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We define the Maslov index of a loop tangent to the characteristic foliation
of a coisotropic submanifold as the mean Conley–Zehnder index of a path
in the group of linear symplectic transformations, incorporating the “ro-
tation” of the tangent space of the leaf — this is the standard Lagrangian
counterpart — and the holonomy of the characteristic foliation. We also
show that, with this definition, the Maslov class rigidity extends to the class
of the so-called stable coisotropic submanifolds including Lagrangian tori
and stable hypersurfaces.

1. Introduction and main results

1.1. Introduction. As the title indicates, the main theme of the paper is the Maslov
class rigidity for coisotropic submanifolds. To be more specific, we define the
Maslov index of a loop tangent to the characteristic foliation in a coisotropic sub-
manifold and show that a displaceable, stable coisotropic submanifold carries a
loop with Maslov index in the range [1, 2n+1−k], where 2n is the dimension of
the ambient manifold and k is the codimension of the coisotropic submanifold.

The study of symplectic topology of coisotropic submanifolds can be traced
back to [Moser 1978] followed by [Banyaga 1980; Ekeland and Hofer 1989; Hofer
1990] and by the work of Bolle [1996; 1998]. Recently, the field has entered
a particularly active phase; see [Albers and Frauenfelder 2010; 2008; Dragnev
2008; Ginzburg 2007; Gürel 2010; ≥ 2011; Kang 2009; Kerman 2008; Tonnelier
2010; Usher 2009; Ziltener 2010; 2009]. Most of these papers, with the excep-
tion of [Ziltener 2009], concern such questions as generalizations to coisotropic
submanifolds of the Lagrangian intersection property or of the existence of closed
characteristics on stable hypersurfaces. The present work, which can be thought
of as a follow-up to [Ginzburg 2007], focuses mainly on the coisotropic version of
the Maslov class rigidity, also considered in [Ziltener 2009].
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The aspect of the Maslov class rigidity we are concerned with here is the fact
that the Maslov class of a closed displaceable Lagrangian submanifold automati-
cally satisfies certain restrictions. Namely, the minimal Maslov number of such a
submanifold lies between 1 and n+1. This phenomenon was originally studied in
[Polterovich 1991a; 1991b; Viterbo 1990] and there are two methods of proving re-
sults of this type. One of these methods uses the holomorphic curves technique (see
[Audin et al. 1994; Polterovich 1991a; 1991b]) and at this moment it is not known
how to directly apply it to coisotropic submanifolds due to the lack of Fredholm
properties for the Cauchy–Riemann problem with coisotropic boundary conditions.
The second approach, originating from [Viterbo 1990], relies on Hamiltonian Floer
homology (or its equivalent) and in combination with certain estimates from [Bolle
1998] can be easily adapted to the coisotropic setting; see, for example, [Ginzburg
2007]. Here, we heavily draw from the modern interpretation of this method given
in [Kerman 2009; Kerman and Şirikçi 2010].

The Maslov index of a loop tangent to the characteristic foliation is the mean
Conley–Zehnder index of a certain path in Sp(2n) associated with the loop and
comprising the “rotation” of the tangent space of the leaf, as the standard La-
grangian counterpart, and the holonomy of the characteristic foliation. Hence, the
index can be an arbitrary real number. This definition, which can also be found in
[Ziltener 2009], where it is treated in great detail, is of independent interest. Then,
the proof of the Maslov class rigidity for coisotropic submanifolds follows the path
of [Kerman 2009; Kerman and Şirikçi 2010; Viterbo 1990]. The main new element
of the proof is that we circumvent relating the Conley–Zehnder and Morse indices
as in [Duistermaat 1976; Viterbo 1990]; instead we use the explicit expression
for the geodesic flow of a metric, capitalizing on the fact that the submanifolds in
question are stable and hence admit a leaf-wise flat metric.

1.2. Coisotropic Maslov index. Let M be a coisotropic submanifold of a sym-
plectic manifold (W 2n, ω). Denote by F the characteristic foliation of M ; see
Section 2.1 for the definition. The normal bundle T⊥M to M is canonically isomor-
phic to the (leaf-wise) cotangent bundle T ∗F to F and the direct sum T F⊕T⊥M
is a symplectic vector bundle over M . We have a symplectic vector bundle decom-
position

(1-1) TW |M= (T F⊕ T⊥M)⊕ T⊥F,

where T⊥F is the normal bundle to F in M . Note that T⊥F carries a symplectic
leaf-wise flat connection.

Consider a loop γ : S1
→ M tangent to F, contractible in W and equipped with

a capping u : D2
→ W . The capping u gives rise to a symplectic trivialization ζ ,

unique up to homotopy, of the pull-back bundle γ ∗TW . Let us assume first that
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T F is orientable along γ (i.e., the pull-back γ ∗T F is orientable), and hence trivial,
and fix a trivialization ξ of this vector bundle. Then the pull-back γ ∗(T F⊕T⊥M)
receives a symplectic trivialization ξ ⊕ ξ∗. This trivialization can be viewed as a
family of symplectic maps4(t) :Tγ (0)F⊕T⊥γ (0)M→Tγ (t)F⊕T⊥γ (t)M parametrized
by t ∈ S1. Combining the family 4(t) with the holonomy 0(t) : T⊥γ (0)F→ T⊥γ (t)F
along γ , we obtain a family of symplectic maps 4(t)⊕0(t) : Tγ (0)W → Tγ (t)W ,
which, using the trivialization ζ , we can regard as a path 8 : [0, 1] → Sp(2n).

Definition 1.1. The coisotropic Maslov index µ(γ, u) of the capped loop (γ, u)
is the negative mean Conley–Zehnder index −1(8) ∈ R. (We refer the reader to
[Long 2002; Salamon and Zehnder 1992] for a detailed discussion of the mean in-
dex; here we use the notation and conventions from [Ginzburg and Gürel 2009]; see
Section 2.2.) When T F is not orientable along γ , we set µ(γ, u) := µ(γ 2, u2)/2,
where (γ 2, u2) stands for the double cover of (γ, u).

The standard argument shows that the index µ(γ, u) is well defined, that is,
independent of the choice of the trivializations ξ and ζ . It is also independent of the
choice of splitting (1-1): the normal bundle T⊥F is unambiguously defined only
as the quotient TW/T F while the splitting requires a choice of the complement to
T F in TW . To see that 1(8) is independent of this choice, we argue as follows;
see the proof of [Ginzburg and Gürel 2009, Lemma 2.6]. Observe that the path 8̃
resulting from a different splitting is homotopic to the concatenation of the path
8 with a path 9 of the form 9(t) = I + A(t), where I is the identity map and
A(t) : T⊥F→ (T F⊕ T⊥M). Thus, all eigenvalues of 9(t) are equal to one and,
as a consequence, 1(9) = 0. Hence, by the additivity and homotopy invariance
of the mean index [Ginzburg and Gürel 2009; Long 2002; Salamon and Zehnder
1992], we have 1(8̃)=1(8).

It is worth emphasizing that, in contrast with the ordinary Lagrangian Maslov in-
dex, the coisotropic Maslov index is not, in general, an integer and that this index is
different from the one considered in [Oh 2003]. The negative sign in the definition
of the coisotropic Maslov index is, of course, a matter of conventions: this is the
price we have to pay to match the sign of the standard Maslov index for Lagrangian
submanifolds (Example 1.2) while using the conventions from [Ginzburg and Gürel
2009]; see Section 2.2.

It is easy to see that the coisotropic Maslov index has the following properties:

• Homotopy invariance: µ(γ, u) is invariant, in the obvious sense, under a ho-
motopy of γ in a leaf of F. In particular, µ(γ, u) = 0 when u is homotopic
(rel boundary) to a disc in the leaf of F containing γ .

• Recapping: µ(γ, u#v) = µ(γ, u)− 2 〈c1(TW ), v〉, where the capping u#v is
obtained by attaching the sphere v∈π2(W ) to u. In particular,µ(γ ) :=µ(γ, u)
is independent of u when c1(TW ) |π2(W )= 0.
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• Homogeneity: µ(γ k, uk) = kµ(γ, u), where (γ k, uk) stands for the k-fold
cover of (γ, u). Moreover, when c1(TW ) |π2(W )= 0, the Maslov index gives
rise to a homogeneous quasimorphism π1(F)→ R for any leaf F of F.

Example 1.2. When M is a Lagrangian submanifold of W , the foliation F has
only one leaf, the manifold M itself, and the coisotropic Maslov index coincides
with the ordinary Maslov index. Indeed, in this case, Definition 1.1 turns into one
of the definitions of this index.

Example 1.3. When u is contained in M , the index µ(γ, u) is equal to the mean
index of the holonomy along γ with respect to a symplectic trivialization of T⊥F

associated with u. For instance, when M is a regular level of a Hamiltonian and
γ is a periodic orbit (and again u is contained in M), the Maslov index µ(γ, u) is
equal to the mean index of γ in M .

Example 1.4. When all leaves of F are closed and form a fibration, the path 8 is
a loop and µ(γ, u) is equal to the Maslov index of this loop. (In particular, then
µ(γ, u) is an integer.) In this setting, the coisotropic Maslov index is introduced
and investigated by Ziltener [2009]. Furthermore, one can express the coisotropic
Maslov index via the Lagrangian Maslov index in the graph of F; see [Ziltener
2009; 2010] for details.

Now we are in a position to state the main result of the paper. A much more
detailed discussion of the coisotropic Maslov index can be found in [Ziltener 2009].

1.3. Rigidity of the coisotropic Maslov index. Let W be a symplectically aspher-
ical manifold, which we assume to be either closed or geometrically bounded and
wide (e.g., convex at infinity) in the sense of [Gürel 2008].

Theorem 1.5. Let W 2n be as above and let M2n−k
⊂ W be a closed, stable, dis-

placeable coisotropic submanifold. (See Section 2.1 for the definitions.) Then, for
any δ > 0, there exists a loop η tangent to F and contractible in W and such that

1≤ µ(η)≤ 2n+ 1− k,(1-2)

0< Area(η)≤ e(M)+ δ,(1-3)

where Area(η) is the symplectic area bounded by η and e(M) is the displacement
energy of M .

Example 1.6. As in Example 1.2, assume that M is a stable Lagrangian subman-
ifold (and hence a torus). Then k = n and the theorem reduces to a particular
case of the standard Lagrangian Maslov class rigidity. This version of rigidity
is established in [Viterbo 1990] for W = R2n and in [Kerman 2009; Kerman and
Şirikçi 2010] for closed ambient manifolds; see also [Audin et al. 1994; Polterovich
1991a; 1991b] for generalizations.
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Example 1.7. Assume that M is a stable, displaceable, simply connected hyper-
surface. Then, by (1-2) and Example 1.3, M carries a closed characteristic η with
1 ≤ 1(γ ) ≤ 2n. This is apparently a new observation. However, if we replace
the upper bound by 2n + 1, the assertion becomes an easy consequence of the
properties of the mean index and, for instance, the displacement or symplectic ho-
mology proof of the almost existence theorem; see, for example, [Floer et al. 1994;
Ginzburg 2005; Gürel 2008; Hofer and Zehnder 1994] and references therein.

Remark 1.8. A word on the hypotheses of the theorem is due now. The assumption
that W be symplectically aspherical is imposed here only for the sake of simplicity
and can be significantly relaxed along the lines of [Kerman 2008; Usher 2009].
Hypothetically, a combination of our argument with the reasoning from these works
should lead to a generalization of the theorem to the case where we only require
the subgroup 〈ω, π2(M)〉 ⊂R to be discrete as in [Usher 2009, Theorem 1.6] or, at
least, where W is monotone or negative monotone; see [Kerman 2008]. (In such a
generalization, the geodesic η is, of course, equipped with capping.)

The condition that M is stable cannot be entirely omitted due to the counterex-
amples to the Hamiltonian Seifert conjecture showing that there exist hypersurfaces
in R2n (C2 when 2n = 4) without closed characteristics; see [Ginzburg 1999;
Ginzburg and Gürel 2003] and references therein. However, this condition can
possibly be relaxed as in [Usher 2009, Section 7].

Finally note that the existence of a loop η satisfying (1-3) is established in
[Ginzburg 2007, Theorem 2.7], where the second inequality (with δ= 0) is proved
under the additional hypothesis that M has restricted contact type. Thus, even
when only the area bounds are concerned, Theorem 1.5 is a generalization (up to
the issue of δ) of the results from [Ginzburg 2007], which became possible due to
incorporating a technique from [Kerman 2009; Kerman and Şirikçi 2010] into the
proof.

Remark 1.9. It is tempting to conjecture that the Maslov class of M is still nonzero
even when the stability assumption in Theorem 1.5 is dropped and all leaves of F

may be contractible. However, it is not entirely clear how to define this Maslov
class and what cohomology space this class should lie in. The situation contrasts
sharply with a similar question for the Liouville class of M , which can always be
defined, when W is exact, as the class [λ|F] of a global primitive λ of ω in the
tangential de Rham cohomology H1(F); see [Ginzburg 2007, Section 1.2].

2. Preliminaries

We start this section by recalling the relevant definitions and basic results concern-
ing coisotropic submanifolds. In Section 2.2, we set our conventions and notation.
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2.1. Stable coisotropic submanifolds. Let, as above, (W 2n, ω) be a symplectic
manifold and let M ⊂ W be a closed, coisotropic submanifold of codimension k.
Set ωM = ω|M . Then, as is well known, the distribution kerωM has dimension
k and is integrable. Denote by F the characteristic foliation on M , that is, the
k-dimensional foliation whose leaves are tangent to the distribution kerωM .

Definition 2.1. The coisotropic submanifold M is said to be stable if there exist
one-forms α1, . . . , αk on M such that ker dαi ⊃ kerωM for all i = 1, . . . , k and

(2-1) α1 ∧ · · · ∧αk ∧ω
n−k
M 6= 0

anywhere on M . We say that M has contact type if the forms αi can be taken to
be primitives of ωM . Furthermore, M has restricted contact type if the forms αi

extend to global primitives of ω on W .

Stable and contact type coisotropic submanifolds were introduced by Bolle
[1996; 1998] and considered in a more general setting in [Ginzburg 2007] and
also by Kerman [2008] and Usher [2009]. We refer the reader to [Ginzburg 2007]
for a discussion of the requirements of Definition 2.1 and examples. Here we only
note that although Definition 2.1 is natural, it is quite restrictive. For example,
a stable Lagrangian submanifold is necessarily a torus and a stable coisotropic
submanifold is automatically orientable.

Assume henceforth that M is stable. Then the normal bundle T⊥M to M in W
is trivial, since it is isomorphic to T ∗F and the latter bundle is trivial due to (2-1).
From now on, we fix the trivialization T⊥M = T ∗F∼= M×Rk given by the forms
αi and identify a small neighborhood of M in W with a neighborhood of M in
T ∗F=M×Rk . We will use the same symbols ωM and αi for differential forms on
M and for their pullbacks to M×Rk . (Thus we suppress the pullback notation π∗,
where π : M ×Rk

→ M is the natural projection, unless its presence is essential.)
As a consequence of the Weinstein symplectic neighborhood theorem, we have:

Proposition 2.2 [Bolle 1996; 1998]. Let M be a closed, stable coisotropic sub-
manifold of (W 2n, ω) with codim M = k. Then, for a sufficiently small r > 0, there
exists a neighborhood of M in W , which is symplectomorphic to

Ur = {(q, p) ∈ M ×Rk
| |p|< r},

equipped with the symplectic form ω = ωM +
∑k

j=1 d(p jα j ). Here (p1, . . . , pk)

are the coordinates on Rk and |p| is the Euclidean norm of p.

Thus, a neighborhood of M in W is foliated by a family of coisotropic subman-
ifolds Mp = M×{p} with p ∈ Bk

r , where Bk
r is the ball of radius r centered at the

origin in Rk . Moreover, a leaf of the characteristic foliation on Mp projects onto a
leaf of the characteristic foliation on M .
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Proposition 2.3 [Bolle 1996; 1998; Ginzburg 2007]. Let M be a stable coisotropic
submanifold.

(i) The leaf-wise metric (α1)
2
+ · · ·+ (αk)

2 on F is leaf-wise flat.

(ii) The Hamiltonian flow of ρ = (p2
1 + · · · + p2

k )/2 = |p|
2/2 is the leaf-wise

geodesic flow of this metric.

We conclude this section by pointing out that the metric ρ extends to a true
metric on M such that the leaves of F are totally geodesic submanifolds and that
the existence of such a metric is equivalent to the stability of M when M is a
hypersurface; see [Sullivan 1978] and [Usher 2009, Section 7].

2.2. Conventions and notation. In this section we specify conventions and nota-
tion used throughout the paper.

2.2.1. Action functional and the Hamilton equation. Let (W 2n, ω) be a symplec-
tically aspherical manifold, that is, ω|π2(W ) = c1|π2(W ) = 0. Denote by 3W the
space of smooth contractible loops γ : S1

→ W and consider a time-dependent
Hamiltonian H : S1

×W → R, where S1
= R/Z. Setting Ht = H(t, ·) for t ∈ S1,

we define the action functional AH :3W → R by

AH (γ )=A(γ )+

∫
S1

Ht(γ (t)) dt,

where A(γ ) = −Area(γ ) is the negative symplectic area bounded by γ . In other
words,

A(γ )=−

∫
u
ω,

where u : D2
→ W is a capping of γ , that is, u|S1 = γ . The least action principle

asserts that the critical points of AH are exactly the contractible one-periodic orbits
of the time-dependent Hamiltonian flow ϕt

H of H , where the Hamiltonian vector
field X H of H is defined by the Hamilton equation iX Hω =−dH .

2.2.2. Conley–Zehnder index. We consider a finite-dimensional symplectic vector
space V and denote by Sp(V ) the group of linear symplectic transformations of
V , setting Sp(2n) = Sp(R2n) as usual. We let 1(8) stand for the mean index
of a path 8 : [0, T ] → Sp(V ) and, when 8 is nondegenerate (i.e., 8(T ) has no
eigenvalues equal to one), we denote by µCZ(8) the Conley–Zehnder index of 8.
We refer the reader to [Long 2002; Salamon 1999; Salamon and Zehnder 1992]
and also [Ginzburg and Gürel 2009] for the definitions and a detailed discussion
of these notions. In this paper, we normalize these indices as in [Ginzburg and
Gürel 2009]. This normalization is different from the ones in [Long 2002; Sala-
mon 1999; Salamon and Zehnder 1992]. For instance, our µCZ(8) is the negative
of the Conley–Zehnder index as defined in [Salamon 1999]. For the flow 8(t)
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with 0≤ t ≤ 1 generated by a nondegenerate quadratic Hamiltonian H with small
eigenvalues, we have µCZ(8) = − sgn (H)/2, where sgn (H) is the signature of
H (the number of positive squares minus the number of negative squares). In
particular, when H is negative definite, we have µCZ(8) = n where 2n = dim V
and1(8)>0. In other words, when µCZ(8) is interpreted as the intersection index
of 8 with the discriminant 6⊂ Sp(V ) formed by symplectic transformations with
at least one eigenvalue equal to one, 6 is co-oriented by the Hamiltonian vector
field of a negative definite Hamiltonian.

Recall also from [Salamon and Zehnder 1992] that, regardless of conventions,
we have

(2-2) |1(8)−µCZ(8)|< n and 1(8)= lim
k→∞

µCZ(8
k)

k
,

where in the inequality we require 8(T ) to be nondegenerate and, in the limit
identity, we assume that 8(T )k 6∈ 6 for all k and thus µCZ(8

k) is defined. Note
that here we can replace 8k by the concatenation of the paths 8, 8(T )8, etc., up
to 8(T )k−18.

Let now x be a contractible periodic orbit of H on W 2n . Using a trivialization
of x∗TW arising from a capping of x , we can interpret the linearized flow dϕt

H
along x as a path 8 in Sp(2n). The mean index 1(x) of x is by definition 1(8).
When x is nondegenerate, we also set µCZ(x) :=µCZ(8). Since c1(TW )|π2(W )= 0,
these indices are well defined, that is, independent of the capping. When we need
to emphasize the role of H , we write 1H (x) and µCZ(x, H). By (2-2), we have

(2-3) |1(x)−µCZ(x)|< n and 1(x)= lim
k→∞

µCZ(xk)

k
.

As in (2-2), we require here x to be nondegenerate for µCZ(x) to be defined, and, in
the limit identity, we assume that x is strongly nondegenerate, that is, all iterated
orbits xk are nondegenerate. Finally note that with our normalizations 1(x) > 0
and µCZ(x) = n when x is a nondegenerate maximum (with small Hessian) of an
autonomous Hamiltonian.

2.2.3. Floer homology. In the definition of Floer homology, we adopt literally the
conventions and notation from [Ginzburg 2007]. All Hamiltonians considered in
this paper are assumed to be compactly supported. The manifold W , in addition
to being symplectically aspherical, is required to be either closed or geometrically
bounded and wide in the sense of [Gürel 2008]. (See, e.g., [Audin et al. 1994;
Cieliebak et al. 2004; Sikorav 1994] for the precise definition and a discussion of
geometrically bounded manifolds.)

Examples of geometrically bounded manifolds include symplectic manifolds
which are convex at infinity (e.g., R2n and cotangent bundles) as well as twisted
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cotangent bundles. Under the hypotheses that W is symplectically aspherical and
geometrically bounded, the compactness theorem for Floer’s connecting trajec-
tories holds (see [Sikorav 1994]) and the filtered Z-graded Floer homology of a
compactly supported Hamiltonian on W is defined for action intervals not con-
taining zero; see, for example, [Cieliebak et al. 2004; Ginzburg and Gürel 2004]
and references therein. We use the wideness hypothesis in Section 3.2 when con-
sidering a version of the “pinned” action selector introduced in [Kerman 2009].
This requirement is not restrictive, for, to the best of the author’s knowledge, no
examples of geometrically bounded open manifolds that are not wide are known.

We use the notation HF(a, b)
∗

(H) for the filtered Floer homology of H , graded
by the Conley–Zehnder index. The end-points a and b are always assumed to be
outside the action spectrum S(H) of H and, if W is open, we require that 0 6∈ (a, b).
When W is closed, we have a canonical isomorphism

HF∗(H)= H∗+n(W ;Z2),

where as usual HF∗(H) = HF(−∞,∞)
∗

(H). When all periodic orbits of H with
action in (a, b) are nondegenerate, we let CF(a, b)

∗
(H) be the vector space generated

over Z2 by such orbits, graded by the Conley–Zehnder index. The downward Floer
differential

∂ : CF(a, b)
∗

(H)→ CF(a, b)
∗−1 (H)

is then defined in the standard way and HF(a, b)
∗

(H) is the homology of the resulting
Floer complex. The above nondegeneracy requirement is generic (as long as 0 6∈
(a, b) if W is open) and, in general, we set

HF(a, b)
∗

(H) := HF(a, b)
∗

(H̃),

where H̃ is a small perturbation of H having only nondegenerate orbits with action
in (a, b). Since a and b are outside S(H), the homology HF(a, b)

∗
(H̃) is indepen-

dent of H̃ as long as H̃ is sufficiently close to H . We refer the reader to [Cieliebak
et al. 2004; Ginzburg 2007; Ginzburg and Gürel 2004] for the proofs and further
details on the construction and properties of the Floer homology in this setting as
well as for further references.

3. Proof of the main theorem

3.1. Maslov index for stable coisotropic submanifolds. Let M be a stable coiso-
tropic submanifold. In this section, we interpret the mean index1ρ(x) of a periodic
orbit x of the leaf-wise geodesic flow on M as, up to a sign, the coisotropic Maslov
index of the projection γ of x to M . We also establish certain bounds, going beyond
(2-3), on the Conley–Zehnder index of a small nondegenerate perturbation of x .
Throughout this subsection, we will use the notation from Section 2.1. In particular,
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we fix a neighborhood U = M × B, where B = Br , of M in W . Thus, let x be
a nontrivial, contractible in W closed orbit of the Hamiltonian flow of ρ and let
γ = π(x). Then γ is also contractible in W .

Proposition 3.1. We have

(3-1) µ(γ )=−1ρ(x).

Proof. It is convenient to first extend the decomposition (1-1) from TW |M to TW |U
as follows. Recall from Section 2.1 that the submanifolds Mp=M×{p}⊂M×B,
with p ∈ B, are coisotropic and that the characteristic foliation Fp of Mp projects
to F under π . Denote by F̃ the resulting foliation of U , obtained as the union
of foliations Fp. Let TM be the horizontal tangent bundle in M × B, that is,
(TM)(q,p) = T(q,p)Mp where (q, p) ∈U = M× B, and likewise let TB denote the
vertical bundle kerπ∗. Then the normal bundle T⊥F̃ to T F̃ in TM can be realized
as the subbundle E = (∩i kerπ∗αi )∩TM . We have the symplectic decomposition

(3-2) TW = (T F̃⊕ TB)⊕ E,

which turns into (1-1) once restricted to M .
The linearized projection π∗ gives rise to an isomorphism between the fibers

(T F̃)(q,p) and TqF, and E(q,p) and T⊥q F. Furthermore, (TB)(q,p) is naturally
isomorphic to T0 B = T⊥q M . Thus, we have a (symplectic) linear isomorphism
between the decomposition (3-2) along x and (1-1) along γ . In particular, we
obtain an isomorphism between the bundles x∗TW and γ ∗TW giving rise to a
one-to-one correspondence between trivializations of TW along x and along γ . In
what follows, we fix a trivialization arising from a capping of x .

Now recall that the flow of ρ on U can be identified with the geodesic flow
of the leaf-wise metric ρ on M . Thus, we need to prove that the mean index of
the linearized geodesic flow G(t) along x is equal to 1(8). The geodesic flow
preserves the terms T F̃⊕ TB and E in the decomposition (3-2). Indeed, the fact
that the first term is conserved is clear: the geodesic flow is tangent to the leaves.
To show that the second term is conserved, it suffices to recall that, as mentioned
above, the flow is tangent to the manifolds Mp due to conservation of momenta
and that the restrictions π∗α j |Mp are conserved since L Xρπ

∗α j = dp j .
Next let us show that

(3-3) G|E = 0,

where we identified x∗E and γ ∗T⊥F. To this end, let us recall the definition of
the holonomy 0. Consider an element [v] in T⊥γ (0)F= Tγ (0)M/Tγ (0)F represented
by a vector v ∈ Tγ (0)M . (Here and below, it is more convenient to think of E and
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T⊥F as quotient bundles rather than sub-bundles.) Let η : [0, δ)→M be a smooth
map with η(0) = γ (0) and η′(0) = v. Let now γ be parametrized by, say, [0, T ]
and let σ : [0, T ] × [0, δ)→ M be a map whose restriction to [0, T ] × 0 is γ , to
0×[0, δ) is η and such that σ |[0, T ]×s , for all s ∈ [0, δ), lies in a leaf of F. The class
[(∂σ/∂s)(t, 0)]∈T⊥γ (t)F is independent of the choice of σ and is the image 0(t)[v].
Let now w(s) ∈ Tη(s)F be a smooth family of vectors tangent to F and such that
w(0)= γ̇ (0). Consider the parametrized surface σ defined by setting σ |[0, T ]×s to be
the leaf-wise geodesic with the initial conditions (γ (s), w(s)). Then, in particular,
[(∂σ/∂s)(t, 0)] is independent of the choice of the curve η and the familyw. On the
one hand, this vector represents G(t)[v] by the definition of the linearized geodesic
flow and, on the other, it is 0(t)[v] due to the above description of the holonomy.

To complete the argument, it would be sufficient to show that G|T F̃⊕TB = 4,
where we identified x∗(T F̃⊕ TB) and γ ∗(T F⊕ T⊥M), but this is not true. Let
us fix a basis ξ(0) ∈ Tγ (0)F. Then, since the metric is flat, G(t)ξ(0) is the basis
ξ(t) in Tγ (t)F obtained from ξ(0) by the parallel transport along γ . Let

ξ∗(0) ∈ T ∗γ (0)F= T⊥γ (0)M

be the basis dual to ξ(0). Then G(t)ξ∗(0) = tξ(t)+ ξ∗(t) ∈ Tγ (t)F⊕ T ∗γ (t)F in
obvious notation. We conclude that G(t)|T F̃⊕TB =4(t)+ A(t), where

A(t) : T ∗γ (t)F→ Tγ (t)F.

To finish the proof, we argue as when showing in Section 1.2 that the coisotropic
Maslov index is independent of the splitting (1-1). With a trivialization fixed, we
can view G and 8= 4⊕0 as paths in Sp(2n). Then, G is homotopic with fixed
end-points to the concatenation of8 and the path9(t)= I+A(t). All eigenvalues
of 9(t) are equal to one and therefore 1(9) = 0. Thus, by the additivity and
homotopy invariance of the mean index (see, e.g., [Ginzburg and Gürel 2009; Long
2002; Salamon and Zehnder 1992]), we have 1(G)=1(8)=: −µ(γ ). �

Remark 3.2. Proposition 3.1 has the following hypothetical generalization. As-
sume that M admits a metric with respect to which F is totally geodesic. Referring
the reader to [Usher 2009, Section 7] for a detailed discussion of this condition,
we only mention here that it is satisfied when M is Lagrangian (for any metric on
M) and when M is stable. In the latter case, F is totally geodesic with respect to
ρ. Then, conjecturally, the mean Conley–Zehnder index of x is equal, up to a sign,
to the sum of the mean Morse index of γ and µ(γ ). When M is stable, the mean
Morse index is zero since ρ is flat, and this conjecture reduces to Proposition 3.1.
When M is Lagrangian and x is nondegenerate, the conjecture essentially reduces
to a well known relation between the Conley–Zehnder, Morse, and Maslov indices.
The latter is proved in [Viterbo 1990] using the results from [Duistermaat 1976] in
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the context of the finite-dimensional reduction. A proof relying on the Floer theory
version of the Conley–Zehnder index can be found in, for example, [Weber 2002];
see also [Kerman and Şirikçi 2010] for a simple argument.

The next proposition is a substitute for the relation between the Conley–Zehnder
and Maslov indices.

Proposition 3.3. Let K be a small perturbation of ρ and x̃ be a nondegenerate
periodic orbit of K close to a nontrivial, contractible periodic orbit x of ρ. Then

(3-4) 1ρ(x)− n ≤ µCZ(x̃)≤1ρ(x)+ (n− k)

Proof. Note that by the continuity of 1 and (2-3) we automatically have

1ρ(x)− n ≤ µCZ(x̃)≤1ρ(x)+ n,

regardless of the nature of the flow of ρ. Hence only the second inequality in (3-4)
requires a proof.

By arguing as in the proof of Proposition 3.1, it is not hard to reduce the propo-
sition to the following linear algebra result. Namely, consider a finite-dimensional
symplectic vector space V split as a symplectic direct sum

V = (L ⊕ L∗)⊕ E,

where E and (L ⊕ L∗) are symplectic spaces, and L and L∗ are Lagrangian in
L ⊕ L∗; see (1-1) and (3-2). Set dim V = 2n and dim L = k. Consider a path
G : [0, 1]→ Sp(V ) of the form G = A⊕0, where 0 is a path in Sp(E) beginning
at I and A is the block-diagonal path

A =
[

I t I
0 I

]
,

in Sp(L ⊕ L∗).

Lemma 3.4. Let G̃ : [0, 1]→ Sp(V ) be a small nondegenerate perturbation of G,
also beginning at I . Then

(3-5) 1(G)− n ≤ µCZ(G̃)≤1(G)+ (n− k).

Proof of the lemma. Again, by (2-2), we have

1(G)− n ≤ µCZ(G̃)≤1(G)+ n,

for any path G. Hence, only the second inequality in (3-5) requires a proof.
Next observe that, once the end-point 0(1) is fixed, the path 0 is immaterial

for the assertion of the lemma. In other words, if the lemma holds for one path
with a given end-point, it also holds for every path with the same end-point. This
follows from the facts that a homotopy of G can be traced by a homotopy of G̃
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(both with fixed end-points) and that µCZ and1 are invariant under such homotopy
and change in the same way when a loop is attached to a path.

As the first step of the proof, let us assume that all eigenvalues of 0(1) are equal
to one. Then 0(1) is in the image of the exponential mapping exp for Sp(E).
Indeed, 0(1) is conjugate to a symplectic linear map which can be chosen to be
arbitrarily close to I ; see, for example, [Ginzburg 2010, Lemma 5.5]. Since exp
is onto a neighborhood of the identity and commutes with conjugation, 0(1) is in
the image of exp. Since 0 is a regular point of exp and the set of regular points
is open, we can write 0(1) = exp(Q), where Q is a regular point of exp and all
eigenvalues of Q are equal to zero.

Here we identify the Lie algebra of the symplectic group with the space of
quadratic Hamiltonians. As is customary in symplectic geometry, the eigenvalues
of Q are, by definition, the eigenvalues of the linear Hamiltonian vector field X Q

generated by Q. Also note that if we identified Sp(E) with Sp(2(n− k)) and used
the matrix exponential map, we would write X Q = J Q and 0(1)= exp(J Q).

We have A(1) = exp(ρ) in Sp(L ⊕ L∗), where ρ is a positive definite form on
L∗ and zero on L . Arguing as above, it is not hard to show that ρ is a regular
point of exp for Sp(L ⊕ L∗) and that, moreover, ρ + Q is a regular point of the
exponential mapping for Sp(V ). Now we have G̃(1) = exp(K ) in Sp(V ), where
the quadratic form K is close to ρ+Q. In particular, K is also positive definite on
L∗ and all eigenvalues of K are close to those of ρ+ Q, that is, close to zero. As
has been pointed out above, we can set G̃(t) = exp(t K ) and 0(t) = exp(t Q). As
a consequence, with our conventions,

µCZ(G̃)=− sgn (K )/2≤ n− k,

where sgn (K ) stands for the signature of K (i.e., the number of positive eigenval-
ues minus the number of negative eigenvalues); see [Salamon 1999, Section 2.4].
In addition,1(G)= 0, and we obtain the second inequality of (3-5) in this case. To
summarize, we have proved (3-5) when all eigenvalues of 0(1) are equal to one.

To treat the general case, consider the symplectic direct sum decomposition
E = E0 ⊕ E1, where E0 is spanned by the generalized eigenvectors of 0(1)
with eigenvalue one and E1 is the symplectic orthogonal complement of E0 in
E . Clearly, 0(1) preserves this decomposition and, after altering if necessary the
path 0, we may assume that so do all maps 0(t). When G̃(1) is sufficiently close
to G(1), we have the decomposition V = V0 ⊕ V1 preserved by G̃(1), where V0

is close to (L ⊕ L∗) ⊕ E0 and V1 is close to E1. Applying a time-dependent,
close to the identity conjugation to G̃(t), we reduce the problem to the case where
V0= (L⊕L∗)⊕E0 and V1= E1. Consider now the paths G and G̃. Both paths begin
and end in Sp(V0)× Sp(V1), the first path is contained in this subgroup, and the
path G̃ is close to G. In particular, G̃ is in a tubular neighborhood of the subgroup.
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Projecting G̃ to Sp(V0)× Sp(V1), we can further reduce the question to the case
where G̃ is a path in Sp(V0)× Sp(V1), just as G is. Denote by G = (G0,G1) and
G̃ = (G̃0, G̃1) the corresponding decompositions of the paths. The E0-component
of G0(1) is the map 0(1)|E0 with all eigenvalues equal to one, and hence (3-5) has
already been proved for G0:

1(G0)− dim V0/2≤ µCZ(G̃0)≤1(G0)+ (dim V0/2− k).

On the other hand, the path G̃1 is a small perturbation of the path 0|E1 . Thus, we
have

1(G1)− dim V1/2≤ µCZ(G̃1)≤1(G1)+ dim V1/2.

Recall that 1(G) = 1(G0)+1(G1) and µCZ(G̃) = µCZ(G̃0)+µCZ(G̃1) and that
dim V0+dim V1=dim V =2n. Thus, adding up these inequalities, we obtain (3-5),
which completes the proof of the lemma and hence the proof of the proposition. �

3.2. Action selector for “pinned” Hamiltonians, following E. Kerman. Our goal
in this section is to describe a construction of an action selector for “pinned”
Hamiltonians, which was introduced in [Kerman 2009; Kerman and Şirikçi 2010].
Although the class of Hamiltonians and manifolds we work with is somewhat dif-
ferent from those in the references just given, the action selector is essentially the
same as the one considered there. As far as the proofs are concerned, we adopt
here the line of reasoning from [Ginzburg 2007] rather than following the Hofer-
geometric approach from [Kerman 2009]. Since the arguments are quite standard,
for the sake of brevity, we just outline the proofs.

Let M2n−k be a closed submanifold, not necessarily coisotropic, of a symplectic
manifold W 2n . As before, we require W to be symplectically aspherical and either
closed or a geometrically bounded and wide. We assume that M is displaceable
and fix a displaceable open set U containing M . Denote by H the collection of
nonnegative, autonomous Hamiltonians H :W→R supported in U , constant on a
small tubular neighborhood of M and attaining the absolute maximum C :=max H ,
depending on H , on this neighborhood. Let us require furthermore that C > e(U ),
where e(U ) is the displacement energy of U .

It is easy to see that HF(C−δ,C+δ)n (H)=Z2 once H ∈H and δ > 0 is sufficiently
small. In fact, HF(C−δ,C+δ)

∗
(H) = H∗+n−k(M;Z2). Furthermore, when a > C is

large enough (namely, if a > C + e(U )), the inclusion map

ia : Z2 ∼= HF(C−δ,C+δ)n (H)→ HF(C−δ,a)n (H)

is zero. The proof of this fact is, for example, contained in the proof of [Ginzburg
2007, Proposition 4.1]; see also [Kerman 2009] for the case of closed manifolds.
This is the main point of the argument where we need to assume that W is wide
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[Gürel 2008], unless W is closed. For H ∈H, set

c(H)= inf{a > C | ia = 0}.

(Strictly speaking, here we have to require a > C + δ and then also take infimum
over all sufficiently small δ>0.) This is a version of the action selector for “pinned”
Hamiltonians, introduced in [Kerman 2009].

Alternatively and more explicitly, the action selector c can be defined as follows.
Let H̃ be a C2-small, nondegenerate perturbation of H , also supported in U (or, to
be more precise, in S1

×U ) and such that H̃ ≥ H . Let us also assume that H̃ is au-
tonomous on a small neighborhood of M and that max H̃ =C =max H is attained
at p ∈ M . (In what follows, we will have p fixed and independent of H̃ .) Then
p, viewed as an element of degree n in the Floer complex CF(C−δ,∞)

∗
(H̃), is exact

and there exists a chain in CF(C−δ,∞)n+1 (H̃) mapped to p by the Floer differential;
see the proof of [Ginzburg 2007, Proposition 4.1]. Let us consider all such chains
and, within every chain, pick an orbit with the largest action and then among the
resulting orbits we choose an orbit x̃ with the least action. In other words, to obtain
x̃ , we first maximize the action within every chain and then minimize the result
among all chains which are primitives of p. Clearly, the orbit x̃ is in general not
unique, but the action AH̃ (x̃) is defined unambiguously.

Let us now set c(H̃) = AH̃ (x̃). Then c(H) is the infimum or the limit (in the
obvious sense) of c(H̃) over all such perturbations H̃ of H . (It is clear that c(H)
is less than or equal to the limit; the fact that c(H) is greater than or equal to
the limit is a consequence of the definition of the Floer homology for degenerate
Hamiltonians such as H .)

It follows from this description that there exists an orbit x of H , referred to in
what follows as a special one-periodic orbit of H , obtained as a limit point of the
orbits x̃ in the space of loops as H̃ → H , such that

(3-6) C <AH (x)= c(H) < C + e(U ) and 1≤1(x)≤ 2n+ 1.

Here the upper bound on the action is established by a variant of the standard
argument relating action change and the displacement energy; see, e.g., [Ginzburg
2005; Gürel 2008; Hofer and Zehnder 1994; Kerman 2009] and references therein.
The lower bound on action is clear for H̃ and x̃ . By continuity of the action (with
a little extra argument showing that the inequalities are strict) it also holds for H
and x . The bounds for the index follow from the continuity of the mean index and
(2-3). Note that, in general, the special orbit x is not unique.

Remark 3.5. There appears to be no reason to expect the orbit x̃ to be necessarily
connected to p by a Floer downward trajectory. However, there exists an orbit x̂
of H̃ with this property and such that C <AH̃ (x̂)≤AH̃ (x̃). This is an immediate
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consequence of the definition of x̃ . Carefully passing to the limit as H̃ → H we
obtain an orbit x ′ of H such that C <AH (x ′) ≤AH (x) and x ′ is connected to M
by a Floer downward trajectory. See [Ginzburg 2007] and, in particular, the proofs
of Propositions 4.1 and 5.1 therein for the proofs of these facts; note also that x̂ is
denoted by γ in [Ginzburg 2007, Proposition 4.1]. The existence of the orbit x ′ is
essential for showing that, in (1-3), the area bounded by η is strictly positive.

We refer the reader to [Kerman 2009] for a detailed investigation of the proper-
ties of the action selector c. One of these is particularly important for our argument.

Proposition 3.6 [Kerman 2009]. The action selector c is Lipschitz, with Lipschitz
constant equal to one, on H equipped with the sup-norm.

As an immediate consequence of the proposition, the selector c extends from H

to the C0-closure of H in the space of continuous functions supported in U and
this extension is again Lipschitz with Lipschitz constant equal to one. For the sake
of completeness, we touch upon a proof of the proposition.

Outline of the proof. Let H and K be two Hamiltonians in H. Consider the per-
turbations H̃ and K̃ as above. Clearly, it suffices to show that

(3-7) | c(H̃)− c(K̃ )| ≤ ‖H̃ − K̃‖H,

where

‖F‖H :=

∫ 1

0
(maxW Ft −minW Ft) dt

stands for the Hofer norm of F .
Denote by x̃ again a least action primitive of p in CF(C−δ,∞)

∗
(H̃) described

above. In particular, c(H̃) = AH̃ (x̃). It is not hard to see that under the linear
homotopy from H̃ to K̃ , the orbit x̃ is mapped to a primitive ỹ =

∑
ỹi of p in

the complex CF(C−δ,∞)
∗

(K̃ ), but not necessarily to a least action primitive. In any
case, c(K̃ )≤AK̃ (ỹ) :=max AK̃ (ỹi ). Meanwhile, a standard calculation yields

AK̃ (ỹ)−AH̃ (x̃)≤ ‖H̃ − K̃‖H.

Hence, we also have c(K̃ )−c(H̃)≤‖H̃− K̃‖H. A similar argument, but using the
homotopy from K̃ to H̃ , shows that c(H̃)− c(K̃ )≤ ‖H̃ − K̃‖H, and (3-7) follows.

�

Remark 3.7. It is worth pointing out that the main advantage of using the action
selector for pinned Hamiltonians in the proof of the main theorem over the ordinary
action selector is that the former enables us to determine the location of the special
orbit x via Lemma 3.8 without additional requirements on M such as that M has
restricted contact type. This results in sharper index and energy bounds that we
would have otherwise; see [Ginzburg 2007].
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3.3. Proof of Theorem 1.5. Throughout the proof, as in Section 2.1, a neighbor-
hood of M in W is identified with a neighborhood of M in M × Rk equipped
with the symplectic form ω = ωM +

∑k
j=1 d(p jα j ). Using this identification, we

denote by UR or just U , with R > 0 sufficiently small, the neighborhood of M in
W corresponding to M × Bk

R . (Thus, UR = {ρ < R2/2}.) Also set |p| :=
√

2ρ.
The proof of the theorem relies on a method, by now quite standard, developed

in [Viterbo 1990]. The first, albeit technical, step is to specify the class of “test”
Hamiltonians.

3.3.1. The Hamiltonians. Fix two real constants r>0 and ε>0 with ε<r< R and
a constant C > e(U ). Let H : [0, R] → R be a smooth, nonnegative, (nonstrictly)
decreasing function such that

• on [0, ε] the function H is a positive constant C ,

• on [ε, 2ε] the function H is concave (i.e., H ′′ ≤ 0),

• on [2ε, r − ε] the function H is linear decreasing from C − ε to ε,

• on [r − ε, r ] the function H is convex (i.e., H ′′ ≥ 0),

• on [r, R] the function H is identically zero.

Abusing notation, we also denote by H the function equal to H(|p|) on U and
equal to zero outside U . Let us fix the value of the parameter r , which is not
essential for what follows. The parameters C and ε will vary and we consider the
family of functions H = HC,ε parametrized by C and ε and depending smoothly
on these parameters.

Clearly, H ∈H for any choice of ε and C . As ε→0, the functions HC,ε converge
uniformly to the continuous functions HC,0 equal to C on M , zero outside Ur ,
and depending linearly of |p| on Ur . It is clear that the limit functions HC,0 are
continuous in C . Thus, by Proposition 3.6, c(HC,ε) is a continuous function of
C and ε including the limit value ε = 0. Moreover, the function C 7→ c(HC,0) is
Lipschitz with Lipschitz constant equal to one.

Denote by X the Hamiltonian vector field of the function |p| on U \ M . By
Proposition 2.3, the integral curves of X project to the geodesics of the leaf-wise
metric ρ on M , parametrized by arc length. The Hamiltonian vector field of H is

X H = H ′X,

where H ′ stands for the derivative of H with respect to |p|. Note that even though
X is defined only on U \ M , the vector field X H is defined everywhere, for H is
constant near M and outside Ur . Thus, nontrivial one-periodic orbits of X H lie
on the levels |p| = const with H ′(|p|) in the length spectrum S of the metric ρ.
(Recall that, by definition, S is formed by the lengths of nontrivial closed leaf-
wise geodesics of ρ. Here, we may restrict our attention only to the geodesics
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contractible in W .) Observe that the “coordinates” pi are constant along the or-
bits of the flow of X H . In other words, every trajectory starting in U lies on a
coisotropic submanifold M × p ⊂ U . This is a particular case of conservation of
momentum.

Let x be a nontrivial one-periodic orbit of H . A direct calculation relying on
Proposition 2.2 shows that

AH (x)= H(x)+A(x)

= H(x)+A(π(x))− |p(x)|l(π(x)),

where l and A stand for the length of the curve and, respectively, the negative
symplectic area bounded by the curve.

Assume that the slope of H (on the interval [2ε, r − ε]) is outside S. (This is a
generic condition.) Then the orbit x lies on the level where |p(x)| is either in the
range [ε, 2ε] or in the range [r − ε, r ]. Let now x be a special one-periodic orbit
from Section 3.2 such that, in particular, (3-6) holds. The key to the proof is the
following lemma, which specifies the location of x for, at least, some sequence of
the Hamiltonians H .

Lemma 3.8. There exists a sequence C j→∞ such that the slopes of all functions
HC j ,ε , with ε > 0 sufficiently small, are outside S and |p(x)| ∈ [ε, 2ε].

In the Lagrangian case this observation can be traced back to the original work
of Viterbo [1990]. Here we follow the treatment from [Kerman 2009] with sev-
eral modifications resulting from our somewhat different conventions and more
importantly from the fact that M is now coisotropic.

Proof of Lemma 3.8. The slope of the function HC,0 is C/r . This slope is in S if
and only if C ∈ rS in the obvious notation. The set S (and hence rS) is closed,
and the slope of HC,ε is close to the slope of HC,0 when ε > 0 is small. As a
consequence, the slope of HC,ε is outside S whenever C 6∈ rS and ε > 0 is small.

Pick C 6∈ rS and a positive sequence εi→ 0. Without loss of generality, we may
require all εi to be sufficiently close to zero to ensure that the slope of Hi := HC,εi

is not in S. Let xi be a special orbit of Hi . Since the norms of the differentials dHi

are bounded from above, the norms of the derivatives ẋi are point-wise bounded.
By the Arzela–Ascoli theorem, we may assume, after passing if necessary to a
subsequence, that the orbits xi converge to a curve y lying on a level |p| = const
including possibly the submanifold M . It is clear that y is smooth and projects to
a closed, leaf-wise geodesic on M . Furthermore,

AHi (xi )= c(Hi )→ HC,0(y)+A(y)= c(HC,0),

by the continuity of the action functional and of the action selector c.
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If |p(xi )| is in the range [r − εi , r ] for all i , the orbit y is on the level |p| = r
and HC,0(y)= 0. Thus, we then have

(3-8) c(HC,0)=A(y) ∈6,

where 6 is the action spectrum or, to be more precise, the symplectic area spec-
trum of the level |p| = r , that is, the collection of symplectic areas bounded by
contractible closed characteristics on this level.

Arguing by contradiction, assume now that the lemma fails, that is, for every
sufficiently large C , say C > a, which is not in rS, there exists such a sequence
εi with |p(xi )| in the range [r − εi , r ]. Consider the function f (C) := c(HC,0)

on the interval [a, ∞). By (3-8), f sends the set [a, ∞) \ rS to 6. Recall that
rS is not only closed, but also has zero measure; see [Ginzburg 2007, Lemma
6.6]. By Proposition 3.6, f is a Lipschitz function and, as is well known [Hofer
and Zehnder 1994], 6 has measure zero. To summarize, f is a Lipschitz function
sending a full measure set to a zero measure set. Such a function is necessarily
constant. This is impossible, for f (C)≥ C by (3-6). �

Let us fix one of the constants C = C j from Lemma 3.8 and let Hi = HC j ,εi .
Denote by xi , or just x , its one-periodic orbit such as in the lemma. (For the proof
of the theorem we do not need the entire double sequence, but only one family
of Hamiltonians HC j ,εi parametrized by εi .) Clearly, γi = π(xi ) is a leaf-wise
geodesic on M . Since the slopes of Hamiltonians Hi are bounded from above (by,
say, 2C j/r ), it is easy to prove using the Arzela–Ascoli theorem that the geodesics
γi converge as i → ∞ after if necessary passing to a subsequence. Denote the
limit geodesic (traversed in the opposite direction) by η. Our goal is to show
that η has the required properties (1-2) and (1-3). The fact that, by Lemma 3.8,
|p(xi )| ∈ [εi , 2εi ] (i.e., xi lies in the region where Hi is concave) will be essential
for proving this.

3.3.2. Index bounds. Consider a perturbation H̃ of H = Hi as in Section 3.2. This
Hamiltonian has a one-periodic orbit x̃ , a perturbation of x = xi , with index n+1.
After reparametrizing x and reversing its orientation, we can view x as a periodic
orbit x− of ρ. Likewise, x̃ can be viewed as a periodic orbit x̃− of a nondegenerate
perturbation K of ρ. Denote by γ− = π(x−) the geodesic γ = γi with reversed
orientation.

By Proposition 3.1, we have

µ(γ−)=−1ρ(x−),

and thus, by Proposition 3.3,

−µ(γ−)− n ≤ µCZ(x̃−)≤−µ(γ−)+ (n− k).
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It is not hard to show that µCZ(x̃−) = −µCZ(x̃) = −(n + 1) using the fact that x
is in the region where H is concave (i.e., |p(x)| ∈ [εi , 2εi ]) by Lemma 3.8. As a
consequence,

n+ 1≤ µ(γ−)+ n and µ(γ−)− n+ k ≤ n+ 1.

Hence,
1≤ µ(γ−)≤ 2n+ 1− k.

Passing to the limit and using the continuity of the mean index, we conclude that
the same holds for η, the limit of the curves γ−. This proves (1-2).

Remark 3.9. If we had used here just the second inequality of (3-6) rather than
Proposition 3.3, we would have the weaker bound 1≤ µ(γ−)≤ 2n+ 1.

3.3.3. Action bounds. By the first inequality in (3-6), we have

(3-9) C <AH (x)= H(x)+A(γ )− |p(x)|l(γ ) < C + e(U ).

Here, by the definition of H and Lemma 3.8, |p(x)| ∈ [εi , 2εi ] and H(x)∈ [C,C−
εi ]. Note that the sequence l(γ ) with γ = γi is bounded as i →∞ due the fact
that the slope of Hi is bounded. Thus, passing to the limit (for a subsequence if
necessary), we have 0 ≤ −A(η) ≤ e(U ). Here, the negative sign comes from the
fact that η is the limit of γ−, that is, the geodesics γ with reversed orientation.
Taking r > 0 sufficiently small, we obtain

0≤ Area(η)≤ e(M)+ δ,

for any given δ > 0, where Area(η)=−A(η) is the symplectic area bounded by η.
To finish the proof, we need to ensure that the first inequality is strict: Area(η)> 0.
This is an immediate consequence of the non-trivial fact that, by [Ginzburg 2007,
Theorem 6.1], AH (x ′)−C ≥ ε for some ε > 0 independent of i , where x ′ is the
orbit mentioned in Remark 3.5. For then we also have AH (x)−C ≥ ε and, by the
first inequality in (3-9), Area(γ−) > ε/2 when i is large enough. This concludes
the proof of (1-3), and thus the proof of the theorem.
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