neumann dynamical
system, then (M, τ, α) enjoys weak convergence and convergence in norm, and
recurrence on average and on a dense set.

More generally, an abelian von Neumann Zk-system (M, τ, α0, . . . , αk−1) enjoys
weak convergence and convergence in norm, and recurrence on average and on a
dense set.

We now generalise these results to the wider class of asymptotically abelian
systems.

Definition 1.10 (asymptotic abelianness). A von Neumann dynamical system
(M, τ, α) is asymptotically abelian if

lim
N→∞

1
N

N∑
n=1

‖[αn(a), b]‖L2(τ ) = 0 for all a, b ∈M,

where [a, b] := ab− ba is the commutator.

Remark 1.11. In previous literature such as [Beyers et al. 2010], a stronger version
of asymptotic abelianness is assumed, in which the L2(τ ) norm is replaced by the
operator norm. Variants of this type of “topological asymptotic abelianness”, and
their relationship with noncommutative topological weak mixing have also been
considered in [Kerr and Li 2007].
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Our work also singles out this case as special, since the assumption of asymptotic
abelianness seems to be essential for the correct working of some the chief technical
tools taken from the commutative setting (particularly the van der Corput estimate).
In [Niculescu et al. 2003; Beyers et al. 2010; Duvenhage 2009], convergence and
recurrence were shown for all orders k for asymptotically abelian systems under
some additional assumptions such as weak mixing or compactness. Our first main
result shows that in fact all asymptotically abelian systems enjoy convergence and
recurrence.

Theorem 1.12. Let k ≥ 2. If (M, τ, α) is an asymptotically abelian von Neumann
dynamical system, then (M, τ, α) enjoys weak convergence and convergence in
norm, and recurrence on average and on a dense set.

More generally, if (M, τ, α0, . . . , αk−1) is a von Neumann Zk-system, and the
αiα
−1
j for i 6= j are each individually asymptotically abelian, then this Zk-system

enjoys weak convergence and convergence in norm, and recurrence on average
and on a dense set.

Theorem 1.12 can be deduced from the genuinely abelian case (Proposition 1.9)
by using two results. The first one is essentially from [Beyers et al. 2010] or
[Duvenhage 2009], which considered the model case αi = αi ; for the sake of
completeness, we present a proof in Appendix A.

Theorem 1.13 (multiple ergodic averages for relatively weakly mixing extensions).
Let (M, τ, α0, . . . , αk−1) be a von Neumann Zk-system, and let N be a von Neu-
mann subalgebra of M that is invariant under all of the αi . If for any distinct
0≤ i, j ≤ k−1 the shift αiα

−1
j is asymptotically abelian and weakly mixing relative

to N, then the associated multiple ergodic averages satisfy∥∥∥ 1
N

N∑
n=1

α−n
0

k−1∏
i=1

αn
i (ai )−

1
N

N∑
n=1

α−n
0

k−1∏
i=1

αn
i (EN(ai ))

∥∥∥
L2(τ )
→ 0

as N →∞, where EN :M→N is the conditional expectation constructed from τ ,
and the products are from left to right.

We will recall the notions of relative weak mixing and conditional expectation
in Section 3.

The second result, which is new and may have other applications elsewhere,
can be viewed as a partial analogue for asymptotically abelian systems of the
Furstenberg–Zimmer structure theorem [Furstenberg et al. 1982].

Theorem 1.14 (structure theorem for asymptotically abelian systems). If (M, τ, α)
is an asymptotically abelian von Neumann dynamical system, then α is weakly
mixing relative to the centre Z(M)⊂M.
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Remark 1.15. In the case when M is a factor (that is, when the centre is trivial),
results of this nature (with a slightly different notion of mixing and of asymptotic
abelianness) were established in [Bratteli and Robinson 1987, Example 4.3.24].

These results quickly imply Theorem 1.12. Indeed, when studying (for instance)
convergence in norm for a Zk-system, one can use Theorem 1.14 followed by
Theorem 1.13 to replace each of the a0, . . . , ak−1 by their conditional expectations
EZ(M)(a0), . . . , EZ(M)(ak−1) without any affect on the convergence, at which point
one can apply Proposition 1.9. (Note that the centre Z(M) does not depend on what
shift α−1

i α j one is analysing.) The other claims are similar (using Lemma 3.1
to ensure that if a is nonnegative with positive trace, then so is the conditional
expectation EZ(M)(a)).

Remark 1.16. The arguments above in fact show a more quantitative statement:
if a is nonnegative with ‖a‖ ≤ 1 and τ(a) ≥ δ for some 0 ≤ δ ≤ 1, then one has
the same lower bound c(k, δ) ≥ 0 for (6) as is given by Szemerédi’s theorem for
(1) for nonnegative functions f with ‖ f ‖L∞(X) ≤ 1 and

∫
X f dµ≥ δ; in particular,

one could insert the bound of Gowers [2001]. Similar remarks apply to multiple
commuting shifts. We leave the details to the reader.

The proof of Theorem 1.14, given in Section 3 below, rests on noncommutative
versions of several of the steps on the way to the Furstenberg–Zimmer structure
theorem in the commutative world of ergodic theory [Furstenberg 1977; Zimmer
1976b; 1976a]. In particular, it rests on a version of the dichotomy between
relatively weakly mixing inclusions and those containing a relatively isometric
subinclusion, well known in ergodic theory from the cited work of Furstenberg and
Zimmer and already generalised to the noncommutative world by Popa [2007], for
applications to the study of superrigidity phenomena.

If (M, τ, α) is not asymptotically abelian, matters are rather more complicated,
with positive results only obtaining under additional restrictions. For k = 3 and for
ergodic shifts, we have a positive result, established in Section 5:

Theorem 1.17. If k = 3 and (M, τ, α) is an ergodic von Neumann dynamical sys-
tem, one has weak convergence and convergence in norm, as well as recurrence on
a dense set.

The weak convergence result was previously established in [Fidaleo 2009].

1d. Negative results. Recurrence on average cannot be included in Theorem 1.17.

Theorem 1.18. Let k = 3. Then there exists an ergodic von Neumann dynamical
system (M, τ, α) for which recurrence on average fails. (In fact one can make the
average (5) strictly negative.)
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We establish this in Section 2b. The main tool is a sophisticated version of the
Behrend set construction, combined with the crossed product construction.

Without the ergodicity assumption,3 one also loses recurrence on a dense set:

Theorem 1.19. Let k=3. There exists a von Neumann dynamical system (M, τ, α)
for which recurrence on a dense set fails. (In fact one can make the means (6) equal
to a negative constant for all nonzero n.)

This result, also proved in Section 2b, is simpler to prove than Theorem 1.18,
and uses the original Behrend set construction and crossed product constructions.

One loses recurrence on a dense set for larger k even when ergodicity is assumed:

Theorem 1.20. Let k ≥ 5 be odd. There exists an ergodic von Neumann dynamical
system (M, τ, α) for which recurrence on a dense set fails. (In fact one can make
the means (6) equal to a negative constant for all nonzero n.)

We establish this in Section 2c. This result uses a counterexample of Bergelson,
Host, Kra, and Ruzsa [Bergelson et al. 2005] combined with a group theoretic con-
struction. The restriction to odd k is mostly technical and can almost certainly be
removed; however, we are unable to decide whether Theorem 1.20 can be extended
to the k = 4 case because it was shown in [Bergelson et al. 2005] that the k = 5
counterexample in that paper cannot be replicated for k = 4.

For convergence, we have counterexamples for k ≥ 4 even when we assume
ergodicity:

Theorem 1.21. Let k ≥ 4. There exists an ergodic von Neumann dynamical system
(M, τ, α) for which weak convergence and convergence in norm fail.

We establish this in Section 2a. The main tool is a group theoretic construction.
The counterexamples above were for the single shift case, but of course they are

also counterexamples to the more general situation of multiple commuting shifts.
Table 1 summarises the positive and negative results (in the single shift case).

We note in particular that the following questions remain open:

Question 1.22. If k = 3, does weak or norm convergence hold for nonergodic von
Neumann dynamical systems (M, τ, α)?

Question 1.23. If k = 3, does weak or norm convergence hold for von Neu-
mann Z3-systems (M, τ, α0, α1, α2), (possibly after imposing suitable ergodicity
hypotheses)?

Question 1.24. If k = 4 (or if k ≥ 6 is even), does recurrence on a dense set hold
for ergodic von Neumann dynamical systems (M, τ, α)?

3In the commutative case, an easy application of the ergodic decomposition allows one to recover
the nonergodic case of the recurrence and convergence results from the ergodic case. Unfortunately,
in the noncommutative case, the ergodic decomposition is only available when the invariant factor
Mτ is central, which is the case in the asymptotically abelian case, but not in general.
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Conv. norm? Conv. mean? Recur. avg.? Recur. dense?
k = 2 Yes Yes Yes Yes
k = 3, erg. Yes Yes No Yes
k = 3, nonerg. ??? ??? No No
k ≥ 4, even, erg. No No No? ???
k ≥ 4, even, nonerg. No No No? No?
k ≥ 5, odd, erg. No No No No
k ≥ 5, odd, nonerg. No No No No

Table 1. Positive and negative results for noncommutative con-
vergence and recurrence of a single shift for various values of k,
and for various assumptions of ergodicity. The entries marked
“No?” would be expected to have a negative answer if one adopts
the principle that recurrence results which fail for one value of k,
should also fail for higher values of k.

We present some remarks on the first two problems in Section 6.

Notational remark. Unfortunately this paper stands between two quite unrelated
uses of the word “factor”, one from operator algebras and one from ergodic theory.
In the hope that it may be of interest to operator algebraists, we have deferred to
their usage (even though the true notion of a factor due to Murray and von Neumann
is actually not essential to our work), and will refer throughout to inclusions of von
Neumann algebras, even in the commutative setting where these can be identified
with ergodic-theoretic “factors”.

2. Counterexamples

In this section we construct various counterexamples of von Neumann systems
(M, τ, α) that will demonstrate the negative results in Theorems 1.18-1.21. The
material in this section is independent of the positive results in the rest of the
paper, but may provide some cautionary intuition to keep in mind when reading
the proofs of those results.

2a. Nonconvergence for k ≥ 4. We first show that convergence results fail for
k ≥ 4, even if one assumes ergodicity. In fact the divergence is so bad that it is
essentially arbitrary:

Theorem 2.1 (no convergence for k ≥ 4). Let k ≥ 4 be an integer, and let A ⊂ Z

be a set. Then there exist an ergodic von Neumann system (M, τ, α) and elements
a0, . . . , ak−1 ∈M such that

τ(a0α
n(a1) · · ·α

(k−1)n(ak−1))= 1A(n) for all integers n.
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It is clear that this implies Theorem 1.21 by choosing A appropriately (and
noting that failure of weak convergence implies failure of convergence in norm, by
Cauchy–Schwarz applied in the contrapositive).

Proof. It will suffice to verify the k = 4 case, as the higher cases follow by setting
a j = 1 for j ≥ 4. We will need a group G with four distinguished elements
e0, e1, e2, e3 and an automorphism T : G → G such that T k has no fixed points
other than the identity for all k 6= 0 and such that

e0(T r e1)(T 2r e2)(T 3r e3)= id

holds for all r ∈ A and fails for all r ∈Z\A. Constructing such a group is somewhat
nontrivial and is deferred to Appendix B, and in particular to Proposition B.11.

The group algebra CG of formal finite linear combinations of group elements
of G acts (on the left) on the Hilbert space `2(G) in the obvious way (arising from
convolution on G) and can thus be viewed as a subspace of the von Neumann alge-
bra B(`2(G)); note that all the elements of G become unitary in this perspective.
We can place a finite faithful trace τ on CG by declaring the identity element to
have trace 1, and all other elements of G to have trace zero. If we then define M

to be the closure of CG in the weak operator topology of B(`2(G)), we obtain a
finite von Neumann algebra, known as the group von Neumann algebra LG of G.
The shift T leads to an algebra isomorphism α of CG, which then easily extends
to a shift α on M = LG. Because none of the powers of T have any nontrivial
fixed points, the orbit of any nonzero group element contains no repetitions, and
so one can easily establish that αn f converges weakly to τ( f ) as n→∞ for every
f ∈CG and hence by approximation that the unitary operator on `2(G) associated
to α has no fixed points outside Cδid. This implies that (M, τ, α) is ergodic, since
given a ∈ M for which α(a) = a and τ(a) = 0 it follows that a(δid) ∈ `

2(G) is a
fixed point for the action of T on `2(G), which must therefore equal τ(a)δid = 0,
and hence τ(a∗a) = ‖a(δid)‖

2
2 = 0 and so a = 0, by the faithfulness of τ . If we

now set a j = e j for j = 0, 1, 2, 3, we obtain the claim. �

Remark 2.2. An inspection of the proofs of Theorem 2.1 and Proposition B.11
shows that the expression a0α

n(a1)α
2n(a2)α

3n(a3) can more generally be replaced
by αc0n(a0)α

c1n(a1)α
c2n(a2)α

c3n(a3) whenever c0, c1, c2, c3 are integers such that
ci 6= ci+1 for all i = 0, 1, 2, 3 (with the cyclic convention ci+4 = ci ). Thus for
instance one can construct von Neumann systems for which

τ(a0(α
n(a1))a2α

n(a3))= 1A(n)

for an arbitrary set A. We omit the details.

Remark 2.3. The examples of nonconvergence given above are not self-adjoint
or positive, and the ai are not equal to each other. However, it is not hard to
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modify the examples to give an example of a positive ai = a for which the averages
N−1∑N

n=1 τ(aα
n(a)α2n(a)α3n(a)) do not converge. Indeed, one can repeat the

above construction with

a := id+ 1
100

3∑
i=0

(ei + e∗i );

this is easily seen to be positive and self-adjoint, and a modification of the above
computations then shows that

τ(aαn(a)α2n(a)α3n(a))= 1+ 2
1004 1A(n) for all n,

which is enough to ensure divergence by choosing A appropriately. We leave the
details to the reader.

Remark 2.4. The group G constructed here can easily be shown to have infinite
conjugacy classes (by the same methods used to prove Proposition B.11). This
implies that the group algebra LG is a factor. See [Kadison and Ringrose 1997,
Theorem 6.7.5] for details.

2b. Negative averages for k = 3. We now show the negativity of various triple
averages. The main tool is the following Behrend-type construction of a set that
avoids progressions of length three, but contains many “hexagons”:

Lemma 2.5 (Behrend-type example). Let ε > 0. Then for all sufficiently large d ,
there exists a subset F of Z/dZ such that |F | ≥ d1−ε, but F contains no nontrivial
arithmetic progressions of length three; thus n, n+ r, n+ 2r ∈ F can only occur if
r = 0. On the other hand, the set

{(x, h, k) ∈ Z/dZ : x, x + h, x + k, x + k+ 2h, x + 2k+ h, x + 2k+ 2h ∈ F}

of “hexagons” in F has cardinality at least d3−ε.

The first part of the lemma already follows directly from [Behrend 1946] or
the earlier [Salem and Spencer 1942]. The claim about hexagons will be needed
in the proof of Theorem 2.11 below, but is not needed for the simpler results in
Corollary 2.7 or Theorem 2.10.

Proof. Let R be a large multiple of 400 (depending on ε). We claim that for n a
large enough multiple of 4 (depending on R), the set {−R, . . . , R}n ⊂ Zn contains
a subset E of cardinality |E | ≥ e−O(n)Rn (where the implied constant in the O
notation is absolute), and which contains ≥ e−O(n)R3n hexagons

{x, x + h, x + k, x + k+ 2h, x + 2k+ h, x + 2k+ 2h}

but contains no arithmetic progressions of length three. Choosing d sufficiently
large, letting n be the largest integer such that (10R)n ≤ d , and then embedding
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x x+h

x+k

x+2k+h x+2h+2k

x+2h+k

Figure 1. A hexagon. Note the absence of arithmetic progressions
of length three.

{−R, . . . , R}n in Z/dZ using base 10R (say), as in the work of Behrend or Salem
and Spencer, this claim will imply the lemma (after choosing R sufficiently large
depending on ε).

The claim itself remains. From the classical results on the Waring problem (see
for example [Vaughan 1997]), we know that every large integer N has ∼ N (k−2)/2

representations as the sum of k squares for k large enough (one can for instance
take k = 5, but for our purposes any fixed k will suffice). Using this, we see that
for any fixed δ ∈ (0, 1

10), every integer r such that δR2n ≤ r ≤ 1
10 R2n (say) will

have ≥ (cδR)n−Cδ representations as the sum of n squares of integers less than R,
where cδ,Cδ > 0 depend only on δ. In other words, the sphere

Er := {x ∈ {−R, . . . , R}n : |x |2 = r}

has cardinality at least (cδR)n−Cδ . On the other hand, such spheres have no non-
trivial progressions of length three. Thus it will suffice (for n large enough) by the
pigeonhole principle to show that there are at least e−O(n)R3n hexagons

{x, x + h, x + k, x + k+ 2h, x + 2k+ h, x + 2k+ 2h} in {−R, . . . , R}n

such that

(9) |x |2=|x+h|2=|x+k|2=|x+k+2h|2=|x+2k+h|2=|x+2k+2h|2≤ 1
10 R2n

(note that the case when |x |2 ≤ δR2n for sufficiently small δ can be eliminated by
crude estimates).

To count the solutions to (9), we perform some elementary changes of variable
to replace the constraints in (9) with simpler constraints. We begin by observing
that if a, b, c ∈ {−R/100, . . . , R/100}n are such that

(10) a · b = b · c = c · a = 0 and c · c = 3b · b,
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then x := a − 2b, h := b+ c, k := b− c can be verified to be a solution to (9),
with the map (a, b, c)→ (x, h, k) being injective, so it suffices to show that there
are at least e−O(n)R3n triples (a, b, c) with the properties above.

For reasons that will become clearer later, we will initially work in dimension
n/4 rather than n. Using the Waring problem results as before, we can find at least
e−O(n)R3n/4 triples a, b, c ∈ {−R/400, . . . , R/400}n/4 such that

c · c = 3b · b.

This is one of the four constraints required for (10). To obtain the remaining ones,
we use a pigeonholing trick followed by a tensor power trick. First, observe that if
a, b, c∈{−R/400, . . . , R/400}n/4, then a·b, b·c, c·a are of order O(R2n)≤ eO(n).
Applying the pigeonhole principle, one can thus find h1, h2, h3=O(R2n) such that
there are e−O(n)R3n/4 triples

(11) a, b, c ∈ {−R/400, . . . , R/400}n/4

with

(12) a · b = h1, b · c = h2, c · a = h3, c · c = 3b · b.

This is an inhomogeneous version of (10) (at dimension n/4 rather than n), with
the zero coefficients replaced by more general coefficients h1, h2, h3. To eliminate
these coefficients we use a tensor power trick. Let S be the set of all triples (a, b, c)
obeying (11) and (12). We then observe that if (ai , bi , ci ) ∈ S for i = 1, 2, 3, 4,
then the vectors a, b, c ∈ Zn defined by

a := (a1, a2, a3, a4); b := (b1, b2,−b3,−b4); c := (c1,−c2, c3,−c4)

solve (10). The map from the (ai , bi , ci ) to (a, b, c) is an injection from S4 to the
solution set of (10), and so we obtain at least |S|4 ≥ e−O(n)R3n solutions to (10) as
required. �

This leads to a useful matrix counterexample:

Lemma 2.6 (restricted third moment can be negative). There exists a positive semi-
definite Hermitian matrix (A( j, k))1≤ j,k≤d for which the quantity

(13)
∑

n,r∈Z/dZ

A(n, n+ r)A(n+ r, n+ 2r)A(n+ 2r, n)

is negative, where we extend A(i, j) periodically in both variables by d.

Proof. We will take d to be a multiple of 3, and A( j, k) to take the form

A( j, k) := 1E( j)1E(k)+ 1E( j)ω− j 1E(k)ωk,
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where E ⊂ Z/dZ is a set to be determined later and ω := e2π i/3 is a cube root of
unity. The matrix (A( j, k))1≤ j,k≤d is then the sum of two rank one projections and
is thus positive semidefinite and Hermitian. The expression (13) can be expanded
as ∑

n,r∈Z/dZ:
n,n+r,n+2r∈E

(1+ωr )(1+ωr )(1+ω−2r ).

The summand can be computed to equal 8 when r is divisible by 3, and −1 other-
wise. Thus, to establish the claim, it suffices to find a set E such that the set

{(n, r) ∈ Z/dZ : n, n+ r, n+ 2r ∈ E, r 6= 0 mod 3}

is more than eight times larger than the set

{(n, r) ∈ Z/dZ : n, n+ r, n+ 2r ∈ E, r = 0 mod 3};

thus the length three arithmetic progressions in E with spacing not divisible by 3
need to overwhelm the length three progressions with spacing divisible by 3.

To do this, we use Lemma 2.5 to get a subset F ⊂{1, . . . , [d/10]} of cardinality
|F | ≥ d0.99 that contains no arithmetic progressions of length three. We then pick
three random shifts h0, h1, h2 ∈ {1, . . . , d/3} uniformly at random, and consider
the set

E := {3( f + hi )+ i : i = 0, 1, 2, f ∈ F}

consisting of three randomly shifted, dilated copies of F .
By construction, the only length three progressions in E with spacing divisible

by 3 are the trivial progressions n, n, n with r = 0, so the total number of such
progressions is at most d. On the other hand, for any fixed f0, f1, f2 ∈ F , the
numbers 3( fi + hi )+ i for i = 0, 1, 2 have a probability 3/d of forming an arith-
metic progression with spacing not divisible by 3, due to the random nature of
the hi . Thus the expected value of the total number of such progressions is at least
(d0.99)3× 3/d = 3d1.97. For d large enough, this gives the claim. �

This gives a simple example of negative averages for nonergodic systems:

Corollary 2.7 (negative average for nonergodic system). There exists a finite von
Neumann algebra (M, τ ) with a shift α and a nonnegative element a ∈M, such that
(2N + 1)−1∑N

n=−N τ(aα
n(a)α2n(a)) converges to a negative number.

Proof. Let a= (A( j, k))1≤ j,k≤d be as in Lemma 2.6. We let M be the von Neumann
algebra of complex d × d matrices with the normalised trace τ and with the shift

α(B( j, k))1≤ j,k≤d := (e2π i( j−k)/d B( j, k))1≤ j,k≤d .



18 TIM AUSTIN, TANJA EISNER AND TERENCE TAO

This is easily verified to be a shift. We see that

τ(aαn(a)α2n(a))= 1
d

∑
j,k,l∈Z/dZ

e2π in(k+l−2 j)/d A( j, k)A(k, l)A(l, j).

This expression is periodic in n with period d and has average

1
d

∑
l,r∈Z/dZ

A(l, l + r)A(l + r, l + 2r)A(l + 2r, l)

and the claim then follows from Lemma 2.6. �

This shows that recurrence on average for k= 3 can fail for nonergodic systems.
However, this is not yet enough to establish either Theorem 1.18 or Theorem 1.19.
To obtain these stronger results we must introduce the crossed product construction
in von Neumann algebras. For a comprehensive introduction to this concept, see
[Kadison and Ringrose 1997, Chapter 13]. We shall just recall the key properties
of this construction we need here.

Suppose we have a finite von Neumann algebra (M, τ ), and an action U of a
(discrete) group G on M; thus for each g ∈ G we have a shift U (g) :M→M such
that U (g)U (h)=U (gh) for all g, h ∈G, with U (id) being the identity. Then there
exists a crossed product (M oU G, τ ) that contains both the original space (M, τ )
and the group algebra CG as subalgebras. Furthermore, in this crossed product we
have

(14) U (g)a = gag−1

for all a ∈M and g ∈ G, and

τ(ga)= τ(ag)= 0

for all a ∈ M and g ∈ G with g not equal to the identity. Finally, the span of the
elements ag for a ∈M and g ∈ G is dense in M oU G.

Remark 2.8. The exact construction of the crossed product is not relevant for our
applications, but for the convenience of the reader we sketch one such construction
here. We first form the Hilbert space

h := `2(G, L2(τ ))=
⊕
g∈G

L2(τ )

consisting of tuples (xg)g∈G in L2(τ ). This space has an action of M defined by

a(xg)g∈G := ((U (g−1)a)xg)g∈G

for a ∈M, and an action of G (and hence CG) defined by

h(xg)g∈G := (xh−1g)g∈G .
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One can verify that these actions combine to an action of the twisted convolu-
tion algebra `1(G,M) on h, defined as the space of formal sums

∑
h∈G hah with∑

h∈G‖ah‖<∞, and subject to the relations (14). We define a trace on such sums
by the formula τ(

∑
h∈G hah) := τ(aid). One can then show that one can extend

this to a finite trace on the weak operator topology closure of `1(G,M), viewed
as a subset of B(h); this closure can then be denoted M oU G. In other words,
M oU G is constructed as the von Neumann algebra generated by the action of M

and G on h.

Example 2.9. The group von Neumann algebra LG can be viewed as CoG, where
G acts trivially on the one-dimensional von Neumann algebra C.

We can now get a stronger version of Corollary 2.7:

Theorem 2.10 (negative trace for nonergodic system). There exists a von Neu-
mann dynamical system (M, τ, α) and a nonnegative element a ∈ M, such that
τ(aαn(a)α2n(a)) is negative (and independent of n) for all nonzero n. In particu-
lar, Theorem 1.19 holds.

Proof. Let (M′, τ, β) be a von Neumann dynamical system to be chosen later.
Using the crossed product construction, we can build an extension M :=M′oU Z2

of M′ generated by M′ and two commuting unitary elements u and m, such that

(15) mam−1
= β(a)

and uau−1
= a for all a ∈M′. In particular, the element u is central. It is then easy

to see that we can build4 a shift α on M for which

α(a)= a, α(u)= u, α(m)= mu

for all a ∈ M′, since the action of the group Z2 generated by m and u on M′ is
unchanged when one replaces m by mu.

Now let a ∈M be an element of the form

a =
(∑

i∈Z

fi mi
)(∑

i∈Z

fi mi
)∗
,

where fi ∈ M′ and only finitely many of the fi are nonzero. This is clearly non-
negative, and can be simplified by (15) to the power series

a =
∑
h∈Z

ghmh,

4To build α explicitly, we can view M as an algebra of operators on the Hilbert space h :=⊕
( j,k)∈Z2 L2(τ ) as per Remark 2.8, and let α be the conjugation a 7→WaW∗ by the unitary operator

W : h→ h defined by W (x( j,k))( j,k)∈Z2 := (x( j,k− j))( j,k)∈Z2 .
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where the gh ∈M′ are the twisted autocorrelations of the f j , given by

gh =
∑
j∈Z

f j+hβ
h( f ∗j ).

Let n be nonzero. The expression τ(aαn(a)α2n(a)) can be expanded as∑
h1,h2,h3∈Z

τ(gh1mh1 gh2(mun)h2 gh3(mu2n)h3).

The net power of the central element u here is n(h2+ 2h3), and the net power of
m is h1 + h2 + h3. Thus we see that the trace vanishes unless h2 + 2h3 = h1 +

h2+ h3 = 0, or equivalently if (h1, h2, h3)= (h,−2h, h) for some h. Performing
this substitution and using (15), we simplify this expression to

(16)
∑
h∈Z

τ(ghβ
h(g−2h)β

−h(gh)).

In particular, this expression is now manifestly independent of n 6= 0.
We now select M′ to be the commutative von Neumann system L∞(Z/dZ) with

the shift β( f (x)) := f (x + 1) and the normalised trace. Thus the gh and fh are
now complex-valued functions on Z/dZ, and the expression above can be expanded
explicitly as

1
d

∑
x∈Z/dZ

∑
h∈Z

gh(x)g−2h(x + h)gh(x − h).

Meanwhile, the gh(x) by definition can be written as

gh(x)=
∑
j∈Z

f j+h(x) f j (x + h).

We pick a large number N to be chosen later, and set

f j (x) := b(x, x + j)11≤ j≤Nd ,

where b : Z/dZ×Z/dZ→C is a function periodic in two variables of period d to
be chosen later. Then we can compute

gh(x)=
(

1−
|h|
d N

)
+

N A(x, x + h)+ O(1),

where

(17) A(x, y) :=
∑

z∈Z/dZ

b(x, z)b(y, z)
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and O(1) denotes a quantity that can depend on d (and b) but is uniformly bounded
in N . The expression (16) can then be computed to be

C N 4

d

∑
x,h∈Z/dZ

A(x, x + h)A(x + h, x − h)A(x − h, x)+ O(N 3),

where C > 0 is the explicit constant C :=
∫

R
(1 − |h|)2

+
(1 − |2h|)+ dh. By the

substitutions x = m+ r and h = r , we can reexpress this as

(18) C N 4

d

∑
m,r∈Z/dZ

A(m,m+ r)A(m+ r,m+ 2r)A(m+ 2r,m)+ O(N 3).

Now, let d and A( j, k) be as in Lemma 2.6. By the spectral theorem (which
in particular allows one to construct self-adjoint square roots of positive definite
matrices), we can find b(x, y) such that (17) holds. The summand in (18) is then
negative, and the claim follows by choosing N large enough depending on all other
parameters. �

Of course, by Theorem 1.17, one cannot have such a result when the underlying
shift α is ergodic. On the other hand, one can extend Corollary 2.7 to the ergodic
case:

Theorem 2.11. There exists an ergodic von Neumann system (M, τ, α) and a non-
negative element a ∈M, such that (2N+1)−1∑N

n=−N τ(aα
n(a)α2n(a)) converges

to a negative number. In particular, Theorem 1.18 holds.

Proof. Let d be a large odd number, and let u := e2π i/d be a primitive d-th root
of unity. We will let M be a completion of the noncommutative torus. This is
obtained by first forming the C∗-algebra generated by two unitary generators e1

and e2 obeying the commutation relation

e2e1 = ue1e2

and with all of the expressions e j
1ek

2 having zero trace unless j = k = 0, in which
case the trace is 1, and then completing in the weak operator topology resulting
from the Gel’fand–Naimark–Segal representation on L2(τ ). One can represent this
finite von Neumann algebra more explicitly by letting e1 and e2 act on L2((R/Z)2)

by the maps e1 f (x, y) := e2π i x f (x, y) and e2 f (x, y) := e2π iy f (x+1/d, y), with
the trace τ given by τ(a)= 〈�, a�〉L2((R/Z)2), where �≡ 1 is the identity function
on (R/Z)2.

We let θ1, θ2 ∈ S1 be generic unit phases, and then define the shift α on M by
setting

α(e1) := θ1e1 and α(e2) := θ2e2.
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It is easy to see that this is a shift. If θ1 and θ2 are generic (so that θ j
1 θ

k
2 is not a

root of unity for any ( j, k) 6= (0, 0)), this shift is easily verified to be ergodic (as
one can verify the mean ergodic theorem by hand on the generators e j

1ek
2, and then

argue as in the proof of Theorem 2.1 using the faithfulness of τ ).
We set a := gg∗, where g is an element of the form g :=

∑M
k=1

∑
h∈Z cheh

1ek
2,

M is a large number (much larger than d) to be chosen later, and ch are complex
numbers to be chosen later, all but finitely many of which are zero. Clearly a is
nonnegative. A computation shows that

(19) a =
∑

h,k∈Z

ch,keh
1ek

2, where ch,k := M
(

1−
|k|
M

)
+

∑
l∈Z

cl+hclukl .

Since
αn(a)=

∑
h,k∈Z

ch,kθ
hn
1 θ kn

2 eh
1ek

2,

some Fourier analysis and the genericity of θ1 and θ2 show that the expression

1
2N+1

N∑
n=−N

τ(aαn(a)α2n(a))

converges as N →∞ to the expression∑
h,k

ch,kc−2h,−2kch,kτ(eh
1ek

2e−2h
1 e−2k

2 eh
1ek

2).

The trace here simplifies to u3hk . Inserting the expression for ch,k in (19), we can
expand this expression as

(20) M3
∑

h,k,l1,l2,l3∈Z

φ(k/M)cl1+hcl1cl2−2hcl2cl3+hcl3ukl1−2kl2+kl3+3hk,

where φ(x) := (1− |x |)2
+
(1− |2x |)+. By Poisson summation, the expression∑

k

φ(k/M)ukl1−2kl2+kl3+3hk

can be computed to be M
∫

R
φ(x)dx +O(1) if l1−2l2+ l3+3h is divisible by d,

and O(1) otherwise, where O(1) denotes a quantity that can depend on d but is
bounded uniformly in M . If we then assume that the ch vanish for h outside of
{1, . . . ,M} and are bounded uniformly in M , we can thus expand (20) as

C M4
∑

h,l1,l2,l3∈Z:
d |l1−2l2+l3+3h

cl1+hcl1cl2−2hcl2cl3+hcl3 + O(M7)

for some absolute constant C > 0.
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If we now set ch := b(h)1[1,M](h), where b : Z/dZ→ C is a periodic function
with period d and independent of M to be chosen later, we can express this as

Cd M8
∑

h,l1,l2,l3∈Z/dZ:
l1−2l2+l3+3h=0

b(l1+ h)b(l1)b(l2− 2h)b(l2)b(l3+ h)b(l3)+ O(M7)

for some Cd > 0 depending on d but independent of M . Making the substitutions
l1 = x , l2 = x + k+ 2h and l3 = x + 2k+ h, we see that we will be done as soon
as we are able to find d and b for which the expression

X :=
∑

x,h,k∈Z/dZ

b(x)b(x + h)b(x + k)b(x + k+ 2h)b(x + 2k+ h)b(x + 2k+ 2h)

is negative.
To do this, we again appeal to Lemma 2.5 to find a set F ⊂ Z/dZ of size at

least d0.99 (assuming d large enough), which contains no arithmetic progressions
of length three, but contains at least d2.99 hexagons x , x + h, x + k, x + k + 2h,
x + 2k + h, x + 2k + 2h. We then set b(x) := εx 1F (x), where the εx = ±1 are
independent signs; thus X is now the random variable

X =
∑

εxεx+hεx+kεx+2h+kεx+h+2kεx+2h+2k,

where the sum is over {x, h, k : x, x+h, x+k, x+k+2h, x+2k+h, x+2k+2h∈ F}.
We will show (for d large enough) that the standard deviation of X exceeds its
expectation, which shows that there exists a choice of signs for which X is negative.

We first compute the expectation of X . The only summands with nonzero
expectation occur when all the signs cancel, which only occurs when h = 0 or
when k = 0, as can be seen by an inspection of the number of ways to collapse
the hexagon in Figure 1; here we need the hypothesis that d is odd. But since F
contains no nontrivial arithmetic progressions, there are no summands for which
only one of the h, k are zero, so we are left only with the h= k= 0 terms, of which
there are at most d . Thus the expectation of X is at most d.

Now we compute the variance. There are at least d2.99 hexagons in F , and all but
O(d2) of them are nondegenerate in the sense that the six vertices of the hexagon
are all distinct. The summands in X corresponding to nondegenerate hexagons
have variance 1, and the correlation between any two summands in X is either
zero or positive (the latter occurs when two summands are permutations of each
other). Thus the variance of X is � d2.99, so the standard deviation is � d1.495,
and the claim follows. �

2c. Negative trace for k= 5. Now we show negative traces can occur even in the
ergodic case when k = 5.
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Theorem 2.12. There exists an ergodic von Neumann dynamical system (M, τ, α)

and a nonnegative element a ∈M, such that τ(aαn(a)α2n(a)α3n(a)α4n(a)) is neg-
ative for every nonzero n.

This establishes the k = 5 case of Theorem 1.20. A similar argument holds for
all larger odd values of k, which we leave to the interested reader; we restrict here
to the case k = 5 simply for ease of notation.

To prove this theorem, our starting point is the following result of Bergelson,
Host, Kra, and Ruzsa [Bergelson et al. 2005]:

Theorem 2.13. For any δ > 0, there is a measure-preserving system (X,X, µ, S)
and a measurable set A ⊂ X with 0< µ(A) < δ such that

µ(A∩ Sn(A)∩ S2n(A)∩ S3n(A)∩ S4n(A))≤ µ(A)100

(say) and

(21) µ(A∩ Sn(A))= µ(A)2

for every nonzero integer n.

Proof. This follows from [Bergelson et al. 2005, Theorem 1.3] (see also the remark
immediately below that theorem). The property (21) is not explicitly stated in that
theorem, but follows from the construction in [Bergelson et al. 2005, Section 2.3]
(the system X is a torus (R/Z)2 with the skew shift S : (x, y) 7→ (x+α, y+2x+α),
and the set A has the special form A = (R/Z)× B for some set B). �

We apply this theorem for some sufficiently small δ (to be chosen later) to obtain
X, µ, S, A with the properties above. We will combine this with the group G, the
automorphism T , and the elements e0, e1, e2, e3, e4 arising from Proposition B.13
as follows.

First, we create the product space L∞(X G, dµG), whose σ -algebra is generated
up to negligible sets by the tensor products

⊗
g∈G fg, where fg ∈ L∞(X, dµ) is

equal to 1 for all but finitely many g. This product has a unitary, trace-preserving
action U of G, defined by

U (h)
⊗
g∈G

fg :=
⊗
g∈G

fh−1g.

We can therefore create the crossed product M := L∞(X G, dµG) oU G. Note
that if we embed L∞(X, µ) into L∞(X G, dµG) by using the identity component
of X G , we have

(22)
⊗
g∈G

fg =
∏
g∈G

U (g) fg

(note that the U (g) fg necessarily commute with each other).
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We define a shift α on M by requiring that

α
(⊗

g∈G

fg

)
=

⊗
g∈G

S( fT−1g) and α(g)= T g;

one can check that this is indeed a well-defined shift on M.
We claim that α is ergodic. Indeed, if a ∈ M is of the form a = f g for some

f ∈ L∞(X G, dµG) and g ∈G not equal to the identity, then since the powers of T
have no nontrivial fixed points, the orbit T ng escapes to infinity, and the orbit αn(a)
converges weakly to zero. Meanwhile, if g is the identity, then it is classical that
the Bernoulli system G � L∞(X G, dµG) is ergodic, and so the ergodic theorem
applies to a in this case. Putting the two facts together and arguing as for the
ergodicity in Theorem 2.1 yields the ergodicity of α.

Note that 1A lies in L∞(X, dµ), and can thus be identified with an element of M

by the previous embedding. We set

a :=
3∑

i=0

1A · (2− ei − e−1
i ) · 1A.

Clearly a is nonnegative. Now let n be nonzero, and consider the expression

(23) τ(aαn(a)α2n(a)α3n(a)α4n(a)).

Expanding out a, we obtain a linear combination of terms of the form

τ(1Ag01A1Sn(A)(T ng1)1Sn(A)1S2n(A)(T
2ng2)

· 1S2n(A)1S3n(A)(T
3ng3)1S3n(A)1S4n(A)(T

4ng4)1S4n(A)),

where g0, g1, g2, g3, g4 ∈ {id, e0, e1, e2, e3, e4, e−1
0 , e−1

1 , e−1
2 , e−1

3 , e−1
4 }. This trace

vanishes unless

(24) g0T ng1T 2ng2T 3ng3T 4ng4 = id .

By Proposition B.13, we conclude that g0, g1, g2, g3, g4 are either all equal to the
identity, or are a permutation of e0, e1, e2, e3, e4, or are a permutation of e−1

0 , e−1
1 ,

e−1
2 , e−1

3 , e−1
4 . In the latter two cases, the contribution to (23) is either zero or

negative (being negative the trace of the product of several nonnegative elements
in a commutative von Neumann algebra). Here we are using the fact that 5 is odd.
Discarding all of these contributions except the one where gi,0 = ei,0 (which has
a nontrivial contribution thanks to Proposition B.13), we conclude that (23) is at
most

105τ(1A1Sn(A)1S2n(A)1S3n(A)1S4n(A))

− τ(1Ae01A1Sn(A)e11Sn(A)1S2n(A)e21S2n(A)1S3n(A)e31S3n(A)1S4n(A)e41S4n(A)).
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By Theorem 2.13, the first expression is at most 105µ(A)100. Now consider the
second expression. By Proposition B.13, we see that the partial products e0e1 · · · ei

for i = 0, 1, 2, 3 are distinct. Using (22), we conclude that the trace here can be
computed as

µ(S4n(A)∩ A)µ(A∩ Sn(A))µ(Sn(A)∩ S2n(A))

·µ(S2n(A)∩ S3n(A))µ(S3n(A)∩ S4n(A)),

which by (21) is equal to µ(A)10. Thus the expression (23) is no more than
215µ(A)100

−µ(A)10, which is negative if the upper bound δ for µ(A) is chosen
to be sufficiently small.

This concludes the proof of Theorem 2.12.

Remark 2.14. Given that the counterexample in Theorem 2.13 can be extended
to any k ≥ 5, it seems reasonable to expect that Theorem 1.20 can be extended
to all k ≥ 5 (not just the odd k), though we have not pursued this issue. On
the other hand, the analogue of Theorem 2.13 fails for k = 4, as was shown in
[Bergelson et al. 2005]. Because of this, the k = 4 case of Theorem 1.20 remains
open; the construction given here does not work, but it is possible that some other
construction would suffice instead.

3. Inclusions of finite von Neumann dynamical systems

In this section we recall some fairly well-known constructions relating to von
Neumann dynamical systems and their basic properties, culminating in a treatment
of Popa’s [2007] noncommutative version of the Furstenberg–Zimmer dichotomy.
This material will be needed to establish the structure theorem, Theorem 1.14.

Let (M, τ ) be a finite von Neumann algebra. As noted in the introduction, we can
embed M into a Hilbert space L2(τ ). In order to distinguish the algebra structure
from the Hilbert space structure,5 we shall refer in this section to the embedded
copy of an element a ∈ M of the algebra in L2(τ ) as â rather than a; thus for
instance M̂= {â : a ∈M} is a dense subspace of L2(τ ).

Clearly, L2(τ ) has the structure of an M-bimodule, formed by extending the
regular bimodule structure on M by density; the left-representation is, of course,
the classical Gel’fand–Naimark–Segal representation associated to τ . When it is
necessary to denote the copy of M in B(L2(τ )) consisting of the members of M

acting by multiplication on the left (respectively, right), we will denote this algebra
by Mleft (respectively, Mright).

5It is tempting to ignore these distinctions and identify M̂ with M. While this is normally quite a
harmless identification, we will take some care here because we will be studying the bimodule action
of M on L2(τ ), and keeping track of this action can become notationally confusing if the algebra
elements are identified with the vectors that they act on.
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The space L2(τ ) contains a distinguished vector 1̂ — the representative of the
multiplicative identity 1 in M — with the property that a1̂= 1̂a = â for all a ∈M.
This vector will play a prominent role in the rest of this section.

Now let (N, τ |N) be a von Neumann subalgebra of (M, τ ) (with the inherited
trace). Then we can canonically identify L2(τ |N) with the closed subspace

{b̂ : b ∈ N} = N1̂= 1̂N

of L2(τ ) in the obvious manner.
We will make use of certain well-known properties of these constructs, which

we merely recall here. A clear account of all of them can be found in [Jones and
Sunder 1997, Chapters 1 and 3].

First, it is important that there is a simple necessary and sufficient condition for
a vector ξ ∈ L2(τ ) to lie in the dense subspace M̂: this is so if and only if the linear
operator M̂→ L2(τ ), x̂ 7→ xξ is bounded for the norm ‖·‖L2(τ ), and so extends by
continuity to a bounded operator L2(τ )→ L2(τ ). The necessity of this conclusion
is clear, and its sufficiency requires just a little argument using the fact that for a
finite von Neumann algebra (M, τ ) we have Mright =M′′right and Mleft =M′′left; see
[Jones and Sunder 1997, Theorem 1.2.4].

A simple application of this condition now shows that the orthogonal projection
eN : L2(τ )→ N1̂ maps the dense subspace M̂ into N̂, and so defines also a linear
operator EN : M → N. Indeed, for a ∈ M we need only to show that the map
M̂→ L2(τ ), x̂ 7→ xeN(â) is bounded for the norm ‖ · ‖L2(τ ). Since N is also a
von Neumann algebra and eN(â) ∈N1̂∼= L2(τ |N), it actually suffices to check this
for x ∈N. However, since N1̂ is an (N,N)-sub-bimodule, left multiplication by x
commutes with eN, and so we have, as required,

‖xeN(â)‖L2(τ ) = ‖eN(xâ)‖L2(τ ) ≤ ‖x̂a‖L2(τ ) ≤ ‖a‖‖x̂‖L2(τ ).

The linear operator EN is referred to as the conditional expectation of M onto
N associated to τ , and it has the following readily verified properties:

Lemma 3.1 (properties of conditional expectation). For all a ∈ M, the operator
EN satisfies

• (idempotence) EN(EN(a))= EN(a);

• (contractivity) ‖EN(a)‖ ≤ ‖a‖;

• (trace-preservation) τ |N(EN(a))= τ(a);

• (positivity) EN(a∗a)≥ 0 (as a member of N); and

• (relation with eN) for all ξ ∈ L2(τ ),

eN(a(eN(ξ)))= EN(a)(eN(ξ))= eN(EN(a)(ξ)).
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Example 3.2. If M= L∞(X,X, µ) for some probability measure µ with the usual
trace, and (Y,Y, ν) is a factor space of (X,X, µ) with a measurable factor map
π : X → Y that pushes µ forward to ν, then L∞(Y,Y, ν) can be identified with a
subalgebra of M, and the conditional expectation map becomes its classical coun-
terpart from probability theory.

Together with M, the orthogonal projection eN now generates in B(L2(τ )) a
larger von Neumann algebra 〈M, eN〉 ⊇M. In general 〈M, eN〉 is no longer a finite
von Neumann algebra, but it does contain the dense ∗-subalgebra

A := lin(M∪ {xeN y : x, y ∈M})

on which we define the lifted trace τ̄ :A→C by specifying τ̄ (xeN y)= τ(xy). By
choosing an orthonormal basis for L2(τ ) relative to the right action of N, and con-
sequently realising 〈M, eN〉 as an amplification of N, this linear map is seen to be
nonnegative and faithful, and hence defines a semifinite normal faithful [0,+∞]-
valued trace (which we still denote by τ̄ ) on the cone (〈M, eN〉)

+ of nonnegative
(and self-adjoint) elements of 〈M, eN〉. This witnesses that the algebra 〈M, eN〉 is
semifinite (that is, any positive element of it may be approximated from below
by finite-τ̄ positive elements). We will not spell out these standard manipulations
here (see, for instance, [Popa 2007, Section 1.5]), but we will invoke a notion of
orthonormal basis for right-N-submodules of L2(τ ) shortly.

Remark 3.3. In case N⊂M is a finite-index inclusion of finite II1 factors, then we
find that 〈M, eN〉 is also a finite II1 factor. Writing M1 for this factor, it follows that
the construction above may be repeated with the inclusion M ↪→ M1 in place of
N ↪→M, and indeed that it may be iterated to form an infinite tower of II1 factors

N⊂M⊂M1 ⊂M2 ⊂ · · · .

This is Jones’ basic construction, which underlies his famous work [1983] on the
possible values of the index [N : M], and also several more recent developments.
Once again we refer the reader to [Jones and Sunder 1997] for a thorough account
of its importance, and numerous further references. However, since the construc-
tion of this whole infinite tower is special to the case of II1 factors, we will not
focus on it further here.

It is easy to check that the right action of any n∈N commutes with any xeN y, and
hence with any member of 〈M, eN〉. In fact it can be shown that 〈M, eN〉

′
= Nright

and hence that N′right = 〈M, eN〉
′′
= 〈M, eN〉: first, if A ∈ B(L2(τ )) commutes

with every b ∈ Mleft, then it must be the right action of some a ∈ M, and now
if also eN(1̂a) = 1̂a then we must in fact have a ∈ N; see [Jones and Sunder
1997, Proposition 3.1.2]. Let us record the following immediate but important
consequence of this for our later work:
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Lemma 3.4. If V ≤ L2(τ ) is a closed right-N-submodule, then the orthogonal
projection PV : L2(τ )→ V is a member of 〈M, eN〉. �

Using τ̄ we can also define an alternative completion of A = lin MeNM for
each p ∈ [1,∞) by setting ‖A‖p,τ̄ :=

p
√
τ̄ ((A∗A)p/2) for A ∈ A (where as usual

the power (A∗A)p/2 is defined using spectral theory for the self-adjoint operator
A∗A, and the nonnegativity of τ̄ is used to show that τ̄ ((A∗A)p/2) is finite even
when p/2 is not an integer). We denote this completion by L p(τ̄ ); it is a Hilbert
space when p = 2. In general elements of L p(τ̄ ) do not correspond to elements
of 〈M, eN〉, but they do give possibly unbounded but closable operators that are
weakly approximable by members of this algebra, which are therefore affiliated
to Nright. If A ∈ L p(τ̄ ) is such an operator that is self-adjoint, then it admits a
spectral decomposition A =

∫
R

s P(ds) for some spectral measure P on R taking
values in the projections of 〈M, eN〉 ∩ L1(τ̄ ), of possibly unbounded support in R,
but for which ‖A‖p

p,τ̄ =
∫

R
|s|p τ̄ P(ds) <∞.

If V is as in Lemma 3.4 then we may write that PV has finite lifted trace if it
corresponds to a member of 〈M, eN〉 ∩ L1(τ̄ ).

Now let us introduce some dynamics. Suppose that α is a shift on M that restricts
to a shift on N. Then, as mentioned in the introduction, α induces a unitary operator
acting on L2(τ ), which we shall distinguish from α by writing it as Uα; thus for
instance

Uαâ =Uα(a1̂)= α(a)1̂= α̂(a) for all a ∈M.

It is clear that N1̂ is an invariant subspace for Uα, so that Uα commutes with eN.
Also, conjugation by Uα agrees with the action α on M; thus

UαaU−1
α ξ = α(a)ξ for all a ∈M and ξ ∈ L2(τ ).

Thus, conjugation by Uα extends the action of α to 〈M, eN〉.
The following special class of one-sided submodules of L2(τ ) appears here al-

most exactly as in the commutative setting.

Definition 3.5 (finite-rank modules). A left- (respectively, right-) N-submodule V
of L2(τ ) has finite rank if there are some ξ1, ξ2, . . . , ξr ∈V such that V =

∑r
i=1 Nξi

(respectively, V =
∑r

i=1 ξi N), and the numerical value of its rank is the least r ≥ 1
for which this is possible.

Proposition 3.6 (relativised Gram–Schmidt procedure). If V ≤ L2(τ ) is a Uα-
invariant right-N-submodule of finite rank r then there are ξ1, ξ2, . . . , ξr ∈ L2(τ )

such that

• the subspaces ξi N≤ L2(τ ) are pairwise orthogonal, and

• V =
∑r

i=1 ξi N.
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Proof. This uses a relativised Gram–Schmidt argument much as in the commutative
setting; see for example [Glasner 2003, Lemma 9.4]. We proceed by induction on r .
If V has rank 1, then the result is immediate from the definition, so let us suppose
that it has rank r + 1 for some r ≥ 1. Then given a representation

V =
r+1∑
i=1

ξ ◦i N,

we know that any member of V may be approximated in ‖ · ‖L2(τ ) by expressions
of the form ξ ◦1 n1+ · · · + ξ

◦

r+1nr+1 for n1, n2, . . . , nr+1 ∈ N. This, in turn, may be
rewritten as

(ξ⊥1 n1+ · · ·+ ξ
⊥

r nr )+ ((ξ
◦

1 − ξ
⊥

1 )n1+ · · ·+ (ξ
◦

r − ξ
⊥

r )nr )+ ξ
◦

r+1nr+1

where for each i ≤ r we have decomposed ξ ◦i into its component ξ⊥i orthogonal to
ξr+1N and the remainder ξ ◦i − ξ

⊥

i ∈ ξr+1N. Since ξr+1N is a right-N-submodule,
it follows that the second and third inner sums in the decomposition above both
lie in ξr+1N, and now since ξr+1N⊥ is also a right-N-submodule, we have in fact
shown that

V = V1+ ξr+1N,

where V1 :=
∑r

i=1 ξ
⊥

i N is a rank-r right-N-submodule that is orthogonal to ξr+1N.
Applying the inductive hypothesis to V1 now completes the proof. �

The following definition is also drawn from the commutative world. This notion
has previously been extended to the setting of noncommutative algebras by Popa
in [2007], who discusses several other aspects and equivalent conditions in that
paper. (See also [Niculescu et al. 2003; Duvenhage 2009; Beyers et al. 2010] for
an analysis of the absolute analogue of weak mixing, in which the subalgebra N is
the trivial algebra C1.)

Definition 3.7 (relative weak mixing). If (M, τ, α) is a von Neumann dynamical
system and N ⊂ M is an α-invariant von Neumann subalgebra, then α is weakly
mixing relative to N if for any a ∈M∩N⊥ we have

1
N

N∑
n=1

‖EN(a∗αn(a))‖2τ → 0 as N →∞.

The basic inverse theorem that we need, extending the idea of Furstenberg and
Zimmer to the noncommutative context, is contained in the following proposition,
which essentially proves again part of [Popa 2007, Lemma 2.10]:

Proposition 3.8 (lack of weak mixing implies finite trace submodule). If α is
not weakly mixing relative to N, then there is a Uα-invariant right-N-submodule
V ≤ L2(τ )	N1̂ such that PV has finite lifted trace.
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Proof. Suppose that a ∈M∩N⊥ is such that

1
N

N∑
n=1

‖EN(a∗αn(a))‖2τ 6→ 0.

Define b := aeNa∗ ∈ 〈M, eN〉, and now observe (using the cyclic permutability
of τ̄ and the identity eNmeN ≡ EN(m)eN) that for any n ∈ N we have

τ̄ (b(U n
αbU−n

α ))= τ̄ (aeNa∗U n
α (aeNa∗)U−n

α )= τ̄ (aeNa∗αn(a)eNα
n(a)∗)

= τ̄
(
EN(a∗αn(a))eNα

n(a)∗a
)
= ‖EN(a∗αn(a))‖2τ .

Averaging in n, it follows that

τ̄
(

b 1
N

N∑
n=1

αn(b)
)
→ 〈b, b1〉τ̄ 6= 0,

where b1 is the limit of the ergodic averages N−1∑N
n=1 α

n(b) in the Hilbertian
completion L2(τ̄ ), which is therefore invariant under the further extension of the
unitary operator Uα to this Hilbert space.

This new element b1 need not, in general, correspond to a member of 〈M, eN〉

(it is easily seen to be so in the commutative setting, but for special reasons);
however, as a ‖·‖2,τ̄ -limit of members of 〈M, eN〉 =N′right, the element can always
be identified with a closed operator on L2(τ ) that is affiliated with the right action of
the algebra N, and as such it admits a spectral decomposition b1 =

∫
∞

0 s P(ds) for
some resolution of the identity P on [0,∞)whose contributing spectral projections
lie in 〈M, eN〉, and for which

∫
∞

0 s2τ̄ (P(ds))= ‖b1‖
2
2,τ̄ <∞. Hence τ̄ P(I ) <∞

for any Borel subset I ⊆ (0,∞) bounded away from 0. Now choosing any such
subset I for which P(I ) 6= 0 gives an orthogonal projection P(I ) ∈ 〈M, eN〉 of
finite lifted trace that is Uα-invariant, commutes with the right-N-action because
it lies in 〈M, eN〉, and moreover has image orthogonal to 1̂N because we initially
chose b to lie in the orthogonal complement of this subspace. �

Remark 3.9. The implication above can in fact be reversed, and these conditions
shown to be equivalent to a number of others; see [Popa 2007, Lemma 2.10] for a
more complete picture.

In the next section we will push the above results a little further under the
additional assumption that the subalgebra N is central, leading to the proof of
Theorem 1.14.

4. The case of asymptotically abelian systems

We now specialise to the case of an asymptotically abelian system, with the crucial
additional assumption that the subalgebra N is central.
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Lemma 4.1. Suppose that (M, τ, α) is a von Neumann dynamical system, N⊂M is
an α-invariant central von Neumann subalgebra and V ≤ L2(τ ) is a Uα-invariant
right-N-submodule of finite lifted trace. Then for any ε > 0 there is a further Uα-
invariant right-N-submodule V1 ≤ V such that

• τ̄ (PV − PV1) < ε,

• V1 has finite rank, say r ≥ 1, and

• there are an orthogonal right-N-basis ξ1, ξ2, . . . , ξr and a unitary matrix of
unitary operators U = (u j i )1≤i, j≤r ∈Ur×r (N) such that

Uα(ξi )=

r∑
j=1

ξ j u j i for all i = 1, 2, . . . , r.

We refer to U as the cocycle representing the action of Uα on the basis elements ξi .

Proof. We will prove this invoking the picture of the representation of N on L2(τ )

as a direct integral coming from spectral theory. By the classical theory of direct
integrals (see, for instance, [Kadison and Ringrose 1997, Chapter 14]), we can
select

• a standard Borel probability space (Y, ν),

• a Borel partition Y =
⋃

n≥1 Yn ∪ Y∞,

• a collection of Hilbert spaces Hn for n ∈ {1, 2, . . . ,∞} with dim(Hn)= n, and

• a unitary equivalence

8 : L2(τ )→ H :=

∫
⊕

Y
Hy ν(dy),

where we define Hy to be Hn when y ∈ Yn ,

such that N (acting on either the right or left, since these agree for a central sub-
algebra of M) is identified with the algebra of functions L∞(ν) acting by point-
wise multiplication. Explicitly, if we denote elements of H as measurable sections
v : Y →

∐
y∈Y Hy , then f ∈ L∞(ν) acts on H by

Mf (v)(y) := f (y)v(y).

Moreover, in order to accommodate 8(N1̂) we select a measurable section v0 ∈H

with ‖v0(y)‖Hy ≡ 1, and now N1̂ is identified with

{y 7→ f (y)v0(y) : f ∈ L∞(µ)},

so that the orthogonal projection 8eN8
−1 acts by

8eN8
−1(v)(y) := 〈v(y), v0(y)〉Hy · v0(y).
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The larger algebra Mright is identified under8with a direct integral
∫
⊕

Y My ν(dy),
so that elements of 8(M) are expressed as measurable sections

T : Y →
∐
y∈Y

B(Hy)

acting by T v(y) := T (y)(v(y)) and such that T (y) ∈ My ν-almost surely, where
(My)y∈Y is a measurable field of finite von Neumann subalgebras of B(Hy) for
each of which the state

My→ C : T 7→ 〈v0(y), T (v0(y))〉Hy

is a faithful finite trace; overall we have

τ(a)= 〈1̂, a1̂〉 =
∫

Y
〈v0(y),8(a)(y)(v0(y))〉Hy ν(dy) for a ∈M,

and so in particular if n ∈ N then 8(n) ∈ L∞(µ) and τ(n)=
∫
8(n) dν.

Given these data, for a, b ∈M we can compute that and

8(aeNb)8−1v(y)= 〈8(b)(y)(v(y)), v0(y)〉 ·8(a)(y)(v0(y)),

τ̄ (aeNb)= τ(ab)=
∫

Y
〈v0(y),8(ab)(y)(v0(y))〉Hy ν(dy)

=

∫
Y
〈8(a∗)(y)(v0(y)),8(b)(y)(v0(y))〉Hy ν(dy)

=

∫
Y

tr(8(aeNb)8−1
|Hy ) ν(dy).

In this representation an N-submodule V ≤ L2(τ ) corresponds to a subspace
8(V )≤H of the form

∫
⊕

Y Vy ν(dy) for some measurable subfield of Hilbert spaces
Vy ≤Hy , and the calculation above now shows that τ̄ (PV )=

∫
Y dim(Vy) ν(dy), so

PV has finite lifted trace if and only if the function y 7→ dim(Vy) is ν-integrable.
We can enhance this picture further by noting that since α preserves N it must

correspond to some ν-preserving transformation S y Y , and that since it also
preserves M and extends to a unitary operator on L2(τ ) it must also preserve each of
the cells Yn . Similarly, since V is Uα-invariant, the transformation S must preserve
the function y 7→deg(Vy). It follows that the unitary operator8Uα8

−1 on L2(τ ) is
actually given by a measurable section of unitary operators 9 : Y →

∐
y∈Y U(Hy)

such that
8Uα8

−1v(y)=9(y)(v(S−1 y)).

Now, since y 7→ deg(Vy) is ν-integrable, for sufficiently large r ≥ 1 we know
that ∫

{y∈Y :deg(Vy)>r}
deg(Vy) ν(dy) < ε.



34 TIM AUSTIN, TANJA EISNER AND TERENCE TAO

Define

W :=
∫
⊕

{y∈Y :deg(Vy)≤r}
Vy ν(dy)⊕

∫
⊕

{y∈Y :deg(Vy)>r}
{0} ν(dy)

and V1 := 8
−1(W ). Clearly V1 is still a right-N-submodule that is Uα-invariant,

and it clearly also has rank at most r (since it suffices to prove this for W , for which
it follows by a relativised Gram–Schmidt construction of a fibrewise-orthonormal
basis exactly as in the setting of commutative ergodic theory; see for instance
[Glasner 2003, Lemma 9.4]). Also, we have

τ̄ (PV − PV1)=

∫
{y∈Y :deg(Vy)>r}

deg(Vy) ν(dy) < ε.

Finally, the selection of unitaries 9 must preserve the field of subspaces Vy

above the S-invariant set {y ∈ Y : deg(Vy) = s} for each s ≤ r . Choosing an
abstract d-dimensional Euclidean space Wd for each d ≤ r and adjusting each
fibre of W by a unitary in order to identify each Vy for which dim(Vy) ≤ r with
Wdim(Vy), we obtain a new representation of V1 as a right-N-submodule using these
fibres Wd , so that the action of Uα is now described by a measurable family of
unitaries 9 ′(y) ∈U(Wdim(Vy)). Picking an orthonormal basis for each Wd , writing
these unitary operators as unitary matrices in terms of these bases, noting that their
individual entries are now identified with elements of L∞(µ)=8(N), and carrying
everything back to L2(τ ) using 8−1 gives the desired expression for Uα. �

Remark 4.2. Frustratingly, both the fact that a Uα-invariant V of finite lifted trace
may be approximated by a Uα-invariant V1 of finite rank, and the fact that given
such a module of finite rank the action of Uα on it may be described by a unitary
element in U(Mr×r (N)), seem to be difficult to prove without the assumption that
N is central and the resulting representation of the action of N on L2(µ) as the
multiplication action of some L∞(ν) on a measurable field of Hilbert spaces. It
would be interesting to settle this issue more generally:

Question 4.3. Do these conclusions hold for a finite-lifted-trace invariant sub-
module corresponding to an arbitrary inclusion of finite von Neumann algebras
with a trace-preserving automorphism?

Before moving on let us quickly note an important difference from the setting
of abelian von Neumann algebras.

Example 4.4. If M is abelian, then it is well known from commutative ergodic
theory that all the intermediate Uα-invariant submodules V ≤ L2(τ ) that have
finite-rank over N together generate an intermediate subalgebra between N and M,
and that this then corresponds to an intermediate measure-preserving system. We
will see shortly that an analogous conclusion can sometimes be recovered in the
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asymptotically abelian setting, but it is certainly not true for general finite-rank
submodules, even when the smaller algebra N is abelian.

Consider, for example, the inclusion i : LZ∼= L∞(mT) ↪→ LF2 corresponding to
the embedding of Z as the cyclic subgroup aZ of the free group F2 = 〈a, b〉. Here
LG is the group von Neumann algebra of G, defined in Section 2a. In this case
we can identify L2(τ ) as `2(F2) and L2(τ |N) as the subspace spanned by {ξan }n∈Z.
Now define α ∈Aut LF2 simply by lifting the group automorphism of F2 that fixes
a and maps b 7→ ba. Now the subspace V := lin{ξban : n ∈ Z} ≤ `2(F2) is a
Uα-invariant right N-module of rank one which is orthogonal to L2(τ |N). On the
other hand, although ξb ∈ M̂∩V , we have αm(ξ 2

b )= α
m(ξb2)= ξbambam for m ∈ Z,

and it is easy to see that these elements of M do not remain within any finite-rank
right-N-submodule.

It is true that if L2(τ )	 L2(τ |N) contains a finite-rank right-N-submodule V ,
then it also contains a finite-rank left-N-module in the form of J (V ), where J is the
modular automorphism on V , defined by extending the conjugation map a 7→ a∗

on M ≡ M̂ by density. The point is that it can happen that J (V ) ⊥ V , and that
all elements of J (V ) are weakly mixed by Uα: it is the right-module V , and no
other, that serves as the obstruction to overall relative weak mixing coming from
Theorem 1.13.

Definition 4.5. A vector ξ ∈ L2(τ ) is central if mξ = ξm for all m ∈M.

Lemma 4.6 (no nonobvious central vectors). The closure Z(M)1̂= 1̂Z(M) is equal
to the set of all central vectors in L2(τ ).

Proof. Suppose that ξ ∈ L2(τ ) is central. Define aξ :M1̂→ L2(τ ) by aξ (m1̂) := ξm.
This is a densely defined linear operator on L2(τ ), and it is closable because if
mn 1̂= 1̂mn→ 0 in ‖ · ‖L2(τ ) for some sequence (mn)n≥1 in M and also ξmn→ ξ ′

in ‖ · ‖L2(τ ), then we have

〈m′1̂, ξ ′〉 = lim
n→∞
〈m′1̂, ξmn〉 = lim

n→∞
〈1̂m∗n, (m

′)∗ξ〉 = 0 for every m′ ∈M,

and so in fact we must have ξ ′ = 0. Also, we clearly have

aξ (m1̂)= aξ (1̂m)= ξm = mξ = (aξ (1̂))m = m(aξ (1̂)) for every m ∈M,

so aξ is affiliated with both the right- and left-actions of M on L2(τ ). The same
therefore holds for aξ + a∗ξ and i(aξ − a∗ξ ), and now these are self-adjoint and so
each of them may be expressed as an unbounded spectral integral all of whose
contributing spectral projections must lie in M′left ∩ M′right = Z(M). Therefore,
approximating aξ = 1

2(aξ + a∗ξ )+
1
2(aξ − a∗ξ ) by a sum of two large but bounded

integrals with respect to the respective resolutions of the identity, we get a sequence
of elements an ∈ Z(M) such that an→ aξ pointwise on dom(clos(aξ ))⊇M1̂, and
hence such that an 1̂→ ξ in ‖ · ‖L2(τ ). Hence ξ ∈ Z(M)1̂, as required. �
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Proposition 4.7. If (M, τ, α) is an asymptotically abelian von Neumann dynamical
system, N is a shift-invariant central von Neumann subalgebra, and V ≤ L2(τ ) is
an α-invariant right-N-submodule of M having finite lifted trace, then all elements
of V are central vectors.

Proof. Clearly it will suffice to prove this for all finite-rank approximants V1 to V
as given by Lemma 4.1. Thus we may assume that V actually has finite rank. Let
ξ1, ξ2, . . . , ξr and U = (u j i )1≤i, j≤r ∈Mr×r (N) be as given by the third part of that
lemma.

Since α is asymptotically abelian, we have for any a1̂ ∈M1̂ and b ∈M that

1
N

N∑
n=1

‖bU n
α (a1̂)−U n

α (a1̂)b‖L2(τ ) =
1
N

N∑
n=1

‖bαn(a)−αn(a)b‖L2(τ )→ 0.

Approximating an arbitrary ξ ∈ L2(τ ) by elements of M1̂, it follows that for
each fixed b ∈M and ξ ∈ L2(τ ), we have

lim
N→∞

1
N

N∑
n=1

‖bU n
α (ξ)−U n

α (ξ)b‖L2(τ ) = 0.

On the other hand, we know that

Uα(ξi )=

r∑
j=1

ξ j u j i for all i = 1, 2, . . . , r,

and so, writing U n
= (u(n)j i )1≤i, j≤r , we have

U−n
α (ξi )=

r∑
j=1

ξ j u
(−n)
j i implies ξi=

r∑
j=1

U n
α (ξ j )α

n(u(−n)
j i ) for all i=1, 2, . . . , r.

Clearly each u(−n)
j i is still a unitary, and so from this, averaging in n and the

centrality of N, we obtain

‖bξi−ξi b‖L2(τ ) =

∥∥∥ 1
N

N∑
n=1

( r∑
j=1

bU n
α (ξ j )α

n(u(−n)
j i )−

r∑
j=1

U n
α (ξ j )α

n(u(−n)
j i )b

)∥∥∥
L2(τ )

=

∥∥∥ 1
N

N∑
n=1

r∑
j=1

(bU n
α (ξ j )−U n

α (ξ j )b)αn(u(−n)
j i )

∥∥∥
L2(τ )

≤

r∑
j=1

1
N

N∑
n=1

‖bU n
α (ξ j )−U n

α (ξ j )b‖L2(τ ),
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and now since each of the summands in j tends to 0 as N→∞, it follows that we
must in fact have bξi=ξi b for every i≤r , and hence (taking N-linear combinations,
which have central coefficients, and then a completion) that all vectors in V are
central, as required. �

Corollary 4.8. If (M, τ, α) is an asymptotically abelian von Neumann dynamical
system, then the subalgebra Mα

:= {a ∈M : α(a) = a} of individually α-invariant
elements is central.

Proof. Of course, if α(a) = a, then lin{1̂a} is a rank one α-invariant submodule
of L2(τ ) for the trivial central subalgebra N := C1̂, and the claim follows from
Proposition 4.7. This claim can also be easily verified directly from the definition
of asymptotic abelianness. �

Proof of Theorem 1.14. Suppose, for the sake of contradiction, that α were not
weakly mixing relative to Z(M)⊂M. Then Proposition 3.8 gives a nontrivial right-
Z(M)-submodule V ≤ L2(τ )	Z(M)1̂ of finite lifted trace, and now Proposition 4.7
tells us that V must consist of central vectors. However, Lemma 4.6 now gives
V ≤ Z(M)1̂, implying a contradiction with our assumption that V ⊥ Z(M)1̂. �

For the results in this section it suffices to assume that for every a∈M there exists
a sequence {n j } such that lim j→∞‖[α

n j (a), b]‖L2(τ ) = 0 for every b ∈M. We do
not know whether this condition is strictly weaker than asymptotically abelianness.

Remark 4.9. A variant of Theorem 1.14 can also be deduced from the results in
[Niculescu et al. 2003] (and more specifically, Theorem 4.2 and Proposition 5.5
of that paper); we thank the anonymous referee for pointing out this fact. More
specifically, the result is that if α is an automorphism of a finite von Neumann
algebra M that leaves invariant a faithful normal trace τ , and Eτ is the conditional
expectation to the factor

Mr := lin
wot
{a ∈M : α(a)= λa for some λ ∈ T},

then for any a, b ∈M one has

lim
N→∞

1
N

N∑
n=1

|〈Eτ (a∗αn(a))− Eτ (a)∗αn(Eτ (a)), b〉L2(τ )| = 0;

in particular, for N going to infinity along a density one set of integers, the ex-
pression Eτ (a∗αn(a))− Eτ (a)∗αn(Eτ (a)) converges to zero in the weak operator
topology. This property is weaker than the relative weak mixing property with
respect to this factor (which one does not expect to hold in general, even in the
abelian case), but on the other hand does not require any hypothesis of asymptotic
abelianness.
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5. Triple averages for nonasymptotically abelian systems

The use to which we put relative weak mixing in the preceding section is very
special to asymptotically abelian systems: in general there seems to be no way
to track the error term resulting from the rearrangement at the heart of the proof
of Theorem 1.13 without this assumption. However, in the special case of triple
averages this problem does simplify somewhat, provided we assume instead that
our system (M, τ, α) is ergodic, so that Mα

= C1. In this case we will be able
to obtain convergence weakly and in norm, as well as recurrence on a dense set
(Theorem 1.17).

This assumption is not so innocuous as might be expected from its analogue
in the world of commutative ergodic theory. In that setting it is possible quite
generally to decompose a system (that is, more precisely, to decompose its invari-
ant measure) into ergodic components, and then many assertions about the whole
system, including multiple recurrence and the convergence of multiple averages,
follow if they can be proved for each ergodic component separately. However,
in the setting of a general von Neumann dynamical system, this decomposition is
available only if Mα is central in M; otherwise the automorphism α can exhibit
genuinely new phenomena precisely by virtue of having the nontrivial fixed sub-
algebra Mα “move around”. This was already seen in the failure of recurrence on
a dense set when the ergodicity hypothesis is dropped (Theorem 1.19).

The key for convergence of triple averages is the following decomposition that
is similar to the commutative case, first established (in a slightly more general
setting) in [Niculescu et al. 2003] (and more specifically, from Theorem 4.2 and
Proposition 5.5 in that paper); for the convenience of the reader we give a short
proof of that decomposition here. The result does not require ergodicity of the
system. A closely related decomposition was also used in [Fidaleo 2009].

Proposition 5.1 (decomposition of von Neumann dynamical systems). Suppose
(M, τ, α) is a von Neumann dynamical system. Then one has the orthogonal
decomposition M=Mr ⊕Ms , where

Mr : = lin
wot
{a ∈M : α(a)= λa for some λ ∈ T} and

Ms : =
{
a ∈M : limN→∞ N−1∑N

n=1|τ(bα
n(a))| = 0 for every b ∈M

}
,

that is, Mr is the von Neumann subalgebra spanned by the eigenvectors of α and Ms

is the subspace of the elements of M that are weakly mixed by α. The corresponding
projection onto Mr is the conditional expectation of M onto Mr and in particular
preserves positivity.

Proof. Since the continuation Uα of α to L2(τ ) is a unitary operator, the Jacobs–
Glicksberg–de Leeuw decomposition holds for Uα (see for example [Krengel 1985,
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Section 2.4]), that is, L2(τ ) = L2
r (τ )⊕ L2

s (τ ), where the reversible part L2
r (τ ) is

defined as

L2
r (τ )= lin{x :Uα(x)= λx for some λ ∈ T}

and the stable part L2
s (τ ) is defined as the space of all x ∈ L2(τ ) such that

lim
N→∞

1
N

N∑
n=1

|〈U n
α (x), y〉| = 0 for every y ∈ L2(τ ).

Moreover, this decomposition is orthogonal since Uα is unitary. We do not need
here the Jacobs–Glicksberg–de Leeuw decomposition in full generality but only its
version for unitary operators, which can be also proved via the spectral theorem.

By a result of Størmer [1974], the eigenvectors of Uα belong to M. We thus
have Mr = M ∩ L2

r (τ ) and Ms = M ∩ L2
s (τ ). The fact that the weak operator

closure and the closure in the L2(τ )-topology coincide for self-adjoint subalgebras
implies the second formula for Mr and thus Mr is a von Neumann subalgebra
of M. The conditional expectation now maps M onto Mr assuring the orthogonal
decomposition M=Mr ⊕Ms . �

In the remainder of this section we assume our system is ergodic.

Proposition 5.2 (convergence of triple averages). Let (M, τ, α) be an ergodic von
Neumann dynamical system. Then the averages

(25) 1
N

N∑
n=1

αn(a)α2n(b)

converge in ‖ · ‖L2(τ ) as N →∞ for every a, b ∈M.

Proof. By the proposition above, it suffices to assume that a and b each belong to
Mr or Ms . Suppose first that a ∈Mr , and fix b. The operators SN given by

SN x = 1
N

N∑
n=1

αn(x)α2n(b)

are linear and bounded on M for the norm ‖ · ‖L2(τ ), so we may assume that
α(a) = λa for some λ ∈ T. Then SN a = (N + 1)−1∑N

n=0 a(λα2)n(b), which
converges in L2(τ ) by the mean ergodic theorem.

Suppose now that a ∈ Ms . We show that the desired limit is zero. Consider
un := α

n(a)α2n(b)1̂ and observe that

〈un, un+ j 〉 = τ(α
2n(b∗)αn(a∗)αn+ j (a)α2n+2 j (b))

= τ(αn(b∗)a∗α j (a)αn+2 j (b))= τ(a∗α j (a)αn(α2 j (b)b∗)).
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The ergodicity of the system implies

γ j := lim
N→∞

∣∣∣ 1
N

N∑
n=1

〈un, un+ j 〉

∣∣∣= ∣∣∣τ(a∗α j (a) lim
N→∞

1
N

N∑
n=1

αn(α2 j (b)b∗))
∣∣∣

= |τ(a∗α j (a))| · |τ(α2 j (b)b∗)|.

Since a ∈Ms and τ(α2 j (b)b∗) are bounded in j , limN→∞ N−1∑N
j=1 γ j = 0, and

therefore by the classical van der Corput lemma for Hilbert spaces (see for example
[Furstenberg 1977] or [Bergelson 1987]), we have limN→∞ N−1∑N

n=1 un = 0. �

Remarks 5.3. (1) For compact nonergodic systems the averages (25) converge
as well, since M=Mr in this case; this was observed in [Beyers et al. 2010].

(2) As in the commutative case we see that the Kronecker subalgebra Mr is char-
acteristic for (25), that is, the limit of the averages in (25) does not change
when replacing a by EMr a and b by EMr b.

As was shown in Corollary 2.7, one cannot expect that

lim
N→∞

1
N

N∑
n=1

τ(aαn(a)α2n(a)) > 0 for every positive a.

However, a modification extending [Beyers et al. 2010, Theorem 5.13] is still true.

Proposition 5.4. For an ergodic von Neumann system (M, τ, α), one has

lim inf
N→∞

1
N

N∑
n=1

(Re τ(aαn(a)α2n(a)))+ > 0 for every 0< a ∈M.

In particular, one has recurrence on a dense set.

Proof. Decompose a = b+ c with b ∈Mr and c ∈Ms as in Proposition 5.1, with
b> 0 by Lemma 3.1. We first show that there exists a compact abelian group G, an
open set U ⊂G, and g ∈G such that for the 1-step Bohr set KU := {n ∈N : gn

∈U }
one has

(26) Re τ(bαn(b)α2n(b)) > 1
2τ(b

3) > 0 for every n ∈ KU .

Take ε := τ(b3)/(18‖b‖2). Since b ∈ Mr , we find k ∈ N, λ1, . . . , λk ∈ T

and b1, . . . , bk ∈M \ {0} such that α(b j ) = λ j b j for every j = 1, . . . , k and such
that ‖b − (b1 + · · · + bk)‖L2(τ ) < ε. Set now G := Tk , g := (λ1, . . . , λk) and
U := Uε/(k max‖b j‖)(1) ⊂ Tk . Observe that for every n such that gn

∈ U , we have
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|λn
j − 1|< ε/(k max‖b j‖) for every j = 1, . . . , k and therefore

‖αn(b)− b‖L2(τ ) ≤ ‖a
n(b1+ · · ·+ bk)− (b1+ · · ·+ bk)‖L2(τ )

+ 2‖b1+ · · ·+ bk − b‖L2(τ )

≤max‖b j‖L2(τ )(|λ
n
1 − 1| + · · · + |λn

k − 1|)+ 2ε

<max‖b j‖
kε

k max‖b j‖
+ 2ε = 3ε.

So we can prove (26) by the Cauchy–Schwarz inequality:

|τ(bαn(b)α2n(b))− τ(b3)| ≤ |τ(bαn(b)(α2n(b)− b))| + |τ(b(αn(b)− b)b)|

≤ ‖b‖2(‖α2n(b)− b‖L2(τ )+‖α
n(b)− b‖L2(τ ))

≤ 3‖b‖2‖αn(b)− b‖L2(τ ) < 9‖b‖2ε = 1
2τ(b

3).

Take now V :=Uε/(2k max‖b j‖)(1)⊂U and a continuous function f :G→[0, 1]
satisfying 1V ≤ f ≤ 1U . Then by (26), Re τ(bαn(b)α2n(b)) is positive whenever
f (gn) 6= 0 and therefore

lim inf
N→∞

1
N

N∑
n=1

f (gn)Re τ(bαn(b)α2n(b))

≥ lim inf
N→∞

1
N

N∑
n=1

1V (gn)Re τ(bαn(b)α2n(b)).

Since the set KV := {n ∈N : gn
∈ V } ⊂ KU is syndetic (that is, has bounded gaps)

in N, this implies by (26)

(27) lim inf
N→∞

1
N

N∑
n=1

f (gn)Re τ(bαn(b)α2n(b)) > 0.

Next, we show that

(28) ‖ · ‖L2(τ )− lim
N→∞

1
N

N∑
n=1

f (gn)αn(b)α2n(c)= 0.

We first consider a character γ ∈ Ĝ and define un := γ(gn)αn(b)α2n(c)1̂. We have

〈un, un+ j 〉 = γ(gn)γ(gn+ j )γ(α2n(c∗)αn(b∗)αn+ j (b)α2n+2 j (c))

= γ(g j )τ (αn(c∗)b∗α j (b)αn+2 j (c))= γ(g j )τ (b∗α j (b)αn(α2 j (c)c∗)).

By ergodicity of α,

γ j := lim
N→∞

∣∣∣ 1
N

N∑
n=1

〈un, un+ j 〉

∣∣∣= ∣∣∣γ(g j )τ (b∗α j (b) lim
N→∞

1
N

N∑
n=1

αn(α2 j (c)c∗))
∣∣∣

= |τ(b∗α j (b))| · |τ(α2 j (c)c∗)|,
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and the assumption c ∈ Ms implies limN→∞ N−1∑N
j=1 γ j = 0. By the van der

Corput estimate, we thus have

lim
N→∞

1
N

N∑
n=1

un = lim
N→∞

1
N

N∑
n=1

γ(gn)αn(b)α2n(c)1̂= 0.

We have now proved (28), since the characters form a total set in C(G) and the
operators SN f := N−1∑N

n=1 f (gn)αn(b)α2n(c) are uniformly bounded on C(G).
Analogously one also has

‖ · ‖L2(τ )− lim
N→∞

1
N

N∑
n=1

f (gn)αn(c)α2n(b)

= ‖ · ‖L2(τ )− lim
N→∞

1
N

N∑
n=1

f (gn)αn(c)α2n(c)= 0.

The Cauchy–Schwarz inequality implies now that

lim sup
N→∞

∣∣∣ 1
N

N∑
n=1

f (gn)τ (cαn(b)α2n(c))
∣∣∣

= lim sup
N→∞

∣∣∣τ(c 1
N

N∑
n=1

f (gn)αn(b)α2n(c)
)∣∣∣

≤ ‖c‖L2(τ ) lim sup
N→∞

∥∥∥ 1
N

N∑
n=1

f (gn)αn(b)α2n(c)
∥∥∥

L2(τ )
= 0.

Analogously, the Cesàro sums of f (gn)τ (cαn(c)α2n(b)), f (gn)τ (cαn(c)α2n(c))
and f (gn)τ (bαn(c)α2n(c)) vanish, while

τ(cαn(b)α2n(b))= τ(bαn(b)α2n(c))= τ(bαn(c)α2n(b))= 0

follows from the orthogonality of Mr and Ms and the fact that Mr is an α-invariant
self-adjoint subalgebra of M.

Combining this with (27), we obtain by the linearity of τ

lim inf
N→∞

1
N

N∑
n=1

(Re τ(aαn(a)α2n(a)))+

≥ lim inf
N→∞

1
N

N∑
n=1

f (gn)(Re τ(aαn(a)α2n(a)))+

= lim inf
N→∞

1
N

N∑
n=1

f (gn)(Re τ(bαn(b)α2n(b)))+> 0. �
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6. Closing remarks

We present some remarks concerning Question 1.22. By Theorem 1.17, we have
a positive answer to this question when the invariant algebra Mα is trivial. One
can also extend these arguments to cover the case when the invariant algebra Mα

is central by representing M as a direct integral over Mα, see Kadison, Ringrose
[Kadison and Ringrose 1997, Chapter 14].

It is clear that if the answer to Question 1.23 is always positive, then the same
is true for Question 1.22. What is less obvious is that the converse is true; if the
answer to 1.22 is always true, then the answer to 1.23 is always true. To see this,
let (M, τ ) be a finite von Neumann algebra with two commuting shifts α1 and α2.
We then form the infinite tensor product MZ

:=
⊗

n∈Z M, which is another finite
von Neumann algebra, which contains an embedded copy of M by using the 0
coordinate of Z. Next, let G be the free abelian group on two generators e and f ,
and let U be the action of G on MZ defined by

U (e)
⊗
n∈Z

an :=
⊗
n∈Z

α2
1α
−1
2 (an) and U ( f )

⊗
n∈Z

an :=
⊗
n∈Z

an−1

for all an ∈M with all but finitely many an equal to 1. If we define a shift α′ to MZ

by the formula

α′
⊗
n∈Z

an :=
⊗
n∈Z

α
2(n+1)
1 α−n

2 (an),

we then observe the identities

α′U (e)(α′)−1
=U (e) and α′U ( f )(α′)−1

=U ( f e)

(here we use the hypothesis that α1 and α2 commute). Because of this, we can
define a shift α on the crossed product MZ oU G by declaring α to equal α′ on MZ,
and

α(e) := e and α( f ) := f e.

If a1 and a2 lie in MZ, we observe that

αn(a1 f 2)α2n( f −2a2 f )= (α′)n(a1)((α
′)2nU (e)−2n(a2)) f.

If we assume that a1 and a2 in fact lie in M, we can simplify this as

α2n
1 (a1)α

2n
2 (a2) f.

Thus, if we assume 1.22 has an affirmative answer for the system MZ oU G, we
see that the averages of α2n

1 (a1)α
2n
2 (a2) f (and hence of α2n

1 (a1)α
2n
2 (a2)) converge

for arbitrary a1, a2 ∈ M; from this one easily deduces (after dividing n into even
and odd classes) that 1.23 has an affirmative answer for the system M.
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In particular, we see that the task of establishing Question 1.22 in the affirmative
for arbitrary von Neumann dynamical systems is at least as hard as that of achieving
convergence for two commuting shifts in the abelian case, a result first obtained in
[Conze and Lesigne 1984].

One can also cover some other (nonergodic, nonabelian) cases of Question 1.22
by ad hoc methods. Suppose that M is a group von Neumann algebra LG, with
shift α given by automorphisms α1, α2 : G → G of the group. Then one can
affirmatively answer 1.22 as follows. First, by density and linearity we may assume
that a1 and a2 are themselves group elements: a1 = g1 ∈ G and a2 = g2 ∈ G. We
then see that the means of αn(g1)α

2n(g2) will converge to zero unless there exists
a group element g0 for which

(29) αn(g1)α
2n(g2)= g0

for all n in a set of positive upper density. But such sets contain nontrivial parallelo-
grams n, n+ h, n+ k, n+ h+ k for h, k > 0. Applying (29) for n and n+ h and
rearranging, one obtains

αn(g2α
2h(g−1

2 ))= g−1
1 αh(g1).

Similarly, applying (29) for n+ k and n+ h+ k, one has

αn+k(g2α
2h(g−1

2 ))= g−1
1 αh(g1).

Writing u := g−1
1 αh(g1), one thus has

αh(g1)= g1u and αk(u)= u.

If we then write

v := g−1
1 αhk(g1)= uαh(u) · · ·α(k−1)h(u),

we see that αhkn(g1)= g1v
n for all n, and α(v)= v. Thus we have

αhkn+ j (g1)α
2hkn+2 j (g2)= α

j (g1(α
2hk(v))nα j (g2)) for any n, j .

The means of this in n converge in L2(τ ) by the mean ergodic theorem. Summing
over all 0 ≤ j < hk, we obtain weak convergence, thus answering Question 1.22
affirmatively in this case. The same type of argument also lets one deal with crossed
products of abelian systems by groups, in which the shift acts as an automorphism
on the group; we omit the details.

Finally, we remark that the results on asymptotically abelian systems, while
stated for Zk-systems, should in fact be valid for any commuting action of a general
locally compact second countable (lcsc) abelian group.
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Appendix A. An application of the van der Corput lemma

The purpose of this appendix is to establish Theorem 1.13. Our arguments fol-
low [Niculescu et al. 2003, Proposition 7.4 and Theorem 7.5] closely (for another
adaptation of the same argument, see also [Beyers et al. 2010, Proposition 4.4]).
We may normalise α0 to be the identity.

We induct on k ≥ 2. When k= 2 we know from the usual mean ergodic theorem
for von Neumann algebras (see for example [Krengel 1985, Section 9.1]) that

1
N

N∑
n=1

αn(a)→ EMα (a) in ‖ · ‖L2(τ ),

and since Mα
⊆ N by the relative weak mixing assumption, we also have

1
N

N∑
n=1

αn(EN(a))→ EMα (EN(a))= EMα (a) in ‖ · ‖L2(τ ),

so combining these conclusions gives the result.
Now suppose that k≥ 3 and that we know the desired conclusion for any similar

family of `< k automorphisms. By decomposing each ai as (ai−EN(ai ))+EN(ai )

and expanding out the expression
∏k−1

i=1 α
n
i (ai ), we find that it suffices to show that

for any i ≤ k− 1,

ai ⊥ N implies
1
N

N∑
n=1

k−1∏
i=1

αn
i (ai )→ 0 in ‖ · ‖L2(τ );

let us argue the case i = 1, the others following at once by symmetry.
By the Hilbert-space-valued version of the classical van der Corput estimate

(see, for instance, [Furstenberg 1977] or [Bergelson 1987]) this will follow if we
show that

1
H

H∑
h=1

∣∣∣ 1
N

N∑
n=1

〈 k−1∏
i=1

αn+h
i (ai ),

k−1∏
i=1

αn
i (ai )

〉
τ

∣∣∣
=

1
H

H∑
h=1

∣∣∣ 1
N

N∑
n=1

τ
(
αn

k−1(α
h
k−1(a

∗

k−1)) · · ·α
n
1 (α

h
1 (a
∗

1))·α
n
1 (a1) · · ·α

n
k−1(ak−1)

)∣∣∣→0

as N →∞ and then H →∞.
Let us now set bi :=α

n
i (α

h
i (a
∗

i )) and ci :=α
n
i (α

h
i (ai )) to lighten notation. Having

done so, we now set ourselves up for applying the asymptotic abelianness property
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by observing that

bk−1bk−2bk−3 · · · c1c2 · · ·

= (bk−2bk−1bk−3 · · · c1c2 · · · )+ ([bk−1, bk−2]bk−3 · · · c1c2 · · · )

= (bk−2bk−3bk−1bk−4 · · · c1c2 · · · )+ (bk−2[bk−1, bk−3]bk−4 · · · c1c2 · · · )

+ ([bk−1, bk−2]bk−3bk−4 · · · c1c2 · · · )
...

= bk−2bk−3bk−4 · · · b1c1c2 · · · ck−2(bk−1ck−1)

+

k−2∑
j=1

x j [bk−1, b j ]y j +

k−2∑
j=1

u j [bk−1, c j ]v j ,

where each x j , y j , u j and v j for 1 ≤ j ≤ k− 2 is some product of a subset of the
elements {bi , ci : i ≤ k− 2}.

Importantly, there is some M > 0 such that ‖x j‖, ‖y j‖, ‖u j‖, ‖v j‖ ≤ M for all
j ≤ k−2, and not depending on n or h, while on the other hand for any j ≤ k−2
we have

[bk−1, b j ] = [α
n
k−1(α

h
k−1(a

∗

k−1)), α
n
j (α

h
j (a
∗

j ))],

and hence overall we have

1
N

N∑
n=1

∥∥∥k−2∑
j=1

x j [bk−1, b j ]y j

∥∥∥
L2(τ )

≤ M2
k−2∑
j=1

1
N

N∑
n=1

‖[bk−1, b j ]‖L2(τ )

= M2
k−2∑
j=1

1
N

N∑
n=1

‖[αh
k−1(a

∗

k−1), (α
−1
k−1α j )

n(αh
j (a
∗

j ))]‖L2(τ )→ 0

as N→∞, by the asymptotic abelianness of α−1
k−1α j . The same reasoning applies

to the term
∑k−2

j=1u j [bk−1, c j ]v j , and now applies again to show that in the scalar
average of interest to us we may also commute bk−2 from the left end of our product
over to be immediately on the left of ck−2, and then move bk−3 to ck−3, and so on.
Overall, this shows that

1
H

H∑
h=1

∣∣∣ 1
N

N∑
n=1

τ
(
αn

k−1(α
h
k−1(a

∗

k−1)) · · ·α
n
1 (α

h
1 (a
∗

1)) ·α
n
1 (a1) · · ·α

n
k−1(ak−1)

)∣∣∣
∼

1
H

H∑
h=1

∣∣∣ 1
N

N∑
n=1

τ
(
αn

1 (α
h
1 (a
∗

1)a1) · · ·α
n
k−1(α

h
k−1(a

∗

k−1)ak−1)
)∣∣∣
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=
1
H

H∑
h=1

∣∣∣ 1
N

N∑
n=1

τ
(
αh

1 (a
∗

1)a1 · (α2α
−1
2 )n(αh

2 (a
∗

2)a2)

· · · (αk−1α
−1
1 )n(αh

k−1(a
∗

k−1)ak−1)
)∣∣∣

=
1
H

H∑
h=1

∣∣∣τ(αh
1 (a
∗

1)a1 ·

( 1
N

N∑
n=1

(α2α
−1
1 )n(αh

2 (a
∗

2)a2)

· · · (αk−1α
−1
1 )n(αh

k−1(a
∗

k−1)ak−1)
))∣∣∣

as N →∞ and then H →∞. However, now we notice that the inner average
of operators with respect to N here is precisely of the form hypothesized by the
theorem, but involving only the k−1 automorphisms α jα

−1
1 for j =1, 2, . . . , k−1,

which still satisfy the necessary hypotheses of relative weak mixing and asymptotic
abelianness. Hence this operator average asymptotically agrees with

1
H

H∑
h=1

∣∣∣τ(αh
1 (a
∗

1)a1 ·

( 1
N

N∑
n=1

(α2α
−1
1 )n(EN(α

h
2 (a
∗

2)a2))

· · · (αk−1α
−1
1 )n(EN(α

h
k−1(a

∗

k−1)ak−1))
)∣∣∣

=
1
H

H∑
h=1

∣∣∣τ(EN(α
h
1 (a
∗

1)a1) ·
( 1

N

N∑
n=1

(α2α
−1
1 )n(EN(α

h
2 (a
∗

2)a2))

· · · (αk−1α
−1
1 )n(EN(α

h
k−1(a

∗

k−1)ak−1))
))∣∣∣,

where the second equality holds because the operator average in the inner brackets
now lies in N, and so we apply the usual identity for conditional expectations
τ(aEN(b))= τ(EN(aEN(b)))= τ(EN(a)EN(b)).

Writing

sN :=
1
N

N∑
n=1

(α2α
−1
1 )n(EN(α

h
2 (a
∗

2)a2)) · · · (αk−1α
−1
1 )n(EN(α

h
k−1(a

∗

k−1)ak−1)),

we see that ‖sN‖ ≤ C for some fixed C and all N ∈ N, and now combining this
bound with the Cauchy–Schwarz inequality we obtain

1
H

H∑
h=1

|τ(EN(α
h
1 (a
∗

1)a1) · sn)| =
1
H

H∑
h=1

|〈s∗n 1̂, (EN(α
h
1 (a
∗

1)a1)1̂〉L2(τ )|

≤
1
H

H∑
h=1

C · ‖EN(α
h
1 (a
∗

1)a1‖L2(τ ).

Finally, it follows that this tends to 0 as H → ∞ by the our assumption that
a1 ⊥ N and the relative weak mixing hypothesis. This completes the proof of
Theorem 1.13.
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Appendix B. A group theory construction

The purpose of this appendix is to explicitly describe a certain type of group, which
we shall term a square group, generated by relations involving quadruples of gen-
erators. In particular, we will be able to solve the equality problem for such groups.
Our arguments here are motivated by an observation of Grothendieck that groups
can be identified with the sheaf of their flat connections on simplicial complexes,
and experts will be able to detect the ideas of sheaf theory lurking beneath the
surface of the material here, although we will not use that theory explicitly.

Definition B.1 (square groups). A square base � = (H ∪ V,�) consists of the
following data:

• A set H∪V of generators, partitioned into a subset H of horizontal generators
and a subset V of vertical generators.

• A set �⊂ (H×V ×H×V )∪(V ×H×V ×H) of quadruples (e0, e1, e2, e3)

of alternating orientation (thus if e0 is horizontal then e1 must be vertical, and
so forth).

Furthermore, we require the two axioms on the set �:

• (Cyclic symmetry.) If (e0, e1, e2, e3) ∈�, then (e1, e2, e3, e0) ∈�.

• (Unique continuation.) If e0, e1 ∈ H ∪V , then there is at most one quadruple
(e0, e1, e2, e3) ∈� with the first two components e0 and e1.

If � is a square base, we define the square group G� associated to that base to be
the group generated by the generators H ∪V , subject to the relations e0e1e2e3= id
for all (e0, e1, e2, e3) ∈ �. We define the alphabet of the square base (or square
group) to be the set H ∪ V ∪ H−1

∪ V−1 consisting of the horizontal and vertical
generators and their formal inverses.

To describe square groups explicitly, we shall need some notation of a combi-
natorial and geometric nature. Let N := {0, 1, 2, . . . } denote the natural numbers.

Definition B.2 (monotone paths and regions). A monotone path is a finite path in
the discrete quadrant N2 from (0, 0) to some endpoint (n,m) that consists only
of rightward edges (i, j)→ (i + 1, j) and upward edges (i, j)→ (i, j + 1) (in
particular, the path will have length n+m). Given a monotone path γ from (0, 0)
to (n,m), the shadow of γ is defined to be all the pairs (i, j) ∈ N2 such that
(i, j ′) ∈ γ for some j ′ ≥ j . We say that one monotone path γ′ lies above another
monotone path γ with the same endpoint (n,m) if the shadow of γ′ contains the
shadow of γ. In such cases, we refer to the set-theoretic difference between the
two shadows as a monotone region from (0, 0) to (n,m), with γ′ and γ referred to
as the upper boundary and lower boundary of the region, respectively.
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Figure 2. A monotone region, bounded above and below by two
monotone paths. Note the horizontal and vertical convexity of the
monotone region.

We will also consider a monotone path as a degenerate example of a monotone
region. Monotone regions are horizontally and vertically convex: if two endpoints
of a horizontal or vertical line segment in N2 lie in a monotone region, then the
interior of that segment does also.

Definition B.3 (flat connections). Fix a square base �, and let � ⊂ N2 be a set.
A connection 0 on � is an assignment 0((i, j)→ (i + 1, j)) ∈ H ∪ H−1 of a
horizontal element of the alphabet to every horizontal edge (i, j), (i + 1, j) ∈ �,
and an assignment 0((i, j)→ (i, j + 1)) ∈ V ∪ V−1 of a vertical element of the
alphabet to every vertical edge (i, j) 7→ (i, j + 1) ∈ �. We adopt the convention
that

0((i + 1, j)→ (i, j)) := 0((i, j)→ (i + 1, j))−1,

0((i, j + 1)→ (i, j)) := 0((i, j)→ (i, j + 1))−1,

where (e−1)−1
:= e for e ∈ H ∪ V of course.

We say that the connection 0 is flat if for every square (i, j), (i+1, j), (i, j+1),
(i + 1, j + 1) in �, there exists an oriented loop f0, f1, f2, f3 of horizontal and
vertical edges around the square (in either orientation) such that

(0( f0), 0( f1), 0( f2), 0( f3)) ∈�.

We call a flat connection on a monotone region from (0, 0) to (n,m)maximal if it
cannot be extended to any strictly larger monotone region with the same endpoints.
It is reduced if there does not exist a triple (i, j), (i + 1, j), (i + 2, j) or (i, j),
(i, j+1), (i, j+2) in� such that0((i, j)→ (i+1, j))0((i+1, j)→ (i+2, j))= id
or 0((i, j + 1)→ (i, j))0((i, j + 1)→ (i, j + 2))= id.
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Figure 3. A monotone region {A, B,C, D, E, F,G} (with A =
(0, 0), B = (0, 1), and so on) with a connection 0 defined by
the group elements a, b, c, d, e, f, g, h ∈ G�; thus for instance
0(B→C)= b and 0(C→ B)= b−1. If say (a, b, g−1, h−1) and
( f, e, d−1, c−1) are in �, then this connection is flat.

In the degenerate case when � is just a monotone path, every connection is
automatically flat, as there are no squares.

Let 0 be a flat connection on a monotone region �. Then one can integrate
this connection to produce a map 80 : �→ G� by setting 80(0, 0) := id and
80(v)=80(u)0(u→ v) for all horizontal and vertical edges (u→ v) in�. From
the flatness of 0 and the “connected” nature of � it is easy to see that 80 exists
and is unique. In particular, we can define the definite integral |0| of 0 to be the
group element |0| :=80(n,m), where (n,m) is the endpoint of �.

Example B.4. The definite integral of the flat connection in Figure 3 is equal to
abcd = ab f e = hgcd = hg f e.

Every group element g in G� can arise as a definite integral of some flat con-
nection, simply by expressing g as a word in the alphabet H ∪ V ∪ H−1

∪ V−1,
and creating an associated monotone path and connection for that word. Later on
we shall see that the definite integral will provide a one-to-one correspondence
between group elements and maximal reduced flat connections (Corollary B.10).

Lemma B.5. Let � be a square base, and let (n,m) ∈ N2.

• (Unique continuation.) If � is a monotone region from (0, 0) to (n,m), and γ
is a path from (0, 0) to (n,m) in �, then any flat connection on � is uniquely
determined by its restriction to γ. In other words, if 0 and 0′ are two flat
connections on � that agree on γ, then they agree on all of �.

• (Maximality.) If �0 is a monotone region from (0, 0) to (n,m), and 0 is a flat
connection on �0, then there exists a unique extension of 0 to a maximal flat
connection on a monotone region � from (0, 0) to (n,m) containing �0.
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Proof. We first establish unique continuation. This is best explained visually. The
key observation is that if two flat connections on a square agree on two adjacent
sides of a square, then they must agree on the whole square. This is ultimately
a consequence of the unique continuation property of the square base �, and can
be verified by a routine case check. Thus, if 0 and 0′ are two connections on �
that agree on γ, they also agree on any perturbation of γ in � formed by taking an
adjacent pair of horizontal and vertical edges in γ and “popping” them by replacing
them by the other two edges of the square that they form; note that this retains the
property of being a monotone path. One can check that after a sufficient number
of upward and downward “popping” operations one can cover the upper and lower
boundaries of 0, and everything in between, and the claim follows.

Example B.6. We continue working with Figure 3. Suppose two flat connections
0 and 0′ on the indicated region agree on the upper boundary ABC DE , with
the indicated connection values a, b, c, d . By unique continuation of �, the only
possible values available for 0 and 0′ on the remaining two edges C F , F E of the
square C DE F are f and e. Thus we may “pop” the upper square and obtain that 0
and 0′ also agree on the monotone path ABC F E . After popping the lower square
also we obtain that 0 and 0′ agree on the entire monotone region.

To prove the second claim, we simply observe that if 0 can be extended to two
monotone regions� and�′ containing�0, then by unique continuation they agree
on the intersection�∩�′ (which is also a monotone region), and can thus be glued
to form a flat connection on the union �∪�′ (which is also a monotone region6).
Since there are only finitely many monotone regions from (0, 0) to (n,m), the
claim then follows from the greedy algorithm. �

Definition B.7 (concatenation). Let 0 be a maximal reduced flat connection on
some monotone region � from (0, 0) to (n,m), and let x ∈ H ∪V ∪H−1

∪V−1 be
a symbol in the alphabet. We define the concatenation 0 · x of 0 with x to be the
maximal flat connection 0′=0 ·x on a monotone region �′ from (0, 0) to (n′,m′)
generated by the following rule.
• (Collapse.) If x is horizontal (that is, x ∈ H ∪ H−1), if (n− 1,m) lies in �,

and if 0((n − 1,m)→ (n,m)) = x−1, then one sets (n′,m′) := (n − 1,m),
sets �′ to be the restriction of � to the region {(i, j) ∈ N2

: i ≤ n − 1} (that
is, one deletes the rightmost column of �), and sets 0′ to be the restriction of
0 to �′.

• (Extension.) If x is horizontal, and either (n − 1,m) lies outside of � or
0((n − 1,m) → (n,m)) 6= x−1, then one sets (n′,m′) := (n + 1,m), and

6One way to see this is to rotate the plane by 45 degrees, so that monotone paths become graphs
of discrete Lipschitz functions with Lipschitz constant 1, and monotone regions become the regions
between two such functions.
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extends 0 to �∪ {(n+ 1,m)} by setting 0((n,m)→ (n+ 1,m)) := x ; note
that this is still flat because it does not create any squares. One then extends 0
further by the second part of Lemma B.5 to create the maximal flat connection
0′ on �′ that extends 0.

• If x is vertical instead of horizontal, one follows the analogue of the above
rules but with the roles of n and m reversed.

Example B.8. Imagine one concatenated a horizontal edge x to the flat connection
in Figure 3, which we shall assume to be maximal reduced. If x is not equal to d−1,
then the concatenated connection would thus extend one unit to the right of E to
the endpoint (3, 2), and may possibly extend also to the square to the right of E F
if there is an appropriate tuple in � to achieve this extension. If instead x was
equal to d−1, then the connection would collapse to the region {A, B,C, D,G},
so that the endpoint is now D = (1, 2).

This definition gives a representation of G�:

Lemma B.9. Let � be a square base and 0 a maximal reduced flat connection.

• (Preservation of reducibility.) 0 ·x is reduced for any x ∈ H∪V ∪H−1
∪V−1.

• (Invertibility.) We have (0 · x) · x−1
= 0 for any x ∈ H ∪ V ∪ H−1

∪ V−1.

• (Square relations.) We have (((0·e0)·e1)·e2)·e3=0 for any (e0, e1, e2, e3)∈�.

In particular, the group G� acts on the space O of maximal reduced flat connec-
tions in a unique manner, sending 0 to 0 · g for any 0 ∈ O and g ∈ G�.

Proof. We begin with the preservation of reducibility claim. If 0 · x is formed by
collapsing 0, the claim is clear, so suppose instead that 0·x is formed by extension.
By symmetry we may assume that x is horizontal. Let (n,m) denote the endpoint
of 0, and let �′ be the domain of 0 · x (which then has endpoint (n+ 1,m)).

Assume for contradiction that 0 · x is not reduced. Since 0 was reduced, there
are only two possibilities: either one has a vertical degeneracy

(30) 0((n+ 1, j)→ (n+ 1, j + 1))0((n+ 1, j + 1)→ (n+ 1, j + 2))= id

for some (n+1, j), (n+1, j+1), (n+1, j+2) ∈�′, or else one has a horizontal
degeneracy

(31) 0((n− 1, j)→ (n, j))0((n, j)→ (n+ 1, j))= id

for some (n− 1, j), (n, j), (n+ 1, j) ∈�′.
Suppose first that one has a vertical degeneracy (30). Consider the restrictions

01 and 02 of the connection 0 on the adjacent squares

((n, j), (n, j + 1), (n+ 1, j), (n+ 1, j + 1)) and

((n, j + 1), (n, j + 2), (n+ 1, j + 1), (n+ 1, j + 2)).
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By construction01 and02 agree on their common edge ((n, j+1)→ (n+1, j+1)),
and 01((n+1, j+1)→ (n+1, j)) is equal to 02((n+1, j+1)→ (n+1, j+2)). By
the unique continuation property of �, this implies that 01 and 02 are reflections of
each other; in particular 01((n, j+1)→ (n, j)) equals 02((n, j+1)→ (n, j+2)).
But this implies that 0 is not reduced, a contradiction.

Suppose instead that one has a horizontal degeneracy (31). From Definition B.7
we know that j cannot equal m, otherwise we would have collapsed rather than
extended 0. Let 0 ≤ j < m be the largest j for which (31) holds. By repeating
the argument in the previous paragraph, we see that the restrictions of 0 to the
adjacent squares

((n− 1, j), (n, j), (n− 1, j + 1), (n, j + 1)) and

((n, j), (n+ 1, j), (n, j + 1), (n+ 1, j + 1))

are reflections of each other, which implies that (31) also holds for j + 1, contra-
dicting the maximality of j . This establishes the preservation of reducibility.

Now we establish the invertibility. Again, by symmetry we may assume that x
is horizontal.

If 0 ·x is a (horizontal) extension of 0, then it is easy to see from Definition B.7
that (0 · x) · x−1 will be the (horizontal) collapse of 0 · x , which is 0. Conversely,
if 0 · x is the (horizontal) collapse of 0, then (0 · x) · x−1 will be the (horizontal)
extension (because 0 was reduced), which will equal 0 again (by uniqueness of
maximal extension).

Finally, we establish the square relations. From cyclic symmetry and invertibil-
ity we may assume that e0 and e2 are horizontal and e1 and e3 are vertical. From
invertibility again, it suffices to show that

(0 · e0) · e1 = (0 · e−1
3 ) · e−1

2

for any maximal reduced flat connection 0. We denote the endpoint of 0 by (n,m).
We divide into four cases. Suppose first that 0 ·e0 is an extension of 0, and that

(0 · e0) · e1 is an extension of 0 · e0. Then we claim that 0 · e−1
3 is an extension

of 0. If this were not the case, then 0((n,m − 1)→ (n,m)) must equal e3, but
then since (0 · e0)((n,m)→ (n+ 1,m)) equals e0 by construction, the domain of
0 · e0 must include the square (n,m− 1), (n,m), (n+ 1,m− 1), (n+ 1,m) with

(0 · e0)((n+ 1,m− 1)→ (n+ 1,m))= e−1
1 ,

causing (0 ·e0) ·e1 to be a collapse rather than an extension, a contradiction. Thus
0 · e−1

3 extends 0. A similar argument shows that (0 · e−1
3 ) · e−1

2 extends 0 · e−1
3

(otherwise 0((n−1,m)→ (n,m)) would equal e−1
0 , causing 0 ·e0 to be a collapse

rather than an extension). It is then easy to verify that (0 ·e−1
3 ) ·e−1

2 and (0 ·e0) ·e1
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are the same since they glue together to form a flat connection on 0 and on the
square (n,m), (n+ 1,m), (n,m+ 1), (n+ 1,m+ 1).

Now suppose that 0 · e0 is an extension of 0, but that (0 · e0) · e1 is a collapse
of 0 · e0. Arguing as before, we conclude that 0((n,m − 1)→ (n,m)) equals e3,
and so 0 · e−1

3 is a collapse of 0; similarly, (0 · e−1
3 ) · e−1

2 cannot be a collapse of
0 · e−1

3 (this would force 0 · e0 to be a collapse also) and so is an extension. It is
again easy to verify that (0 · e−1

3 ) · e−1
2 and (0 · e0) · e1 are the same.

The remaining two cases (when 0 ·e0 is a collapse of 0, and (0 ·e0) ·e1 is either
an extension or collapse of 0 · e0) are similar to the preceding two, and are left to
the reader. �

This gives us a satisfactory explicit description of a square group:

Corollary B.10. Let � be a square group. Then the definite integral map 0 7→ |0|
is a bijection from O to G�; thus every group element has a unique representation
as the definite integral of a maximal reduced flat connection.

Proof. The surjectivity of this map was already established in the discussion after
Definition B.3, so it suffices to establish the injectivity. We will establish this via
the identity 0 =∅ · |0| for all for all 0 ∈ O, where ∅ is the trivial flat connection
over the monotone region {(0, 0)} from (0, 0) to (0, 0). This identity shows that 0
can be reconstructed from |0|, demonstrating injectivity.

Let � be the domain of 0, which by definition is a monotone region from (0, 0)
to some point (n,m). Let γ be some monotone path in � from (0, 0) to (n,m)
(for example, one could take γ to be the upper or lower boundary of �). We label
the vertices of γ in order as (0, 0) = (i0, j0), (i1, j1), . . . , (in+m, jn+m) = (n,m).
From definition of |0|, we see that

|0| = 0((i0, j0)→ (i1, j1))0((i1, j1)→ (i2, j2)) · · ·0((in+m−1, jn+m−1)

→ (in+m, jn+m)).

For each 0 ≤ k ≤ n +m, defined �k to be the portion of � that is in the region
{(i, j) : i ≤ ik, j ≤ jk}; thus �k is a monotone region from (0, 0) to (ik, jk) that
is increasing in k. Let 0k be the restriction of 0 to �k . Since 0 was maximal and
reduced, each of the 0k is also. Since 0n+m = 0, it will suffice to establish that

0k =∅ ·0((i0, j0)→ (i1, j1))0((i1, j1)→ (i2, j2)) · · ·0((ik−1, jk−1)→ (ik, jk))

for all 0≤ k≤ n+m. But this is easily established by induction (the reduced nature
of the 0k is necessary to avoid the collapse case in Definition B.7). �

As a consequence of this corollary, we can distinguish any two elements in G�

from each other as long as we can express them as the definite integrals of distinct
maximal reduced flat connections.
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Applications. We now specialise the abstract group-theoretic machinery above to
the application at hand. We begin with a proposition that will be used to show
nonconvergence of quadruple recurrence (Theorem 2.1).

Proposition B.11 (independence of AP4 relations). Let A ⊂ Z be a (possibly
infinite) set of integers. Then there exist a group G with elements e0, e1, e2, e3,
together with an automorphism T : G→ G, such that for r ∈ N, the relation

(32) e0(T r e1)(T 2r e2)(T 3r e3)= id

holds if and only if r ∈ A. Furthermore, no power T k of T with k 6= 0 has any fixed
points other than the identity element id.

Remark B.12. Informally, this proposition asserts that the algebraic relations (32)
for various r ∈ Z are independent of each other. In contrast, with progressions of
length three (that is, in the case k=3) the analogous relations are highly degenerate.
Indeed, suppose that

(33) e0(T r e1)(T 2r e2)= id

for all r ∈ A. Then if r, r + h lie in A, we have

e0(T r e1)(T 2r e2)= e0(T r T he1)(T 2r T 2he2),

which we can rearrange as (T he−1
1 )e1 = T r ((T 2he2)e−1

2 ). If r , r + h, r ′, r ′+ h lie
in A, we thus have

T r ((T 2he2)e−1
2 )= T r ′((T 2he2)e−1

2 ).

Assuming that T r ′−r has no fixed points, we conclude that (T 2he2)e−1
2 is the iden-

tity; assuming that T 2h has no fixed points either, we conclude that e2 is the identity.
Similar arguments can be used to show that e0 and then e1 are also the identity.
Thus the relations (33) and the no-fixed-points hypothesis lead to a total collapse
of the group generated by e0, e1, e2 as soon as A contains even a single nontrivial
parallelogram r, r + h, r ′, r ′ + h. (A variant of this argument also shows that if
(33) is obeyed for r and r + h, then it is also obeyed for r + 2h even without
the fixed point hypothesis.) This algebraic distinction between triple recurrence
and quadruple recurrence can be viewed as the primary reason why recurrence
and convergence results continue to hold for triple products, but not for quadruple
products even under the assumption of ergodicity (which is reflected here in the
no-fixed-points assumption).

Proof. We let G be the group generated by the generators ei,n for i = 0, 1, 2, 3 and
n ∈ Z, subject to the relations

e0,ne1,n+r e2,n+2r e3,n+3r = id for all n ∈ Z and r ∈ A.
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Since the set of such relations is invariant under the shift ei,n 7→ ei,n+1, we see that
we can define an automorphism T : G→ G by setting T ei,n := ei,n+1. If we then
set ei := ei,0, it is clear that (32) holds for all r ∈ A.

To see that (32) fails for r 6∈ A, we note that G can be viewed as a square
group, with horizontal generators {ei,n : i = 0, 2; n ∈ Z} and vertical generators
{ei,n : i = 1, 3; n ∈Z} and square relations � made of (e0,n, e1,n+r , e2,n+2r , e3,n+3r )

and its cyclic permutations for all n ∈ Z and r ∈ A; note that the crucial unique
continuation property follows from the basic observation that an arithmetic pro-
gression is determined by any two of its elements (“two points determine a line”).
If n ∈ Z and r 6∈ A, one sees that the connection on the path of length four from
(0, 0) to (2, 2) associated to the word e0,ne1,n+r e2,n+2r e3,n+3r is already a maximal
reduced flat connection (as none of the three squares that share two edges with the
path can be completed to a square from �) and so by Corollary B.10, its definite
integral e0,ne1,n+r e2,n+2r e3,n+3r is not equal to the identity, as required.

Finally, to show that T k has no nontrivial fixed points, one simply observes that
T k will shift any nontrivial maximal reduced flat connection to a different maximal
reduced flat connection, and then invokes Corollary B.10 again. �

Next, we establish a variant that is useful for showing negative averages for
quintuple recurrence (Theorem 2.12).

Proposition B.13 (independence of AP5 relations). There exists a group G with
distinct elements e0, e1, e2, e3, e4, together with an automorphism T :G→G, such
that the relation

(34) e0(T r e1)(T 2r e2)(T 3r e3)(T 4r e4)= id

holds for all r ∈Z. Furthermore, no power T k of T with k 6= 0 has any fixed points
other than the identity element id. Finally, if r ∈ Z is nonzero, and

g0, g1, g2, g3, g4 ∈ {id, e0, e1, e2, e3, e4, e−1
0 , e−1

1 , e−1
2 , e−1

3 , e−1
4 }

are such that

(35) g0(T r g1)(T 2r g2)(T 3r g3)(T 4r g4)= id,

then g0, g1, g2, g3, g4 are either equal to the identity, or are a permutation of
{e0, e1, e2, e3, e4} or of {e−1

0 , e−1
1 , e−1

2 , e−1
3 , e−1

4 }.

Proof. For each i = 0, 1, 2, 3, 4, we define G(i) to be the group generated by the
generators e(i)j,n for j ∈ {0, 1, 2, 3, 4} \ {i} and n ∈ Z subject to the relations

(36) e(i)0,ne(i)1,n+r e(i)2,n+2r e(i)3,n+3r e(i)4,n+4r = id for all n, r ∈ Z,

with the convention that e(i)i,n = id for all n. This group has an automorphism
T (i)
: G(i)

→ G(i) that maps e(i)j,n to e(i)j,n+1 for all n.
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We now set G to be the product group G := G(0)
×G(1)

× · · ·×G(4), and set

e j := (e
(0)
j,0, e(1)j,0, . . . , e(4)j,0) for j = 0, 1, 2, 3, 4.

We also set

T (g(0), g(1), . . . , g(4)) := (T (0)g(0), T (1)g(1), . . . , T (4)g(4));

thus T is an automorphism on G. By construction it is clear that (34) holds. Also,
by the arguments in Proposition B.11, no nonzero power of T (i) has any nontrivial
fixed points, and so the same is also true of T .

Now we establish the final claim of the proposition. Suppose g0, . . . , g4 obey
the stated properties. Let i = 0, 1, 2, 3, 4, and let g(i)j be the G(i) component of g j

for j = 0, 1, 2, 3, 4; thus

(37) g(i)0 ((T
(i))r g(i)1 )((T

(i))2r g(i)2 )((T
(i))3r g(i)3 )((T

(i))4r g(i)4 )= id .

From the construction of G(i), we see that for any distinct j, k ∈ {0, 1, 2, 3, 4}\{i},
there is a homomorphism φ

(i)
j,k : G(i)

→ Z to the additive group Z mapping e(i)j,n
to+1, e(i)k,n to−1, and all other e(i)l,n to zero for n ∈Z and l ∈ {0, 1, 2, 3, 4}\{i, j, k}
(note that these requirements are compatible with the defining relations (36)). This
homomorphism is T (i) invariant. Applying this homomorphism to (37), we obtain∑4

l=0 φ
(i)
j,k(g

(i)
l )= 0.

In other words, the number of times gl for l = 0, 1, 2, 3, 4 equals e j , minus
the number of times it equals e−1

j , is equal to the number of times gl equals ek ,
minus the number of times it equals e−1

k . Letting j, k, i vary, we thus see that this
number is independent of j . It is easy to see that this number cannot exceed 1 in
magnitude, and if it is equal to+1 or−1, then g0, g1, g2, g3, g4 is a permutation of
{e0, e1, e2, e3, e4} or of {e−1

0 , e−1
1 , e−1

2 , e−1
3 , e−1

4 }, respectively. (Note that this argu-
ment also ensures that e0, e1, e2, e3 and e4 are distinct.) The remaining possibility
to eliminate is when this number is zero, thus each ei occurs in g0, g1, g2, g3, g4 as
often as e−1

i . Suppose for instance that g0, g1, g2, g3, g4 contains one occurrence
each of e0, e−1

0 , e1, e−1
1 . Applying (37) with i = 4 (say), and then applying the

homomorphism that maps e(4)0,n to zero, e(4)1,n to n, e(4)2,n to−2n, and e(4)3,n to n (here we
use the identity (n+r)−2(n+2r)+(n+3r)=0 to ensure consistency with (36)), we
obtain a contradiction. We argue similarly if g0, g1, g2, g3, g4 contains any other
combination of one or two distinct pairs e j , e−1

j . The remaining case to eliminate is
if g0, g1, g2, g3, g4 contains e j and e−1

j twice each for some j , say j = 0. Applying
(37) with i = 4 again, we can use Corollary B.10 to contradict (37), since the right
side is a definite integral of a maximal flat connection on a horizontal path of length
four. We argue similarly for other values of j , and the claim follows. �



58 TIM AUSTIN, TANJA EISNER AND TERENCE TAO

Acknowledgements

Our thanks go to Sorin Popa for several helpful discussions, Francesco Fidaleo
and David Kerr for references, and to Ezra Getzler for explaining Grothendieck’s
interpretation of a group via its sheaf of flat connections. The authors are indebted
to the anonymous referee for careful comments and suggestions.

References

[Austin 2010] T. Austin, “On the norm convergence of non-conventional ergodic averages”, Ergodic
Theory Dynam. Systems 30:2 (2010), 321–338. MR 2599882 Zbl 05702784

[Behrend 1946] F. A. Behrend, “On sets of integers which contain no three terms in arithmetical
progression”, Proc. Nat. Acad. Sci. U. S. A. 32 (1946), 331–332. MR 8,317d Zbl 0060.10302

[Bergelson 1987] V. Bergelson, “Weakly mixing PET”, Ergodic Theory Dynam. Systems 7:3 (1987),
337–349. MR 89g:28022 Zbl 0645.28012

[Bergelson and Leibman 2004] V. Bergelson and A. Leibman, “Failure of the Roth theorem for
solvable groups of exponential growth”, Ergodic Theory Dynam. Systems 24:1 (2004), 45–53.
MR 2005e:37006 Zbl 1115.37003

[Bergelson et al. 2005] V. Bergelson, B. Host, and B. Kra, “Multiple recurrence and nilsequences”,
Invent. Math. 160:2 (2005), 261–303. MR 2007i:37009 Zbl 1087.28007

[Beyers et al. 2010] C. Beyers, R. Duvenhage, and A. Ströh, “The Szemerédi property in ergodic
W∗-dynamical systems”, J. Operator Theory 64:1 (2010), 35–67. MR 2669426 Zbl 05776146

[Bratteli and Robinson 1987] O. Bratteli and D. W. Robinson, Operator algebras and quantum
statistical mechanics, I: C∗- and W∗-algebras, symmetry groups, decomposition of states, 2nd ed.,
Springer, New York, 1987. MR 88d:46105 Zbl 0905.46046

[Conze and Lesigne 1984] J.-P. Conze and E. Lesigne, “Théorèmes ergodiques pour des mesures
diagonales”, Bull. Soc. Math. France 112:2 (1984), 143–175. MR 86i:28019 Zbl 0595.28018

[Conze and Lesigne 1988a] J.-P. Conze and E. Lesigne, “Sur un théorème ergodique pour des
mesures diagonales”, C. R. Acad. Sci. Paris Sér. I Math. 306:12 (1988), 491–493. MR 89e:22012
Zbl 0641.28010

[Conze and Lesigne 1988b] J.-P. Conze and E. Lesigne, “Sur un théorème ergodique pour des
mesures diagonales”, pp. 1–31 in Probabilités, Publ. Inst. Rech. Math. Rennes 1987, Univ. Rennes
I, Rennes, 1988. MR 90a:28021 Zbl 0654.28012

[Duvenhage 2009] R. Duvenhage, “Bergelson’s theorem for weakly mixing C∗-dynamical sys-
tems”, Studia Math. 192:3 (2009), 235–257. MR 2010d:46093 Zbl 1181.46052

[Fidaleo 2007] F. Fidaleo, “On the entangled ergodic theorem”, Infin. Dimens. Anal. Quantum
Probab. Relat. Top. 10:1 (2007), 67–77. MR 2008d:37007 Zbl 1112.37004

[Fidaleo 2009] F. Fidaleo, “An ergodic theorem for quantum diagonal measures”, Infin. Dimens.
Anal. Quantum Probab. Relat. Top. 12:2 (2009), 307–320. MR 2010h:46108 Zbl 05592933

[Frantzikinakis and Kra 2005] N. Frantzikinakis and B. Kra, “Convergence of multiple ergodic aver-
ages for some commuting transformations”, Ergodic Theory Dynam. Systems 25:3 (2005), 799–809.
MR 2007b:37009 Zbl 1140.37300

[Furstenberg 1977] H. Furstenberg, “Ergodic behavior of diagonal measures and a theorem of Sze-
merédi on arithmetic progressions”, J. Analyse Math. 31 (1977), 204–256. MR 58 #16583 Zbl
0347.28016

http://dx.doi.org/10.1017/S014338570900011X
http://www.ams.org/mathscinet-getitem?mr=2599882
http://www.emis.de/cgi-bin/MATH-item?05702784
http://www.ams.org/mathscinet-getitem?mr=8,317d
http://www.emis.de/cgi-bin/MATH-item?0060.10302
http://dx.doi.org/10.1017/S0143385700004090
http://www.ams.org/mathscinet-getitem?mr=89g:28022
http://www.emis.de/cgi-bin/MATH-item?0645.28012
http://dx.doi.org/10.1017/S0143385703000427
http://dx.doi.org/10.1017/S0143385703000427
http://www.ams.org/mathscinet-getitem?mr=2005e:37006
http://www.emis.de/cgi-bin/MATH-item?1115.37003
http://dx.doi.org/10.1007/s00222-004-0428-6
http://www.ams.org/mathscinet-getitem?mr=2007i:37009
http://www.emis.de/cgi-bin/MATH-item?1087.28007
http://www.ams.org/mathscinet-getitem?mr=2669426
http://www.emis.de/cgi-bin/MATH-item?05776146
http://www.ams.org/mathscinet-getitem?mr=88d:46105
http://www.emis.de/cgi-bin/MATH-item?0905.46046
http://www.numdam.org/item?id=BSMF_1984__112__143_0
http://www.numdam.org/item?id=BSMF_1984__112__143_0
http://www.ams.org/mathscinet-getitem?mr=86i:28019
http://www.emis.de/cgi-bin/MATH-item?0595.28018
http://www.ams.org/mathscinet-getitem?mr=89e:22012
http://www.emis.de/cgi-bin/MATH-item?0641.28010
http://www.ams.org/mathscinet-getitem?mr=90a:28021
http://www.emis.de/cgi-bin/MATH-item?0654.28012
http://dx.doi.org/10.4064/sm192-3-3
http://dx.doi.org/10.4064/sm192-3-3
http://www.ams.org/mathscinet-getitem?mr=2010d:46093
http://www.emis.de/cgi-bin/MATH-item?1181.46052
http://dx.doi.org/10.1142/S0219025707002622
http://www.ams.org/mathscinet-getitem?mr=2008d:37007
http://www.emis.de/cgi-bin/MATH-item?1112.37004
http://dx.doi.org/10.1142/S0219025709003665
http://www.ams.org/mathscinet-getitem?mr=2010h:46108
http://www.emis.de/cgi-bin/MATH-item?05592933
http://dx.doi.org/10.1017/S0143385704000616
http://dx.doi.org/10.1017/S0143385704000616
http://www.ams.org/mathscinet-getitem?mr=2007b:37009
http://www.emis.de/cgi-bin/MATH-item?1140.37300
http://www.ams.org/mathscinet-getitem?mr=58:16583
http://www.emis.de/cgi-bin/MATH-item?0347.28016
http://www.emis.de/cgi-bin/MATH-item?0347.28016


VON NEUMANN NONCONVENTIONAL AVERAGES 59

[Furstenberg and Katznelson 1978] H. Furstenberg and Y. Katznelson, “An ergodic Szemerédi the-
orem for commuting transformations”, J. Analyse Math. 34 (1978), 275–291. MR 82c:28032
Zbl 0426.28014

[Furstenberg et al. 1982] H. Furstenberg, Y. Katznelson, and D. Ornstein, “The ergodic theoretical
proof of Szemerédi’s theorem”, Bull. Amer. Math. Soc. (N.S.) 7:3 (1982), 527–552. MR 84b:28016

[Glasner 2003] E. Glasner, Ergodic theory via joinings, Mathematical Surveys and Monographs
101, American Mathematical Society, Providence, RI, 2003. MR 2004c:37011 Zbl 1038.37002

[Gowers 2001] W. T. Gowers, “A new proof of Szemerédi’s theorem”, Geom. Funct. Anal. 11:3
(2001), 465–588. MR 2002k:11014 Zbl 1028.11005

[Gowers 2006] W. T. Gowers, “Quasirandomness, counting and regularity for 3-uniform hyper-
graphs”, Combin. Probab. Comput. 15:1-2 (2006), 143–184. MR 2008b:05175 Zbl 1082.05081

[Host 2009] B. Host, “Ergodic seminorms for commuting transformations and applications”, Studia
Math. 195:1 (2009), 31–49. MR 2010h:37003 Zbl 05615215

[Host and Kra 2001] B. Host and B. Kra, “Convergence of Conze–Lesigne averages”, Ergodic The-
ory Dynam. Systems 21:2 (2001), 493–509. MR 2002d:28007 Zbl 0995.37003

[Host and Kra 2005] B. Host and B. Kra, “Nonconventional ergodic averages and nilmanifolds”,
Ann. of Math. (2) 161:1 (2005), 397–488. MR 2007b:37004 Zbl 1077.37002

[Jones 1983] V. F. R. Jones, “Index for subfactors”, Invent. Math. 72:1 (1983), 1–25. MR 84d:46097
Zbl 0508.46040

[Jones and Sunder 1997] V. Jones and V. S. Sunder, Introduction to subfactors, London Math-
ematical Society Lecture Note Series 234, Cambridge University Press, 1997. MR 98h:46067
Zbl 0903.46062

[Kadison and Ringrose 1997] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of oper-
ator algebras, I: Elementary theory, Graduate Studies in Mathematics 15, American Mathematical
Society, Providence, RI, 1997. MR 98f:46001a Zbl 0888.46039

[Kerr and Li 2007] D. Kerr and H. Li, “Independence in topological and C∗-dynamics”, Math. Ann.
338:4 (2007), 869–926. MR 2009a:46126 Zbl 1131.46046

[Kra 2006] B. Kra, “From combinatorics to ergodic theory and back again”, pp. 57–76 in Interna-
tional Congress of Mathematicians, vol. 3, edited by M. Sanz-Solé et al., Eur. Math. Soc., Zürich,
2006. MR 2007m:37014 Zbl 1118.37010

[Krengel 1985] U. Krengel, Ergodic theorems, de Gruyter Studies in Mathematics 6, de Gruyter,
Berlin, 1985. MR 87i:28001 Zbl 0575.28009

[Nagle et al. 2006] B. Nagle, V. Rödl, and M. Schacht, “The counting lemma for regular k-uniform
hypergraphs”, Random Structures Algorithms 28:2 (2006), 113–179. MR 2007d:05084 Zbl 1093.
05045

[Niculescu et al. 2003] C. P. Niculescu, A. Ströh, and L. Zsidó, “Noncommutative extensions of clas-
sical and multiple recurrence theorems”, J. Operator Theory 50:1 (2003), 3–52. MR 2004k:46123
Zbl 1036.46053

[Popa 2007] S. Popa, “Cocycle and orbit equivalence superrigidity for malleable actions of w-rigid
groups”, Invent. Math. 170:2 (2007), 243–295. MR 2008f:37010 Zbl 1131.46040

[Salem and Spencer 1942] R. Salem and D. C. Spencer, “On sets of integers which contain no three
terms in arithmetical progression”, Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 561–563. MR 4,131e
Zbl 0060.10301

[Størmer 1974] E. Størmer, “Spectra of ergodic transformations”, J. Functional Analysis 15 (1974),
202–215. MR 51 #13715

http://www.ams.org/mathscinet-getitem?mr=82c:28032
http://www.emis.de/cgi-bin/MATH-item?0426.28014
http://dx.doi.org/10.1090/S0273-0979-1982-15052-2
http://dx.doi.org/10.1090/S0273-0979-1982-15052-2
http://www.ams.org/mathscinet-getitem?mr=84b:28016
http://www.ams.org/mathscinet-getitem?mr=2004c:37011
http://www.emis.de/cgi-bin/MATH-item?1038.37002
http://dx.doi.org/10.1007/s00039-001-0332-9
http://www.ams.org/mathscinet-getitem?mr=2002k:11014
http://www.emis.de/cgi-bin/MATH-item?1028.11005
http://dx.doi.org/10.1017/S0963548305007236
http://dx.doi.org/10.1017/S0963548305007236
http://www.ams.org/mathscinet-getitem?mr=2008b:05175
http://www.emis.de/cgi-bin/MATH-item?1082.05081
http://dx.doi.org/10.4064/sm195-1-3
http://www.ams.org/mathscinet-getitem?mr=2010h:37003
http://www.emis.de/cgi-bin/MATH-item?05615215
http://dx.doi.org/10.1017/S0143385701001249
http://www.ams.org/mathscinet-getitem?mr=2002d:28007
http://www.emis.de/cgi-bin/MATH-item?0995.37003
http://dx.doi.org/10.4007/annals.2005.161.397
http://www.ams.org/mathscinet-getitem?mr=2007b:37004
http://www.emis.de/cgi-bin/MATH-item?1077.37002
http://dx.doi.org/10.1007/BF01389127
http://www.ams.org/mathscinet-getitem?mr=84d:46097
http://www.emis.de/cgi-bin/MATH-item?0508.46040
http://dx.doi.org/10.1017/CBO9780511566219
http://www.ams.org/mathscinet-getitem?mr=98h:46067
http://www.emis.de/cgi-bin/MATH-item?0903.46062
http://www.ams.org/mathscinet-getitem?mr=98f:46001a
http://www.emis.de/cgi-bin/MATH-item?0888.46039
http://dx.doi.org/10.1007/s00208-007-0097-z
http://www.ams.org/mathscinet-getitem?mr=2009a:46126
http://www.emis.de/cgi-bin/MATH-item?1131.46046
http://www.ams.org/mathscinet-getitem?mr=2007m:37014
http://www.emis.de/cgi-bin/MATH-item?1118.37010
http://www.ams.org/mathscinet-getitem?mr=87i:28001
http://www.emis.de/cgi-bin/MATH-item?0575.28009
http://dx.doi.org/10.1002/rsa.20117
http://dx.doi.org/10.1002/rsa.20117
http://www.ams.org/mathscinet-getitem?mr=2007d:05084
http://www.emis.de/cgi-bin/MATH-item?1093.05045
http://www.emis.de/cgi-bin/MATH-item?1093.05045
http://www.ams.org/mathscinet-getitem?mr=2004k:46123
http://www.emis.de/cgi-bin/MATH-item?1036.46053
http://dx.doi.org/10.1007/s00222-007-0063-0
http://dx.doi.org/10.1007/s00222-007-0063-0
http://www.ams.org/mathscinet-getitem?mr=2008f:37010
http://www.emis.de/cgi-bin/MATH-item?1131.46040
http://www.ams.org/mathscinet-getitem?mr=4,131e
http://www.emis.de/cgi-bin/MATH-item?0060.10301
http://www.ams.org/mathscinet-getitem?mr=51:13715


60 TIM AUSTIN, TANJA EISNER AND TERENCE TAO

[Szemerédi 1975] E. Szemerédi, “On sets of integers containing no k elements in arithmetic pro-
gression”, Acta Arith. 27 (1975), 199–245. MR 51 #5547 Zbl 0303.10056

[Tao 2008] T. Tao, “Norm convergence of multiple ergodic averages for commuting transforma-
tions”, Ergodic Theory Dynam. Systems 28:2 (2008), 657–688. MR 2009k:37012 Zbl 1181.37004

[Towsner 2007] H. P. Towsner, “Convergence of Diagonal Ergodic Averages”, preprint, 2007. arXiv
0711.1180

[Vaughan 1997] R. C. Vaughan, The Hardy–Littlewood method, 2nd ed., Cambridge Tracts in Math-
ematics 125, Cambridge University Press, 1997. MR 98a:11133 Zbl 0868.11046

[Zhang 1996] Q. Zhang, “On convergence of the averages (1/N )
∑N

n=1 f1(Rn x) f2(Sn x) f3(T n x)”,
Monatsh. Math. 122:3 (1996), 275–300. MR 97k:28041 Zbl 0911.28012

[Ziegler 2005] T. Ziegler, “A non-conventional ergodic theorem for a nilsystem”, Ergodic Theory
Dynam. Systems 25:4 (2005), 1357–1370. MR 2006d:37009 Zbl 1099.37002

[Ziegler 2007] T. Ziegler, “Universal characteristic factors and Furstenberg averages”, J. Amer.
Math. Soc. 20:1 (2007), 53–97. MR 2007j:37004 Zbl 1198.37014

[Zimmer 1976a] R. J. Zimmer, “Ergodic actions with generalized discrete spectrum”, Illinois J.
Math. 20:4 (1976), 555–588. MR 54 #2924 Zbl 0349.28011

[Zimmer 1976b] R. J. Zimmer, “Extensions of ergodic group actions”, Illinois J. Math. 20:3 (1976),
373–409. MR 53 #13522 Zbl 0334.28015

Received December 30, 2009. Revised July 20, 2010.

TIM AUSTIN

DEPARTMENT OF MATHEMATICS

BROWN UNIVERSITY

151 THAYER ST, BOX 1917
PROVIDENCE, RI 02912
UNITED STATES

timaustin@math.brown.edu
http://www.math.brown.edu/~timaustin

TANJA EISNER

KORTEWEG-DE VRIES INSTITUTE FOR MATHEMATICS

UNIVERSITY OF AMSTERDAM

P.O. BOX 94248
1090 GE AMSTERDAM

THE NETHERLANDS

t.eisner@uva.nl
http://staff.science.uva.nl/~eisner

TERENCE TAO

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CALIFORNIA AT LOS ANGELES

405 HILGARD AVENUE

LOS ANGELES, CA 90095-1555
UNITED STATES

tao@math.ucla.edu
http://www.math.ucla.edu/~tao/

http://www.ams.org/mathscinet-getitem?mr=51:5547
http://www.emis.de/cgi-bin/MATH-item?0303.10056
http://dx.doi.org/10.1017/S0143385708000011
http://dx.doi.org/10.1017/S0143385708000011
http://www.ams.org/mathscinet-getitem?mr=2009k:37012
http://www.emis.de/cgi-bin/MATH-item?1181.37004
http://arxiv.org/abs/0711.1180
http://arxiv.org/abs/0711.1180
http://www.ams.org/mathscinet-getitem?mr=98a:11133
http://www.emis.de/cgi-bin/MATH-item?0868.11046
http://dx.doi.org/10.1007/BF01320190
http://www.ams.org/mathscinet-getitem?mr=97k:28041
http://www.emis.de/cgi-bin/MATH-item?0911.28012
http://dx.doi.org/10.1017/S0143385703000518
http://www.ams.org/mathscinet-getitem?mr=2006d:37009
http://www.emis.de/cgi-bin/MATH-item?1099.37002
http://dx.doi.org/10.1090/S0894-0347-06-00532-7
http://www.ams.org/mathscinet-getitem?mr=2007j:37004
http://www.emis.de/cgi-bin/MATH-item?1198.37014
http://projecteuclid.org/euclid.ijm/1256049648
http://www.ams.org/mathscinet-getitem?mr=54:2924
http://www.emis.de/cgi-bin/MATH-item?0349.28011
http://projecteuclid.org/euclid.ijm/1256049780
http://www.ams.org/mathscinet-getitem?mr=53:13522
http://www.emis.de/cgi-bin/MATH-item?0334.28015
mailto:timaustin@math.brown.edu
http://www.math.brown.edu/~timaustin
mailto:t.eisner@uva.nl
http://staff.science.uva.nl/~eisner
mailto:tao@math.ucla.edu
http://www.math.ucla.edu/~tao/


PACIFIC JOURNAL OF MATHEMATICS
http://www.pjmath.org

Founded in 1951 by
E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Darren Long
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

long@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Alexander Merkurjev
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

merkurev@math.ucla.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Jonathan Rogawski
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

jonr@math.ucla.edu

PRODUCTION
pacific@math.berkeley.edu

Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or www.pjmath.org for submission instructions.

The subscription price for 2011 is US $420/year for the electronic version, and $485/year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of
Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company,
11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt
MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans
Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA
94704-0163.

PJM peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS
at the University of California, Berkeley 94720-3840

A NON-PROFIT CORPORATION
Typeset in LATEX

Copyright ©2011 by Pacific Journal of Mathematics

http://www.pjmath.org
mailto:chari@math.ucr.edu
mailto:finn@math.stanford.edu
mailto:liu@math.ucla.edu
mailto:pacific@math.ucla.edu
mailto:long@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:merkurev@math.ucla.edu
mailto:popa@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:jonr@math.ucla.edu
mailto:pacific@math.berkeley.edu
http://www.pjmath.org
http://www.periodicals.com/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.emis.de/ZMATH/
http://www.inist.fr/PRODUITS/pascal.php
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/


PACIFIC JOURNAL OF MATHEMATICS

Volume 250 No. 1 March 2011

1Nonconventional ergodic averages and multiple recurrence for von
Neumann dynamical systems

TIM AUSTIN, TANJA EISNER and TERENCE TAO

61Principal curvatures of fibers and Heegaard surfaces
WILLIAM BRESLIN

67Self-improving properties of inequalities of Poincaré type on s-John
domains

SENG-KEE CHUA and RICHARD L. WHEEDEN

109The orbit structure of the Gelfand–Zeitlin group on n × n matrices
MARK COLARUSSO

139On Maslov class rigidity for coisotropic submanifolds
VIKTOR L. GINZBURG

163Dirac cohomology of Wallach representations
JING-SONG HUANG, PAVLE PANDŽIĆ and VICTOR PROTSAK
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