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We obtain explicit formulas for the test vector in the Bessel model, and
derive the criteria for existence and uniqueness of Bessel models for the
unramified quadratic twists of the Steinberg representation π of GSp4(F),
where F is a nonarchimedean local field of characteristic zero. We also give
precise criteria for the Iwahori spherical vector in π to be a test vector. We
apply the formulas for the test vector to obtain an integral representation of
the local L-function of π , twisted by any irreducible admissible representa-
tion of GL2(F). Using results of Furusawa and of Pitale and Schmidt, we
derive from this an integral representation for the global L-function of the
irreducible cuspidal automorphic representation of GSp4(A) obtained from
a Siegel cuspidal Hecke newform, with respect to a Borel congruence sub-
group of square-free level, twisted by any irreducible cuspidal automorphic
representation of GL2(A). A special-value result for this L-function, in the
spirit of Deligne’s conjecture, is obtained.

1. Introduction

It is known that the representation of the symplectic group obtained from a Siegel
modular form is nongeneric, which means that it does not have a Whittaker model.
Consequently, one cannot use in this case the techniques or results for generic
representations. In such a situation, one introduces the notion of a generalized
Whittaker model, now called a Bessel model. These Bessel models have been
used to obtain integral representations of L-functions. It is known that, if A is
the ring of adeles of a number field, an automorphic representation of GSp4(A)

obtained from a Siegel modular form always has some global Bessel model. For
the purposes of local calculations, it is often very important to know the precise
criteria for the existence of local Bessel models and have explicit formulas. In
this paper, we wish to investigate Bessel models for unramified quadratic twists of

MSC2000: primary 11F46; secondary 11F66, 11F67, 11F70.
Keywords: Steinberg representation, Siegel modular forms, L-functions, special values of

L-functions.

365

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2011.250-2


366 AMEYA PITALE

the Steinberg representation π of GSp4(F), where F is any nonarchimedean local
field of characteristic zero.

We first briefly explain what a Bessel model is (detailed definitions will be given
in Section 3). Let F be a nonarchimedean local field of characteristic zero. Let
U (F) be the unipotent radical of the Siegel parabolic subgroup of GSp4(F), and
θ be any nondegenerate character of U (F). The group GL2(F), embedded in the
Levi subgroup of the Siegel parabolic subgroup, acts on U (F) by conjugation and,
hence, on characters of U (F). Let T (F)=StabGL2(F)(θ); then, T (F) is isomorphic
to the units of a quadratic algebra L over F . The group R(F) = T (F)U (F) is
called the Bessel subgroup of GSp4(F) (depending on θ ). Let 3 be any character
of T (F), and denote by 3⊗ θ the character obtained on R(F). Let (π, V ) be any
irreducible admissible representation of GSp4(F). A linear functional β : V → C,
satisfying β(π(r)v) = (3 ⊗ θ)(r)β(v) for any r ∈ R(F) and v ∈ V , is called
a (3, θ)-Bessel functional for π . We say that π has a (3, θ)-Bessel model if
π is isomorphic to a subspace of smooth functions B : GSp4(F)→ C such that
B(rh) = (3⊗ θ)(r)B(h) for all r ∈ R(F) and h ∈ GSp4(F). The existence of
a nontrivial Bessel functional is equivalent to the existence of a Bessel model for
a representation. If π has a nontrivial (3, θ)-Bessel functional β, then a vector
v ∈ V such that β(v) 6= 0 is called a test vector for β.

Prasad and Takloo-Bighash [2007] have obtained, for any irreducible admissible
representation π of GSp4(F), the criteria to be satisfied by 3 for the existence of
a (3, θ)-Bessel functional for π . Their method involves the use of theta lifts and
distributions. The uniqueness of Bessel functionals has been obtained in [Novo
–dvorsky and Piatetski-Shapiro 1973] for many cases; in particular, for any π with
a trivial central character. In [Sugano 1985], a test vector is obtained when both the
representation π and the character 3 are unramified. In [Saha 2009], a test vector
is obtained when F =Qp, where p is odd and inert in the quadratic field extension
L corresponding to T (Qp), the representation π is an unramified quadratic twist of
the Steinberg representation, and 3 has conductor 1+ poL . The explicit formulas
of the test vector in the above two cases have been used in [Furusawa 1993; Saha
2009] to obtain an integral representation of the GSp4 ×GL2 L-function, where
the GL2 representation is either unramified or Steinberg.

The main goal of this paper is to obtain explicit formulas for a test vector, when-
ever a Bessel model for the unramified quadratic twist of the Steinberg representa-
tion of GSp4(F) exists. In addition to obtaining these formulas, we in fact obtain
an independent proof of the criteria for the existence and uniqueness of the Bessel
models. We also give precise conditions on the character 3, so that the Iwahori
spherical vector in π is a test vector. This is achieved in:

Theorem 3.18. Let π = �StGSp4
be the Steinberg representation of GSp(F),

twisted by an unramified quadratic character �. Let 3 be a character of L×
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such that 3|F× ≡ 1. If L is a field, then π has a (3, θ)-Bessel model if and only
if 3 6= � ◦ NL/F . If L is not a field, then π always has a (3, θ)-Bessel model.
In case π has a (3, θ)-Bessel model, it is unique. In addition, if π has a (3, θ)-
Bessel model, then the Iwahori spherical vector of π is a test vector for the Bessel
functional if and only if

i) 3 is trivial on 1+P (see (2-1) for the definition of P), and

ii) in case L = F ⊕ F and 3 is unramified, we have 3((1,$)) 6=�($), where
$ is the uniformizer in the ring of integers of F.

The criterion for the existence of the Bessel model obtained in this theorem is
the same as in [Prasad and Takloo-Bighash 2007]. However, the methods used
to prove it are very different from those in that paper and in [Novo–dvorsky and
Piatetski-Shapiro 1973].

When the Iwahori spherical vector is a test vector, we use the explicit formula
for the test vector to obtain in Theorem 4.3 an integral representation of the local
L-function L(s, π × τ) of the Steinberg representation π of GSp4(F), twisted by
any irreducible admissible representation τ of GL2(F). This integral involves a
function B in the Bessel model of π , and a Whittaker function W # in a certain
induced representation of GU(2, 2) related to τ . We wish to remark that, in this
paper as well as in other works [Furusawa 1993; Pitale and Schmidt 2009b; 2009c;
Saha 2009], the Bessel function B is always chosen to be a “distinguished” vector
(spherical if π is unramified, and Iwahori spherical if π is Steinberg) that has
the additional property of being a test vector. With this choice of B, we have
a systematic way of choosing W # (see [Pitale and Schmidt 2009c]) so that the
integral is nonzero and gives an integral representation of the L-function. The
work so far suggests that, to obtain an integral representation for the L-function
with a general irreducible admissible representation π of GSp4(F), we will have
to choose B to be both a “distinguished” vector in the Bessel model of π and
a test vector for the Bessel functional. This further highlights the importance of
obtaining more information and explicit formulas for test vectors for Bessel models
of GSp4(F). This is a topic of ongoing work.

Using the local computation mentioned above, together with the archimedean
and p-adic calculations from [Furusawa 1993; Pitale and Schmidt 2009c], we ob-
tain in Theorem 5.2 an integral representation of the global L-function L(s, π×τ)
of an irreducible cuspidal automorphic representation π of GSp4(A), obtained
from a Siegel cuspidal newform with respect to the Borel congruence subgroup of
square-free level, twisted by any irreducible cuspidal automorphic representation
τ of GL2(A). When τ corresponds to an elliptic cusp form in Sl(N , χ), we obtain
in Theorem 5.3 algebraicity results for special values of the twisted L-function, in
the spirit of Deligne’s conjecture [1979].
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2. Steinberg representation of GSp4

Nonarchimedean setup. Let F be a nonarchimedean local field of characteristic
zero. Let o, p,$ , q be the ring of integers, prime ideal, uniformizer and cardinality
of the residue class field o/p, respectively. We fix three elements a, b, c ∈ F such
that d := b2

− 4ac 6= 0. Let

L =
{

F(
√

d) if d /∈ F×2,

F ⊕ F if d ∈ F×2.

In the case when L = F ⊕ F , we consider F diagonally embedded. If L is a
field, we denote by x̄ the Galois conjugate of x ∈ L over F . If L = F ⊕ F , let
(x, y) = (y, x). In every case, we let N (x) = x x̄ and tr(x) = x + x̄ . We shall
assume that a, b ∈ o and c ∈ o×. In addition, we assume that d is the generator of
the discriminant of L/F if d 6∈ F×2 and d ∈ o× if d ∈ F×2.

The Legendre symbol
( L

p

)
is set to

( L
p

)
=


−1 if d 6∈ F×2 and d 6∈ p (the inert case),

0 if d 6∈ F×2 and d ∈ p (the ramified case),
1 if d ∈ F×2 (the split case).

If L is a field, then let oL be its ring of integers. If L = F⊕ F , then let oL = o⊕o.
Let $L be the uniformizer of oL if L is a field, and set $L = ($, 1) if L is not a
field. Note that, if

( L
p

)
6= −1, then N ($L) ∈$o×. Let α ∈ oL be defined by

α :=


b+
√

d
2c

if L is a field,

(b+
√

d
2c

,
b−
√

d
2c

)
if L = F ⊕ F .

We fix in oL the ideal

(2-1) P := poL =


pL if

( L
p

)
=−1,

p2
L if

( L
p

)
= 0,

p⊕ p if
( L

p

)
= 1.

Here, when L is a field extension, pL is the maximal ideal of oL . Note that P is
prime only if

( L
p

)
=−1. We have

Pn
∩ o= pn for all n ≥ 0.

Lemma 2.1 [Pitale and Schmidt 2009b, Lemma 3.1.1]. With the notation above,
the elements 1 and α constitute an integral basis of L/F. There does not exists any
x ∈ o such that α+ x ∈P.
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Steinberg representation. We define the symplectic group H = GSp4 by

H(F) :=
{
g ∈ GL4(F) : tg Jg = µ2(g)J, µ2(g) ∈ F×

}
, where J =

[
12

−12

]
.

The maximal compact subgroup is denoted by

K H
:= GSp4(o).

We define the Iwahori subgroup by

I :=

g ∈ K H
: g ≡

 ∗ 0 ∗ ∗
∗ ∗ ∗ ∗

0 0 ∗ ∗
0 0 0 ∗

 (mod p)

 .
Let � be an unramified quadratic character of F×. Let π be the Steinberg

representation of H(F), twisted by the character�. This representation is denoted
by �StGSp4

. Since we have assumed that � is quadratic, we see that π has trivial
central character. The Steinberg representation has the property that it is the only
representation of H(F) which has a unique (up to a constant) Iwahori fixed vector.
The Iwahori Hecke algebra acts on the space of I-invariant vectors. We will next
describe the Iwahori Hecke algebra.

Iwahori Hecke algebra. The Iwahori Hecke algebra HI of H(F) is the convolu-
tion algebra of left and right I-invariant functions on H(F). We refer the reader
to [Schmidt 2005, §2.1] for details on the Iwahori Hecke algebra. Here, we recall
the two projection operators (projecting onto the Siegel and Klingen parabolic sub-
groups) and the Atkin–Lehner involution. The unique (up to a constant) Iwahori
fixed vector v0 in π is annihilated by the projection operators and is an eigenvector
of the Atkin–Lehner involution.

(2-2)
∑
w∈o/p

π

 1 w
1

1
−w 1

 v0+π(s1)v0 = 0, π(η0)v0 = ωv0,

∑
y∈o/p

π

 1
1

y 1
1

 v0+π(s2)v0 = 0.

Here,

s1 =

 1
1

1
1

 , s2 =

 1
1

−1
1

 , η0 =

 1
1

$
$

 , ω=−�($).

3. Existence and uniqueness of Bessel models
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for the Steinberg representation

We fix an additive character ψ of F , with conductor o. Let a, b ∈ o and c ∈ o× be
as in Section 2, and set

S =

[
a b

2
b
2 c

]
.

Then, ψ defines a character θ on

U (F)=
{[

12 X
12

]
:

tX = X
}

by θ

([
1 X

1

])
= ψ(tr(SX)).

Let

(3-1) T (F) :=
{
g ∈ GL2(F) : tgSg = det(g)S

}
.

Set

ξ =

[ b
2 c
−a b

2

]
and F(ξ)= {x + yξ : x, y ∈ F}.

It can be checked that T (F) equals F(ξ)× and is isomorphic to L×, with the
isomorphism given by

(3-2)
[

x + b
2 y cy

−ay x − b
2 y

]
7→

{
x + y

√
d

2 if L is a field;(
x + y

√
d

2 , x − y
√

d
2

)
if L = F ⊕ F.

We consider T (F) as a subgroup of H(F) via

T (F) 3 g 7−→
[

g
det(g) tg−1

]
∈ H(F).

Let R(F)= T (F)U (F). We call R(F) the Bessel subgroup of H(F) (with respect
to the given data a, b, c). Let 3 be any character on L× that is trivial on F×. We
will consider3 as a character on T (F). We have θ(t−1u t)= θ(u) for all u ∈U (F)
and t ∈ T (F). Hence, the map tu 7→ 3(t)θ(u) defines a character of R(F). We
denote this character by 3⊗ θ .

As mentioned in the introduction, a linear functional β : V → C, satisfying
β(π(r)v)= (3⊗θ)(r)β(v) for any r ∈ R(F) and v ∈ V , is called a (3, θ)-Bessel
functional for π . We say that π has a (3, θ)-Bessel model if π is isomorphic to a
subspace of smooth functions B : H(F)→ C satisfying

(3-3) B(tuh)=3(t)θ(u)B(h) for all t ∈ T (F), u ∈U (F), h ∈ H(F).

The existence of a nonzero (3, θ)-Bessel functional for π is equivalent to the exis-
tence of a nontrivial (3, θ)-Bessel model for π . If π has a nonzero (3, θ)-Bessel
functional β, then the space {Bv : v ∈ π, Bv(h) := β(π(h)v)} gives a nontrivial
(3, θ)-Bessel model for π . Conversely, if π has a nontrivial (3, θ)-Bessel model
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{Bv : v ∈ π} then the linear functional β(v) := Bv(1) is a nonzero (3, θ)-Bessel
functional for π . We say that v ∈ π is a test vector for a Bessel functional β
if β(v) 6= 0. Note that a vector v ∈ π is a test vector for β if and only if the
corresponding function Bv in the Bessel model satisfies Bv(1) 6= 0.

Define the space B(3, θ)I of smooth functions B on H(F) which are right I-
invariant, satisfy (3-3) and the following conditions, for any h ∈ H(F), obtained
from (2-2),

∑
w∈o/p

B

h

 1 w
1

1
–w 1

+ B(hs1)= 0,(3-4)

B(hη0)= ωB(h),(3-5)

∑
y∈o/p

B

h

 1
1

y 1
1

+ B(hs2)= 0.(3-6)

Our aim is to obtain the criteria for existence and uniqueness for (3, θ)-Bessel
models for π . We state the steps we take to obtain this.

i) Since a function B in B(3, θ)I is right I-invariant and satisfies (3-3) we
see that the values of B are completely determined by its values on dou-
ble coset representatives R(F)\H(F)/I. We obtain these representatives in
Proposition 3.3.

ii) In Proposition 3.8, we use the I-invariance of B and (3-3)–(3-6) to obtain nec-
essary conditions to be satisfied by the values of functions in B(3, θ)I on dou-
ble coset representatives for R(F)\H(F)/I. This gives us dim(B(3, θ)I)≤ 1
in Corollary 3.9.

iii) In Proposition 3.10, we show that the function B with the given values at
double coset representatives for R(F)\H(F)/I (obtained in Proposition 3.8)
is well-defined. We show that B satisfies (3-4), (3-5) and (3-6) for all values
of h ∈ H(F) and obtain the criteria for dim(B(3, θ)I)= 1 in Theorem 3.11.

iv) Suppose 3 is such that dim(B(3, θ)I) = 1. If 3 is unitary then we use 0 6=
B ∈ B(3, θ)I to generate a Hecke module VB . We define an inner product
on VB and show in Proposition 3.15 that VB is irreducible and provides a
(3, θ)-Bessel model for π . If 3 is not unitary (this can happen only if L is a
split extension of F), then we show that any irreducible, generic, admissible
representation of H(F) has a split (3, θ)-Bessel model. Since π is generic
in the split case, we obtain in Theorem 3.18 the precise criteria for existence
and uniqueness of a (3, θ)-Bessel model for π .
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3.1. Double coset decomposition. From [Furusawa 1993, (3.4.2)], we have the
disjoint double coset decomposition

H(F)=
⊔
l∈Z

⊔
m≥0

R(F)h(l,m)K H , h(l,m)=

$ 2m+l

$m+l

1
$m

 .
It follows from the Bruhat decomposition for Sp(4, o/p) that

K H
= I t

⊔
x∈o/p

 1
x 1

1 –x
1

s1I t
⊔

x∈o/p

 1 x
1

1
1

s2I

t

⊔
x,y∈o/p


1
x 1 y

1 –x
1

s1s2I t
⊔

x,y∈o/p


1 x y

1 y
1

1

s2s1I

t

⊔
x,y,z∈o/p


1 y
x 1 y xy+z

1 –x
1

s1s2s1I t
⊔

x,y,z∈o/p


1 x y

1 y z
1

1

s2s1s2I

t

⊔
w,x,y,z∈o/p


1 x y
w 1 wx+y wy+z

1 –w
1

s1s2s1s2I.

Let W ={1, s1, s2, s1s2, s2s1, s1s2s1, s2s1s2, s1s2s1s2} be the Weyl group of Sp4(F)
and let the representatives for {1, s1} \W be given by W (1)

= {1, s2, s2s1, s2s1s2}.
Observing that

h(l,m)

 1 o o
1 o o

1
1

 h(l,m)−1

is contained in R(F), we get a preliminary (nondisjoint) decomposition

(3-7) R(F)h(l,m)K H
=

⋃
s∈W (1)

w∈o/p

(
R(F)h(l,m)sI ∪ R(F)h(l,m)Wws1sI

)
,

with Ww :=

 1
w 1

1 –w
1

.
The next lemma gives the condition under which the two double cosets of the form
R(F)h(l,m)sI and R(F)h(l,m)Wws1sI are the same.

Lemma 3.1. For w ∈ o/p and m ≥ 0, set βm
w := a$ 2m

+ b$mw + cw2. Let
s ∈W (1). Then R(F)h(l,m)sI= R(F)h(l,m)Wws1sI if and only if βm

w ∈ o×.
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Proof. Suppose βm
w ∈ o×. Take y =$m, x =$mb/2+ cw and set

g =
[

x + b
2 y cy

−ay x − b
2 y

]
.

Then [
g

det(g)tg−1

]
h(l,m)= h(l,m)Wws1k,

where

k =


−βm

w

b$m
+cw c

−c b$m
+cw
βm
w

 ∈ I.

Note that for any s ∈W (1), we have s−1k s ∈ I. Using

rh(l,m)s = h(l,m)Wws1s(s−1ks),

we obtain R(F)h(l,m)sI = R(F)h(l,m)Wws1sI, as required. The computation
of the converse is straightforward. �

The next lemma describes for which w ∈ o/p we have βm
w ∈ o×.

Lemma 3.2. For w ∈ o/p and m ≥ 0, set βm
w := a$ 2m

+ b$mw+ cw2 as above.

i) If m > 0, then βm
w ∈ o× if and only if w ∈ (o/p)×.

ii) Let m = 0.

a) If
( L

p

)
=−1, then β0

w ∈ o× for every w ∈ o/p.

b) Let
( L

p

)
= 0. Let w0 be the unique element of o/p such that α+w0 ∈ pL ,

the prime ideal of oL . Then β0
w ∈ o× if and only if w 6= w0. In case #(o/p)

is odd, one can take w0 =−b/(2c).

c) Let
( L

p

)
= 1. Then β0

w ∈ o× if and only if w 6= −b+
√

d
2c

,
−b−
√

d
2c

.

Proof. Part (i) is clear. For the rest of the lemma, we need the equivalence

(3-8) β0
w ∈ o× ⇐⇒ α+w ∈ o×L .

This follows from the identity

(3-9) a+ bw+ cw2
=−c(α+w)(ᾱ+w)=−cN (α+w).

If
( L

p

)
=−1, then pL =P and Lemma 2.1 implies that α+w ∈ o×L for all w ∈ o/p.

The equivalence (3-8) gives (ii-a) of the lemma. Let us now assume that
( L

p

)
= 0.

In this case, the injective map ι : o ↪→ oL gives an isomorphism between the fields
o/p' oL/pL . Letw0=−ι

−1(α) be the unique element in o/p such that α+w0 ∈pL .
In case #(o/p) is odd, then one can take w0 = −b/(2c) ∈ o since

√
d ∈ pL . Then
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for any w ∈ o/p, w 6= w0, we have α + w ∈ o×L . Now (3-8) gives (ii-b) of the
lemma. Next assume that

( L
p

)
= 1. Since

√
d ∈ o× by assumption, we have α 6∈P.

If α +w 6∈ o×L for some w ∈ o, then we have one of (b ±
√

d)/(2c)+w lies in
p. Hence, we see that the only choices of w = (w,w) such that α +w 6∈ o×L are
w = (−b±

√
d)/(2c). Note that

√
d ∈ o× implies that (−b±

√
d)/(2c) are not

equal modulo p. This completes the proof of the lemma. �

In the case
( L

p

)
= 0, (3-9) implies that β0

w0
∈ p but β0

w0
6∈ p2 by Lemma 2.1. The

disjointness of all the relevant double cosets can be checked easily. We summarize
in the following proposition.

Proposition 3.3. Let W be the Weyl group of Sp4(F) and set

W (1)
= {1, s2, s2s1, s2s1s2}.

If
( L

p

)
= 0, let w0 be the unique element of o/p such that α+w0 ∈ pL . If #(o/p) is

odd, then take w0 =−b/(2c). We have the disjoint double coset decomposition

R(F)h(l,m)K H
=

⊔
s∈W

R(F)h(l,m)sI if m > 0;⊔
s∈W (1)

R(F)h(l, 0)sI if m = 0,
( L

p

)
=−1;⊔

s∈W (1)

(
R(F)h(l, 0)sIt R(F)h(l, 0)Ww0s1sI

)
if m = 0,

( L
p

)
= 0;⊔

s∈W (1)

(
R(F)h(l, 0)sIt R(F)h(l, 0)W

−b+
√

d
2c

s1s t R(F)h(l, 0)W
−b−
√

d
2c

s1sI
)

if m = 0,
( L

p

)
= 1.

3.2. Necessary conditions for values of B ∈ B(3, θ)I. We will now obtain the
necessary conditions on the values of B ∈ B(3, θ)I on the double coset represen-
tatives from Proposition 3.3 using the I-invariance of B and (3-3)–(3-6).

Conductor of 3: We define

(3-10) c(3)=min{m ≥ 0 :3|(1+Pm)∩o×L
≡ 1}.

Note that (1+Pm)∩ o×L = 1+Pm if m ≥ 1 and (1+Pm)∩ o×L = o×L if m = 0.
Also, c(3) is the conductor of 3 only if

( L
p

)
=−1. We set c(3)=m0. Since 3 is

trivial on F×, we see that 3|(o×+Pm0 )∩o×L
≡ 1. Observe that if L is a field, then we

have L×= 〈$L〉.o
×

L . If
( L

p

)
=−1 and m0= 0, then we have that 3($L)= 1, since

$L ∈ $o×L . In case
( L

p

)
= 0 and m0 = 0, we see that 3($L) = ±1. In general,

if L is a field, we see that 3 is a unitary character since m0 is finite. On the other
hand, if L is not a field, then L× = F×⊕ F× and 3((x, y))=31(x)32(y), where
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31,32 are two characters of F× satisfying 31.32 ≡ 1. In this case, m0 is the
conductor of both 31,32 and the character 3 need not be unitary.

In the next lemma, we will describe some coset representatives, which will be
used in the evaluation of certain sums involving the character 3.

Lemma 3.4. Let m ≥ 1. A set of coset representatives for

((o×+Pm−1)∩ o×L )/(o
×
+Pm)

is given by {w+α$m−1
:w ∈ (o/p)×}∪{1} if m ≥ 2 and {w+α :w ∈ o/p, w+α ∈

o×L } ∪ {1} if m = 1.

Proof. Let x+α$m−1 y ∈ (o×+Pm−1)∩o×L , with x, y ∈ o. If m ≥ 2, then x ∈ o×.
If y ∈ p, then x + α$m−1 y ∈ (o× + Pm), and hence corresponds to the coset
representative 1. Now, we assume that y ∈ o×. Then, using y ∈ o×+Pm , we see
that x + α$m−1 y is equivalent to x/y + α$m−1 modulo (o× +Pm). Note that
x/y+α$m−1

∈ o×L implies that, modulo p, the element x/y lies in

(3-11)


(o/p)× if m ≥ 2,

o/p if m = 1,
( L

p

)
=−1

o/p−{w0} if m = 1,
( L

p

)
= 0,

o/p−{(−b±
√

d)/(2c)} if m = 1,
( L

p

)
= 1.

This follows from the proof of Lemma 3.2. A calculation shows that if w,w′ are
equivalent, modulo p, to (not necessarily the same) elements in the sets defined in
(3-11), then

w ≡ w′ (mod p) if and only if (w+α$m−1)/(w′+α$m−1) ∈ o×+Pm .

This completes the proof of the lemma. �

Depending on the c(3) = m0, certain values of B have to be zero. This is
obtained in the next lemma.

Lemma 3.5. For any l ∈ Z, we have B(h(l,m)s) = 0, if any of the following
conditions are satisfied.

i) m ≤ m0− 2, m0 ≥ 2, s = 1;

ii) m = 0,
( L

p

)
= 1, m0 ≥ 1, s ∈ {Wws1 : w = (−b±

√
d)/(2c)};

iii) m = 0,
( L

p

)
= 0, 3=� ◦ NL/F , m0 = 0, s =Ww0s1s2;

iv) m = 0,
( L

p

)
=−1, m0 = 0, s = 1.

Proof. We illustrate the proof of (i) here. Let m ≤ m0− 2. Let

1+ x +αy ∈ 1+Pm+1, with x, y ∈ pm+1,



376 AMEYA PITALE

be such that 3(1+ x +αy) 6= 1. Let

k =


c(1+x)+by cy$−m

−ay$m c(1+x)
c(1+x) ay$m

−cy$−m c(1+x)+by

 ∈ I.

Then

B(h(l,m))= B(h(l,m)k)

= B




c(1+x)+by cy
−ay c(1+x)

c(1+x) ay
−cy c(1+x)+by

 h(l,m)


=3(1+x+αy)B(h(l,m)),

which implies that B(h(l,m)) = 0, as required. The other cases are computed in
a similar manner. �

From Lemmas 3.4 and 3.5(i), we obtain information on certain character sums
involving 3:

Lemma 3.6. For any l, we have∑
w∈(o/p)×

3(w+α$m)B(h(l,m))+B(h(l,m))=
{

0 if 0< m < m0,

q B(h(l,m)) if m ≥ m0, m> 0;∑
w∈o/p
w+α∈o×L

3(w+α)B(h(l, 0))+ B(h(l, 0))=
{

0 if m0 ≥ 1,(
q −

( L
p

))
B(h(l, 0)) if m0 = 0.

Conductor of ψ . Since the conductor of ψ is o, we obtain the following further
vanishing conditions on the values of B.

Lemma 3.7. For m≥0, we have B(h(l,m)s)=0 if one of the following conditions
are satisfied:

i) l < 0, s ∈ {1, s1, s2, s2s1};

ii) l <−1, s ∈ {s1s2, s1s2s1, s2s1s2, s1s2s1s2}.

For w ∈ o, we have B(h(l, 0)Wws) = 0 if one of the following conditions are
satisfied:

i) l < 0, s = s1;

ii) l <−1, s ∈ {s1s2, s1s2s1, s1s2s1s2}.

If
( L

p

)
= 1 and w = −b±

√
d

2c
, then B(h(−1, 0)Wws1s2)= 0.
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Proof. We illustrate the proof for the case m ≥ 0, l < 0, s ∈ {1, s1, s2, s2s1}. For
any ε ∈ o×, set

kεs =

 1
1 ε

1
1

 if s = 1, s2 and kεs =

 1 ε
1

1
1

 if s = s1, s2s1.

Then, for s ∈ {1, s1, s2, s2s1} and ε ∈ o×, we obtain

B(h(l,m)s)= B(h(l,m)skεs )

= B




1
1 ε$ l

1
1

 h(l,m)s

= ψ(cε$ l)B(h(l,m)s).

Since the conductor of ψ is o, we conclude that B(h(l,m)s)= 0 if l < 0. The other
cases are computed in a similar manner. �

Values of B using (3-4). Substituting h = h(l,m)s1 in (3-4) and using Lemmas
3.1, 3.2 and 3.6, we get, for any l,

B(h(l,m)s1)=

{
0 if m < m0 and m > 0,
−q B(h(l,m)) if m ≥ m0 and m > 0;

(3-12)

B(h(l, 0)Ww0s1)=

{
0 if m0 ≥ 1,
−q B(h(l, 0)) if m0 = 0;

(3-13)

B
(
h(l, 0)W

−b+
√

d
2c

s1
)
+ B

(
h(l, 0)W

−b−
√

d
2c

s1
)
=−(q − 1)B(h(l, 0))

if m0 = 0.
(3-14)

Substituting h = h(l,m)s2s1 in (3-4) and using that the conductor of ψ is o, we
get for any l,m

(3-15) B(h(l,m)s2s1)=−
1
q

B(h(l,m)s2).

Substituting h = h(l,m)s1s2s1 in (3-4) and using that the conductor of ψ is o,
we get for any m > 0 and l

(3-16) B(h(l,m)s1s2s1)=−
1
q

B(h(l,m)s1s2).

Let
( L

p

)
= 0. Substituting h = h(−1, 0)Ww0s1s2s1 in (3-4) and using that the

conductor of ψ is o and b +2cw0 ∈ p, we get

B(h(−1, 0)Ww0s1s2s1)=−
1
q

B(h(−1, 0)Ww0s1s2).
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Let
( L

p

)
= 1 and w = (−b±

√
d)/(2c). Substituting h = h(l, 0)Wws1s2s1 in (3-4)

and using that the conductor of ψ is o and
√

d ∈ o×, we get for l 6= −1

(3-17) B(h(l,m)Wws1s2s1)=−
1
q

B(h(l,m)Wws1s2).

Values of B using (3-6). Substituting h = h(l,m)s2 in (3-6) and using that the
conductor of ψ is o, we get for any l,m

(3-18) B(h(l,m)s2)=−
1
q

B(h(l,m)).

Substituting h = h(l,m)s2s1s2 in (3-6) and using that the conductor of ψ is o,
we get for l 6= −1

(3-19) B(h(l,m)s2s1s2)=−
1
q

B(h(l,m)s2s1).

Set

w =


0 if m > 0,
w0 if m = 0,

( L
p

)
= 0,

−b±
√

d
2c

if m = 0,
( L

p

)
= 1.

Substituting h= h(l,m)Wws1s2 in (3-6) and using that the conductor of ψ is o, we
get for l 6= −1

(3-20) B(h(l,m)Wws1s2)=−
1
q

B(h(l,m)Wws1).

Substituting h = h(l,m)Wws1s2s1s2 in (3-6) and using that the conductor of ψ is
o, we get for all l,m

(3-21) B(h(l,m)Wws1s2s1s2)=−
1
q

B(h(l,m)Wws1s2s1).

Values of B using (3-5). For any l,m, w we have the matrix identities

h(l,m)s2s1η0 = h(l−1,m+1)s1s2s1

 1
−1
−1

1

,(3-22)

h(l,m)Wws1s2s1s2η0 = h(l+1,m)Wws1

 1
1
−1
−1

,(3-23)

h(l,m)s2s1s2η0 = h(l+1,m)

 1
1
−1
−1

.(3-24)
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Hence, by (3-5), we have

B(h(l,m)s2s1)= ωB(h(l−1,m+1)s1s2s1),(3-25)

B(h(l,m)Wws1s2s1s2)= ωB(h(l+1,m)Wws1),(3-26)

B(h(l,m)s2s1s2)= ωB(h(l+1,m)).(3-27)

Using (3-24) we see that

B
(
h(l, 0)W

−b+
√

d
2c

s1s2
)
= ωB

(
h(l, 0)W

−b+
√

d
2c

s1s2η0
)

= ωB

h(l, 0)W
−b+
√

d
2c

 1
$
$

1

s2

 .
Let x =

√
d/2+$ , y = 1, g =

[
x+by/2 cy
−ay x−by/2

]
, and r =

[
g

det(g)tg−1

]
.

We have the matrix identity

rh(l, 0)W
−b−
√

d
2c

s1s2 = h(l, 0)W
−b+
√

d
2c

 1
$
$

1

s2k,

with k =


√

d/c −1
−
√

d/c 1
$ c

−$ −c

 ∈ I.

This gives us

(3-28) B
(
h(l, 0)W

−b+
√

d
2c

s1s2
)
= ω3((

√
d+$,$))B

(
h(l, 0)W

−b−
√

d
2c

s1s2
)
.

Summary. Using (3-15), (3-18), (3-19) and (3-27) we get for l,m ≥ 0

(3-29) B(h(l + 1,m))=−
ω

q3 B(h(l,m)).

Using (3-12), (3-15), (3-16), (3-18), (3-20), (3-25) and (3-29), we get for l ≥ 0 and
m ≥ m0− 1

(3-30) B(h(l,m+ 1))=
1
q4 B(h(l,m)).

Hence, we conclude that

(3-31) B(h(l,m))=
0 if l ≤−1 or 0≤ m ≤ m0−2,

q−4(m−m0+1)(−ωq−3)l B(h(0,m0−1)) if l ≥ 0 and m ≥ m0−1> 0,

q−4m(−ωq−3)l B(1) if l ≥ 0 and m ≥ m0 = 0, 1.
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Let
( L

p

)
= 1 and w = (−b±

√
d)/(2c). Using (3-17), (3-20), (3-21) and (3-26),

we get for l ≥ 0, B(h(l + 1, 0)Wws1)= (−ωq−3)B(h(l, 0)Wws1), which gives us

B(h(l, 0)Wws1)= (−ωq−3)l B(Wws1).

In addition, if m0 = 0 and ω3((1,$))=−1, using (3-14), (3-20) and (3-28), we
get for all l ≥ 0

B(h(l, 0))= 0.

Summarizing the calculations of the values of B, we obtain

Proposition 3.8. Let c(3)= m0. For l,m ∈ Z,m ≥ 0, we set

Al,m :=

{
q−4(m−m0+1)(−ωq−3)l if m0 ≥ 1,
q−4m(−ωq−3)l if m0 = 0,

Cm0 :=

{
B(h(0,m0− 1)) if m0 ≥ 1,
B(1) if m0 = 0.

We have the following necessary conditions on the values of B ∈ B(3, θ)I.

i) For m ≥ 0 and any m0,

a) B(h(l,m))=
{

0 if l ≤−1 or m ≤ m0− 2,
Al,mCm0 if l ≥ 0 and m ≥ m0− 1.

b) B(h(l,m)s2)=

{
0 if l ≤−1 or m ≤ m0− 2,
−q−1 Al,mCm0 if l ≥ 0 and m ≥ m0− 1.

c) B(h(l,m)s2s1)=

{
0, if l ≤−1 or m ≤ m0− 2,
q−2 Al,mCm0, if l ≥ 0 and m ≥ m0− 1.

d) B(h(l,m)s2s1s2)=


0, if l ≤−2 or m ≤ m0− 2,
ωA0,mCm0, if l =−1 and m ≥ m0− 1,
−q−3 Al,mCm0, if l ≥ 0 and m ≥ m0− 1.

ii) For m > 0 and any m0,

a) B(h(l,m)s1)=

{
0 if l ≤−1 or m ≤ m0− 1,
−q Al,mCm0 if l ≥ 0 and m ≥ m0.

b) B(h(l,m)s1s2)=


0 if l ≤−2 or m ≤ m0− 1,
−ωq3 A0,mCm0, if l =−1 and m ≥ m0,

Al,mCm0, if l ≥ 0 and m ≥ m0.

c) B(h(l,m)s1s2s1)=


0 if l ≤−2 or m ≤ m0− 1,
ωq2 A0,mCm0 if l =−1 and m ≥ m0,

−q−1 Al,mCm0, if l ≥ 0 and m ≥ m0.
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d) B(h(l,m)s1s2s1s2)=


0 if l ≤−2 or m ≤ m0− 1,
−ωq A0,mCm0 if l =−1 and m ≥ m0,

q−2 Al,mCm0, if l ≥ 0 and m ≥ m0.

iii) Let m0 ≥ 1.

a) If
( L

p

)
= 0 and s ∈ {1, s2, s2s1, s2s1s2}, then, for all l,

B(h(l, 0)Ww0s1s)= 0.

b) If
( L

p

)
= 1, s ∈ {1, s2, s2s1, s2s1s2} and w = −b±

√
d

2c
, then, for all l,

B(h(l, 0)Wws1s)= 0.

iv) Let m0 = 0.

a) If
( L

p

)
=−1 then C0 = 0.

b) Suppose
( L

p

)
= 0. Then

1) B(h(l, 0)Ww0s1)=

{
0 if l ≤−1,
−q Al,0C0 if l ≥ 0.

2) B(h(l, 0)Ww0s1s2)=


0 if l ≤−2,
−ωq3C0 if l =−1,
Al,0C0, if l ≥ 0.

3) B(h(l, 0)Ww0s1s2s1)=

{
0 if l ≤−2,
ωq2 Al+1,0C0, if l ≥−1.

4) B(h(l, 0)Ww0s1s2s1s2)=

{
0 if l ≤−2,
−ωq Al+1,0C0, if l ≥−1.

c) Suppose
( L

p

)
= 0 and 3=� ◦ NL/F . Then C0 = 0.

d) Suppose
( L

p

)
= 1. Then for s ∈ {1, s2, s2s1, s2s1s2}

B
(
h(l, 0)W

−b−
√

d
2c

s1s
)
=

1
ω3((1,$))

B
(
h(l, 0)W

−b+
√

d
2c

s1s
)
.

e) Suppose
( L

p

)
= 1 and ω3((1,$))=−1.

1) C0 = 0.

2) B
(
h(l, 0)W

−b+
√

d
2c

s1
)
=

{
0 if l ≤−1,
Al,0 B(W

−b+
√

d
2c

s1) if l ≥ 0.

3) B
(
h(l, 0)W

−b+
√

d
2c

s1s2
)
=

{
0 if l ≤−1,
−

1
q Al,0 B

(
W
−b+
√

d
2c

s1
)

if l ≥ 0.
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4) B
(
h(l, 0)W

−b+
√

d
2c

s1s2s1
)
=

{
0 if l≤−2,
−ωq Al+1,0 B

(
W
−b+
√

d
2c

s1
)

if l≥−1.

5) B
(
h(l, 0)W

−b+
√

d
2c

s1s2s1s2
)
=

{
0 if l ≤−2,
ωAl+1,0 B

(
W
−b+
√

d
2c

s1
)

if l ≥−1.

f) Suppose
( L

p

)
= 1 and ω3((1,$)) 6= −1. Set ν = q−1

1+ω3((1,$))
.

1) B
(
h(l, 0)W

−b+
√

d
2c

s1
)
=

{
0 if l ≤−1,
−νAl,0C0, if l ≥ 0.

2) B
(
h(l, 0)W

−b+
√

d
2c

s1s2
)
=

{
0 if l ≤−1,
q−1νAl,0C0, if l ≥ 0.

3) B
(
h(l, 0)W

−b+
√

d
2c

s1s2s1
)
=

{
0 if l ≤−2,
ωqνAl+1,0C0, if l ≥−1.

4) B
(
h(l, 0)W

−b+
√

d
2c

s1s2s1s2
)
=

{
0 if l ≤−2,
−ωνAl+1,0C0 if l ≥−1.

Corollary 3.9. For any character 3, we have

dim
(
B(3, θ)I

)
≤ 1.

3.3. Well-definedness of B. In this section, we will show that a function B on
H(F), which is right I-invariant, satisfies (3-3) and with values on the double
coset representatives of R(F)\H(F)/I given by Proposition 3.8, is well defined.
Hence, we have to show that

r1sk1 = r2sk2 ⇒ B(r1sk1)= B(r2sk2)

for r1, r2 ∈ R(F), k1, k2 ∈ I and any double coset representative s. This is obtained
in the following proposition.

Proposition 3.10. Let s be any double coset representative from Proposition 3.3
and the values B(s) be as in Proposition 3.8. Let t ∈ T (F), u ∈ U (F) such that
s−1tus ∈ I. Then

3(t)θ(u)= 1 or B(s)= 0.

Proof. Let

t =
[

g
det(g)tg−1

]
and u =

[
1 X

1

]
,

with

g =
[

x + by/2 cy
−ay x − by/2

]
and X = t X.
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First let s = h(l,m). Observe that

x + y

√
d

2
= x −

by
2
+ cyα.(

In the split case, we consider the same identity with (x + y
√

d/2, x − y
√

d/2)
)
.

We assume s−1tus ∈ I. We see that x ± by/2 ∈ o×, y ∈ pm+1 and x +
√

d y/2 ∈
o×+Pm+1. Hence, we conclude that g ∈ GL2(o). This gives us

X ∈
[
pl+2m pl+m

pl+m pl

]
.

Now looking at the values of B(h(l,m)) from Proposition 3.8, we get that either
B(s)= 0 or 3(t)= θ(u)= 1.

We will illustrate one other case, s = h(l, 0)Ww0s1s2, since it is the most com-
plicated. Here, w0 is the unique element of o/p such that w0+ α 6∈ o×L . If m0 ≥ 1
or l ≤ −2, then we have B(s) = 0. Hence, assume that m0 = 0 and l ≥ −1. Note
that x+ y

√
d/2= x−by/2− cw0 y+ c(w0+α)y and a+bw0+ cw2

0 ∈ p. We see
that s−1tus ∈ I implies that

y ∈ o and x ±
(b

2
+ cw0

)
y ∈ o×.

Hence, we see that x+ y
√

d
2 ∈ o×L . This implies that g ∈GL2(o) and 3(t)= 1. We

have [
1
−w0 1

]
gX

[
1 −w0

1

]
∈

[
pl pl

pl pl+1

]
.

If l ≥ 0, then we get θ(u)= 1, as required. If l =−1, then let[
1
−w0 1

]
gX

[
1 −w0

1

]
=

[
x1 x2

x3 x4

]
, with x1, x2, x3 ∈$

−1o, x4 ∈ o.

Set ε1 = x + (b/2 + cw0)y, ε2 = x − (b/2 + cw0)y. Using the fact that X is
symmetric and β0

w0
∈ p, we conclude that x3ε1− x2ε2 ∈ o. Now θ(u)=ψ(tr(SX))

is equal to

ψ

(
1

det(g)

(
a
((

x −
by
2

)
x1− yc(x3+w0x1)

)
+ b

(
yax1+

(
x +

by
2

)
(x3+w0x1)

)
+ c(ya(x2+w0x1)+

(
x +

by
2

)
(w2

0x1+w0(x2+ x3)+ x4)
)))

= ψ

(
1

det(g)

((
x +

by
2

)
(x1β

0
w0
+ cx4)+ x2β

0
w0

yc− x3β
0
w0

yc

+ (x2ε2− x3ε1)cw0+ x3ε1(b+ 2cw0)
))

= 1.
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Here, we have used that x3ε1− x2ε2 ∈ o, b+ 2cw0 ∈ p, and ψ is trivial on o. The
other cases are computed in a similar manner. �

3.4. Criterion for dim(B(3, θ)I)=1. In the previous sections, we have explicitly
obtained a well-defined function B, which is right I-invariant and satisfies (3-3).
The values of B on the double coset representatives of R(F)\H(F)/I were ob-
tained, in Proposition 3.8, using one or more of the conditions (3-4)–(3-6). To
show that the function B is actually an element of B(3, θ)I, we have to show
that the conditions (3-4)–(3-6) are satisfied by B for every h ∈ H(F). In fact, it
is sufficient to show that B satisfies these conditions when h is any double coset
representative of R(F)\H(F)/I. The computations for checking this are long but
not complicated. We will describe the calculation for h = h(l,m) below.

B(h(l,m)η0)= B

h(l,m)

$$
$
$

h(−1, 0)s2s1s2


= B(h(l − 1,m)s2s1s2)= ωB(h(l,m)).

Here, we have used Proposition 3.8 and the identities Al−1,m= (−ωq3)Al,m . Using
the matrix identity 1

w 1
1 –w

1

 =
 1 w−1

1
1

–w−1 1

 s1

–w
–w−1

–w−1

–w

 1 w−1

1
1

–w−1 1


for w ∈ o, w 6= 0, Lemmas 3.1, 3.2, 3.6 and Proposition 3.8, we get∑

w∈o/p

B(h(l,m)s1Wws1)+ B(h(l,m)s1)= 0.

Using the matrix identity 1
1

y 1
1

=
 1 y−1

1
1

1

 s2

−y
1
−y−1

1

 1 y−1

1
1

1


for y ∈ o, y 6= 0 and Proposition 3.8, we obtain

∑
y∈o/p

B

h(l,m)

 1
1

y 1
1

+ B(h(l,m)s2)= 0

This shows that, for h = h(l,m), the function B satisfies (3-4)–(3-6), as required.
The calculation for other values of h follows in a similar manner. Hence, we get
the following theorem.
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Theorem 3.11. Let 3 be a character of L×. Let B(3, θ)I be the space of smooth
functions on H(F), which are right I-invariant, satisfy (3-3) and the Hecke condi-
tions (3-4) - (3-6). Then

dim
(
B(3, θ)I

)
=

{
0 if 3=� ◦ NL/F and

( L
p

)
∈ {−1, 0},

1 otherwise.

The condition on 3, in the case
( L

p

)
∈ {−1, 0}, follows from cases (iv-a) and

(iv-c) of Proposition 3.8.

3.5. Existence of a Bessel model. We now obtain the existence of a (3, θ)-Bessel
model for π . When 3 is a unitary character, we act with the Hecke algebra of
H(F) on a nonzero function in B(3, θ)I. We define an inner product on this
Hecke module and also show that the Hecke module has a unique, up to a constant,
function which is right I-invariant (the same function that we started with). This
leads to the proof that the Hecke module is irreducible and is isomorphic to π , thus
giving a (3, θ)-Bessel model for π .

When 3 is not unitary (this can happen only if L = F⊕ F), we obtain a Bessel
model for π using the Whittaker model.

The Hecke module. The Hecke algebra H of H(F) is the space of all complex-
valued functions on H(F) that are locally constant and compactly supported, with
the convolution product defined by

( f1 ∗ f2)(g) :=
∫

H(F)
f1(h) f2(h−1g) dh for f1, f2 ∈H, g ∈ H(F).

We refer the reader to [Cartier 1979] for details on Hecke algebras of p-adic groups
and Hecke modules. Let 3 be a character of L× such that B(3, θ)I 6= 0. Let
B ∈ B(3, θ)I be the unique, up to a constant, function whose values are described
in Proposition 3.8. Define the action of f ∈H on B by

(R( f )B)(g) :=
∫

H(F)
f (h)B(gh) dh.

This is a finite sum and hence converges for all f . Let

(3-32) VB := {R( f )B : f ∈H}.

Since R( f1)R( f2)B = R( f1 ∗ f2)B, we see that VB is a Hecke module. Note that
every function in VB transforms on the left according to 3⊗ θ .

Inner product on Hecke module. We now assume that 3 is a unitary character.
Note that, by the comments in the beginning of Section 3.2, if L is a field, then 3
is always unitary. In this case, we will define an inner product on the space VB .

Lemma 3.12. The norm 〈B, B〉 :=
∫

R(F)\H(F)
|B(h)|2 dh is finite.
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Proof. We have

〈B, B〉 =
∑

s∈R(F)\H(F)/I

∫
R(F)\R(F)sI

|B(h)|2dh

=

∑
s∈R(F)\H(F)/I

|B(s)|2
∫

Is\I
dh =

∑
s∈R(F)\H(F)/I

|B(s)|2
vol(I)
vol(Is)

.

Here Is := s−1R(F)s∩ I. To get the last equality, we argue as in [Pitale and Schmidt
2009b, Lemma 3.7.1]. The volume of Is can be computed by similar methods to
Sections 3.7.1 and 3.7.2 of the same reference. Now, using the values of B(s) from
Proposition 3.8 and geometric series, we get the result. �

Let

L2(R(F)\H(F),3⊗θ) :=

ϕ : H(F)→ C such that ϕ is smooth,
ϕ(rh)=(3⊗ θ)(r)ϕ(h) for r ∈ R(F), h∈H(F),

and
∫

R(F)\H(F) |ϕ(h)|
2 dh <∞.


The previous lemma tells us that B∈ L2

(
R(F)\H(F),3⊗θ

)
. It is an easy exercise

to see that, in fact, for any f ∈H, we have

R( f )B ∈ L2(R(F)\H(F),3⊗ θ).
Now, we see that VB inherits the inner product from L2

(
R(F)\H(F),3⊗θ

)
. For

f1, f2 ∈H, we obtain

(3-33) 〈R( f1)B, R( f2)B〉 =
∫

R(F)\H(F)
(R( f1)B)(g) (R( f2)B)(g) dg.

Lemma 3.13. For f ∈ H, define f ∗ ∈ H by f ∗(g) = f (g−1). Then, for any
B1, B2 ∈ VB ,

〈B1, R( f )B2〉 = 〈R( f ∗)B1, B2〉.

Proof. The lemma follows by a formal calculation. �

Irreducibility of VB .

Lemma 3.14. Let V I
B be the subspace of functions in VB that are right I-invariant.

Then
dim(V I

B)= 1.

Proof. We know that V I
B is not trivial since B ∈ V I

B . Let χI ∈H be the characteristic
function of I and set fI := vol(I)−1χI. Then, by definition, any B ′ ∈ V I

B , satisfies
R( fI)B ′ = B ′. Let f ∈H be such that B ′ = R( f )B = R( f ∗ fI)B. Here, we have
used that B ∈ V I

B . Then

B ′ = R( fI)B ′ = R( fI)
(
R( f ∗ fI)B

)
= R( fI ∗ f ∗ fI)B.
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But fI ∗ f ∗ fI ∈ HI, the Iwahori Hecke algebra. Since B is an eigenfunction of
HI, we see that B ′ ∈ CB. Hence, dim(V I

B)= 1, as required. �

Proposition 3.15. Let π = �StGSp4
be the Steinberg representation of H(F),

twisted by an unramified quadratic character �. Let 3 be a character of L×

such that dim(B(3, θ)I) = 1. Let VB be as in (3-32). If 3 is unitary, then VB is
irreducible and isomorphic to π .

Proof. We assume, to the contrary, that VB is reducible. Let W be an H-invariant
subspace. Let W⊥ be the complement of W in VB with respect to the inner product
〈 , 〉 given in (3-33). Using Lemma 3.13, we see that W⊥ is also H-invariant.
Write B = B1 + B2, with B1 ∈ W, B2 ∈ W⊥. Let fI be as defined in the proof
of Lemma 3.14. Since W,W⊥ are H-invariant, we see that R( fI)B1 ∈ W and
R( fI)B2 ∈ W⊥. Since B is right I-invariant, we see that B1 = R( fI)B1 and B2 =

R( fI)B2. By Lemma 3.14, we obtain, either B = B1 or B = B2. Since VB is
generated by B, we have either W = VB or W = 0. Hence, we see that VB is
an irreducible Hecke module, which contains a unique, up to a constant, vector
which is right I-invariant. This uniquely characterizes the Steinberg representation
of H(F), and hence, VB is isomorphic to π . �

Generic representations have split Bessel models. We now assume that 3 is not
a unitary character. This can happen only if L = F ⊕ F . In this case, we will
use the fact that �StGSp4

is a generic representation. We will now show that any
irreducible admissible generic representation of H(F) has a split Bessel model.
We believe that this result is known to the experts (for example, see the proof of
[Takloo-Bighash 2000, Theorem 2.1]) but we present the details of the proof here.

Let
S =

[
a b

2
b
2 c

]
be such that b2

− 4ac is a square in F×. One can find a matrix A ∈ GL2(o) such
that

S′ := tA S A =
[ 1

2
1
2

]
.

In this case, TS′(F) := {g ∈GL2(F) : tgS′g= det(g)S′} = A−1T (F) A. The group
TS′(F) embedded in H(F) is given by

 x
y

y
x

 : x, y ∈ F×

 .
Let θ ′ be the character of U (F) obtained from S′ and3′ be the character of TS′(F)
obtained from 3. Then it is easy to see that π has a (3, θ)-Bessel model if and
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only if it has a (3′, θ ′)-Bessel model. So, we will assume that

S =
[ 1

2
1
2

]
.

Let (π, V ) be an irreducible admissible representation of H(F). For c1, c2∈ F×,
consider the character ψc1,c2 of the unipotent radical N1(F) of the Borel subgroup
given by

ψc1,c2

 1 x ∗ ∗
1 ∗ y

1
–x 1

= ψ(c1x + c2 y).

The representation π of H(F) is called generic if HomN1(F)(π, ψc1,c2) 6= 0. In this
case there is an associated Whittaker model W(π, ψc1,c2) consisting of functions
H(F)→ C that transform on the left according to ψc1,c2 . For W ∈W(π, ψc1,c2),
there is an associated zeta integral

Z(s,W )=

∫
F×

∫
F

W

 y
y

1
x 1

 |y|s−3/2 dx d×y.

This integral is convergent for Re(s) > s0, where s0 is independent of W [Roberts
and Schmidt 2007, Proposition 2.6.3]. More precisely, the integral converges to
an element of C(q−s), and therefore has meromorphic continuation to all of C.
Moreover, there exists an L-factor of the form

L(s, π)=
1

Q(q−s)
, Q(X) ∈ C[X ], Q(0)= 1,

such that

(3-34)
Z(s,W )

L(s, π)
∈ C[q−s, qs

] for all W ∈W(π, ψc1,c2).

(This is proved in [Roberts and Schmidt 2007, Proposition 2.6.4] for π with trivial
central character. Also see [Takloo-Bighash 2000, §3.1])

Lemma 3.16. Let (π, V ) be an irreducible admissible generic representation of
H(F) with trivial central character. Let σ be a unitary character of F×, and let
s ∈ C be arbitrary. Then there exists a nonzero functional fs,σ : V → C with the
following properties.

i) For all x, y, z ∈ F and v ∈ V ,

(3-35) fs,σ

π
 1 x y

1 y z
1

1

 v
= ψ(c1 y) fs,σ (v).
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ii) For all x ∈ F× and v ∈ V ,

(3-36) fs,σ

π
 x

1
1

x

 v
= σ(x)−1

|x |−s+1/2 fs,σ (v).

Proof. We may assume that V =W(π, ψc1,c2). Let s0 ∈ R be such that Z(s,W ) is
absolutely convergent for Re(s) > s0. Then the integral

Zσ (s,W )=

∫
F×

∫
F

W

 y
y

1
x 1

 |y|s−3/2σ(y) dx d×y

is also absolutely convergent for Re(s) > s0, since σ is unitary. Note that these
are the zeta integrals for the twisted representation σπ . Therefore, by (3-34), the
quotient Zσ (s,W )/L(s, σπ) is in C[q−s, qs

] for all W ∈W(π, ψc1,c2). Now, for
Re(s) > s0, we define

(3-37) fs,σ (W )=
Zσ (s, π(w)W )

L(s, σπ)
, where w =

 1
1

1
–1

 .
Straightforward calculations show that (3-35) and (3-36) are satisfied. For general
s, since the quotient (3-37) is entire, we can define fs,σ by analytic continuation.

�

Proposition 3.17. Let (π, V ) be an irreducible admissible generic representation
of H(F) with trivial central character. Then π admits a split Bessel functional
with respect to any character 3 of T (F) that satisfies 3

∣∣
F× ≡ 1.

Proof. As mentioned earlier, we can take

S =
[ 1

2
1
2

]
.

Let s ∈ C and σ be a unitary character of F× such that

3

 x
1

1
x

= σ(x)−1
|x |−s+1/2 for all x ∈ F×.

Let fs,σ be as in Lemma 3.16. We may assume that c1 = 1, so that fs,σ (π(u)v)=
θ(u)v for all u ∈U (F) by (3-35). We have

fs,σ

π
 x

1
1

x

 v
=3(x) fs,σ (v) for all x ∈ F×,
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by (3-36). Since 3
∣∣

F× ≡ 1 we in fact obtain fs,σ(π(t)v) = 3(t) fs,σ (v) for all
t ∈ T (F). Hence fs,σ is a Bessel functional as desired. �

We remark here that, in the split case, for values of s ∈ C outside the range of
convergence of the zeta integral, we do not have an explicit formula for the Bessel
functional. This, in turn, is also reflected in the fact that, when 3 is not unitary,
it is not very easy to define an inner product on the space VB defined in (3-32),
although it is known that the Steinberg representation is square-integrable.

Main result on existence and uniqueness of Bessel models.

Theorem 3.18. Let π =�StGSp4
be the Steinberg representation of H(F), twisted

by an unramified quadratic character �. Let 3 be a character of L× such that
3|F× ≡ 1. If L is a field, then π has a (3, θ)-Bessel model if and only if 3 6=
� ◦ NL/F . If L is not a field, then π always has a (3, θ)-Bessel model. In case π
has a (3, θ)-Bessel model, it is unique.

In addition, if π has a (3, θ)-Bessel model, then the Iwahori spherical vector
of π is a test vector for the Bessel functional if and only if3 satisfies the following
conditions.

i) 3|1+P ≡ 1, i.e., c(3)≤ 1 (see (3-10) for definition of c(3)).

ii) If
( L

p

)
= 1 and 3 is unramified, then 3((1,$)) 6=�($).

Proof. If π has a (3, θ)-Bessel model, then it contains a unique vector in B(3, θ)I.
By Theorem 3.11, the dimension of B(3, θ)I is one, which gives us the uniqueness
of Bessel models.

Now we will show the existence of the Bessel model. Let 3 be a character
of L×, with 3|F× ≡ 1, such that, if L is a field, 3 6= � ◦ NL/F . We know, by
Theorem 3.11, that dim(B(3, θ)I) = 1. If 3 is unitary, Proposition 3.15 tells us
that VB is a (3, θ)-Bessel model for π . If3 is not unitary, we use the fact that π is
a generic representation in the split case. Then Proposition 3.17 gives us the result.

The statement regarding the test vector can be deduced from Proposition 3.8
and the fact that a Bessel function B corresponds to a test vector if and only if
B(1) 6= 0. �

4. Integral representation of the nonarchimedean local L-function

Using the explicit values of the Bessel function obtained in Proposition 3.8, we
will now obtain an integral representation of the L-function for the Steinberg rep-
resentation π of H(F) twisted by any irreducible admissible representation τ of
GL2(F). For this, we will use the integral obtained in [Furusawa 1993]. We briefly
describe the setup.
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4.1. The unitary group, parabolic induction and the local integral. Let G =
GU(2, 2; L) be the unitary similitude group, whose F-points are given by

G(F) :=
{
g ∈ GL4(L) : t ḡ Jg = µ2(g)J, µ2(g) ∈ F×

}
where J =

[
12

−12

]
.

Note that H(F)=G(F)∩GL4(F). As a minimal parabolic subgroup we choose the
subgroup of all matrices that become upper triangular after switching the last two
rows and last two columns. Let P be the standard maximal parabolic subgroup of
G(F)with a nonabelian unipotent radical. Let P=M N be the Levi decomposition
of P . We have M = M (1)M (2), where

M (1)(F)=


 ζ

1
ζ̄−1

1

 : ζ ∈ L×

 ,(4-1)

M (2)(F)=


 1

α β
µ

γ δ

 ∈ G(F)

 ,(4-2)

N (F)=


 1 z

1
1

–z̄ 1

 1 w y
1 ȳ

1
1

 : w ∈ F, y, z ∈ L

 .(4-3)

The modular factor of the parabolic P is given by

δP

 ζ
1
ζ̄−1

1

 1
α β
µ

γ δ

= ∣∣N (ζ )µ−1∣∣3 (µ= ᾱδ−βγ̄ ),

where | · | is the normalized absolute value on F . Let (τ, Vτ ) be an irreducible
admissible representation of GL2(F), and let χ0 be a character of L× such that
χ0
∣∣

F× coincides with ωτ , the central character of τ . We assume that Vτ is the
Whittaker model of τ with respect to the character ψ−c (we assume that c 6= 0).
Then the representation (λ, g) 7→ χ0(λ)τ (g) of L× × GL2(F) factors through
{(λ, λ−1) : λ ∈ F×}, and consequently defines a representation of M (2)(F) on the
same space Vτ . Let χ be a character of L×, considered as a character of M (1)(F).
Extend the representation χ × χ0 × τ of M(F) to a representation of P(F) by
setting it to be trivial on N (F). If s is a complex parameter, set I (s, χ, χ0, τ ) =

IndG(F)
P(F)(δ

s+1/2
P ×χ ×χ0× τ).

Let (π, Vπ ) be the twisted Steinberg representation of H(F). We assume that
Vπ is a Bessel model for π with respect to a character 3⊗ θ of R(F). Let the
characters χ, χ0 and 3 be related by χ(ζ ) = 3(ζ̄ )−1χ0(ζ̄ )

−1. Let W #( · , s) be
an element of I (s, χ, χ0, τ ) for which the restriction of W #( · , s) to the standard
maximal compact subgroup of G(F) is independent of s, i.e., W #( · , s) is a “flat



392 AMEYA PITALE

section” of the family of induced representations I (s, χ, χ0, τ ). By [Pitale and
Schmidt 2009b, Lemma 2.3.1], it is meaningful to consider the integral

(4-4) Z(s)=
∫

R(F)\H(F)
W #(ηh, s)B(h) dh, η =

 1
α 1

1 –ᾱ
1

 .
This is the local component of the global integral considered in Section 5.2 below.

4.2. The GL2 newform. We define K (0)(p0)= GL2(o) and, for n > 0,

(4-5) K (0)(pn)= GL2(o)∩

[
1+ pn o

pn o×

]
.

As above, let (τ, Vτ ) be a generic, irreducible admissible representation of GL2(F)
such that Vτ is theψ−c-Whittaker model of τ . It is well known that Vτ has a unique
(up to a constant) vector W (1), called the newform, that is right-invariant under
K (0)(pn) for some n≥ 0. We then say that τ has conductor pn . We normalize W (1)

so that W (1)(1)= 1. We will need the values of W (1) evaluated at[
$ l

1

]
,

for l ≥ 0. The following table gives these values (refer to [Schmidt 2002, §2.4]).

τ W (1)
([
$ l

1

])
α×β with α and β unramified, αβ−1

6= | · |
±1 q−l/2α($

l+1)−β($ l+1)

α($)−β($)

α×β with α unramified, β ramified, αβ−1
6= | · |

±1 ωτ ($
l) α($−l) q−l/2

supercuspidal OR ramified twist of Steinberg 1 if l = 0
OR α×β with α, β ramified, αβ−1

6= | · |
±1

} {
0 if l > 0

�′ StGL2, with �′ unramified �′($ l) q−l

We extend W (1) to a function on M (2)(F) via W (1)(ag)=χ0(a)W (1)(g) for a∈ L×,
g ∈ GL2(F).

4.3. Choice of 3 and W#. We will choose a character 3 of L× such that π has a
(3, θ)-Bessel model and the Iwahori spherical vector is a test vector for the Bessel
functional. Noting that3|F× is the central character of π and using Theorem 3.18,
we impose the following conditions on 3:

i) 3|F× ≡ 1.

ii) c(3)≤ 1.
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iii) 3 6=� ◦ NL/F in case L is a field.

iv) ω3((1,$)) 6= −1 in case L is not a field and c(3)= 0.

Note that this implies that 3|o×+P ≡ 1. For n ≥ 1, let 0(Pn) be the principal
congruence subgroup of the maximal compact subgroup K G

:= G(o) of G(F),
defined by

0(Pn) := {g ∈ K G
: g ≡ 1 (mod Pn)}.

The next lemma will be crucial for the well-definedness of W # below.

Lemma 4.1. Let (τ, Vτ ) be a generic, irreducible admissible representation of
GL2(F) with conductor pn, n ≥ 0. Set n0 =max{1, n} and let

m̂ =

 ζ
a′ b′
µζ̄−1

c′ d ′

 ∈ M(F) and n̂ =

 1 z
1

1
–z̄ 1

 1 w y
1 ȳ

1
1

 ∈ N (F).

Suppose that A := η−1m̂n̂η lies in I0(Pn0). Then

i) c′ ∈Pn0 and a′ζ̄−1
∈ 1+Pn0 , and

ii) for any
[

a′1 b′1
c′1 d ′1

]
∈ GU(1, 1; L)(F), we have

χ(ζ )W (1)
([

a′1 b′1
c′1 d ′1

] [
a′ b′

c′ d ′

])
=W (1)

([
a′1 b′1
c′1 d ′1

])
.

Proof. Using Lemma 2.1, it is easy to show that for n ≥ 0

(4-6) x ∈ o+Pn and αx ∈ o+Pn
⇒ x ∈Pn.

First note that I0(Pn0)⊂ M4(o+Pn0). Looking at the (4, 1), (4, 2) coefficient of
A, we see that c′, αc′ ∈ o+Pn0 . By (4-6), we obtain c′ ∈Pn0 , as required.

Observe that m̂n̂ ∈ K G and c′ ∈Pn0 ⊂P implies that ζ, a′, d ′ ∈ o×L . The upper
left 2× 2 block of A is given by[

ζ +αzζ zζ
αa′−α(ζ +αzζ )) a′−αzζ

]
.

We will repeatedly use the following fact:

If x ∈ o+Pn0, then x ≡ x̄ (mod (α− ᾱ)Pn0).

Applying this to the matrix entries of A, we get zζ ≡ z̄ζ̄ (mod (α− ᾱ)Pn0), and
then

(4-7)
a′− ā′ ≡ (α− ᾱ)zζ (mod (α− ᾱ)Pn0),

ζ − ζ̄ ≡ (ᾱ−α)zζ (mod (α− ᾱ)Pn0).
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Using ζ + αzζ ≡ ζ̄ + ᾱz̄ζ̄ (mod (α − ᾱ)Pn0) and (4-7), we get from the (2, 1)
coefficient of A that

(a′− ζ̄ )(α− ᾱ)≡ 0 (mod (α− ᾱ)Pn0).

Hence a′ − ζ̄ ≡ 0 (mod Pn0), so that a′ζ̄−1
∈ 1+Pn0 , as required. This proves

part (i) of the lemma.
Looking at the (1, 2) coefficient of A, we see that zζ ∈P. Looking at the (1, 1)

coefficient of A, we see that ζ ∈ o×+P.

χ(ζ )W (1)
([

a′1 b′1
c′1 d ′1

] [
a′ b′

c′ d ′

])
= χ(ζ )χ0(a′)W (1)

([
a′1 b′1
c′1 d ′1

] [
1 b′/a′

c′/a′ d ′/a′

])
=3(ζ̄−1)χ0(ζ̄

−1)χ0(a′)W (1)
([

a′1 b′1
c′1 d ′1

] [
1 b′/a′

c′/a′ d ′/a′

])
=W (1)

([
a′1 b′1
c′1 d ′1

])
.

Here we have used the fact that 3 is trivial on o×+P, χ0 is trivial on 1+Pn0 and
the matrix [

1 b′/a′

c′/a′ d ′/a′

]
lies in K (0)(pn0). �

Let n0 = max{1, n}, as above. Given a complex number s, define the function
W #( · , s) : G(F)→ C as follows.

i) If g /∈ M(F)N (F)ηI0(Pn0), then W #(g, s)= 0.

ii) If g=mnηkγ with m ∈M(F), n ∈ N (F), k ∈ I, γ ∈0(Pn0), then W #(g, s)=
W #(mη, s).

iii) For ζ ∈ L× and
[

a′ b′

c′ d ′

]
∈ M (2)(F),

(4-8) W #

 ζ

1
ζ̄−1

1

 1
a′ b′
µ

c′ d ′

η, s


=
∣∣N (ζ ) ·µ−1∣∣3(s+1/2)

χ(ζ )W (1)
([

a′ b′

c′ d ′

])
,

where µ= ā′d ′− b′c̄′.

By Lemma 4.1, we see that W # is well-defined. It is an element of I (s, χ, χ0, τ ).

4.4. Support of W#. We choose W # as above and B as in Proposition 3.8, with
B(1) = 1. Note that B(1) 6= 0 by the comments in the beginning of Section 4.3.
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Then the integral (4-4) becomes

(4-9) Z(s)=
∑
l∈Z
m≥0

∑
t

W #(ηh(l,m)t, s) B(h(l,m)t) V l,m
t ,

where t runs through the double coset representatives from Proposition 3.3 and

V l,m
t = vol

(
R(F) \ R(F) h(l,m)t I

)
.

To compute (4-9), we need to find out for what values of l,m, t is ηh(l,m)t in the
support of W #. Write ηh(l,m)= h(l,m)ηm , where

ηm =


1

$mα 1
1 –$m ᾱ

1

 .
Since h(l,m) ∈ M(F), we need to know for which values of m, t is ηm t in the
support of W #. This is done in the following lemma.

Lemma 4.2. Let t be any double coset representative from Proposition 3.3. Then
ηm t lies in the support, M Nη I0(Pn0), of W # if and only if m = 0 and t = 1.

Proof. We first consider the case m > 0. Note that it is enough to show that ηm t /∈
M Nη I0(P). For any double coset representative t , we have t−1ηm t ≡ 1 (mod P)

and hence t−1ηm t ∈ 0(P). So it is enough to show that t /∈ M Nη I0(P) for any t .
Suppose there are m̂ ∈M, n̂ ∈ N such that A= η−1m̂n̂t ∈ I0(P). Using m̂, n̂ ∈ K G

and

(4-10) I0(P)⊂


o+P P o+P o+P

o+P o+P o+P o+P

P P o+P o+P

P P P o+P


we get a contradiction for every t ∈W . We now consider the case m = 0. First let
t = 1. Taking m̂ = n̂ = 1, we easily see that η ∈ M Nη I0(Pn0), as required. Now
assume that t 6= 1. Suppose, there are m̂ ∈ M, n̂ ∈ N such that A = η−1m̂n̂ηt ∈
I0(P). Again, using m̂, n̂ ∈ K G and (4-10) we get a contradiction for t 6= 1. This
completes the proof of the lemma. �

4.5. Integral computation. From Lemma 4.2, we see that the integral (4-9) is
equal to

(4-11) Z(s)=
∑
l≥0

W #(ηh(l, 0), s) B(h(l, 0)) V l,0
1 .
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Arguing as in [Furusawa 1993, §3.5], we get

V l,0
1 =

(
1−

( L
p

)
q−1

)
q

(1+ q)2(1+ q2)
q3l .

From Proposition 3.8 and (4-8), we get B(h(l, 0))= (−ωq−3)l and

W #(ηh(l, 0), s)= q−3(s+1/2)lωτ ($
−l)W (1)

([
$ l

1

])
.

We set

C =

(
1−

( L
p

)
q−1

)
q

(1+ q)2(1+ q2)
.

We have

(4-12) Z(s)= C
∑
l≥0

(−ω)l q−3(s+1/2)lωτ ($
−l)W (1)

([
$ l

1

])
.

We will now substitute the value of W (1), from the table obtained in Section 4.2,
into (4-12) for all possible GL2 representations τ .
(4-13)

Z(s)=



C
(
1+ωα($−1)q−3s−2)−1(1+ωβ($−1)q−3s−2)−1

if τ = α×β, α, β unramified, αβ−1
6= | · |

±1
;

C
(
1+ωα($−1)q−3s−2)−1

if τ = α×β, α unramified, β ramified αβ−1
6= | · |

±1
;

C
(
1+ω�′($−1)q−3s−5/2)−1

if τ =�′StGL2, �
′ unramified;

C otherwise.

Let τ̃ denote the contragredient of the representation τ . We get the following
theorem on the integral representation of L-functions.

Theorem 4.3. Let
π =�StGSp4

be the Steinberg representation of GSp4(F) twisted by an unramified quadratic
character �. Let τ be any irreducible admissible representation of GL2(F). Let
Z(s) be the integral defined in (4-4). Choose B as in Section 3 and W # as in
Section 4.3. Then we have

(4-14) Z(s)= Y ′(s)L
(
3s+ 1

2 , π × τ̃
)
,

where

Y ′(s)=
{

C
(
1−�($)�′($−1)q−3s−3/2

)
if τ =�′ StGL2, �

′ unramified;
C otherwise.
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Here,

C =

(
1−

( L
p

)
q−1

)
q

(1+ q)2(1+ q2)
.

Proof. This follows from (4-13) and from the following definition of L-functions
for the representation π =�StGSp4

, with� unramified and quadratic, twisted by τ̃ :

L(s, π× τ̃ )=



(
1−�($) α($−1)q−s−3/2)−1(1−�($) β($−1)q−s−3/2)−1

if τ = α×β, α, β unramified, αβ−1
6= | · |

±1
;(

1−�($) α($−1)q−s−3/2)−1

if τ = α×β, α unramified, β ramified αβ−1
6= | · |

±1
;(

1−�($)�′($−1)q−s−1)−1(1−�($)�′($−1)q−s−2)−1

if τ =�′StGL2, �
′ unramified;

1 otherwise. �

5. Global theory

In the previous section, we computed the nonarchimedean integral representation
of the L-function L(s, π × τ̃ ) for the Steinberg representation of GSp4 twisted by
any GL2 representation. In [Furusawa 1993], the integral has been computed for
both π and τ unramified. In [Pitale and Schmidt 2009c], the integral has been
calculated for an unramified representation π twisted by any ramified GL2 repre-
sentation τ . In the same paper, the archimedean integral was computed for π∞
a holomorphic (or limit of holomorphic) discrete series representation with scalar
minimal K -type, and τ∞ any representation of GL2(R). In this section, we will
put together all the local computations and obtain an integral representation of a
global L-function. We will start with a Siegel cuspidal newform F of weight l with
respect to the Borel congruence subgroup of square-free level. We will obtain an
integral representation of the L-function of F twisted by any irreducible cuspidal
automorphic representation τ of GL2(A). When τ is obtained from a holomorphic
cusp form of the same weight l as F , we obtain a special value result for the L-
function, in the spirit of Deligne’s conjectures.

5.1. Siegel modular form and Bessel model. Let M be a square-free positive in-
teger and l be any positive integer. Set

B(M) :=

g ∈ Sp4(Z) : g ≡

 ∗ 0 ∗ ∗
∗ ∗ ∗ ∗

0 0 ∗ ∗
0 0 0 ∗

 (mod M)

 .
Let F be a Siegel newform of weight l with respect to B(M). We refer the reader
to [Saha 2009, §8] or [Schmidt 2005] for definition and details on newforms with
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square-free level. The Fourier expansion of F is given by

F(Z)=
∑
T>0

A(T ) e2π i tr(T Z),

where T runs over all semi-integral, symmetric, positive definite 2× 2 matrices.
We obtain a well-defined function 8=8F on H(A), where A is the ring of adeles
of Q, by

8(γ h∞k0)= µ2(h∞)l det(J (h∞, i12))
−l F(h∞〈i12〉),

where γ ∈ H(Q), h∞ ∈ H+(R), k0 ∈
∏

p-M H(Zp)
∏

p|M Ip. Let VF be the space
generated by the right translates of8F and let πF be one of the irreducible compo-
nents. Then πF =⊗πp, where π∞ is a holomorphic discrete series representation
of H(R) of lowest weight (l, l), for a finite prime p - M , πp is an irreducible,
unramified representation of H(Qp), and for p|M , πp is a twist �pStGSp4

of the
Steinberg representation of H(Qp) by an unramified quadratic character �p.

For a positive integer D ≡ 0, 3 (mod 4), set

S(−D)=



[
1
4 D 0
0 1

]
if D ≡ 0 (mod 4),

[
1
4(1+D) 1

2
1
2 1

]
if D ≡ 3 (mod 4).

Let L=Q(
√
−D) and T (A)'A×L be the adelic points of the group defined in (3-1).

Let R(A)= T (A)U (A) be the Bessel subgroup of H(A). Let 3 be a character of

(5-1) T (A)/T (Q) T (R)
∏
p-M

T (Zp)
∏
p|M

T 0
p ,

where T (Zp)= T (Qp)∩GL2(Zp) and T 0
p = T (Zp)∩0

0
p. Here

00
p =

{
g ∈ GL2(Zp) : g ≡

[
∗ 0
∗ ∗

]
(mod pZp)

}
.

Note that, under the isomorphism (3-2), T 0
p corresponds to Z×p+ poL p , where oL p is

the ring of integers of the two dimensional algebra L⊗Q Qp. Let ψ be a character
of Q \A that is trivial on Zp for all primes p and satisfies ψ(x) = e−2π i x for all
x ∈ R. We define the global Bessel function of type (3, θ) associated to 8̄ by

B8̄(h)=
∫

Z H (A)R(Q)\R(A)
(3⊗ θ)(r)−18̄(rh)dr,

where

θ

([
1 X

1

])
= ψ(tr(SX)) and 8̄(h)=8(h).
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If B8̄ is nonzero, then Bϕ̄ is nonzero for any ϕ ∈ πF . We say that πF has a global
Bessel model of type (3, θ) if B8̄ 6= 0. We shall make the following assumption
on the representation πF .

Assumption. πF has a global Bessel model of type (3, θ) such that

A1. −D is the fundamental discriminant of Q(
√
−D).

A2. 3 is a character of (5-1).

A3. For p|M , if L ⊗Qp is split and 3p is unramified, then

�p($p)3p((1,$p)) 6= 1.

Remark 5.1. In [Furusawa 1993; Pitale and Schmidt 2009b; 2009c; Saha 2009],
nonvanishing of a suitable Fourier coefficient of F is assumed, while in [Pitale and
Schmidt 2009a], the existence of a suitable global Bessel model for πF is assumed.
We explain the relation of the assumption above to nonvanishing of certain Fourier
coefficients of F . Let {t j } be a set of representatives for (5-1). One can take
t j ∈ GL2(Af). Write

t j = γ j m jκ j ,

with γ j ∈ GL2(Q),m j ∈ GL+2 (R) and κ j ∈
∏

p-M GL2(Zp)
∏

p|M 0
0
p. Set

S j := det(γ j )
−1 tγ j S(−D)γ j .

Note that {S j } j is a subset of the set of representatives of 00(M) equivalence
classes of primitive, semi-integral positive definite 2× 2 matrices of discriminant
−D.

From [Saha 2009] or [Sugano 1985], we have, for h∞ ∈ H+(R),

(5-2) B8̄(h∞)=µ2(h∞)l det(J (h∞, I ))−l e−2π i tr(S(−D) h∞〈I 〉 )
∑

j
3(t j )

−1 A(S j ),

and B8̄(h∞)= 0 for h∞ 6∈ H+(R). Suppose that there is a semi-integral, symmet-
ric, positive definite 2× 2 matrix T satisfying

i) −D = det(2T ) is the fundamental discriminant of L =Q(
√
−D).

ii) T is 00(M) equivalent to one of the S j .

iii) The Fourier coefficient A(T ) 6= 0.

Then it is clear from (5-2) that one can choose a 3 such that parts A1 and A2 of
the assumption are satisfied. If M = 1 (as in [Furusawa 1993; Pitale and Schmidt
2009b; 2009c]) or, every prime p|M is inert in L (as in [Saha 2009]), then {S j } j

is the complete set of representatives of 00(M) equivalence classes and hence,
condition (i) above implies condition (ii) to give the assumption from [Furusawa
1993; Pitale and Schmidt 2009b; 2009c] and [Saha 2009]. We have to include part
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A3 of the assumption to guarantee that the Iwahori spherical vector in πp, for p|M ,
is a test vector for the Bessel functional.

We abbreviate a(3)=
∑
3(t j ) A(S j ). For h ∈ H(A), we have

B8̄(h)= a(3)
∏

p

Bp(h p),

where B∞ is as defined in [Pitale and Schmidt 2009c], for a finite prime p - M ,
Bp is the spherical vector in the (3p, θp)-Bessel model for πp, and for p|M , Bp

is the vector in the (3p, θp)-Bessel model for πp defined by Proposition 3.8 and
3.10. For p <∞, we have normalized the Bp so that Bp(1)= 1.

5.2. Global induced representation and global integral. Let τ =
⊗
τp be an irre-

ducible cuspidal automorphic representation of GL2(A) with central character ωτ .
For every prime p <∞, let pn p be the conductor of τp. For almost all p, we have
n p = 0. Set N =

∏
p pn p . Choose l1 to be any weight occurring in τ∞. Let χ0 be

a character of A×L such that χ0|A× = ωτ and χ0,∞(ζ ) = ζ
l2 for any ζ ∈ S1. Here,

l2 depends on l1 and l by the formula

l2 =

{
l1− 2l if l ≤ l1,

−l1 if l ≥ l1,

as in [Pitale and Schmidt 2009c]. The existence of such a character is guaranteed
by Lemma 5.3.1 of that reference. Define another character χ of A×L by

χ(ζ )= χ0(ζ̄ )
−13(ζ̄ )−1.

Let I (s, χ0, χ, τ ) be the induced representation of G(A) obtained in an analogous
way to the local situation in Sect. 4.1. We will now define a global section f3(g, s).
We realize the representation τ as a subspace of L2

(
GL2(Q) \GL2(A)

)
and let f̂

be the automorphic cusp form such that the space of τ is generated by the right
translates of f̂ . The function f̂ corresponds to a cuspidal Hecke newform on the
complex upper half plane. Then, f̂ is factorizable. Write f̂ =⊗ f̂ p such that f̂∞ is
the function of weight l1 in τ∞. For p <∞, f̂ p is the unique newform in τp with
f̂ p(1)= 1. Using χ0, extend f̂ to a function of GU(1, 1; L)(A).

For a finite prime p, set

K G
p :=


G(Zp) if p - M N ;
I0((poL p)

n p,0) if p|M;
H(Zp)0((poL p)

n p) if p|N , p - M.

Here, in the second case, n p,0 =max(1, n p). Set K G(M, N )=
∏

p<∞ K G
p and let

K∞ be the maximal compact subgroup of G(R). Let η be the element of G(Q)
defined in (4-4). Let ηM,N be the element of G(A) such that the p-component is
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given by η for p|M N and by 1 for p - M N . For s ∈ C, define f3( · , s) on G(A)
by

i) f3(g, s)= 0 if g 6∈ M(A)N (A) ηM,N K∞K G(M, N ).

ii) If m=m1m2, mi ∈M (i)(A), n ∈ N (A), k= k0k∞, k0 ∈ K G(M, N ), k∞ ∈ K∞,
then

(5-3) f3(mnηM,N k, s)= δ1/2+s
P (m) χ(m1) f̂ (m2) f (k∞).

Recall that δP(m1m2)=
∣∣NL/Q(m1)µ1(m2)

−1
∣∣3.

Here, M (1)(A), M (2)(A), N (A) are the adelic points of the algebraic groups defined
by (4-1)–(4-3) and f is the function on K∞ defined in [Pitale and Schmidt 2009c].
As in [Pitale and Schmidt 2009c], it can be checked that f3 is well-defined. For
Re(s) large enough we can form the Eisenstein series

E(g, s; f3) :=
∑

γ∈P(Q)\G(Q)

f3(γ g, s).

In fact, E(g, s; f3) has a meromorphic continuation to the entire plane. In [Furu-
sawa 1993], Furusawa studied integrals of the form

(5-4) Z(s, f3, ϕ)=
∫

H(Q)Z H (A)\H(A)
E(h, s; f3) ϕ(h) dh,

where ϕ ∈ Vπ . Theorem 2.4 of [Furusawa 1993], the “basic identity”, states that

(5-5) Z(s, f3, ϕ)=
∫

R(A)\H(A)
W f3(ηh, s) Bϕ(h) dh,

where Bϕ is the Bessel function corresponding to ϕ and W f3 is the function defined
by

W f3(g)=
∫

Q\A

f3

 1
1 x

1
1

 g

ψ(cx) dx, g ∈ G(A).

The function W f3 is a pure tensor and we can write

W f3(g, s)=
∏

p

W #
p(gp, s).

Then we see that W #
∞

is as defined in [Pitale and Schmidt 2009c]. For a finite
prime p - M , the W #

p is the function defined in Section 4.5 of that reference. For
p|M , the W #

p is as in Section 4.3. It follows from (5-5) that

Z(s, f3, 8̄)=
∏
p≤∞

Z p(s,W #
p, Bp),
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where

Z p(s,W #
p, Bp)=

∫
R(Qp)\H(Qp)

W #
p(ηh, s) Bp(h) dh.

When p - M N , p < ∞, the integral Z p is evaluated in [Furusawa 1993]. For
p =∞ or p|N , p - M , the integral Z p is calculated in [Pitale and Schmidt 2009c,
Theorems 3.5.1 and 4.4.1]. For p|M , the integral Z p is calculated in Theorem 4.3.
Putting all of this together we get the following global theorem.

Theorem 5.2. Let F be a Siegel cuspidal newform of weight l with respect to
B(M), where l is any positive integer and M is square-free, satisfying the assump-
tion stated in Section 5.1. Let 8 be the adelic function corresponding to F , and
let πF be an irreducible component of the cuspidal automorphic representation
generated by 8. Let τ be any irreducible cuspidal automorphic representation of
GL2(A). Let the global characters χ , χ0 and 3, as well as the global section
f3 ∈ I (s, χ, χ0, τ ), be chosen as above. Then the global integral (5-4) is given by

(5-6) Z(s, f3, 8̄)=
(∏

p≤∞

Yp(s)
) L(3s+ 1/2, π × τ̃ )

L(6s+ 1, ω−1
τ )L(3s+ 1, τ̃ ×AI(3))

with

(5-7) Y∞(s)= a(3) i l+l2
a+

2
πD−3s−l/2

·
(4π)−3s+3/2−l

6s+ 2l + l2− 1
0
(
3s+ l − 1+ (ir)/2

)
0
(
3s+ l − 1− (ir)/2

)
0(3s+ l − l1/2− 1/2)

.

Here, AI(3) is the automorphic representation of GL2(A) obtained from 3 via
automorphic induction. The factor Yp(s) is one for p - M N. For p - M, p|N ,
the factor Yp(s) is given in [Pitale and Schmidt 2009c, Theorem 3.5.1]. For p|M ,
we have Yp(s) = L p(6s + 1, ω−1

τp
) L
(
3s + 1, τ̃p ×AI(3p)

)
Y ′p(s), where Y ′p(s) is

given in Theorem 4.3. The number r and a+ are as in the archimedean calculation
in [Pitale and Schmidt 2009c], and the constant a(3) is defined in Section 5.1.

5.3. Special values of L-functions. In this section, we will use Theorem 5.2 to
obtain a special value result for the L-function in the case that τ corresponds to
a holomorphic cusp form of the same weight as F . Let 9 ∈ Sl(N , χ ′), the space
of holomorphic cusp forms on the complex upper half plane h1 of weight l with
respect to 00(N ) and nebentypus χ ′. Here N =

∏
p pn p is any positive integer and

χ ′ is a Dirichlet character modulo N . We have as a Fourier expansion

9(z)=
∞∑

n=1

bne2π inz.
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We will assume that 9 is primitive, which means that 9 is a newform, a Hecke
eigenform and is normalized so that b1 = 1. Let ω =

⊗
ωp be the character of

A×/Q× corresponding to χ ′. Let K (0)(N ) :=
∏

p|N K (0)(pn p)
∏

p-N GL2(Zp)with
the local congruence subgroups

K (0)(pn)= GL2(Zp)∩

[
1+ pnZp Zp

pnZp Zp

]
as in (4-5). Let K0(N ) :=

∏
p|N K0(p

n p)
∏

p-N GL2(Zp), where

K0(p
n)= GL2(Zp)∩

[
Zp Zp

pnZp Zp

]
.

Evidently, K (0)(N )⊂ K0(N ). Let λ be the character of K0(N ) given by

λ

([
a b
c d

])
:=

∏
p|N

ωp(ap).

With these notations, we now define the adelic function f9 by

f9(γ0mk)= λ(k)
det(m)l/2

(γ i + δ)l
9
(αi +β
γ i + δ

)
,

where γ0 ∈ GL2(Q),
m =

[
α β

γ δ

]
∈ GL+2 (R)

and k ∈ K0(N ). Define a character χ0, as in the previous section, with l2 = −l.
Using χ0, extend f9 to a function on GU(1, 1; L)(A). We can take f̂ = f9 in
(5-3) and obtain the section f3. Now, [Pitale and Schmidt 2009c, Lemma 5.4.2]
gives us that, for g ∈ G+(R), the function

µ2(g)−l det(J (g, i12))
l E(g, s; f3)

only depends on Z = g〈i12〉. We define the function E on

H2 := {Z ∈ M2(C) : i( tZ̄ − Z ) is positive definite}

by the formula

E(Z , s)= µ2(g)−l det
(
J (g, i12)

)l E
(

g,
s
3
+

l
6
−

1
2
; f3

)
,

where g ∈ G+(R) is such that g〈i12〉 = Z . The series that defines E(Z , s) is
absolutely convergent for Re(s) > 3− l/2 (see [Klingen 1967]). We assume that
l > 6. Now, we can set s = 0 and obtain a holomorphic Eisenstein series E(Z , 0)
on H2. Let

0G(M, N ) := G(Q)∩G+(R)K G(M, N ).
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We have

0G(M, N )∩ H(Q)= B(M).

Then E(Z , 0) is a modular form of weight l with respect to 0G(M, N ). Its restric-
tion to h2, the Siegel upper half space, is a modular form of weight l with respect
to B(M). By [Harris 1984], we know that the Fourier coefficients of E(Z , 0) are
algebraic.

Set

V (M) :=
[
Sp4(Z) : B(M)

]−1

and define, for any two Siegel modular forms F1, F2 of weight l with respect to
B(M), the Petersson inner product by

〈F1, F2〉 =
1
2 V (M)

∫
B(M)\h2

F(Z) F2(Z) (det(Y ))l−3d X dY.

Arguing as in [Pitale and Schmidt 2009c, Lemma 5.6.2] or [Saha 2009, Proposi-
tion 9.0.5], we get

(5-8) Z
( 1

6 l − 1
2 , f3, 8̄

)
=
〈
E(Z , 0), F

〉
.

Let

0(2)(M) := {g ∈ Sp4(Z) : g ≡ 1 (mod M)}

be the principal congruence subgroup of Sp4(Z). We denote the space of all Siegel
cusp forms of weight l with respect to 0(2)(M) by Sl(0

(2)(M)). For a Hecke
eigenform F ∈ Sl(0

(2)(M)), let Q(F) be the subfield of C generated by all the
Hecke eigenvalues of F . From [Garrett 1992, p. 460], we see that Q(F) is a
totally real number field. Let Sl(0

(2)(M),Q(F)) be the subspace of Sl(0
(2)(M))

consisting of cusp forms whose Fourier coefficients lie in Q(F). Again by [Gar-
rett 1992, p. 460], Sl(0

(2)(M)) has an orthogonal basis {Fi } of Hecke eigen-
forms Fi ∈ Sl(0

(2)(M),Q(Fi )). In addition, if F is a Hecke eigenform such that
F ∈ Sl(0

(2)(M),Q(F)), then one can take F1 = F in the above basis. Hence, we
assume that the Siegel newform F of weight l with respect to B(M) considered in
the previous section satisfies F ∈ Sl(0

(2)(M),Q(F)). Then, arguing as in [Pitale
and Schmidt 2009b, Lemma 5.4.3], we have

(5-9)

〈
E(Z , 0), F

〉
〈F, F〉

∈ Q̄,

where Q̄ is the algebraic closure of Q in C. Let

〈9,9〉1 :=
(
SL2(Z) : 01(N )

)−1
∫
01(N )\h1

|9(z)|2 yl−2dx dy,
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where

01(N ) :=
{[

a b
c d

]
∈ 00(N ) : a, d ≡ 1 (mod N )

}
.

We have the following generalization of [Furusawa 1993, Theorem 4.8.3].

Theorem 5.3. Let l,M be positive integers such that l > 6 and M is square-free.
Let F be a cuspidal Siegel newform of weight l with respect to B(M) such that F ∈
Sl(0

(2)(M),Q(F)), satisfying the assumption from Sect. 5.1. Let 9 ∈ Sl(N , χ ′)
be a primitive form, with N =

∏
pn p , any positive integer, and χ ′, any Dirich-

let character modulo N. Let πF and τ9 be the irreducible cuspidal automorphic
representations of GSp4(A) and GL2(A) corresponding to F and 9. Then

(5-10)
L
( l

2
− 1, πF × τ̃9

)
π5l−8〈F, F〉〈9,9〉1

∈ Q̄.

Proof. Arguing as in the proof of [Pitale and Schmidt 2009c, Theorem 5.7.1],
together with (5-8) and (5-9), we get the theorem. �

Special value results like the one above have been obtained in [Böcherer and
Heim 2006; Furusawa 1993; Pitale and Schmidt 2009b; 2009c; Saha 2009].
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