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REALIZING PROFINITE REDUCED SPECIAL GROUPS

VINCENT ASTIER AND HUGO MARIANO

Special groups are an axiomatization of the algebraic theory of quadratic
forms over fields. It is known that any finite reduced special group is the
special group of some field. We show that any special group that is the
projective limit of a projective system of finite reduced special groups is also
the special group of some field.

1. Introduction

The theory of special groups is an axiomatization of the algebraic theory of qua-
dratic forms, introduced in [Dickmann and Miraglia 2000]. The class of special
groups, together with its morphisms, forms a category. As for other such axioma-
tizations, the main examples of special groups are provided by fields, in this case
by applying the special group functor, which associates to each field F a special
group G(F) describing the theory of quadratic forms over F .

The category of special groups is equivalent to that of abstract Witt rings via
covariant functors, while the category of reduced special groups is equivalent, via
the restriction of the same covariant functors, to the category of reduced abstract
Witt rings (see [Dickmann and Miraglia 2000, 1.25 and 1.26]; recall that the special
group of a field F is reduced if and only if F is formally real and Pythagorean). The
category of reduced special groups is also equivalent, via contravariant functors, to
the category of abstract spaces of orderings; see Chapter 3 of the same reference.

The question whether it is possible to realize every (reduced) special group as
the special group of some (formally real, Pythagorean) field is still open, but the
case of finite reduced special groups (actually of reduced special groups of finite
chain length) has been positively answered by the combination of two results: Kula
[1979], building on techniques introduced in [Bröcker 1977] for the field case,
showed that the product of two finite special groups of (formally real, Pythagorean)
fields is still the special group of some (formally real, Pythagorean) field; then
Marshall [1980] showed that every finite reduced special group can be constructed
from the special group of any real closed field by applying a finite number of times
the operations of product and extension. (Marshall’s result is actually stated and
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proved for abstract spaces of orderings.) Since the extension of the special group
of a (formally real, Pythagorean) field is still the special group of a (formally real,
Pythagorean) field, it shows that every finite reduced special group (or reduced
special group of finite chain length) is realized as the special group of a field.

After finite reduced special groups, the simplest objects to consider are prob-
ably projective limits of finite reduced special groups, that is, profinite reduced
special groups. They have already been studied, for example, in [Astier and Tressl
2005; Lira de Lima 1997; Mariano 2003], and notably in [Kula et al. 1984], where
the question of the realization of these special groups by fields is considered and
where it is shown (as Corollary 4.7) that every profinite reduced special group is
isomorphic to a quotient of the reduced special group of some field.

In this paper, we improve on this result by showing that every profinite reduced
special group is isomorphic to the special group of some (necessarily formally real
and Pythagorean) field.

2. Preliminaries

Definition 2.1. Let A, B, A′, B ′ be objects in a category C, and let λ : A→ B,
λ′ : A′ → B ′ be C-morphisms. Then λ, λ′ are said to be naturally identified (in
symbols, λ∼= λ′) if and only if there are C-isomorphisms i A : A→ A′, iB : B→ B ′

such that the following diagram

A
i A //

λ

��

A′

λ′

��
B

iB // B ′

commutes. In this case, we also say that λ and λ′ are naturally identified via i A, iB .

On special groups. We assume some familiarity with the theory of special groups,
as presented in [Dickmann and Miraglia 2000], and only introduce the following
notation:

If G is a special group, Ssat(G) denotes the poset of saturated subgroups of G,
ordered by inclusion. We recall that if1∈ Ssat(G), then G/1 is a reduced special
group if and only if 1( G, if and only if −1 /∈1.

Definition 2.2. A profinite reduced special group is the projective limit of a pro-
jective system of finite reduced special groups.

If (G ′i , f ′i j )i≤ j∈I is a projective system of finite reduced special groups, where
(I,≤) is a downward directed poset, and if G is the projective limit of this system,
the fact that G is indeed a special group (with the structure induced by its inclusion
in the product

∏
i∈I G ′i ) follows immediately from [Dickmann and Miraglia 2003,
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Theorem 3.24]. Moreover, as proved in [Lira de Lima 1997, Proposition 1.9.11],
it is always possible to describe G as the projective limit of a projective system
(Gi , fi j )i≤ j∈I having the following properties:

(1) For every i ∈ I , Gi is G/1i with 1i saturated subgroup of G of finite index;

(2) For every i ≤ j ∈ I , 1i ⊆ 1 j and fi j is the canonical projection of special
groups induced by this inclusion.

We briefly sketch the argument: Let ι : G ↪→
∏

j∈I G ′j be the canonical em-
bedding given by the definition of projective limit, and let πi :

∏
j∈I G ′j → G ′i

be the canonical projection. We define 1i := ker(πi ◦ ι), Gi := G/1i and, for
i ≤ j ∈ I , fi j to be the canonical projection induced by 1i ⊆ 1 j . The system
(Gi , fi j )i≤ j∈I is a projective system, whose projective limit is isomorphic to G,
via the map g ∈ G 7→ (g.1i )i∈I ∈ lim

←−
(G/1i , fi j )i≤ j∈I .

Remark 2.3. If M = (Mi , fi j )i≤ j∈I is any projective system, and if i ′ ∈ I , by
restricting this system to the set I ′ := {i ∈ I | i ≤ i ′} we obtain a new system

M′ := (Mi , fi j )i≤ j∈I ′ .

Since I ′ is coinitial in I , M and M′ have isomorphic projective limits, and M′

possesses the following extra property:

(3) The index set of the projective system has a maximum element.

Definition 2.4. We call adequate a projective system of special groups that satisfies
conditions (1), (2) and (3) above.

We will adhere to the following convention throughout this paper: Let (I,≤)
be a downward directed poset. If (I,≤) has a maximum element, we will denote
it by >, and if (I,≤) has a minimum element (which happens for instance if I is
finite), we will denote it by ⊥.

Let G0,G1 be abstract groups and denote by π0 :G0×G1 � G0 : (g0, g1) 7→ g0,
π1 : G0 × G1 � G1 : (g0, g1) 7→ g1 the canonical projections and by ι0 : G0 �
G0×G1 : g0 7→ (g0, 1), ι1 :G1 � G0×G1 : g1 7→ (1, g1) the canonical injections.

The statements in the next paragraph are straightforward.

Fact 2.5. Let G0,G1 be special groups. Then the canonical map

ψ : Ssat(G0×G1) → Ssat(G0)×Ssat(G1)

1 7→ (ι−1
0 [1], ι

−1
1 [1])= (π0[1], π1[1])

is an order-preserving bijection, whose inverse is (10,11)
ψ−1

7→ 10×11. In partic-
ular, if 1 ∈ Ssat(G0×G1) and (10,11) := (ι

−1
0 [1], ι

−1
1 [1]), then 1=10×11

and 1 is proper if and only if 10 or 11 is proper. Moreover:
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• The canonical surjective morphism of special groups

G0×G1 � G0/10×G1/11

induces a natural isomorphism of special groups1

q̄1 : (G0×G1)/1
∼=
−→ G0/10×G1/11.

• If1⊆1′ ∈Ssat(G0×G1), then the projection (G0×G1)/1� (G0×G1)/1
′

is naturally identified, via the isomorphisms q̄1, q̄1′ , with the (product) pro-
jection G0/10×G1/11 � G0/1

′

0×G1/1
′

1.

On projective systems of (valued) fields. Let (I,≤) be a poset. For each i, j ∈ I
such that i ≤ j we define d(i, j) :=max{length of a chain from i to j} ∈N∪{∞}.
If i � j then we set d(i, j) := −∞. Of course, if i and j are comparable, we have
d(i, j)= d( j, i) if and only if i = j , if and only if d(i, j)= 0.

We will often consider (I,≤) as a directed graph whose vertices are the elements
of I , and where there is an edge from i to j if and only if i ≤ j and d(i, j)= 1.

We first remark that it is possible to describe some projective systems of fields
as projective systems whose morphisms are all inclusions.

Remark 2.6. Let F := (Fi , fi j )i≤ j∈I be a projective system of fields over a down-
ward directed poset (I,≤) with maximum element > ∈ I . Then there is an iso-
morphic projective system of fields F′ = (F ′i , ιi j )i≤ j∈I such that, if i ≤ j ∈ I , then
F ′i ⊆ F ′j and the morphism of fields ιi j : F ′i → F ′j is the inclusion. The projective
limit of the system F is thus isomorphic to the intersection of the fields F ′i , i ∈ I .

We briefly sketch the argument. For each i ∈ I , we define F ′i := fi>[Fi ] ⊆ F>.
Since for i ≤ j ∈ I , fi> = f j> ◦ fi j , we obtain F ′i ⊆ F ′j , so we can define ιi j to be
this inclusion. It follows that F and F′ are isomorphic via the morphisms ( fi>)i∈I .
Therefore: lim

←−
(F j , fi j )i≤ j∈I ∼= lim

←−
(F ′j , ιi j )i≤ j∈I ∼=

⋂
i∈I F ′i ⊆ F ′

>
.

The next results lead to Corollary 2.10, which shows that any finite projective
system of fields of characteristic zero, whose index set has a maximum element,
is isomorphic to the projective system given by the residues of a finite projective
system of valued fields. We first fix some notation:

If (K , v) is a valued field, we denote by Kv or by K (if there is no risk of
confusion about which valuation we consider) the residue field of v, by vK its
value group, by OK the valuation ring associated to v and by MK its maximal ideal
(if there is no ambiguity about the valuation v under consideration). If a ∈ OK ,
we denote by av or ā (once again if there is no risk of confusion) the class of a in
the residue field K . Finally, if v has rank one, K v denotes a completion of K with
respect to v.

1That are reduced if 1 is proper or, otherwise, the trivial special group {1}.
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If F = (Fi , ξi j )i≤ j∈I is a projective system of fields, we denote by G(F) the
system (G(Fi ),G(ξi j ))i≤ j∈I obtained from F by applying the special group func-
tor G.

If F = ((Fi , vi ), ξi j )i≤ j∈I is a projective system of valued fields, we denote by
res F or Fv the induced residue projective system (Fivi , (ξv)i j )i≤ j∈I , where the
(ξv)i j are the induced morphisms of fields.

If a projective system of fields or of valued fields is denoted by (Fi )i∈I or
(Fi , vi )i∈I , without mention of the morphisms, it means that the morphisms are
all inclusions (from a field within all fields with larger index).

Lemma 2.7. Let (K , v) be a henselian valued field of residue characteristic zero
and let L be a subfield of K . Let N be a subfield of K such that L ⊆ N ⊆ K .
Then there is a field M such that L ⊆ M ⊆ K and M = N. Moreover, if [N : L] is
algebraic, respectively finite, then M can be chosen such that [M : L] is algebraic,
respectively finite.

Proof. Write N = L(X)(αi , i ∈ β), where X is a transcendence basis of N over
L and (αi , i ∈ β) is a (possibly infinite) tuple of elements that are algebraic over
L(X), indexed by an ordinal β. Let Y be a set of transcendental elements over L
such that Y = X . By [Engler and Prestel 2005, Corollary 2.2.2], the restriction of
v to L(Y ) is the Gauss extension of v from L to L(Y ). In particular, L(Y )= L(X).

We now proceed by induction on k ∈ β to find elements ai ∈ K , i < k, such that
L(Y )(ai , i < k)= L(X)(αi , i < k).

If k = 0 there is nothing to prove since L(Y )= L(X).
Assume we have found all ai for i < k. Let Nk = L(Y )(ai , i < k) and Mk =

L(X)(αi , i < k). By hypothesis we have N k = Mk . Let P ∈ OK [T ] be a unitary
polynomial such that P is the minimal polynomial of αk over L(X). Let ak be
a root of P in K such that ak = αk (it exists since (K , v) is henselian of residue
characteristic zero). We have Nk(ak) ⊇ Mk(αk) and the fundamental inequality
[Engler and Prestel 2005, Theorem 3.3.4] tells us that

[Nk(ak) : Nk] ≤ [Nk(ak) : Nk](≤ deg P).

Since [Mk(αk) :Mk]=deg P , it follows that Nk(ak)=Mk(αk), which is the desired
result. �

Definition 2.8. Let (K , v) be a valued field and let (Ei )i<n and (Fi )i<n be two
sequences of fields of the same length n. We say that (Fi )i<n is a good residue of
(Ei )i<n in (K , v) if

(1) Ei ⊆ K and Fi ⊆ K for i < n;

(2) For every A ⊆ {0, . . . , n − 1}, 〈Ei , i ∈ A〉 = 〈Fi , i ∈ A〉 (where 〈L i , i ∈ A〉
denotes the compositum of the fields L i ).
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Lemma 2.9. Let (K , v) be a henselian valued field of residue characteristic zero,
and let (Ei )i<n and (Fi )i<n be two sequences of fields of length n such that (Fi )i<n

is a good residue of (Ei )i<n in (K , v). Let (F ′i )i<m be a sequence of subfields of
K , and let, for i ∈ {0, . . .m− 1}

Ai = { j ∈ {0, . . . , n− 1} | F j ⊆ F ′i }.

Then there is a sequence (E ′i )i<m of subfields of K such that

(1) for every i ∈ {0, . . . ,m − 1} and every j ∈ Ai , E j ⊆ E ′i and trdeg E ′i | E j =

trdeg F ′i | F j ;

(2) (F ′i )i<m is a good residue of (E ′i )i<m .

Proof. We will use the following reformulation of Remark 4.1.2(3) in [Engler and
Prestel 2005]:

Fact 1. Let (N , w) be a valued field and let P, Q ∈ ON [T ] and R ∈ N [T ] be such
that P=Q R. Assume that Q is primitive (that is,w′(Q)=0, wherew′ is the Gauss
extension of w to N [T ], i.e., mini≤k w(ai )= 0 if one writes Q = a0+· · ·+ ak T k).
Then R ∈ ON [T ].

Proof. Write P = a P1 and R = cR1 with a, c ∈ N and P1, R1 ∈ N [T ] such that
w′(P1) = w

′(R1) = 0 (so P1, R1 ∈ ON [T ]). Then w(c) = w′(Q)+ w′(cR1) =

w′(QcR1) = w
′(Q R) = w′(P) ≥ 0 since P ∈ ON [T ]. This yields R = cR1 with

w′(R)= w(c)+w′(R1)= w(c)≥ 0, i.e., R ∈ ON [T ]. �

We next fix some notation. For A ⊆ {0, . . . , n − 1} we denote by FA the field
〈Fi , i ∈ A〉 and similarly by E A the field 〈Ei , i ∈ A〉.

For i <m let X i ={xi1, . . . , xiki } be a transcendence basis of F ′i over FAi = EAi ,
and let Yi = {yi1, . . . , yiki } ⊆ K be a set of transcendental elements over EAi such
that Y i = X i . Note that by [Engler and Prestel 2005, corollary 2.2.2], it implies
that the restriction of v to EAi (Yi ) is the Gauss extension of v from EAi to EAi (Yi ).
In particular we have EAi (Yi )= EAi (X i )= FAi (X i ) (the last equality holds because
(Fi )i<n is a good residue of (Ei )i<n).

Write F ′i = FAi (X i )(αi ), where αi = (αi j ) j∈βi is a (possibly infinite) tuple of
elements algebraic over FAi (X i ). For i < m and j ∈ βi let Pi j ∈ OEAi (Yi )[T ] be a
unitary polynomial such that P i j is the minimal polynomial of αi j over EAi (Yi )=

FAi (X i ), and let ai j ∈ OK be a root of Pi j with āi j = αi j (ai j exists since (K , v)
is henselian of residue characteristic zero). We take for E ′i the field EAi (Yi )(ai ),
where ai = (ai j ) j∈βi . The first conclusion of the lemma is obviously satisfied. Let
A ⊆ {0, . . . ,m− 1}.

Claim. Let L be a subfield of K such that (L , v) is henselian, 〈F ′i , i ∈ A〉 ⊆ L , and
〈E j , j ∈ Ai , i ∈ A〉(Yi , i ∈ A)⊆ L. Then ai ∈ L for every i ∈ A, i.e., L⊇〈E ′i , i ∈ A〉.
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Proof. Let i ∈ A and j ∈ βi . Since αi j ∈ L and (L , v) is henselian (of residue
characteristic zero), there is bi j ∈ OL such that b̄i j = αi j and bi j is a root of
Pi j . Assume bi j 6= ai j . Then we can write Pi j (T ) = (T − ai j )(T − bi j )R(T )
in EAi (Yi , ai j , bi j ). But Pi j , (T − ai j ), (T − bi j ) each lie in OEAi (Yi ,ai j ,bi j )[T ] and
(T − ai j )(T − bi j ) is primitive, so by Fact 1 we have R(T ) ∈ OEAi (Yi ,ai j ,bi j )[T ].
Going to the residue field K we get P i j (T ) = (T − αi j )

2 R(T ), so αi j is root of
order at least 2 of P i j , which is impossible since P i j is the minimal polynomial of
αi j and char K = 0. So ai j = bi j ∈ L . End of proof of the claim. �

We have E ′A = 〈E
′

i , i ∈ A〉 = 〈〈E j , j ∈ Ai 〉(Yi )(ai ), i ∈ A〉 = 〈E j , j ∈ Ai , i ∈
A〉(Yi , i ∈ A)(ai , i ∈ A), and

〈E j , j ∈ Ai , i ∈ A〉(Yi , i ∈ A)= 〈E j , j ∈ Ai , i ∈ A〉(X i , i ∈ A)

= 〈F j , j ∈ Ai , i ∈ A〉(X i , i ∈ A).
Moreover,

〈F ′i , i∈A〉=〈〈F j , j∈Ai 〉(X i )(αi ), i∈A〉=〈F j , j∈Ai , i∈A〉(X i , i∈A)(αi , i∈A).

So 〈F ′i , i ∈ A〉 is an algebraic extension of 〈E j , j ∈ Ai , i ∈ A〉(Yi , i ∈ A). In par-
ticular (see Lemma 2.7) there is an algebraic extension E ′′ of

〈E j , j ∈ Ai , i ∈ A〉(Yi , i ∈ A)

(inside K ) such that E ′′ = 〈F ′i , i ∈ A〉. Let Ẽ be the henselian closure of E ′′ in
(K , v). We have Ẽ = 〈F ′i , i ∈ A〉, E ′′ ⊆ Ẽ . By the claim, since Ẽ is henselian and
Ẽ ⊇ 〈F ′i , i ∈ A〉, we have ai ∈ Ẽ for every i ∈ A. It implies E ′A ⊆ Ẽ , which gives,
taking residues E ′A ⊆ Ẽ = 〈F ′i , i ∈ A〉. But by construction of the E ′i we obviously
have E ′A ⊇ 〈F

′

i , i ∈ A〉. It follows that E ′A = 〈F
′

i , i ∈ A〉. �

Corollary 2.10. Let F = (Fi )i∈I be a finite projective system of fields of charac-
teristic zero and let ⊥ be the minimum of I . Assume that (I,≤) has a maximum >
and let (E⊥, v⊥) be a valued field such that E⊥v⊥∼= F⊥. Then there is a projective
system of valued fields (Ei , vi )i∈I such that (Fi )i∈I ∼= res(Ei , vi )i∈I and, for every
i ∈ I , trdeg Ei | E⊥ = trdeg Fi | F⊥. Moreover:

• We can assume that all (Ei , vi ), i ∈ I , are henselian.

• If v⊥ has rank one, then we can choose the valuations vi , i ∈ I , such that they
all have rank one.

Proof. We first show that there is a projective system of fields F′ = (F ′i )i∈I with
F′ ∼= F and there is an extension (K , v) of (E⊥, v⊥) such that K = F ′

>
, and such

that v has rank one if v⊥ has rank one. In particular K ⊇ F ′i for every i ∈ I .
Indeed, write F> = F⊥(X)(ā), where X is a set of elements transcendental

over F⊥ and ā is a sequence of elements algebraic over F⊥(X). Take Y a set of
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indeterminates with the same cardinality as X and consider the Gauss extension
w of v⊥ to E⊥(Y ). Then E⊥(Y ) ∼= F⊥(X). Note that w has rank one if v⊥ has
rank one. Using now for instance [Endler 1963, Satz 1], we find an (algebraic)
extension (K , v) of (E⊥(Y ), w) such that K and F> are isomorphic via a map
which we denote by h : K → F> (and with v of rank one if w has rank one).
Define F ′i := h−1

[Fi ]. This justifies the claim in the first paragraph of the proof.
To keep notation simple, we assume F= F′ as above. We construct the valued

fields (Ei , vi ) (for i 6= ⊥) as subfields of K endowed with the restriction of the
valuation v. Since the valuation will always be v, we only look for the subfields
Ei . Let ⊥ be the minimum of I . We find the fields Ei by induction on d(⊥, i)
(note that d(⊥,>)=max j∈I d(⊥, j)).

For l ∈ {0, . . . , d(⊥,>)}, let Dl = {i ∈ I | d(⊥, i)= l}.
If d(⊥, i) = 0, then, by hypothesis and by the claim above, we already have

the subvalued field (E⊥, v⊥)⊆ (K , v). Note that since D0 = {⊥} the sequence of
fields (Fi )i∈D0 is a good residue of (Ei )i∈D0 in (K , v).

Assume we have found a system of fields (Ei )i∈I,d(⊥,i)≤l such that res(Ei , v �
Ei )= Fi for i ∈ I so that d(⊥, i)≤ l and (Fi )i∈Dl is a good residue of (Ei )i∈Dl in
(K , v). We write Dl+1 = {ik | k < m}, then we apply Lemma 2.9 with (F ′k)k<m =

(Fik )k<m , and obtain in this way a sequence (E ′k)k<m . We define the fields Ei for
i ∈ Dl+1 by (Eik )k<m = (E ′k)k<m .

Finally, we can replace (E>, v>) by one of it henselian closures, and each
(Ei , vi ) by its henselian closure inside (E>, v>). The new residue system is iso-
morphic to the previously defined residue system, which shows that we can assume
that all (Ei , vi ) are henselian. �

3. Main results

Our main result, Corollary 3.3, is a direct consequence of the next two theorems,
whose proofs are given in Sections 4 and 5 respectively.

Theorem 3.1. Let K := (Ki , fi j )i≤ j∈I be a projective system of fields (respectively
formally real Pythagorean fields) such that G(Ki ) is finite for every i ∈ I . Let
(Gi , λi j )i≤ j∈I = G(K) and let G be the projective limit of this projective system
of finite special groups. Then G is isomorphic to the special group of some field
(respectively formally real Pythagorean field).

Theorem 3.2. Let G := (Gi , λi j )i≤ j∈I be an adequate projective system of finite
reduced special groups (see Definition 2.4). Then there is a projective system K

of formally real Pythagorean fields whose morphisms are inclusions, such that
G∼= G(K).

Now consider a profinite reduced special group G. Say it is the projective limit
of the system G = (Gi , fi j )i≤ j∈I of finite reduced special groups. Let i ′ be any
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element in I and consider the system G′ equal to G restricted to indices in I ′ :=
{i ∈ I | i ≤ i ′}. The special group G is the projective limit of the system G′, whose
index set I ′ has a maximum element >= i ′. We can now use the strategy outlined
after Definition 2.2 to express G as an adequate projective system whose index set
is I ′. Applying Theorem 3.2 then Theorem 3.1 now yields:

Corollary 3.3. Every profinite reduced special group is isomorphic to the special
group of some formally real Pythagorean field.

4. Proof of Theorem 3.1

If (I,≤) is a downward directed poset and i ∈ I , then i← denotes { j ∈ I | j ≤ i}
and i→ denotes { j ∈ I | j ≥ i}.

We first assume the following reductions:

(1) I has a maximum > (I =>←).

(2) All the Ki , i ∈ I , are subfields of the field M := K>, and the morphisms
fi j : Ki → K j are inclusions. In particular, the projective limit of the system
K is isomorphic to the intersection of the fields Ki , i ∈ I .

These assumptions can safely be made because for the original projective system
of fields K := (K j , f jk) j≤k∈I and for each i ′ ∈ I fixed,

(i) the set i ′← is a coinitial subset of I , and

(ii) if j ≤ i ′ ∈ I , we can identify K j with the subfield K ′j := f j i ′[K j ] of Ki ′ ,
and the morphisms f jk : K j → Kk are naturally identified with inclusions
ι jk : K ′j ↪→ K ′k .

The reductions above give us

lim
←−
(K j , f jk) j≤k∈I ∼= lim

←−
(K j , f jk) j≤k∈i ′← ∼= lim

←−
(K ′j , ι jk) j≤k∈i ′←

∼=
⋂

j∈i ′←
f j i ′[K j ] ⊆ Ki ′

and
G := lim

←−
(G(K j ),G( f jk)) j≤k∈I ∼= lim

←−
(G(K j ),G( f jk)) j≤k∈i ′←

∼= lim
←−
(G(K ′j ),G(ι jk)) j≤k∈i ′← .

Now consider the language L = L R ∪ {Ri }i∈I , where L R is the language of
rings and the Ri are unary relation symbols. We turn M into an L-structure by
interpreting each Ri in M by the subfield Ki .

Let N be an |I |+-saturated elementary extension of M in the language L . (See
[Chang and Keisler 1990, Chapter 5 and Lemma 5.1.2] or [Hodges 1993, p. 480
and Corollary 10.2.2] for the definition of saturated models and the existence result
we just used. Note that this notion of saturation is not linked to the existing one
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for subgroups of special groups.) Each Fi := RN
i is a subfield of N , and the

fields Fi form a projective system of fields F (since for k ≤ i, j ∈ I the sentence
“Rk ⊆ Ri ∩ R j ” is in the theory of M). Moreover, for every i ∈ I , Ki ↪→ Fi

is an L R-elementary embedding and therefore induces an isomorphism of special
groups

G(Ki )
∼=
−→ G(Fi )

(since the special groups G(Ki ), being finite, are described in the theory of M).
More generally G(K)∼= G(F), so G ∼= lim

←−
G(K)∼= lim

←−
G(F).

Let F :=
⋂

i∈I Fi and define

ξ : G(F) → lim
←−

G(F)

a · Ḟ2
7→ (a · Ḟi

2
)i∈I .

We show that ξ is an isomorphism of special groups, which yields G ∼= G(F) as
needed (in particular, if the fields Ki , i ∈ I , are formally real Pythagorean, then
F =

⋂
i∈I Fi is formally real Pythagorean, since G(F) is a reduced special group).

Step 1. It is clear that ξ is well-defined and is a morphism of groups.

Step 2. ξ is a morphism of special groups. Indeed, it is clear that ξ sends −1 to
−1. Let a · Ḟ2, b · Ḟ2

∈G(F) be such that a · Ḟ2
∈ DG(F)〈1, b · Ḟ2

〉. There are then
c, d ∈ F such that, for all i ∈ I , a= c2

+bd2 in Fi . Then a · Ḟi
2
∈ DG(Fi )〈1, b · Ḟi

2
〉

for every i ∈ I , and therefore ξ(a · Ḟ2) ∈ DG ′〈1, ξ(b · Ḟ2)〉.

Step 3. ξ is surjective: Let a = (ai · Ḟ2
i )i∈I ∈ lim

←−
G(Fi ). So for all i ≤ j ∈ I ,

ai · Ḟ2
j = a j · Ḟ2

j . We want x ∈ N satisfying the set of formulas

1 := {x ∈ Fi }i∈I ∪ {x = ai mod Ḟ2
i }i∈I .

Every finite part of1 is satisfied in N since a= (ai · Ḟ2
i )i∈I ∈ lim

←−
G(Fi ) (it suffices

to take x = ak , where k is less than every one of the indices i ∈ I occurring in this
finite part). By |I |+-saturation, 1 has a solution x in N . Then ξ(x)= (ai · Ḟ2

i ).
The rest of the proof relies on the following lemma.

Lemma 4.1. Let n ∈ N and let P(X1, . . . , Xn) ∈ F[X1, . . . , Xn]. Assume the
equation P(X1, . . . , Xn) = 0 has a solution in every Fi , i ∈ I . Then the same
equation has a solution in F.

Proof. We are looking for x̄ ∈ N such that the set of formulas

6 := {P(x̄)= 0} ∪ {x̄ ∈ Fi }i∈I

is satisfied in N . Since the Fi , together with the inclusions between them, form a
projective system, every finite part of 6 has a solution, and by the |I |+-saturation
of N , 6 has a solution in N . �
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We go back to proving that ξ is an isomorphism:

Step 4. ξ is injective: Let a = a · Ḟ2
∈G(F) be such that ξ(a)= 1, i.e., a ∈ Ḟi

2 for
every i ∈ I , i.e., the polynomial X2

−a has a root in each Fi , i ∈ I . By Lemma 4.1,
X2
− a has a root in F , hence a ∈ Ḟ2.

Step 5. ξ is a monomorphism of special groups: Let a, b ∈ F be such that, for
every i ∈ I , a · Ḟ2

i ∈ D〈1, b · Ḟ2
i 〉. Let P(X, Y ) = a − (X2

+ bY 2) ∈ F[X, Y ].
By hypothesis, P(X, Y ) = 0 has a solution in each Fi , hence a solution in F by
Lemma 4.1, which means a ∈ DG(F)〈1, b〉.

5. Proof of Theorem 3.2

Reducing to a finite projective system. Since G is adequate, the set (I,≤) has a
maximum element >.

In this subsection we show that it is enough to prove Theorem 3.2 when G :=

(Gi , fi j )i≤ j∈I is a finite projective system of special groups such that I has a max-
imum (which we will also denote by >).

Let L be the language {0, 1,−,+, · }∪ {Fi | i ∈ I }∪ {Qg
i | i ∈ I, g ∈ Gi }, where

0, 1 are constant symbols, − is a unary function symbol, +, · are binary function
symbols and Fi , Qg

i are unary predicate symbols, for each i ∈ I and g∈Gi . Denote
by λi the inverse of the bijection g ∈ Gi 7→ Qg

i , i ∈ I . The projective system of
fields we are looking for is a model of the theory � consisting of (first-order)
L-sentences that are informally described in the four items below:

(1) the interpretation of the unary predicate F> is the universe of the L-structure
(i.e., ∀x(F>(x))) and “(F>, 0, 1,+, · ) is a field”;

(2) for every i ≤ j ∈ I :
“Fi ⊆ F j ” and “(Fi , 0, 1,+, · ) is a subfield of the field (F>, 0, 1,+, · )”
(technically speaking, + and · are functional symbols globally defined whose
restrictions to Fi give internal operations on Fi );

(3) for every i ∈ I :
“λi is an isomorphism of special groups G(Fi )→ Gi ”;

(4) for every i ≤ j ∈ I :
“the morphism of special groups induced by the inclusion Fi ⊆ F j is naturally
identified with fi j , via the isomorphisms λi , λ j ”.

It is clear how to describe the expressions in items (1) and (2) by first-order L-
sentences. For the reader’s convenience, we add a more explicit description of the
L-sentences involved in the two remaining items: the hypothesis that the special
groups Gi are all finite ensures that the prescription in item (3) can be encoded by
a set of first-order L-sentences.
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Item (3): for each i ∈ I :

• for each g ∈ Gi , “Qg
i ⊆ Ḟi ” and “Qg

i = aḞ2
i , for some a ∈ Ḟi ”;

• for each g, g′ ∈ Gi such that g 6= g′, “Qg
i ∩ Qg′

i =∅”;

• “Ḟi =
⋃
{Qg

i | g ∈ Gi }” (as Gi is a finite special group, this can be described
by a first-order L-sentence);

• “1 ∈ Q1
i and −1 ∈ Q−1

i ”;

• for each g, g′ ∈Gi , “for each a, a′, if a ∈ Qg
i and a′ ∈ Qg′

i then a ·a′ ∈ Qgg′
i ”;

• for each g, g′ ∈ Gi such that g′ ∈ DGi (1, g), “for each a, a′, if a ∈ Qg
i and

a′ ∈ Qg′
i then there are x, y ∈ Fi such that a′ = x2

+ ay2”;

• for each g, g′ ∈ Gi such that g′ /∈ DGi (1, g), “for each a, a′, if a ∈ Qg
i and

a′ ∈ Qg′
i then for all x, y ∈ Fi , a′ 6= x2

+ ay2”.

Item (4): for each i ≤ j ∈ I :
By the axioms above: since Fi ⊆ F j and we have the partitions

Ḟi/Ḟ2
i = {Q

g
i | g ∈ Gi } and Ḟ j/Ḟ2

j = {Q
g′
j | g

′
∈ G j },

then for each g ∈ Gi there is a unique g′ ∈ G j such that Qg
i ⊆ Qg′

j . In this way
we obtain a function qi j : Ḟi/Ḟ2

i → Ḟ j/Ḟ2
j . Clearly qi j (a.Ḟ2

i ) = a.Ḟ2
j , for every

a ∈ Ḟi , i.e., qi j is the special group morphism induced by the inclusion Fi ⊆ F j .
We add a new list of axioms expressing that λ j ◦qi j = fi j ◦λi . A direct examination
of the equivalent condition qi j = λ

−1
j ◦ fi j ◦ λi shows that these axioms must be

for each g ∈ Gi , “Qg
i ⊆ Q fi j (g)

j ”.

Using now the compactness theorem (see [Chang and Keisler 1990, Theorem
1.3.22] or [Hodges 1993, Theorem 6.1.1]), to find a model of this theory we only
need to find a model of every finite part �0 ⊆�. Let J be the set of elements of I
occurring in this finite part �0, together with >. Since I is downward directed, we
can assume that J is also downward directed (taking a larger set J if necessary),
that is J has a first element⊥. In particular J determines a finite projective system
of special groups whose index set that has a maximum and a minimum.

Description of the proof by induction. We therefore assume from now on that the
index poset (I,≤) is finite and that it has a minimum ⊥ and a maximum >. We
find a finite projective system K of Pythagorean fields of characteristic 0 such that
G∼=G(K) by induction on the construction of G⊥ by products and extensions. For
the purpose of the proof, we allow the (nonreduced) special group {1} to appear in
G.

Recall that since G is an adequate projective system, the morphisms fi j , i≤ j ∈ I ,
are quotients by saturated subgroups (see the paragraph after Definition 2.2).
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If G⊥ ∼= {1}, then all special groups in the system are trivial and all morphisms
are isomorphisms. We can obviously realize such a system by taking Fi = A, i ∈ I ,
where A is any fixed algebraically closed field of characteristic 0.

If G⊥ ∼= Z2, then all special groups in the system are isomorphic to Z2 or to {1}
and all morphisms are isomorphisms or naturally identified with Z2 � {1}. We can
obviously realize such a system by simply selecting a real closed field R and an
algebraically closed field A such that R ⊆ A.

If G⊥ ∼= G ′
⊥
×G ′′

⊥
, since all morphisms and special groups in the systems are

quotients of G⊥ by (larger and larger) saturated subgroups, and using Fact 2.5,
the whole projective system (Gi , fi j )i≤ j∈I splits according to the product G⊥ ∼=
G ′
⊥
×G ′′

⊥
into two adequate projective systems of finite special groups:

(5-1) (G ′i , f ′i j )i≤ j∈I and (G ′′i , f ′′i j )i≤ j∈I .

(Note that, for each i ∈ I , if Gi is reduced, then either both G ′i and G ′′i are reduced or
one of them is the trivial special group {1} and the other is reduced.) By induction
the systems in (5-1) are realized by two projective systems of Pythagorean fields
of characteristic 0: F′ = (F ′i )i∈I and F′′ = (F ′′i )i∈I (where the morphisms are
inclusions), so we just need to “glue” them together. For this we use results from
[Kula 1979], which describe how to realize a finite product of finite special groups
when each one is already realized. This is achieved in the next subsection.

If G⊥ ∼= G ′[H ], as above, the morphisms of special groups in the projective
system are quotients of G⊥ by (larger and larger) saturated subgroups 1i . This
case is dealt with starting on page 279, using results from [Becher 2002].

Gluing, the product case. The next several pages are taken by the proof of the
following result.

Theorem 5.1. Let (I,≤) be a finite downward directed index set with first element
⊥ and last element >. Let F′ = (F ′i )i∈I , F′′ = (F ′′i )i∈I be finite projective systems
of fields of characteristic 0, where the morphisms are inclusions and such that for
every i ∈ I G(F ′i ) and G(F ′′i ) are finite special groups. Then there is a finite
projective system F = (Fi )i∈I of fields of characteristic 0 (where the morphisms
are inclusions) such that

G(F)∼= G(F′)×G(F′′).

Remark 5.2. In this theorem, for each i ∈ I we have:

(a) Fi is Pythagorean if and only if F ′i and F ′′i are Pythagorean.

(b) If Fi is Pythagorean, then Fi is formally real if and only if F ′i or F ′′i is formally
real.

We begin with a reformulation of some results from [Kula 1979].
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Definition 5.3. Let F be a field equipped with n mutually independent valuations
of rank one v1, . . . , vn , and let fi be an embedding of F into Fvi , a completion
of F with respect to vi . We say that (F, f1, . . . , fn) fulfills the global squares
property if, for every a ∈ F ,

a ∈ Ḟ2
⇐⇒ ∀i ∈ {1, . . . , n} fi (a) ∈ (Ḟvi )

2
.

(Note that the left to right implication always holds.)

Theorem 5.4 [Kula 1979, Corollary 2.5]. With notation as in Definition 5.3, as-
sume that (F, f1, . . . , fn) fulfills the global squares property. Then the map

ξF : G(F) →
∏n

i=1 G(Fvi )

aḞ2
7→ ( fi (a) · (Ḟvi )

2
)i=1,...,n

is an isomorphism of special groups.

Theorem 5.5 [Kula 1979, Theorem 2.6]. Let (L i , vi1, . . . , vin)i∈I be a finite pro-
jective system of fields equipped with n mutually independent valuations of rank
one, and such that I has a maximum element >. Then for every i ∈ I there is an
algebraic extension E(L i ) of L i and a morphism of special groups

ηi : G(E(L i ))→
n∏

k=1
G((L i )

vik )

such that

(1) E(L i )⊆ E(L j ) for every j ∈ I , j ≥ i ;

(2) G(E(L i )) ∼=
ηi

∏n
k=1 G((L i )

vik ); and

(3) the morphism of special groups
∏n

k=1 G((L i )
vik )→

∏n
k=1 G((L j )

v jk ), given
by the product of the morphisms of special groups induced by (L i )

vik ⊆ (L j )
v jk

is naturally identified, via the isomorphisms ηi and η j , with the morphism of
special groups G(E(L i ))→ G(E(L j )) induced by E(L i )⊆ E(L j ).

Proof. Since a valuation vik is the restriction on L i of the valuation v>k , we drop
the first index and simply denote it by vk . For k ∈ {1, . . . , n} we fix a completion
Lk
>

of L> with respect to vk and define, for i ∈ I , Lk
i to be the completion of L i in

Lk
>

with respect to vk . The systems (Lk
i )i∈I , for k ∈ {1, . . . , n}, are all projective

systems of fields, where the morphisms are the inclusions (since Lk
i is simply the

set of limits in Lk
>

of vk-Cauchy sequences of elements of L i ).
Let K+ be an algebraic closure of L>. We define the set

L :=
{
projective systems of fields (Ei , ιi1, . . . , ιin)i∈I

such that L i ⊆ Ei ⊆ K+ with Ei | L i algebraic,
equipped with the L i -embeddings of fields ιik : Ei→ Lk

i for k= 1, . . . , n
}
.
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(Note that the condition that (Ei , ιi1, . . . , ιin)i∈I is a projective system implies
ιik ⊆ ι jk for i ≤ j ∈ I and k ∈ {1, . . . , n}, which is possible since Lk

i ⊆ Lk
j .) We

equip L with the partial ordering

(Ei , ιi1, . . . , ιin)i∈I ≤ (Fi , κi1, . . . , κin)i∈I

if and only if
for every i ∈ I and k ∈ {1, . . . , n}, Ei ⊆ Fi and ιik ⊆ κik .

By Zorn’s lemma, L has a maximal element (Mi , fi1, . . . , fin)i∈I . We show that,
for j ∈ I , (M j , f j1, . . . , f jn) fulfills the global squares property. Let j ∈ I and let
a ∈ M j \ {0} be such that f jk(a) ∈ (Lk

j )
×2, for k = 1, . . . , n. Assume

√
a 6∈ M j .

Fix a square root
√

a of a and αk ∈ Lk
j such that α2

k = f jk(a). Then each morphism
f jk can be (properly) extended to M ′j :=M j (

√
a) by sending

√
a to αk . Moreover,

with A j := {r ∈ I | r ≥ j}, and since for r ∈ A j we have Lk
j ⊆ Lk

r , the same
reasoning tells us that, for each r ∈ A j and k ∈ {1, . . . , n}, each morphism frk

can be extended to M ′r := Mr (
√

a) by sending
√

a to αk (since αk ∈ Lk
r ). If

r ∈ I \ A j , we take M ′r := Mr . We obtain in this way (M ′i , f ′i , . . . , f ′n)i∈I , a
projective system of fields equipped with n morphisms of fields that is (strictly)
larger than (Mi , fi , . . . , fn)i∈I , a contradiction. It follows that

√
a ∈ M j and thus

that (M j , f j1, . . . , f jn), for j ∈ I , fulfills the global squares property. If we take
E(L i )=Mi for i ∈ I , the first conclusion of the theorem then holds, and the second
follows by Theorem 5.4, with

ηi : G(Mi )
∼=
→

n∏
k=1

G((L i )
k)

a · Ṁ2
i 7→ ( fi (a) · (Lk

i )
×2
)i=1,...,n,

for i ∈ I . The third conclusion is proved in the next lemma. �

Lemma 5.6. Let the notation be as in Theorem 5.5 and its proof.
Let (L , v1, . . . , vn)⊇ (K , v1 � K , . . . , vn � K ) be two fields equipped with n mu-

tually independent valuations of rank one. For m = 1, . . . , n let

• Lm be a completion of L with respect to vm and K m be a completion of K
with respect to vm � K such that K m

⊆ Lm ,

• fm be an embedding of K into K m and gm be an embedding of L into Lm

extending fm .

Assume (K , f1, . . . , fn) and (L , g1, . . . , gn) satisfy the global squares property.
Let λ :

∏n
m=1 G(K m) →

∏n
m=1 G(Lm) be the product of the morphisms of

special groups induced by the inclusions K m
⊆ Lm for m = 1, . . . , n, and let

µ : G(K )→ G(L) be the morphism of special groups induced by K ⊆ L.
Then λ and µ are naturally identified via the isomorphisms ξK and ξL given by

Theorem 5.4.
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Proof. By Theorem 5.4 the isomorphism G(K )∼= G(K 1)× · · ·×G(K n) is

ξK : G(K ) → G(K 1)× · · ·×G(K n)

x · K̇ 2
7→ ( f1(x) · ˙(K 1)

2
, . . . , fn(x) · ˙(K n)

2
).

Similarly, the isomorphism between G(L) and G(L1)× · · ·×G(Ln) is

ξL : G(L) → G(L1)× · · ·×G(Ln)

x · L̇2
7→ (g1(x) · ˙(L1)

2
, . . . , gn(x) · ˙(Ln)

2
).

Thus λ= ξL ◦µ ◦ ξ
−1
K since gm � K = fm for m = 1, . . . , n. �

We now turn our attention to the two finite projective systems of fields F′ =

(F ′i )i∈I and F′′ = (F ′′i )i∈I of characteristic zero introduced in the statement of
Theorem 5.1. We first show that we can assume that the fields in F′ and F′′ are at
most countable and of finite transcendence degree over Q. This is achieved by the
following proposition.

Proposition 5.7 [Kula 1979, Proposition 3.1]. Let L := (L i )i∈I be a finite projec-
tive system of fields of characteristic 0 such that G(L i ) is a finite special group for
all i ∈ I . There is a map F, defined on {L i }i∈I , satisfying the following properties
whenever i ≤ j ∈ I :

(1) F(L i ) is a countable subfield of L i with finite transcendence degree over Q.

(2) If ϕi : F(L i ) ↪→ L i is the inclusion map, then G(ϕi ) : G(F(L i ))→ G(L i ) is
an isomorphism of special groups.

(3) F(L i )⊆ F(L j ).

(4) If λi j : G(L i )→ G(L j ) is the morphism of special groups induced by L i ⊆

L j , then the morphism of special groups G(F(L i ))→ G(F(L j )) induced by
F(L i ) ⊆ F(L j ) is naturally identified with λi j , via the isomorphisms G(ϕi )

and G(ϕ j ).

Proof. The proof is a trivial extension of Kula’s. If L is a field with a finite number
of square classes, a representative system of G(L) is a finite subset R(L)= A∪ B
of L such that

• A ⊆ L̇ and L̇/L̇2
= A/L̇2;

• For every a1, a2 ∈ A with a1 ∈ DL〈1, a2〉, there are b1, b2 ∈ B such that
a1 = b2

1+ a2b2
2.

Claim: For every i ∈ I there is a representative system R(L i ) of L i such that
R(L i )⊆ R(L j ) whenever i ≤ j .

Proof of the claim: Direct by induction on d(⊥, i) (just take a system of repre-
sentatives of L i and add to it all the R(L j ) for ⊥≤ j < i).
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Then, just as in [Kula 1979], take for F(L i ) the algebraic closure of Q(R(L i ))

in L i . �

The following two propositions show that we can assume that atd(F ′i )= atd(F ′′i )
for every i ∈ I , where atd denotes the absolute transcendence degree, i.e., the
transcendence degree over Q.

Proposition 5.8 ([Kula 1979], Lemma 3.2). Let (L i )i∈I be a finite projective sys-
tem of countable fields of finite absolute transcendence degree. There is a map T

defined on {L i }i∈I satisfying the following properties whenever i ≤ j ∈ I :

(1) T(L i ) is a countable field extension of L i .

(2) atd(T(L i ))= atd(L i )+ 1.

(3) If τi : L i ↪→ T(L i ) is the inclusion map, then G(τi ) : G(L i )→ G(T(L i )) is
an isomorphism of special groups.

(4) T(L i )⊆ T(L j ).

(5) If λi j : G(L i )→ G(L j ) is the morphism of special groups induced by L i ⊆

L j , then the morphism of special groups G(T(L i ))→ G(T(L j )) induced by
T(L i )⊆ T(L j ) is naturally identified with λi j (via G(τi ) and G(τ j )).

Proof. For i ∈ I let Ki := L i (x)( 2n√
x)n∈N (x is an indeterminate), and consider on

Ki the unique extension vi of the valuation on L i (x) determined by the irreducible
polynomial x . The Ki , together with their inclusions, form a projective system, and
the sets 8i := {vi } satisfy the hypothesis of Theorem 5.5. We now apply the map
E defined in Theorem 5.5 to the projective system of the Ki and get the projective
system of the T(L i ). Since L i is countable, Ki and T(L i )= E(Ki ) are countable.
Kula’s proof of [Kula 1979, lemma 3.2] shows that the second and third claims of
the proposition hold, and the last two hold by Theorem 5.5. �

Proposition 5.9. There exist finite projective systems K′=(K ′i )i∈I and K′′=(K ′′i )i∈I

of fields of characteristic 0 such that

(1) G(K′)∼=G(F′) and G(K′′)∼=G(F′′), and

(2) for every i∈I , atd(K ′i )=atd(K ′′i )<∞.

Proof. We assume there is some i ∈ I such that atd(F ′i ) 6= atd(F ′′i ) and we proceed
by induction on d(⊥, i), the maximal length of a chain from ⊥ to i .

• d(⊥, i) = 0, i.e., i = ⊥. Let t := max{atd(F ′
⊥
), atd(F ′′

⊥
)}. We then apply

Proposition 5.8 as many times as necessary to the system F′ or F′′ (the one
that does no realize the maximum), and we obtain two new systems F′(0)
and F′′(0) indexed by I , whose fields of index ⊥ have same (finite) absolute
transcendence degree t .
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• d(⊥, i) = n > 0. We now proceed by induction on the number of i’s with
d(⊥, i)= n and atd(F ′i ) 6= atd(F ′′i ). We fix one of them: i1. By induction we
can assume that the projective systems F′ and F′′ satisfy atd(F ′j ) = atd(F ′′j )
for every j ∈ I , d(⊥, j) < n. We consider the systems F′ � i→1 and F′′ � i→1 .
By applying Proposition 5.8, we get two new systems T′ and T′′, indexed by
i→1 whose fields indexed by i1 have same absolute transcendence degree. We
replace, in F′, respectively F′′, the subsystem F′ � i→1 by T′, respectively F′′ �
i→1 by T′′ and we write F′(1), F′′(1) for the new sets of fields. Since every field
has been replaced by a field extension, we still get projective systems of fields
and, moreover, G(F′(1)) ∼= G(F′) and G(F′′(1)) ∼= G(F′′). Now atd(F ′(1)i1

) =

atd(F ′′(1)i1
) <∞, and we proceed by induction. �

So, from now on, we assume that our two finite projective systems of fields F′

and F′′ consist of countable fields having the same finite transcendence degree over
Q at each index.

Remark 5.10. Let K be a field equipped with two independent valuations v1 and
v2 and let (L , w1, w2) be an extension of (K , v1, v2). Then w1 and w2 are inde-
pendent. Indeed, if it were not the case, then w1 and w2 would define the same
topology on L (see [Engler and Prestel 2005, Theorem 2.3.4]), and therefore the
same induced topologies on K , which coincide with the topologies defined by v1

and v2. It shows that v1 and v2 define the same topology on K , a contradiction
since they are independent (again by the theorem just cited).

Lemma 5.11. There are two henselian valued fields (E ′
⊥
, v′) and (E ′′

⊥
, v′′) both

containing Q(X), such that

(1) v′ and v′′ are of rank one,

(2) E ′
⊥
v′ ∼= F ′

⊥
and E ′′

⊥
v′′ ∼= F ′′

⊥
,

(3) atd E ′
⊥
= atd F ′

⊥
+ 1= atd F ′′

⊥
+ 1= atd E ′′

⊥
,

(4) v′E ′
⊥

and v′′E ′′
⊥

are divisible, and

(5) the restrictions of v′ and v′′ to Q(X) are independent.

(In (4), two-divisible is actually enough for our purposes.)

Proof. Let {y1, . . . , yk} be a finite transcendence basis of F ′
⊥

over Q, and let E
be Q(y1, . . . , yk)(X), equipped with the valuation v determined by the irreducible
polynomial X ∈ Q(y1, . . . , yk)[X ]. Then E ∼= Q(y1, . . . , yk), vE = Z and F ′

⊥
is

isomorphic to an algebraic extension of E . By [Endler 1963, Satz 1], there is an
algebraic extension E ′

⊥
of E and an extension v′ of v to E ′

⊥
such that E ′

⊥
= F ′

⊥

and v′E ′
⊥

is divisible of rank one.



REALIZING PROFINITE REDUCED SPECIAL GROUPS 275

To construct (E ′′
⊥
, v′′), we proceed as above but start with the valuation on

Q(y1, . . . , yk)(X) associated to the irreducible polynomial X − 1. Obviously,
v′′ � Q(X) and v′ � Q(X) are independent over Q(X). �

We now apply Corollary 2.10 twice (with the valued fields (E ′
⊥
, v′) and (E ′′

⊥
, v′′)

given by Lemma 5.11), and get two projective systems of henselian valued fields
E′ = (E ′i , v

′

i )i∈I and E′′ = (E ′′i , v
′′

i )i∈I equipped with valuations of rank one, such
that res(E′) ∼= F′ and res(E′′) ∼= F′′. Up to renaming the transcendental elements,
we can assume that for every i ∈ I there is a finite set X i of transcendental elements
over Q and an algebraic closure Qi of Q(X i ) such that E ′i , E ′′i ⊆ Qi , and such that,
for every i ≤ j ∈ I X i ⊆ X j and Qi ⊆ Q j .

Since, for i ∈ I , E ′i and E ′′i are both subfields of Qi , we can consider the
projective system of valued fields (E ′i ∩ E ′′i , v

′

i , v
′′

i )i∈I . Note that v′i and v′′i are
independent by Remark 5.10 and Lemma 5.11(5). We recall now the following
special case of a result from [Heinemann 1985]:

Theorem 5.12. Let K be a field equipped with two independent valuations v1 and
v2. Fix an algebraic closure K̃ of K . Let (Hi , vi ), for i = 1, 2, be henselian
extensions of (K , vi ) such that H1, H2 ⊆ K̃ and K = H1 ∩ H2.

Then (Hi , vi ) is a henselization of (K , vi ), for i = 1, 2.

Applying this result, we obtain that, for every i ∈ I , (E ′i , v
′

i ) is a henselization
of (E ′i ∩ E ′′i , v

′

i ) and (E ′′i , v
′′

i ) is a henselization of (E ′i ∩ E ′′i , v
′′

i ). In particular:

(1) v′(E ′i ∩ E ′′i ) and v′(E ′i ∩ E ′′i ) are two-divisible;

(2) res(E ′i ∩ E ′′i , v
′

i )i∈I ∼= F′ and res(E ′i ∩ E ′′i , v
′′

i )i∈I ∼= F′′;

(3) v′ and v′′ are independent on E ′i ∩ E ′′i (by Lemma 5.11.(5) and Remark 5.10).

We now apply Theorem 5.5 to the system (E ′i∩E ′′i , v
′

i , v
′′

i )i∈I and get the system
(E(E ′i ∩ E ′′i ))i∈I , which satisfies

G((E(E ′i ∩ E ′′i ))i∈I )∼= (G((E ′i ∩ E ′′i )
v′i )×G((E ′i ∩ E ′′i )

v′′i ), g′i j × g′′i j )i≤ j∈I ,

where g′i j , respectively g′′i j , is the map induced by (E ′i ∩ E ′′i )
v′i ⊆ (E ′j ∩ E ′′j )

v′j ,
respectively by (E ′i ∩ E ′′i )

v′′i ⊆ (E ′j ∩ E ′′j )
v′′j . We claim that this last projective

system of (Pythagorean) fields is isomorphic to (G(F ′i )×G(F ′′i ), f ′i j× f ′′i j )i≤ j∈I . It
suffices to check that, for instance, the projective system (G((E ′i∩E ′′i )

v′i ), g′i j )i≤ j∈I

is isomorphic to (G(F ′i ), f ′i j )i≤ j∈I . This is the content of the remainder of this
section.

Since ((E ′i ∩ E ′′i )
v′i , v′i ) is an immediate extension of (E ′i ∩ E ′′i , v

′

i ), we have
res((E ′i ∩ E ′′i )

v′i , v′i )i∈I ∼= F′, so

G(res((E ′i ∩ E ′′i )
v′i , v′i )i∈I )∼= G(F′)= (G(F ′i ), f ′i j )i≤ j∈I
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and it suffices to show that (G((E ′i∩E ′′i )
v′i , g′i j )i≤ j∈I and G(res((E ′i∩E ′′i )

v′i , v′i )i∈I ))

are isomorphic.
We are now in position to conclude by using the following adaptation of the

Baer-Krull theorem [Dickmann and Miraglia 2000, Theorem 1.33]. Recall that the
functor G is well defined, in general, from the category of unitary commutative
rings into the category of L SG-structures.

Lemma 5.13. Let (K , v) be a valued field, i : OK → K be the inclusion and
q : OK → K be the projection on the quotient (K = OK /MK ). Suppose that
v(2)= 0.

(1) The L SG-structures G(K ) and G(K ) are special groups. The induced L SG-
morphism G(i) :G(OK )→G(K ) is injective and the induced L SG-morphism
G(q) : G(OK )→ G(K ) is surjective.

(2) If (K , v) is 2-henselian and vK = 2vK , then G(i) : G(OK )→ G(K ) and
G(q) : G(OK ) → G(K ) are L SG-isomorphisms. In particular, the L SG-
structure G(OK ) is a special group.

(3) If (K ′, v′) ⊇ (K , v) is a valued field extension, then OK ⊆ OK ′ , MK ⊆ MK ′

and the diagram of special groups below is commutative (where the vertical
arrows are induced by the field extension).

G(K )

��

G(OK )
G(i) //G(q)oo

��

G(K )

��
G(K ′) G(OK ′)

G(i ′) //G(q ′)oo G(K ′)

Proof. (1) Since v(2) = 0, 2 is invertible in the rings K , OK and K , and there-
fore, as K and K are fields, the L SG-structures G(K ) and G(K ) are special
groups ([Dickmann and Miraglia 2000, Theorem 1.32 p.23]). As q : OK → K
is a surjective ring homomorphism, it induces a surjective group homomorphism
ȮK /Ȯ2

K →
˙K/ ˙K

2
and therefore G(q) : G(OK ) → G(K ) is a surjective L SG-

morphism. Now let a ∈ ȮK such that a.K̇ 2
= 1.K̇ 2; i.e.,there is b ∈ K̇ such that

a = b2, then 2v(b) = v(a) = 0 and b ∈ ȮK ; therefore ker(G(i)) = {1.Ȯ2
K } and

G(i) : G(OK )→ G(K ) is an injective L SG-morphism.

(2) We first prove that G(q) is an L SG-isomorphism.
Let a ∈ ȮK such that q(a). ˙K

2
= 1. ˙K

2
then, as q : OK → K is a surjective

ring homomorphism, there is b ∈ ȮK such that q(a) = q(b2). Consider now the
polynomial P(t) = t2

− a in OK [t]: it is a quadratic monic polynomial such that
q(b)∈ K is a root of Pq(t)= t2

−q(a) in K and this root is simple (since q(a) 6= 0
and char(K ) 6= 2). The hypothesis (K , v) 2-henselian then entails that there is
b′ ∈ OK such that q(b′) = q(b) and P(b′) = 0; i.e., a = b′2, for some b′ ∈ ȮK
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(because a ∈ ȮK ). Therefore ker(G(q)) = {1.Ȯ2
K } and G(q) is an injective L SG-

morphism.
We show that whenever a ∈ ȮK , we have

DG(K )〈1,G(q)(aȮ2
K )〉 ⊆ G(q)[DG(OK )〈1, aȮ2

K 〉].

Since q and G(q) are surjective, it is enough to prove that for any z ∈ ȮK such
that there are x, y ∈ OK with q(z)= 1.q(x)2+ q(a).q(y)2, there are z′ ∈ ȮK and
x ′, y′ ∈ OK with z′ = 1.x ′2+ a.y′2 and

q(z′). ˙K 2
= q(z). ˙K 2.

We recall that ȮK = OK \MK and we split the proof into four cases:

• x ∈ MK , y ∈ MK : it is not possible because q(z) 6= 0.

• x ∈ ȮK , y ∈ MK : then q(z) = q(x2) and the quadratic monic polynomial
P(t) = t2

− z over OK has a root in K , and this root is simple (because
q(z) 6= 0 and char(K ) 6= 2). By the hypothesis that (K , v) is 2-henselian, P
has then a root x ′ in OK . Taking this x ′ as well as z′ := z and y′ := 0 proves
the result.

• x ∈ MK , y ∈ ȮK : then q(z) = q(ay2) and the polynomial P(t) = t2
− a−1z

has a root in K and this root is again simple (because q(z), q(a) 6= 0 and
char(K ) 6= 2). Therefore P has a root y′ ∈ OK . Taking this y′ together with
z′ := z and x ′ = 0 proves the result.

• x ∈ ȮK , y ∈ ȮK : then q((x/y)2+ a− zy−2)= 0 and the polynomial P(t)=
t2
+ (a− z′), with z′ := zy−2, is a quadratic monic polynomial in OK [t] such

that q(x/y) ∈ K is a root of Pq(t)= t2
+q(a− z′) in K and we may suppose

this root is simple (because, if not, as char(K ) 6= 2, then q(a − zy−2) = 0
and we can proceed as in the case just above). Then the hypothesis (K , v)
2-henselian entails that there is x ′ ∈ OK such that 0 = P(x ′) = x ′2 + a − z′

and q(x ′)= q(x/y), i.e., such that z′ = 1.x ′2+ a.y′2, with y′ := 1. Therefore
G(q)(z.Ȯ2

K )= G(q)(z′.Ȯ2
K ) ∈ G(q)[DG(OK )〈1, aȮ2

K 〉].

We now prove that G(i) is an L SG-isomorphism.
As vK = 2vK , for any a ∈ K̇ there is c∈ K̇ such that v(ac2)= 0, i.e., ac2

∈ ȮK .
Therefore G(i)(ac2.Ȯ2

K )= a.K̇ 2 and G(i) is surjective.
To finish the proof, we must check that for each a ∈ ȮK , we have

DG(K )〈1,G(i)(aȮ2
K )〉 ⊆ G(i)[DG(OK )〈1, aȮ2

K 〉].

Note that if a=−b2 for some b∈ ȮK then, as 2∈ ȮK , we have DG(OK )〈1, aȮ2
K 〉=

ȮK /Ȯ2
K . Since G(i) is a surjective group homomorphism, we have

G(i)[DG(OK )〈1, aȮ2
K 〉] =

˙K/ ˙K 2
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and therefore DG(K )〈1,G(i)(aȮ2
K )〉⊆G(i)[DG(OK )〈1, aȮ2

K 〉]. Thus we only have
to deal with the case a /∈ −Ȯ2

K and, again as G(i) is a surjective group homomor-
phism, it is enough to prove that for any z ∈ ȮK such that there are x, y ∈ K with
z = 1.x2

+a.y2, there are z′ ∈ ȮK and x ′, y′ ∈ OK such that z′ = 1.x ′2+a.y′2 and
z′.K̇ 2

= z.K̇ 2.
We split the proof into four cases:

• x, y ∈ OK . Then we simply take z′ := z, x ′ := x and y′ := y.

• x ∈ OK and y 6∈ OK . Then y−1
∈ MK and x/y ∈ MK . Thus (x/y)2 ∈ MK

and 1(x/y)2+a= zy−2
∈MK . This implies a ∈MK , a contradiction because

a ∈ ȮK = OK \MK .

• x 6∈ OK and y = 0. Then z = x2
6∈ OK , a contradiction.

• x 6∈OK and y 6=0. Then z= x2(1+a(y/x)2)∈ ȮK and x−1
∈MK . As z∈ ȮK ,

this implies (1+ a(y/x)2) = zx−2
∈ MK , and thus −a(y/x)2 ∈ 1+MK . As

(K , v) is 2-henselian and char(K ) 6= 2, 1+ MK ⊆ O2
K and as y 6= 0, then

−a∈ K 2. But−a∈ ȮK , so−a∈ ȮK∩K 2
= Ȯ2

K , contradicting the hypothesis
a ∈ ȮK \−Ȯ2

K .

(3) It follows directly from the definition of extension of valued fields that the
following diagram of (local) rings and (local) homomorphisms is commutative:

K

��

OK
q //

i
oo

��

K

��
K ′ OK ′

q ′ //
i ′

oo K ′

The result follows by applying the functor G to it. �

Under the hypotheses of Lemma 5.13, the last item gives us in particular the
commutative diagram

G(K )
τK //

��

G(K )

��
G(K ′)

τK ′ // G(K ′)

(5-2)

where the maps τK :=G(q)◦G(i)−1 and τK ′ :=G(q ′)◦G(i ′)−1 are isomorphisms
of special groups whenever (K , v) and (K ′, v′) are 2-henselian with 2-divisible
value groups, and the vertical maps are induced by the field inclusions.

Since, for i ≤ j ∈ I , we have an extension of valued fields ((E ′i ∩ E ′′i )
v′i , v′i ) ⊆

((E ′j ∩ E ′′j )
v′j , v′j ) and these two fields are 2-henselian with divisible value groups,
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we conclude that the diagram

G((E ′i ∩ E ′′i )
v′i )

τi //

��

G((E ′i ∩ E ′′i )
v′i )

��

G((E ′j ∩ E ′′j )
v′j )

τ j // G((E ′j ∩ E ′′j )
v′j )

is commutative, where the maps τi and τ j are the isomorphisms corresponding to
τK and τK ′ in (5-2). This concludes the proof of Theorem 5.1.

Gluing, the extension case. Now assume that G⊥∼=G ′[H ], the last case discussed
on page 269. Here we have Gi ∼= G ′[H ]/1i for every i ∈ I , where H is a fixed
finite group of exponent 2, 1i is a saturated subgroup of G ′[H ] and 1⊥ = {1}.
Furthermore, if i ≤ j ∈ I we have 1i ⊆1 j and fi j is naturally identified with the
canonical projection from G ′[H ]/1i onto G ′[H ]/1 j .

In view of this, the following theorem is a reformulation of the last case in the
induction step (page 269), and this section is devoted to its proof.

Theorem 5.14. Let (I,≤) be a finite downward directed index set with first element
⊥ and last element>. Let G ′ be a reduced special group and assume that whenever
G= (Gi , ηi j )i≤ j∈I is a projective system of reduced special groups with G⊥ = G ′,
then G is realized by a projective system of Pythagorean fields of characteristic
zero (where the morphisms are inclusions).

Let H be a finite group of exponent 2 and let (1i )i∈I be a projective system
of saturated subgroups of G ′[H ], where the morphisms are inclusions. Let G′ be
the projective system indexed by I of the special groups G ′[H ]/1i , where the
morphisms are the canonical projections.

Then G′ is realized by a projective system of Pythagorean fields of characteristic
zero (where the morphisms are inclusions).

Notation: If G is a special group and H is a group of exponent 2, we will
identify G (respectively H ) with the subgroup G × {1} (respectively {1} × H ) in
G[H ] = {(g, h) | g ∈ G, h ∈ H} and write g · h for the pair (g, h).

As H ∼= H1×H2 entails G ′[H ] ∼= (G ′[H1])[H2], we may assume dimF2 H = 1,
i.e., H = {1, h} with h2

= 1 and h 6= 1.
We define, for i ∈ I and i ≤ j ∈ I :

�i :=1i ∩G ′, G ′′i := G ′/�i (note that �i ⊆� j )

qi j : G ′′i → G ′′j the canonical projection,

2i := {(g ·�i ).w ∈ G ′′i [H ] | g.w ∈1i }.

The following fact is then easily checked:
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Fact 5.15. (1) �i is a saturated subgroup of G ′.

(2) 2i is a saturated subgroup of G ′′i [H ] with G ′′i ∩2i = {1}.

(3) The morphism of special groups qi j × Id : G ′′i [H ] → G ′′j [H ] is such that
(qi j × Id)(2i )⊆2 j and (qi j × Id)�2i :2i →2 j is injective.

(4) The map
ωi : G ′[H ]/1i → (G ′/�i )[H ]/2i

(g · h)/1i 7→ ((g/�i ) · h)/2i

is an isomorphism of special groups.

(5) The diagram

G ′[H ]/1i
fi j //

ωi

��

G ′[H ]/1 j

ω j

��
G ′′i [H ]/2i

q̃i j× Id// G ′′j [H ]/2 j

commutes, where q̃i j× Id is the canonical map induced on the quotients.

Note that by hypothesis, since G ′′
⊥
=G ′, the projective system (G ′′i , qi j )i≤ j∈I is

realized by a system of Pythagorean fields (Ki )i∈I of characteristic zero.
To complete the proof, it is then enough to represent the projective system of spe-

cial groups (G ′′i [H ]/2i , q̃i j× Id)i≤ j∈I by some projective system of Pythagorean
fields of characteristic zero; this is the content of the following proposition.

Proposition 5.16. There is a projective system of Pythagorean fields of character-
istic zero (L i )i∈I , where the morphisms are inclusions, such that

(G ′′i [H ]/2i , q̃i j× Id)i≤ j∈I ∼= G((L i )i∈I ).

The rest of this section now consists in the proof of Proposition 5.16.
Let us denote by γi j the morphism of special groups induced by Ki ⊆ K j :

(G(Ki ), γi j )i≤ j∈I ∼= (G ′′i , qi j )i≤ j∈I .

We define Mi = Ki ((t)) for every i ∈ I and record a well known result:

Lemma 5.17. Ṁi/Ṁi
2
= {atk

· Ṁi
2
| a ∈ K̇i , k ∈ {0, 1}}, and the isomorphism of

special groups from G(Mi ) to G(Ki )[H ] is

λi : G(Mi ) → G(Ki )[H ]
atk
· Ṁi

2
7→ (a · K̇i

2
)hk .

Proof. This is exactly [Dickmann and Miraglia 2000, Theorem 1.33], where the
explicit definition of the isomorphism is given at the beginning of the proof on
page 28. �
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It immediately follows that

(5-3) (G(Ki ((t))), γi j × Id)i≤ j∈I ∼= (G ′′i [H ], qi j × Id)i≤ j∈I .

For each i ∈ I , let 0i be the saturated subgroup of G(Ki ((t))) that corresponds, by
the isomorphisms above, to the saturated subgroup 2i of G ′′i [H ]. This then yields

(G(Ki ((t)))/0i , γ̃i j× Id)i≤ j∈I ∼= (G ′′i [H ]/2i , q̃i j× Id)i≤ j∈I

(where γ̃i j× Id denotes the induced map on the quotients), which in turn shows
that we only have to find a projective system of fields realizing the system

(G(Ki ((t)))/0i , γ̃i j× Id)i≤ j∈I .

Therefore, to keep notation simple, we may assume that G(Ki )[H ] = G ′′i [H ],
0i = 2i , γi j × Id = qi j × Id, and that q̃i j× Id is the map from G(Ki )[H ]/2i to
G(K j )[H ]/2 j induced by γi j × Id= qi j × Id.

In this vein, for every i ≤ j ∈ I , we will write G(Mi ) = G ′′i [H ], qi j × Id will
stand for the morphism of special groups induced by the inclusion Mi ⊆ M j , and
the diagram

Ṁi
//

pi

��

Ṁ j

p j

��
G(Mi )

qi j×Id
// G(M j )

(5-4)

is commutative, where pi and p j denote the canonical maps.
Define ni :=dimF2 2i for i ∈ I . Note that dimF2 2i ≤dimF2 H =1, so ni ∈{0, 1}.

Since (qi j × Id)�2i :2i →2 j is injective, we have ni ≤ n j whenever i ≤ j ∈ I .
If ni = 1, write 2i = {1, ai h}, with ai ∈ G ′′i . In this case, and if i ≤ j ∈ I , we have
(qi j × Id)(2i )=2 j , so qi j (ai )= a j .

Lemma 5.18. There is b ∈ Ṁ⊥ such that, for every i ∈ I , 2i ⊆ {1, pi (b)}.

Proof. For every i ≤ j ∈ I , the map qi j is surjective. In particular the map q⊥> is
surjective and, by diagram (5-4) above, p>(Ṁ⊥) = Im(q⊥>× Id) = G(M>). Let
b ∈ Ṁ⊥ be such that {1, p>(b)} =2>. Let now i ∈ I and let x ∈2i . Then

(qi>× Id)(x) ∈2> = {1, p>(b)}.

If (qi>× Id)(x)= 1, we get x = 1∈ {1, pi (b)}, because (qi j× Id)�:2i→2 j is an
injective group homomorphism. If (qi>× Id)(x) = p>(b), since diagram (5-4) is
commutative, we get p>(b)= (qi>×Id)(pi (b)), so (qi>×Id)(x)= (qi>×Id)(pi (b))
and we conclude that x = pi (b). �
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We assume from now on that there is i ∈ I such that ni =1 (equivalently, n>=1).
Otherwise 2 j = {1} for every j ∈ I , and the projective system of fields (Mi )i∈I

realizes the projective system of special groups (G ′′i [H ]/2i , q̃i j× Id)i≤ j∈I .
Recall that an element a of a special group T is called rigid when a 6= 1 and

DT 〈1, a〉 = {1, a} and an element b of T is birigid when b and −b are rigid. If
T = G[H ], then every element in G[H ] \G is birigid (this is essentially the only
way to obtain birigid elements in a special group; see [Dickmann and Miraglia
2000, p. 12, Berman’s Theorem]).

Since we assume that ni = 1 for some i ∈ I (in other words n> = 1), it follows
that the element b produced in Lemma 5.18 is birigid in Mi for every i ∈ I .

The next proposition uses the following notation: If K is a field and a ∈ K then
K ( ∞
√

a) stands for K ( 2n√
a, n ∈ N).

Proposition 5.19 [Becher 2002, Proposition 8.2]. Let F be a field, let a be a birigid
element in F (i.e., a ∈ Ḟ and a.Ḟ2 is birigid in G(F)) and let ϕ be a quadratic
form over F. Let L := F( ∞

√
a). Then

(1) L̇ = Ḟ L̇2 and Ḟ ∩ L̇2
= Ḟ2

∪ aḞ2;

(2) ϕ is isotropic over L if and only if ϕ⊕ aϕ is isotropic over F.

We define, for i ∈ I ,

L i =

{
Mi if ni = 0,
Mi (

∞
√

b) if ni = 1.

Since ni = 1 implies n j = 1 whenever i ≤ j ∈ I , the system (L i )i∈I is a pro-
jective system of fields. Note that the following diagram of fields is obviously
commutative (with the natural inclusions as morphisms):

Mi

��

// M j

��
L i // L j

which implies that the induced diagram of special groups is also commutative:

G(Mi )

µi

��

qi j×Id
// G(M j )

µ j

��
G(L i )

τi j // G(L j )

(5-5)

where µi : G(Mi )→ G(L i ) is the map induced by Mi ⊆ L i and τi j is the map
induced by L i ⊆ L j .
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Lemma 5.20. For i ∈ I , let πi : G(Ki )[H ] → G(Ki )[H ]/2i be the canonical
projection. Then µi is surjective and there is a unique isomorphism of special
groups ξi : G(L i )→ G(Ki )[H ]/2i such that the diagram

G(Mi )
µi //

λi
��

G(L i )

ξi
��

G(Ki )[H ]
πi // G(Ki )[H ]/2i

is commutative. In particular, L i is Pythagorean.

Proof. The case ni = 0 is trivial, so we assume ni = 1. To avoid unnecessary
notational complications, if K is a field and x ∈ K̇ , we simply write x̄ for the
class of x in K̇/K̇ 2. By Proposition 5.19(1) we know that µi is surjective and that
ker(µi ◦ λ

−1
i ) = {1, λi (b̄)} = DG(Ki )[H ]〈1, λi (b̄)〉. In particular, there is a unique

isomorphism of groups ξi :G(L i )→G(Ki )[H ]/{1, λi (b̄)} such that the following
diagram commutes:

G(Ki )[H ]
λ−1

i //

πi

��

G(Mi )
µi // G(L i )

ξiss
G(Ki )[H ]/{1, λi (b̄)}

We show that ξi is an isomorphism of special groups. The image of −1 is clearly
−1. Take µi (c̄), µi (d̄) ∈ G(L i ), where c, d ∈ Ṁi . We have

µi (c̄) ∈ DG(L i )〈1, µi (d̄)〉 ⇔ c ∈ DL i 〈1, d〉

⇔ 〈〈−c, d〉〉 isotropic over L i

⇔ 〈〈−c, d〉〉⊕ b〈〈−c, d〉〉 isotropic over Mi ,

the last equivalence following from Proposition 5.19(2). Recalling that Pfister
forms are isotropic if and only if they are hyperbolic, we continue the chain of
equivalences with

⇔ 〈1, b〉⊗ 〈〈−c, d〉〉 isotropic over Mi

⇔ 〈1, b〉⊗ 〈〈−c, d〉〉 hyperbolic over Mi

⇔ 〈1, λi (b̄)〉⊗ 〈〈−λi (c̄), λi (d̄)〉〉 hyperbolic in G(Ki )[H ]

⇔ 〈1, λi (b̄)〉⊗ 〈〈−λi (c̄), λi (d̄)〉〉 ≡ 〈1, λi (b̄)〉⊗ 〈−1, 1,−1, 1〉 in G(Ki )[H ]

⇔ 〈〈−πi ◦ λi (c̄), πi ◦ λi (d̄)〉〉 ≡ 〈−1, 1,−1, 1〉
in G(Ki )[H ]/D〈1, λi (b̄)〉 = G(Ki )[H ]/{1, λi (b̄)},

the last step following from [Dickmann and Miraglia 2000, Proposition 2.21]. But
this last condition is equivalent to 〈〈−πi ◦ λi (c̄), πi ◦ λi (d̄)〉〉 being hyperbolic in
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G(Ki )[H ]/{1, λi (b̄)}, and so to πi ◦λi (c̄) lying in DG(Ki )[H ]/{1,λi (b̄)}〈1, πi ◦λi (d̄)〉.
This shows that ξi is an isomorphism of special groups. Since λi (b̄) is birigid and
|H |=2, we obtain that G(L i ), being isomorphic to G(Ki )[H ]/{1, λi (b̄)}∼=G(Ki ),
is a reduced special group or {1}, which entails that L i is a Pythagorean field. �

Recall that, using the identifications made after (5-3), we have

(q̃i j× Id)((aK̇i
2
)hk
·2i )= (aK̇ j

2
)hk
·2 j for a ∈ K̇i and k ∈ {0, 1}.

Proposition 5.21. The diagram

G(L i )
τi j //

ξi

��

G(L j )

ξ j

��
G(Ki )[H ]/2i

q̃i j× Id // G(K j )[H ]/2 j

commutes. In particular, G((L i )i∈I )∼= (G ′′i [H ]/2i , q̃i j× Id)i≤ j∈I and

lim
←−

G((L i )i∈I )∼= lim
←−
(Gi , fi j )i≤ j∈I .

Proof. Since µi and µ j are surjective by Lemma 5.20, the commutative diagram
in that same lemma completely determines ξi and ξ j . Let z=µi (atk Ṁi

2
)∈G(L i )

(with a ∈ K̇i and k ∈ {0, 1}). Then

(5-6) ξi (z)= ξi ◦µi (atk Ṁi
2
)=πi ◦λi (atk Ṁi

2
)=πi ((aK̇i

2
)hk)= ((aK̇i

2
)hk)·2i .

where the second equality comes from Lemma 5.20. Applying this, we obtain
(q̃i j× Id) ◦ ξi (z)= (q̃i j× Id)(((aK̇i

2
)hk) ·2i )= (aK̇ j

2
)hk
·2 j and

ξ j ◦ τi j (z)= ξ j ◦ τi j ◦µi (atk Ṁi
2
)

= ξ j ◦µ j ◦ (qi j × Id)(atk Ṁi
2
) by diagram (5-5)

= ξ j ◦µ j (atk Ṁ j
2
) since qi j × Id is induced by Mi ⊆ M j

= (aK̇ j
2
)hk
·2 j by (5-6),

which finishes the proof. �
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