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LIVIU ORNEA AND MIHAELA PILCA

A metric is formal if all products of harmonic forms are again harmonic.
The existence of a formal metric implies Sullivan formality of the manifold,
and hence formal metrics can exist only in the presence of a very restricted
topology. We show that a warped product metric is formal if and only if the
warping function is constant and derive further topological obstructions to
the existence of formal metrics. In particular, we determine the necessary
and sufficient conditions for a Vaisman metric to be formal.

1. Introduction

A fundamental problem in algebraic topology is the reading of the homotopy type
of a space in terms of cohomological data. A precise definition of this property
was given by Sullivan [1977] and called formality. As concerns manifolds, it is
known, for example, that all compact Riemannian symmetric spaces and all com-
pact Kähler manifolds are formal. For a recent survey of topological formality, see
[Papadima and Suciu 2009].

Sullivan also observed that if a compact manifold admits a metric such that
the wedge product of any two harmonic forms is again harmonic, then, by Hodge
theory, the manifold is formal. This motivated the following definition:

Definition 1.1 [Kotschick 2001]. A closed manifold is called geometrically formal
if it admits a formal Riemannian metric.

In particular, the length of any harmonic form with respect to a formal metric is
(pointwise) constant. This larger class of metrics having all harmonic (one-)forms
of constant length naturally appears in other geometric contexts, for instance in
the study of certain systolic inequalities, and has been investigated in [Nagy 2006;
Nagy and Vernicos 2004].

Classical examples of geometrically formal manifolds are compact symmetric
spaces. In [Kotschick and Terzić 2003; 2011] more general examples are provided,
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both of geometrically formal and of formal but nongeometrically formal homoge-
neous manifolds.

Geometric formality imposes strong restrictions on the (real) cohomology of the
manifold. For example, it is proven in [Kotschick 2001] that a manifold admits a
nonformal metric if and only if it is not a rational homology sphere.

In this note, we shall obtain further obstructions to formality. We shall see
(Section 2) that if a compact manifold with b1= p≥ 1 admits a formal metric, and
if there exist two vanishing Betti numbers such that the distance between them is
not larger than p + 2, then all the intermediary Betti numbers must be zero too.
Also, a conformal class of metrics on an even-dimensional compact manifold with
nonzero middle Betti number can contain no more than one formal metric.

Our main concern will be the formality of warped products (Section 2). We will
show that a warped product metric on a compact manifold is formal if and only if
the warping function is constant. On the way, we shall also provide a proof for the
fact (stated in [Kotschick 2001], for instance) that a product of formal metrics is
formal.

Unlike Kähler manifolds, which are known to be formal, for the time being,
nothing is known about the Sullivan formality of locally conformally Kähler (in
particular Vaisman) manifolds. In Section 3 of this note, we shall discuss compact
Vaisman manifolds, whose universal cover is a special type of warped product,
a Riemannian cone to be precise, and we shall find obstructions to the metric
formality of a Vaisman metric. Several computational facts and their proofs are
gathered in the Appendix.

2. Geometric formality of warped product metrics

For completeness, and as a first step in the study of geometrically formal warped
products, we provide a proof for the formality of Riemannian product formal met-
rics.

Proposition 2.1. If (M1, g1) and (M2, g2) are two compact Riemannian manifolds
with formal metrics, then the metric g = g1 + g2 on the product manifold M =
M1×M2 is also formal.

Proof. Let γ∈�p M and γ′∈�q M be two harmonic forms on M . By Lemma A.2, γ
and γ′ are given by linear combinations with real coefficients of the basis elements
in (A-3). Thus, it is enough to check that the exterior product of any two such basis
elements is a harmonic form on M . But(

π∗1 (α)∧π
∗

2 (β)
)
∧
(
π∗1 (α

′)∧π∗2 (β
′)
)
= (−1)|α

′
||β|π∗1 (α∧α

′)∧π∗2 (β ∧β
′),

which is g-harmonic on M by Lemma A.2 and by the formality of g1 and g2 (as
α∧α′ is again a g1-harmonic form and β ∧β ′ a g2-harmonic form). �
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We now pass to the setting we are mainly interested in, warped products.

Theorem 2.2. Let (Bn, gB) and (Fm, gF ) be two compact Riemannian manifolds
with formal metrics. Then the warped product metric g=π∗(gB)+(ϕ◦π)

2σ ∗(gF )

on B× ϕF is formal if and only if the warping function ϕ is constant.

Proof. Let β ∈ �p(F) be a gF -harmonic form on F (as bm(F) = 1, there exists
at least a harmonic m-form on F). From the equalities (A-4) in the Appendix,
it follows that σ ∗β is a g-harmonic form on the warped product B ×ϕ F . If we
assume the warped metric g to be formal, it follows in particular that the length of
σ ∗β is constant. As gF is also assumed to be formal, the length of β is constant
as well. On the other hand,

(2-1) g(σ ∗β, σ ∗β)= (ϕ ◦π)2pgF (β, β) ◦ σ,

showing that the function ϕ must be constant.
Conversely, if ϕ is constant, then the warped product reduces to the Riemann-

ian product between the Riemannian manifolds (B, gB) and (F, ϕ2gF ), which is
geometrically formal by Proposition 2.1. �

Remark 2.3. From the above proof we see that Theorem 2.2 holds more generally
for metrics having all harmonic forms of constant length.

An interesting question regarding the formal metrics is their existence in a given
conformal class. Under a weak topological assumption, we prove that there may
exist at most one such formal metric. More precisely, we have

Proposition 2.4. Let M2n be an even-dimensional compact manifold whose middle
Betti number bn(M) is nonzero. Then, in any conformal class of metrics there is at
most one formal metric (up to homothety).

Proof. Let [g] be a class of conformal metrics on M and suppose there are two
formal metrics g1 and g2= e2 f g1 in [g]. The main observation is that in the middle
dimension the kernel of the codifferential is invariant at conformal changes of the
metric, so that there are the same harmonic forms for all metrics in a conformal
class: Hn(M, g1)=Hn(M, g2). As bn(M)≥1 there exists a nontrivial g1-harmonic
(and thus also g2-harmonic) n-form α on M . The length of α must then be constant
with respect to both metrics, which are assumed to be formal and thus we get

g2(α, α)= e2n f g1(α, α),

which shows that f must be constant. �

Using the product construction to ensure that the middle Betti number is nonzero,
one can build such examples of formal metrics which are unique in their conformal
class.
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Other examples are provided by manifolds with “big” first Betti number, as
follows from the following property of “propagation” of Betti numbers on geomet-
rically formal manifolds proven in [Kotschick 2001, Theorem 7]: if b1(M)= p≥1,
then bq(M)≥

(p
q

)
, for all 1≤q≤ p. In particular, if b1(M2n)≥n, then bn(M2n)≥1.

Another property of the Betti numbers of geometrically formal manifolds is this:

Proposition 2.5. Let Mn be a compact geometrically formal manifold such that
b1(M)= p ≥ 1. If there exist two vanishing Betti numbers bk(M)= bk+l(M)= 0,
for some k and l with 0< k+ l < n and 0< l ≤ p+ 1, then all intermediary Betti
numbers must vanish: bi (M) = 0, for k ≤ i ≤ k + l. In particular, if there exists
k ≥ (n− p− 1)/2 such that bk(M)= 0, then bi (M)= 0 for all k ≤ i ≤ n− k.

Proof. Let {θ1, . . . , θp} be an orthogonal basis of g-harmonic 1-forms, where g is
a formal metric on M . We first notice that here is no ambiguity in considering the
orthogonality with respect to the global scalar product or to the pointwise inner
product, because, when restricting ourselves to the space of harmonic forms of
a formal metric, these notions coincide. This is mainly due to [Kotschick 2001,
Lemma 4], which states that the inner product of any two harmonic forms is a
constant function. Thus, if two harmonic forms α and β are orthogonal with respect
to the global product, we get

0= (α, β)=
∫

M〈α, β〉 dvolg = 〈α, β〉 vol(M),

showing that their pointwise inner product is the zero-function.
It is enough to show that bk+1(M) = 0 and then use induction on i . Let α be

a harmonic (k + 1)-form. By formality, θ1 ∧ θ2 ∧ · · · ∧ θl−1 ∧ α is a harmonic
(k+ l)-form and thus must vanish, since bk+l(M)= 0. On the other hand,

θ
]
jyα = (−1)k(n−k−1)

∗ (θ j ∧∗α)

is a harmonic k-form, again by formality. Since bk(M) = 0, it follows that θ ]jyα
vanishes for 1≤ j ≤ p. Then, since {θ1, . . . , θp} are also orthogonal, we obtain

0= θ ]1y · · ·yθ
]

l−1y(θ1 ∧ · · · ∧ θl−1 ∧α)=±|θ1|
2
· · · |θl−1|

2α,

which implies that α= 0, because each θ j has nonzero constant length. This shows
that bk+1(M)= 0. �

3. Geometric formality of Vaisman metrics

A Vaisman manifold is a particular type of locally conformal Kähler (LCK) mani-
fold. It is defined as a Hermitian manifold (M, J, g), of real dimension n=2m≥4,
whose fundamental 2-form ω satisfies the conditions

dω = θ ∧ω, ∇θ = 0.
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Here θ is a (closed) 1-form, called the Lee form, and ∇ is the Levi-Civita connec-
tion of the LCK metric g (we always consider θ 6= 0, to not include the Kähler
manifolds among the Vaisman ones).

Locally, θ = d f and the local metric e− f g is Kähler, hence the name LCK.
When lifted to the universal cover, these local metrics glue to a global one, which
is Kähler and acted on by homotheties by the deck group of the covering.

In the Vaisman case, the universal cover is a Riemannian cone. In fact, compact
Vaisman manifolds are closely related to Sasakian ones, as the following structure
theorem shows:

Theorem 3.1 [Ornea and Verbitsky 2003]. Compact Vaisman manifolds are map-
ping tori over S1. More precisely, the universal cover M̃ is a metric cone N×R>0,
with N compact Sasakian manifold and the deck group is isomorphic with Z, gen-
erated by

(x, t) 7→ (λ(x), t + q)

for some λ ∈ Aut(N ), q ∈ R>0.

This puts compact Vaisman manifolds into the framework of warped products
and motivates their consideration here.

Vaisman manifolds are abundant. Any Hopf manifold (quotient of CN
\ {0} by

the cyclic group generated by a semisimple operator with subunitary eigenvalues)
is such, as are its compact complex submanifolds [Verbitsky 2004, Proposition
6.5]. A complete list of compact Vaisman surfaces is given in [Belgun 2000].

On the other hand, examples of LCK manifolds (satisfying only the condition
dω = θ ∧ ω for a closed θ ) which cannot admit any Vaisman metric are also
known: for example, one type of Inoue surface and the nondiagonal Hopf surface;
see [Belgun 2000]. The nondiagonal Hopf surface is particularly relevant for our
discussion because it is topologically formal, as are all manifolds having the same
cohomology ring as a product of odd spheres.

Being parallel and Killing [Dragomir and Ornea 1998], the Lee field θ ] is real
holomorphic and, together with Jθ ], generates a complex one-dimensional totally
geodesic Riemannian foliation F. Note that F is transversally Kähler, meaning
that the transversal part of the Kähler form is closed (for a proof of this result, see
[Vaisman 1982, Theorem 3.1]).

In the sequel, the terms basic ( foliate) and horizontal refer to F. We recall that a
form is called horizontal with respect to a foliation F if its interior product with any
vector field tangent to the foliation vanishes and is called basic if in addition its Lie
derivative along a vector field tangent to the foliation also vanishes. Moreover, we
shall use the basic versions of the standard operators acting on �∗B(M), the space
of basic forms: 1B is the basic Laplace operator, L B is the exterior multiplication
with the transversal Kähler form and 3B its adjoint with respect to the transversal
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metric. For details on these operators and their properties we refer the reader to
[Tondeur 1988, Chapter 12].

Here is the main result of this section. It puts severe restrictions on formal
Vaisman metrics.

Theorem 3.2. Let (M2m, g, J ) be a compact Vaisman manifold. The metric g is
geometrically formal if and only if bp(M)= 0 for

2≤ p ≤ 2m− 2, b1(M)= b2m−1(M)= 1,

that is, M is a cohomological Hopf manifold.

Proof. Let γ ∈�p(M) be a harmonic form on M for some p, 1 ≤ p ≤ m− 1. By
[Vaisman 1982, Theorem 4.1], γ has the form

(3-1) γ = α+ θ ∧β,

with α and β basic, transversally harmonic and transversally primitive.
Since α is basic, Jα is also a basic p-form that is transversally harmonic and

transversally primitive:

1B(Jα)= 0, 3B(Jα)= 0,

because 1B and 3B both commute with the transversal complex structure J (as
the foliation is transversally Kähler). Again from the theorem just cited, by taking
β = 0, it follows that Jα is a harmonic form on M : 1(Jα)= 0.

The assumption that g is geometrically formal implies that α∧ Jα is harmonic
on M , so that in particular it is coclosed: δ(α ∧ Jα) = 0. By [Vaisman 1982]
(where the term transversally effective is used instead of transversally primitive),
this implies that α∧ Jα is transversally primitive: 3B(α∧ Jα)= 0.

Otherwise, by [Grosjean and Nagy 2009, Proposition 2.2], for primitive forms
η, µ ∈3pV , where (V, g, J ) is any Hermitian vector space, the algebraic relation

(3-2) (3)p(η∧µ)= (−1)(p(p−1))/2 p〈η, Jµ〉,

holds, where J is the extension of the complex structure to 3∗V defined by

(Jη)(v1, . . . , vp) := η(Jv1, . . . , Jvp), for all η ∈3pV, v1, . . . , vp ∈ V .

We apply the formula above to the transversal Kähler geometry and conclude that
α vanishes everywhere:

0= (3B)
p(α∧ Jα)= (−1)(p(p+1))/2 p〈α, α〉.

The same argument as above applied to β ∈�p−1
B (M) shows that β is identically

zero if p ≥ 2. Thus, γ = 0 for 2≤ p ≤ m− 1, which proves that

b2(M)= · · · = bm−1(M)= 0.
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If p= 1, then β is a basic function, which is transversally harmonic, so that β is
a constant. Thus γ is a multiple of θ , showing that the space of harmonic 1-forms
on M is 1-dimensional: b1(M)= 1.

It remains to show that the Betti number in the middle dimension, bm(M), also
vanishes. This follows from Proposition 2.5 applied to p= 1, k =m−1 and l = 2.

The converse is clear, since the space of harmonic forms with respect to the
Vaisman metric g is spanned by {1, θ, ∗θ, dvolg} and thus the only product of
harmonic forms which is not trivial is θ ∧∗θ = g(θ, θ) dvolg, which is harmonic
because θ has constant length, being a parallel 1-form. �

Remark 3.3. (i) There exist Vaisman manifolds that do not admit any formal Vais-
man metric. Indeed, let f : N ↪→ CPn be an embedded curve of genus g > 1 and
let M be the total space of the induced Hopf bundle f ∗(S1

× S2n+1). Then M is
Vaisman and b1(M)> 1 [Vaisman 1982], hence, according to 3.2, it does not admit
any formal Vaisman metric. Other examples can be found in [Belgun 2000].

(ii) On the other hand, we do not have an example of a topologically formal
complex compact manifold, which admits Vaisman metrics, but does not admit
geometrically formal Vaisman metrics. This seems to be a difficult open problem.

(iii) In complex dimension 2 the Vaisman condition in Theorem 3.2 is not nec-
essary. Due to the results of Kotschick [2001], the existence of any geometrically
formal metric on a non-Kähler surface implies that b1 = 1 and b2 = 0.

(iv) Theorem 3.2 may be considered as an analogue of the following result on
the geometric formality of Sasakian manifolds.

Theorem 3.4 [Grosjean and Nagy 2009, Theorem 2.1]. Let (M2n+1, g) be a com-
pact Sasakian manifold. If the metric g is geometrically formal, then bp(M) = 0
for 1≤ p ≤ 2n, that is, M is a real cohomology sphere.

Appendix: Auxiliary results

Lemma A.1 (characterization of geometric formality). Let α and β be two har-
monic forms on a compact Riemannian manifold (Mn, g). Then α∧β is harmonic
if and only if

(A-1)
n∑

i=1
(eiyα)∧∇eiβ =−(−1)|α||β|

n∑
i=1
(eiyβ)∧∇eiα,

where {ei }i=1,n is a local orthonormal basis of vector fields. Thus, the metric g is
formal if and only if (A-1) holds for any two g-harmonic forms.

Proof. Since M is compact, α ∧ β is harmonic if and only if it is closed and
coclosed. As α ∧ β is closed, we have to show that (A-1) is equivalent to α ∧ β
being coclosed. This is implied by the following:
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δ(α∧β)

=−

n∑
i=1

eiy∇ei (α∧β)=−
n∑

i=1
eiy(∇eiα∧β +α∧∇eiβ)

= δα∧β − (−1)|α|
n∑

i=1
∇eiα∧ (eiyβ)−

n∑
i=1
(eiyα)∧∇eiβ + (−1)|α|α∧ δβ

=−(−1)|α||β|
n∑

i=1
(eiyβ)∧∇eiα−

n∑
i=1
(eiyα)∧∇eiβ. �

Riemannian products. Let (Mn+m, g) = (Mn
1 , g1) × (Mm

2 , g2). We denote by
πi : M → Mi the natural projections, which are totally geodesic Riemannian
submersions.

One may describe the bundle of p-forms on M as follows:

(A-2) 3p M =
p⊕

k=0
π∗1 (3

k M1)⊗ π
∗

2 (3
p−k M2).

This identification also works for the space of harmonic forms, namely the har-
monic forms on (M, g) can be described in terms of the harmonic forms on the
factors (M1, g1) and (M2, g2). To this end let Hk(Mi , gi ) be the space of harmonic
k-forms on Mi and let bk(Mi ) be the Betti numbers of Mi , i = 1, 2.

Lemma A.2. Let {αk
1, . . . , α

k
bk(M1)

} be a basis of Hk(M1, g1) and {βk
1 , . . . , β

k
bk(M2)

}

a basis of Hk(M2, g2)). Then the forms

(A-3)
{
π∗1 (α

k
s )∧π

∗

2 (β
p−k
l ) | 1≤ s ≤ bk(M1), 1≤ l ≤ bp−k(M2), 0≤ k ≤ p

}
form a basis of the space of Hp(M, g), for each 0≤ p ≤ m+ n.

For a proof, see [Griffiths and Harris 1978, page 105].

Warped products. Let (Bn, gB) and (Fm, gF ) be two Riemannian manifolds and
ϕ > 0 be a smooth function on B. Then M = B×ϕ F denotes the warped product
with the metric g = π∗(gB)+ (ϕ ◦π)

2σ ∗(gF ), where π : M→ B and σ : M→ F
are the natural projections.

Let {ei }i=1,n be a local orthonormal basis on B and let { f j } j=1,m be a local
orthonormal basis on F , which we lift to M and thus obtain a local orthonormal
basis of M : {

ẽi ,
1

ϕ ◦π
f̃ j

}
i=1,n; j=1,m

.

Consider the decomposition δ = δ1+ δ2 of the codifferential on M , where

δ1 := −
n∑

i=1
ẽiy∇ẽi , δ2 := −

1
(ϕ ◦π)2

m∑
j=1

f̃ jy∇ f̃ j
.

We first determine the commutation relations between the pullback of forms on
B and F with δ1 and δ2.
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Lemma A.3. For α ∈�∗(B) and β ∈�∗(F), we have

δ1(σ
∗(β))= 0, δ2(σ

∗(β))=
1

(ϕ ◦π)2
σ ∗(δgF (β)),(A-4)

δ1(π
∗(α))= π∗(δgB (α)), δ2(π

∗(α))=−
m
ϕ ◦π

grad(ϕ ◦π)yπ∗(α).(A-5)

Proof. Let β ∈�p+1(F). For any tangent vector fields X1, . . . , X p to M we obtain

δ1(σ
∗(β))(X1, . . . , X p)

=−

n∑
i=1
(ẽiy∇ẽi (σ

∗β))(X1, . . . , X p)

=−

n∑
i=1

ẽi
(
β(σ∗ẽi , σ∗X1, . . . , σ∗X p)◦σ

)
+

n∑
i=1
β(σ∗(∇ẽi ẽi ), σ∗X1, . . . , σ∗X p)

+

n∑
i=1

(
β
(
σ∗ẽi , σ∗(∇ẽi X1), . . . , σ∗X p

)
+· · ·+β

(
σ∗ẽi , σ∗X1, . . . , σ∗(∇ẽi X p)

))
= 0,

since σ∗ẽi = 0, because ẽi is the lift of a vector field on B and also

σ∗(∇ẽi ẽi )= σ∗(∇̃
gB
ei ei )= 0.

This proves that δ1(σ
∗(β))= 0.

The commutation rule in (A-4) is shown as follows:

(ϕ ◦π)2δ2(σ
∗(β))(X1, . . . , X p)

=−

m∑
j=1
( f̃ jy∇ f̃ j

(σ ∗β))(X1, . . . , X p)

=−

m∑
j=1

f̃ j (β(σ∗ f̃ j ,σ∗X1,...,σ∗X p)◦σ)+
m∑

j=1
β(σ∗(∇ f̃ j

f̃ j ),σ∗X1,...,σ∗X p)◦σ

+

m∑
j=1

(
β(σ∗ f̃ j , σ∗(∇ f̃ j

X1), . . . , σ∗X p)

+· · ·+β(σ∗ f̃ j , σ∗X1, . . . , σ∗(∇ f̃ j
X p))

)
◦σ

=−

m∑
j=1

f j (β( f j , σ∗X1, . . . , σ∗X p))◦σ

+

m∑
j=1
β(σ∗(∇̃

gF
f j

f j−
g( f̃ j , f̃ j )

ϕ ◦π
grad(ϕ ◦π)), σ∗X1, . . . , σ∗X p)◦σ

+

m∑
j=1

(
β( f j ,σ∗(∇ f̃ j

X1), . . . ,σ∗X p)+·· ·+β( f j ,σ∗X1, . . . ,σ∗(∇ f̃ j
X p))

)
◦σ,
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where we may again assume, without loss of generality, that X i are lifts of vector
fields Zi on F : X i = Z̃i for i = 1, . . . , p. For a tangent vector field Y to B, each
of the above terms vanishes, since σ∗(Y )= 0. We then get

(ϕ ◦π)2δ2(σ
∗(β))(X1, . . . , X p)

=−

m∑
j=1

f j (β( f j , Z1, . . . , Z p)) ◦ σ +
m∑

j=1
β(∇

gF
f j

f j , Z1, . . . , Z p) ◦ σ

+

m∑
j=1
[β( f j ,∇

gF
f j

Z1, . . . , σ∗X p)+ · · ·+β( f j , Z1, . . . ,∇
gF
f j

Z p)] ◦ σ

= σ ∗(δgF (β))(X1, . . . , X p).

The relations (A-5) can be obtained by similar computations, which we omit
here. �
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