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ON AN OVERDETERMINED ELLIPTIC PROBLEM

LAURENT HAUSWIRTH, FRÉDÉRIC HÉLEIN AND FRANK PACARD

A smooth flat Riemannian manifold is called an exceptional domain if it
admits positive harmonic functions having vanishing Dirichlet boundary
data and constant (nonzero) Neumann boundary data. In analogy with
minimal surfaces, a representation formula is derived and applied to the
classification of exceptional domains. Some interesting open problems are
proposed along the way.

1. Introduction

Given an m-dimensional Riemannian manifold (M, g) and a smooth bounded do-
main � in M , we denote by λ1(�) the first eigenvalue of the Laplace–Beltrami
operator under an identically zero Dirichlet boundary condition. The critical points
of the functional

� 7→ λ1(�)

under the volume constraint Vol� = α, where α ∈ (0,Vol M) is fixed, are called
extremal domains. Smooth extremal domains are characterized by the property
that the eigenfunctions associated with the first eigenvalue of the Laplace–Beltrami
operator have constant Neumann boundary data [Soufi 2007]. In other words, a
smooth domain is extremal if and only if there exists a positive function u1 and a
constant λ1 such that

1gu1+ λ1 u1 = 0

in�with u1=0 and∇nu1 constant on ∂�, where n denotes the inward unit normal
vector to ∂�.

The theory of extremal domains is very reminiscent of the theory of constant
mean curvature surfaces or hypersurfaces. To give some credit to this assertion,
we recall that J. Serrin [1971] proved that the only compact, smooth, extremal
domains in Euclidean space are round balls, paralleling the well-known result of
Alexandrov asserting that round spheres are the only (embedded) compact constant
mean curvature hypersurfaces in Euclidean space. More recently, F. Pacard and
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P. Sicbaldi [2009] proved the existence of extremal domains close to small geo-
desic balls centered at critical points of the scalar curvature function, paralleling an
earlier result of R. Ye [1991], which provides constant mean curvature topological
spheres (with high mean curvature) close to small geodesic spheres centered at
nondegenerate critical points of the scalar curvature function.

We propose the following:

Definition 1.1. A smooth domain � ⊂ Rm is said to be an exceptional domain if
it supports positive harmonic functions having identically zero Dirichlet boundary
data and constant (nonzero) Neumann boundary data. Any such harmonic function
is called a roof function.

Exceptional domains arise as limits under scaling of sequences of extremal do-
mains, just like minimal surfaces arise as limits under scaling of sequences of
constant mean curvature surfaces. As explained above, there is a formal corre-
spondence between extremal domains and constant mean curvature surfaces. In
this note, we try to explain that there is also a strong analogy between exceptional
domains and minimal surfaces. More generally, we propose:

Definition 1.2. An m-dimensional flat Riemannian manifold M is said to be excep-
tional if it supports positive harmonic functions having identically zero Dirichlet
boundary data and constant (nonzero) Neumann boundary data. Any such har-
monic function is called a roof function.

Our results raise the problem of the classification of (unbounded) smooth m-
dimensional exceptional manifolds. In trying to address this classification problem,
we provide a Weierstrass-type representation formula for exceptional flat surfaces.
When the dimension m = 2, we give nontrivial examples of exceptional domains
that are embedded in R2, and we prove a half-space result for exceptional domains
that are conformal to a half-plane.

2. A nontrivial example of an exceptional domain in R2

The property of being an exceptional domain is preserved under the action of the
group of similarities of Rm (generated by isometries and dilations). We first give
trivial examples of exceptional domains in Rm :

(i) The half-space {x = (x1, . . . , xm) ∈ Rm
: x1 > 0} is an exceptional domain in

Rm , since the function u(x)= x1 is a positive harmonic function with identi-
cally zero Dirichlet boundary data and constant Neumann boundary data.

(ii) The complement of a ball of radius 1 in Rm is an exceptional domain since the
function u defined by u(x) := log|x | when m = 2 and by u(x) := 1− |x |2−m

when m ≥ 3 is positive, harmonic, and has 0 Dirichlet and constant Neumann
data on the unit sphere.
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(iii) The product �×Rk is an exceptional domain in Rm provided � ⊂ Rm−k is
an exceptional domain in Rm−k .

In dimension m=2, there exists (up to a similarity) at least one other exceptional
domain. To describe this domain, we make use of the invariance of the Laplace
operator under conformal transformations. The idea is that there exists a (somehow
natural) unbounded, positive harmonic function U with identically zero Dirichlet
boundary condition on an infinite strip in R2. This function does not have constant
Neumann data, but we can then look for a conformal transformation h which has the
property that the pullback of the harmonic function U by h has constant Neumann
boundary data on the boundary of the image of the strip by h.

To proceed, it is convenient to identify R2 with the complex plane C.

Proposition 2.1. The domain � :=
{
w ∈ C : |Imw| < π/2+ cosh(Rew)

}
is an

exceptional domain.

To prove this result, we define the infinite strip

S :=
{
z ∈ C : Im z ∈ (−π/2, π/2)

}
and the mapping

F(z) := z+ sinh z.

Observe that � = F(S). The proof of Proposition 2.1 follows from the next two
lemmas.

Lemma 2.2. The mapping F is a conformal diffeomorphism from S into �.

Proof. We can write

F(z)− F(z′)= (z− z′)
∫ 1

0

(
1+ cosh(t z+ (1−t)z′)

)
dt.

In particular

(2-1) 〈z− z′, F(z)− F(z′)〉 = |z− z′|2
(

1+
∫ 1

0
Re cosh (t z+ (1− t)z′) dt

)
,

where 〈 · , · 〉 denotes the scalar product in C. Now, for all x + i y ∈ S, we have

Re cosh (x + i y)= cosh x cos y ≥ 0.

This, together with (2-1), implies immediately that F restricted to S is injective.
Also,

|∂z3(z)|2 = |1+ cosh z|2 = (cosh x + cos y)2.

Therefore ∂z F does not vanish in S. Thus F is a local diffeomorphism, and because
the mapping F is holomorphic, it is conformal. �
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We define the real-valued function u on � by the identity

u(F(z))= Re cosh z for all z ∈ S.

Lemma 2.3. The function u is harmonic and positive in �, vanishes and has con-
stant Neumann boundary data on ∂�.

Proof. The function W defined in C by W (z) := Re cosh z is harmonic. Indeed, as
mentioned in the proof of the previous lemma, W (x + i y)= cosh x cos y. Hence
W is both harmonic and positive in S, and vanishes on ∂S. The mapping F being
a conformal diffeomorphism from S to �, we conclude the function u is both
harmonic and positive in �, and vanishes on ∂�. We claim that u has constant
Neumann data on ∂�. Indeed, by definition,

u(F(z))= 1
2(cosh z+ cosh z̄).

Since F is holomorphic, differentiation with respect to z yields

2 ∂zu(F(z))=
sinh z

1+ cosh z
.

Therefore

|∇u|2(F(z))=
cosh x − cos y
cosh x + cos y

,

where z= x+i y. On ∂�, we have y=±π/2 and hence |∇u|≡1. Since we already
know that u = 0 on ∂�, we conclude that u has constant Neumann boundary data.

�

Lemmas 2.2 and 2.3 complete the proof that�= F(S) is an exceptional domain
in R2 with roof function u.

Remark 2.4. We suspect that this example generalizes to any dimension m ≥ 3:
specifically, there should exist a rotationally symmetric exceptional domain in Rm

for all m ≥ 3.

3. Toward a global representation formula

Let M be an exceptional flat surface (an exceptional domain of dimension 2) with
smooth boundary ∂M . Let M̃ be its universal cover and let ∂ M̃ be the preimage of
∂M by the covering map M̃→ M . In the following, we exclude the uninteresting
case where ∂M =∅.

By assumption, M is a flat surface. Hence M̃ is naturally endowed with a flat
Riemannian metric g and hence with an induced complex structure, which is con-
formal to the standard one. Also, there exists an orientation-preserving isometric
immersion F : (M̃, g)→ (C, gC), where gC is the canonical Euclidean metric on
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C; this induces a smooth immersion of ∂ M̃ , Observe that F is holomorphic and
that ‖dF‖g = 1 in M̃ ∪ ∂ M̃ . We define the holomorphic (1, 0)-form

8 := dF = ∂z F dz.

Observe that 8 does not vanish and admits a smooth extension to M̃ ∪ ∂ M̃ .
We let u :M→R+ be a roof function on M and, with a slight abuse of notation,

we denote its lift also by u : M̃→ R+. The roof function u can be normalized so
that

(3-1) ‖∇u‖g = 1

on ∂M . We consider the harmonic conjugate function v : M̃→R (uniquely defined
up to some additive constant) that is the solution of

(3-2) ∂z(u− i v)= 0 (and hence ∂z̄(u+ i v)= 0 ).

We set
U := u+ i v.

Recall that U is a holomorphic function from M̃ into C. The property that u takes
positive values in M and vanishes on ∂M can be translated into the fact that U
maps M̃ to C+ := {w ∈ C : Rew > 0} and ∂ M̃ to i R. Since 8 6= 0 on M̃ , there
exists a unique holomorphic function h on M̃ such that dU = ∂zU dz = h8. We
deduce from the fact that u vanishes on ∂ M̃ and from (3-1) that ∇nU = 1, where
n denotes the inward unit normal vector to ∂ M̃ . Hence

(3-3) ‖∂zU‖g = 1 on ∂ M̃ .

Now, condition (3-1) translates into the fact that ‖8‖g = ‖dF‖g = 1= ‖dU‖g on
∂ M̃ . Clearly, this is equivalent to the fact that |h| = 1 on ∂ M̃ . Therefore, we end
up with the following data:

(i) An oriented, simply connected complex surface M̃ with smooth boundary
∂ M̃ .

(ii) A holomorphic function U , defined on M̃ , which takes values in C+ and maps
∂ M̃ into i R.

(iii) A holomorphic function h, defined on M̃ , such that |h| = 1 on ∂ M̃ , and for
which the 1-form 8 defined by 8 := (1/h)dU does not vanish on M̃ .

By analogy with the theory of minimal surfaces, we call these data the Weierstrass-
type representation formula for exceptional flat surfaces.

Conversely, given a set of such data, we can define the map F : M̃ → C by
integrating dF = 8. Thanks to (iii), this map is an immersion and its image is
an immersed exceptional flat surface with roof function given by u = Re U . In
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Section 4, we will give some explicit examples of such constructions when ∂ M̃
is equal to ∂D \ {α1, . . . , αn}, where α1, . . . , αn is a finite collection of points on
∂D = S1.

Example 3.1. Here is a (rather pathological) illustration of this Weierstrass-type
formula. Consider M = C+, the function U (z)= z and

F(z)=
∫ z

0
e− sinh ζ dζ.

Note that ∂z F is 2iπ -periodic, and this implies that F(z+2iπ)= F(z)+C , where
the constant C is given explicitly by

C := i
∫ 2π

0
e−i sin s ds.

Moreover, for x > 0,

F(x + iy)= F(iy)+
∫ x

0
e− sinh(s+iy) ds

converges to+∞ as x→+∞ if y=0, but this quantity is bounded if |y−π |<π/2,
and even admits a finite limit as x→+∞.

Hence, in addition to the regular boundary F(i R), which is a smooth periodic
curve, the image of F has a singular boundary: the set of limits of F(x + i y) as
u tends to +∞, for the values of y for which this limit exists. The roof function
tends to infinity along this singular boundary.

4. Examples of exceptional flat surfaces

Thanks to the Weierstrass-type representation in the previous section, we can give
many nontrivial examples of exceptional flat surfaces. We keep the notation from
that section.

The construction makes use of an integer n ∈ N \ {0} and the Riemann surface
D = {z ∈ C : |z|< 1}. On D, we define the holomorphic functions

h(z)= zn−1 and U (z) :=
1+ zn

1− zn .

The 1-form 8 is given by

8(z) :=
2n

(1− zn)2
dz.

Both U and 8 have singularities at the n-th roots of unity. The function F is then
obtained by integrating 8, and the roof function u is defined by u = Re U .
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(i) When n = 1, we can take

F(z)= 1+z
1−z

.

In this case, we simply have F(D) = C+, and we recover the fact that the
half-plane is an exceptional domain. This is the counterpart of the plane in
the framework of minimal surfaces.

(ii) When n = 2, we can take

F(z)=
2z

1− z2 + log
z+ 1
z− 1

.

In this case, the exceptional flat surface found can be isometrically embedded
in C, and hence F(D) is an exceptional domain. In fact, F(D) corresponds
(up to some similarity) to the domain�, which was defined in Proposition 2.1.
This exceptional domain is the counterpart of the catenoid.

(iii) Finally when n ≥ 3, the exceptional flat surfaces we find cannot be isometri-
cally embedded in C anymore. They are counterparts of the minimal n-noids
described in [Jorge and Meeks 1983].

Let us analyze this example further. The function U can be written as

U (z)=−1
n

n∑
k=1

z+αk

z−αk ,

where α := e i2π/n . In particular, Re U is nothing but a multiple of the sum of the
Poisson kernel on the unit disc with poles at 1, α, . . . , αn−1. Next,

dU = zn−1 2n
(1− zn)2

dz,

so the function h is cooked up to counterbalance the zero of dU and ensure that 8
does not vanish in the unit disk, while keeping the condition |dU |2 = |8|2 on ∂D.

To generalize the example, consider n distinct points α1, . . . , αn ∈ S1
⊂ C and

a1, . . . , an > 0. We define

(4-1) U (z) := −
n∑

k=1

ak
z+αk

z−αk
.

It is easy to check that Re U is positive (since each function z 7→− z+αk
z−αk

maps D
to C+) and vanishes on ∂D \ {α1, . . . , αn}. We have

n∏
k=1

(z−αk)
2 dU = P(z) dz,
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where P is a polynomial that depends on the choice of points α1, . . . , αn and
weights a1, . . . , an . Assume that P does not vanish on ∂D and denote by z1, . . . , zl

the roots of P in the unit disc, counted with multiplicity. We simply define

h(z) :=
l∏

j=1

z − z j

z z̄ j − 1

and the 1-form 8 by 8 := (1/h) dU . Integration of 8 yields a 2n-dimensional
family of exceptional flat surfaces immersed in C.

5. A global Weierstrass-type representation

In this section, we show that exceptional flat surfaces whose immersion in C have
finitely many regular ends and are locally finite coverings of C are precisely the
examples in the previous section. We use the notations introduced in Section 3,
and we set

M̂ := M ∪ ∂M.

We further assume that M is simply connected and that ∂M 6=∅. In particular, M
has the conformal type of the unit disk D, and without loss of generality, we can
assume that M is indeed equal to D and consider D̄ as a natural compactification of
M . We denote by F an orientation preserving, holomorphic, isometric immersion
F : (M̂, g)→ (C, gC). Recall that ‖dF‖g = 1 on ∂M . Some natural hypotheses
are needed:

(H-1) M has finitely many ends. This means that

∂M = ∂D \
n⋃

j=1
E j =

n⋃
j=1

I j ,

where each E j ⊂ S1 is a closed arc and I j ⊂ S1 is an open arc.

(H-2) F is proper. This means that F(w) tends to infinity as w tends to
⋃n

j=1 E j .

(H-3) Each end of M is regular. This means the image of I j := (θ
−

j , θ
+

j ) by F
is a curve 0 j asymptotically parallel to fixed directions at infinity. In other
words, there exist two unit vectors τ−j and τ+j ∈ S1

⊂ C such that

lim
θ∈I j , θ→θ

±

j

F(eiθ )

|F(eiθ )|
= τ±j .

This is the case, for example, if we assume each 0 j has finite total curvature.

(H-4) The mapping F is a locally finite covering. This means there exists d ∈ N∗

such that, for any z ∈ C, the cardinal of {ζ ∈ M : F(ζ )= z} is at most d .

We now state the main result of this section.
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Theorem 5.1. Assume that M is a simply connected exceptional flat surface and
let F : M→C be an isometric immersion. Further assume that (H-1)–(H-4) holds
and identify M with D. Then there exist µ ∈ R, n distinct points α1, . . . , αn ∈ S1

and n constants a1, . . . , an > 0 such that

dF = eiµ
m∏

k=1

z̄k z− 1
z− zk

dU,

where z1, . . . , zm ∈ D̄ denote the zeros of dU , counted with multiplicity, and where

U (z) := −
n∑

j=1

a j
z+α j

z−α j
in D̄.

The proof is divided into a few lemmas and propositions. We start by analyzing
the ends E j and show that they reduce to isolated points α1, . . . , αn . Next we
analyze the behavior of F near the points α j and show that F does not have any
essential singularity there. Then we proceed with the analysis of the function U
and show that it has the expected form. The proof is completed with the study of
the function h.

As promised, we first analyze the sets E j :

Lemma 5.2. Under the assumptions of Theorem 5.1, there exists a finite number
of points α1, . . . , αn ∈ ∂D = S1 such that M̂ = D̄ \ {α1, . . . , αn}.

Proof. We need to show that each interval E j is reduced to a point. This essentially
follows from the fact that the capacity of E j vanishes.

Suppose, for a contradiction, that E j is an arc of positive arc length for some
j , and take some l ∈ (0, π/2) and an arc E ⊂ E j of length l. Our problem being
invariant under the action of fractional linear transformations of the unit disk, we
can assume without loss of generality that E is the image of [−l/2, l/2] under
s 7→ eis . Reducing l if necessary, we can also assume that the opposite arc −E ,
the image of [−l/2, l/2] under s 7→ −eis , is contained in S1

\
⋃n

j=1 E j .
Recall that for any smooth function defined on (a, b) which satisfies f (b) = 1

and f (a)= 0, we have

1= f (b)− f (0)=
∫ b

a
f ′(s) ds ≤

(∫ b

a
( f ′)2(s) ds

)1/2√
b− a.

If in addition, b− a ≤ 2, we conclude that∫ b

a
( f ′)2(s) ds ≥ 1

2 .
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Now assume that we are given a smooth function f : D→ R such that f = 1 on
E and f = 0 on −E . Using the previous inequality, we can write

(5-1)
∫

D
‖∇ f ‖2

gC
dx dy ≥

∫
D∩{|x |<sin(l/2)}

|∂y f |2 dx dy ≥
∫
|x |≤sin(l/2)

1
2 dx = sin l

2
.

Given R > r > 0, define χ : C→ R by

χ(z)=


0 if |z| ≤ r,

log(|z|/r)
log(|z|/R)

if r ≤ |z| ≤ R,

1 if R ≤ |z|,

and we define f : D→ R by f := χ ◦ F . Since F is conformal, we can write∫
D
‖∇ f ‖2gC

dx dy =
∫

D
‖∇ f ‖2g d volg .

Now, using (H-4), we conclude that

(5-2)
∫

D
‖∇ f ‖2g d volg ≤ d

∫
C

‖∇χ‖2gC
dx dy = d

2π
log(R/r)

.

Fixing r > 0 large enough, we can ensure that f is identically equal to 0 on−E .
Using (H-2), we see that f is identically equal to 1 on each E j , and in particular
on E . Therefore f can be used in (5-1), which together with (5-2) yields

2π d ≥ sin l
2

log R
r

independently of R > r . Letting R tend to infinity, we get a contradiction, and the
proof is complete. �

Therefore, we now know that E j := {α j }. Without loss of generality, we can
assume that α1, . . . , αn are arranged counterclockwise along S1. We agree that
α0 := αn and αn+1 := α1, and that for each j = 1, . . . , n, the arc I j is positively
oriented and joins α j to α j+1. We now analyze the singularities of F close to α j .

Given j = 1, . . . , n, we denote by S(α j , r) the circle of radius r > 0 centered
at α j . We define

γ j := D̄ ∩ S(α j , r),

which we assume to be oriented clockwise. The angle θ j ∈ R at α j is defined by

θ j := − lim
r→0

∫
γk

F∗dθ,

where dθ := Im dz/z. Thanks to (H-3), θ j is well defined, and we have

τ−j = eiθ j τ+j−1.
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Lemma 5.3. Under the assumption of Theorem 5.1, the function

H j (z) := (z−α j )
θ j/π F(z)

is holomorphic in a neighborhood of α j in D̄ \ {α j }, and H j (α j ) 6= 0.

Proof. Without loss of generality, we can assume that α j = 1. By right composing
F with the conformal transformation z 7→ (1− z)/(1+ z), we can replace D by
C+. Now we define

G(z) := F(z)−π/θ j .

Observe that G(0)=0 by (H-2). Moreover, (H-3) and the definition of θ j imply that
the image by G of a neighborhood of 0 in i R is a C1-curve, and hence analytic. In
particular, there exists some conformal transformation T such that, for some r > 0,
the image by T ◦G of i (−r, r) is a straight line segment in i R. Then it is possible
to extend T ◦G to a function G̃ defined on a neighborhood of 0 in C by setting

G̃(z)=
{

T (G(z)) if Im z ≥ 0,
−T (G(−z̄)) if Im z ≤ 0.

The resulting G̃ is bounded in a neighborhood of 0 in C and holomorphic away
from 0. It is well known that the singularity is then removable and hence it is
holomorphic. Therefore G̃ is actually holomorphic in a neighborhood of 0. In
particular, we can write

G(z)= zk H(z)

near 0, where H is a holomorphic function that does not vanish at 0. Going back
to the definition of G, this implies that

F(z)= (z−α j )
−k θ j/π H j (z),

where H j is holomorphic in a neighborhood of α j and does not vanish at α j . But
the definition of θ j readily implies that k = 1. This completes the proof. �

As a corollary, we conclude that

(5-3) H(z) := F(z)
n∏

j=1

(z−α j )
θ j/π

is a bounded holomorphic function in D. Moreover, since F tends to infinity as z
approaches α j , this implies that θ j > 0.

We now make use of the fact that M is an exceptional domain, and hence there
is a roof function u : M̂ → [0,+∞). We can define the holomorphic function
U := u+ i v, where v : M̂→ R is the (real-valued) harmonic conjugate of u. The
purpose of the next result is to show that U is precisely given by (4-1).
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Lemma 5.4. Under the assumptions of Theorem 5.1, there exist n constants a1,

. . . , an > 0 such that

U (z)=−
n∑

j=1

a j
z+α j

z−α j
.

Proof. First, it is possible to extend the function U to all C \ {α1, . . . , αn} by
defining V to be equal to U in D \ {α1, . . . , αn}, and

V (z) := −U (1/z̄)

when z ∈C\D. The key observation is that, since Re U = 0 on ∂D \{α1, . . . , αn},
the function V is continuous and in fact holomorphic on C \ {α1, . . . , αn}. More-
over, V converges to V (∞) := −U (0) at infinity.

We proceed with the proof that the function V has no essential singularity at
any α j ; it will follow from Picard’s theorem. By definition, Re V vanishes on I j

and is positive in D. Therefore the outward normal derivative of Re V on I j is
negative. This implies that the tangential derivative of Im V on I j does not vanish
and hence that Im V is strictly monotone on each I j . This shows that there exists
some neighborhood V of α j in C such that any element of i R is achieved by V at
most twice in V (that is, at most once on I j and at most once on I j−1 and certainly
not in V\∂D, since V takes values in C\i R away from ∂D). Picard’s big theorem
[Conway 1978] then implies that α j is not an essential singularity of V . Hence α j

is either a removable singularity of V or a pole.
Since ‖∇u‖g ≡ 1 on ∂M , this forces |∂zU | = |∂z F | on ∂M , and since |∂z F |

tends to +∞ at α j , so does |∂zU |. Hence all α j are poles of V .
We are now interested in the zeros of V . Since Re V takes positive values in

D and negative values in (C∪ {∞}) \ D, we already know that the only possible
zeros of V are on ∂D. We have already seen that, along I j , the function V equals
i v, where v is strictly monotone. Further, since α j−1 and α j are poles of this
function, |V | must converge to +∞ as we approach either α j−1 or α j . Because
of the continuity of v along each I j it follows that v vanishes exactly at one point
β j on each I j . Moreover, this zero is simple: if it had order k > 1, the zero set
of Re V near β j would contain k curves intersecting at β j , and this would force
Re V = Re U to vanish in D, in contradiction with our hypothesis.

Finally, we prove that V has only simple poles. We know that V extends mero-
morphically to a map on CP1

=C∪{∞} with neither a pole nor a zero at infinity.
Furthermore, V has exactly n simple zeros and n poles; hence these poles must be
simple. To summarize, V can be written as a linear combination of the constant
function and functions of the form z 7→ 1/(z−α j ). Without loss of generality, this
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amounts to saying that V can be written as

V (z)= a−
n∑

j=1

a j
z+α j

z−α j
,

where a and the a j are complex numbers. Using the fact that, by construction,
V (1/z̄)=−V (z), we conclude that a ∈ i R and also that a j ∈ R. Moreover, since
Re U is positive, this implies that the a j are positive real numbers. This completes
the proof, since U is defined up to the addition of some element of i R. �

We are now in a position to complete our analysis of the function F . Since F
is an immersion, dF 6= 0 on M̂ . Hence there exists a unique holomorphic function
h on M̂ such that

(5-4) ∂zU = h ∂z F

on M̂ . Moreover, since ‖∇u‖g ≡ 1 on ∂M , this implies that |h| ≡ 1 on ∂M . We
now analyze the function h, which will complete the proof of Theorem 5.1.

Lemma 5.5. Under the assumptions of Theorem 5.1, there exists a constant e iµ
∈R

such that the function h defined by (5-4) has the form

h(z)= e−iµ
m∏

k=1

z− zk

z̄kz− 1
,

where z1, . . . zm are the zeros of ∂zU in D counted with multiplicity.

Proof. The function h is holomorphic in D and satisfies |h|=1 on ∂D\{α1, . . . , αn}.
We can extend h to a holomorphic function H , defined on (C∪{∞})\{α1, . . . , αn}

by setting H(z) := h(z) for all z ∈ D \ {α1, . . . , αn} and

(5-5) H(z) :=
1

h(1/z̄)

for all z ∈ C \ D. Clearly H is locally bounded in D \ {α1, . . . , αn}, and its only
singularities in (C∪{∞})\D are poles that are the images by z 7→1/z̄ of the zeros of
h; hence H is meromorphic outside {α1, . . . , αn}. But Lemma 5.3 and (5-3) imply
that, near α j , |H | is bounded by a constant times |z − α j |

−k j for some k j > 0.
Therefore α j is not an essential singularity of H , and hence H is meromorphic in
C∪ {∞}.

Observe that |H(z)| = 1 on ∂D \ {α1, . . . , αn}, and this implies that the points
α j are not poles of H . Therefore, the singularities α j of H are removable. Also,
we have

1 |H |2 = 4∂z∂z̄ |H |2 = 4 |∂z H |2 ≥ 0,

and since |H | = 1 on ∂D, the maximum principle implies that |H | ≤ 1 in D.
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Since H is bounded in D, it does not have poles in this set. This also implies that
H has no zeroes in (C∪{∞})\D, because otherwise H would have poles in D by
(5-5). Therefore, if z1, . . . , zm ∈ D denote the zeros of H (counted with multiplic-
ity), the poles of H are given by 1/z̄1, . . . , 1/z̄m (also counted with multiplicity).
It is then a simple exercise to check that H is of the form

H(z)= C
m∏

k=1

z− zk

z̄k z− 1

for some constant C ∈ C. Finally, the condition that |H(z)| = 1 on ∂D forces
|C | = 1. This completes the proof. �

6. A Bernstein type result for two-dimensional exceptional domains

We prove the following Bernstein type result for two-dimensional exceptional do-
mains.

Proposition 6.1. Assume that � is a two-dimensional exceptional domain confor-
mal to C+, and let u be a roof function on �. We further assume that ∂x u > 0 in
�. Then � is a half-plane.

Proof. Since we have assumed that � is conformal to C+, there exists a holomor-
phic map 9 : C+ 7→�. We then define

H := (∂zu) ◦9.

The function H is holomorphic in C+ and does not vanish, since we have assumed
that ∂x u 6= 0. Moreover, |H | ≡ 1 on ∂C+. We can write H = ei2, where 2 is a
holomorphic function defined in C+ that is real valued on the imaginary axis. This
means that Im2= 0 when Re z= 0. Since we have assumed that ∂x u > 0, we also
conclude that Re2 ∈ (−π/2, π/2).

We can extend 2 as a holomorphic function 2̃ in C as follows:

2̃(z) :=
{
2(z) if Re z ≥ 0,
2(−z̄) if Re z < 0.

It is easy to check that 2̃ is a holomorphic function: in fact, the real part of 2 is
extended as an even function of Re z, while the imaginary part of 2 is extended
as an odd function of Re z. That 2̃ is C1 is then a consequence of the fact that
Im2 = 0 on the imaginary axis, while the holomorphicity of 2 follows from the
fact that ∂x Re2= 0 on the imaginary axis of C.

The real part of 2̃, being a bounded harmonic function, must be constant. Then
2̃, being holomorphic, must itself be constant. But this implies that the gradient
of u is constant, and hence the level sets of u are straight lines. This implies that
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u only depends on one variable, and hence it is an affine function. This completes
the proof. �

Corollary 6.2. There is no exceptional domain contained in a wedge

�⊂ {z ∈ C : Re z ≥ κ |Im z|}

for any κ > 0.

Proof. The proof is by contradiction. If � were such an exceptional domain, there
would exist on � a roof function u. One can apply the moving plane method
[Serrin 1971; Gidas et al. 1979] to prove that ∂x u > 0 and hence that ∂� is a
graph over the y-axis. Since � is contained in a half-plane, there is no bounded,
positive, harmonic function on � having 0 boundary data on ∂�; otherwise one
could use an affine function as a barrier to obtain a contradiction. Certainly,�∪∂�
is conformal to D̄\E , where D is the unit disc and E is a closed arc included in S1.
Necessarily, E is reduced to a point, since otherwise we can construct bounded,
positive, harmonic functions on E that have 0 boundary data on S1

\ E , and these
would lift to bounded, positive, harmonic function on �, with 0 boundary data, a
contradiction. Therefore, we conclude that� is conformal to C+. The assumptions
of Lemma 5.5 are fulfilled, and hence we conclude that � is a half-plane, which is
a contradiction. �

7. Open problems

We have no nontrivial example of an exceptional domain in higher dimensions
Rm for m ≥ 3, besides the ones described in Section 2. In dimension m = 2, it
is tempting to conjecture that (up to similarity) the only exceptional domains that
can be embedded in R2 are half-spaces, the complement of a ball and the example
discussed in Section 2.
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