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Forty-six years ago, McCrimmon defined the notion of a unital quadratic
Jordan algebra. Here we introduce and study the notion of a unital qua-
dratic quasi-Jordan algebra, following earlier work by Loday, Velasquez
and the author.

1. Introduction

In the past century, among nonassociative systems, Jordan algebras and unital qua-
dratic Jordan algebras have occupied a very special place. For instance, Jordan
algebras occur in quantum mechanics in connection with the representation of
physical observables from an algebraic point of view.

It is well known that an associative algebra A gives rise to a Jordan algebra A+

via the Jordan product x ◦ y = 1
2(xy + yx); it also gives rise to a Lie algebra by

means of the product [x, y] = xy − yx . A Jordan algebra is called special if it is
isomorphic to a subalgebra of a Jordan algebra A+ for some associative algebra A;
otherwise it is exceptional. A major problem in the theory of Jordan algebra has
been, from the beginning, the classification of simple Jordan algebras. Its solution
began with the works of Jordan, von Neumann, Wigner and Albert around 1934
for finite-dimensional algebras and was concluded with Zelmanov’s outstanding
work in the general case [Albert 1934; Jordan et al. 1934; Zelmanov 1979; 1983].

Jordan algebras also play an important role in others areas of mathematics, such
as differential geometry (exceptional algebras; see for instance [Bertram 2000]),
and the analysis of nonconvex optimization problems over symmetric cones (specif-
ically, Euclidean Jordan algebras; see [Faybusovich 1997] for more details).

Unital quadratic Jordan algebras were introduced by McCrimmon [1966; 1978]
in order to understanding Jordan structures where there is no scalar 1

2 , which neces-
sitate a quadratic approach based in the product xyx instead of x ◦ y= 1

2(xy+ yx).
McCrimmon developed this concept to introduce uniform methods in the study
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of Jordan algebras over characteristic 2. In a strict sense, unital quadratic Jordan
algebras are not algebras, because they do not have a bilinear product; however,
their connection to Jordan algebras motivated this terminology.

More recently, Loday [1993; 2001] discovered interesting generalizations of
associative and Lie algebras, which are now well known as dialgebras and Leibniz
algebras. All this leads in a natural way to the question of finding a similar ana-
logue for Jordan algebras, and study the unital quadratic Jordan algebras associated
to these new structures. With this purpose, we introduced in [Velásquez and Felipe
2008] the notion of quasi-Jordan algebras.

More specifically, a Leibniz algebra is a generalization of a Lie algebra where
the skew-symmetry of the bracket is dropped and the Jacobi identity is changed
by the Leibniz identity. Loday observed that the relationship between Lie algebras
and associative algebras translate into an analogous relationship between Leibniz
algebras and so-called dialgebras, which are a generalization of associative alge-
bras possessing two products: Namely, a dialgebra over a field K is a K-vector
space D equipped with two associative products

a : D× D→ D, ` : D× D→ D

satisfying the identities

x a (y a z)= x a (y ` z),(1)

(x ` y)a z = x ` (y a z),(2)

(x ` y)` z = (x a y)` z.(3)

We say that e ∈ D is a bar unit of D if for all x ∈ D we have e` x = x = x a e.
Loday showed that any dialgebra (D,`,a) becomes a Leibniz algebra under

the Leibniz bracket [x, y] = x a y− y ` x .
Our notion of quasi-Jordan algebra bears to Leibniz algebras a relationship

similar to the one between Jordan algebras and Lie algebras. More precisely, in
[Velásquez and Felipe 2008] we attached a quasi-Jordan algebra Q Jx to any Q-
Jordan element x in a Leibniz algebra. Soon, Kolesnikov [2008] and Bremner
[2010] (see also [Bremner and Peresi 2010]) found independently an interesting
particular case of quasi-Jordan algebras, in which the analysis of its derivations
has a promising future (see [Felipe 2009]). We observe that in a dialgebra over a
field of characteristic other than 2 the Jordan quasiproduct takes the form

(4) x G y := 1
2(x a y+ y ` x).

In other words, any dialgebra over a field of characteristic other than 2 leads to a
quasi-Jordan algebra.
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In this paper we generalize the notion of unital quadratic Jordan algebras, be-
ginning with dialgebras. As we will see, one arrives to a new structure (the unital
quadratic quasi-Jordan algebra) which include the notion introduced by McCrim-
mon in 1966.

2. Definitions and basic examples

Definition 1 [McCrimmon 2004, page 83]. A unital quadratic Jordan algebra J
consists of a 8-module on which a product Ux y is defined which is linear in y and
quadratic in x (i.e., U : x 7→ Ux is a mapping of J into End8(J ), homogeneous
of degree 2), together with a choice of a unit element e, such that the following
operator identities hold, where we have defined

(5) Vx,yz = (Ux+z −Ux −Uz)y

for all x, y, z ∈ J :

(a) Ue = Id.

(b) Vx,yUx =Ux Vy,x .

(c) UUx y =UxUyUx .

Any associative algebra A determines a quadratic Jordan algebra Q A+ with the
product Ux y = xyx .

In his original paper, McCrimmon [1966] included in the definition of unital
quadratic Jordan algebras the condition that the identities (b) and (c) remain valid
under extensions of the ring of scalars, and pointed out that this condition is equiva-
lent to the assumption that the linearizations of the identities hold. He subsequently
eliminated this requirement [1978; 2004]. We return to this point in Section 3.

Definition 2. A unital quadratic quasi-Jordan algebra over a field K is a quadru-
ple (=,U,W, e), where = is a K -vector space, e is a distinguished element of =,
and U and W are maps a 7→ Ua and a 7→ Wa of = into EndK (=) satisfying the
following axioms:

(QQJ1) Ue = Id and We e = e.

(QQJ2) WzUx Vy,x =Wz Vx,yUx for all x, y, z ⊂ =, in the notation of (5).

(QQJ3) UUx y =UxUyUx , for every x, y ⊂ =.

(QQJ4) Uλx e = λ2Ux e for any x ∈ =.

We say that e is the unit of the unital quadratic quasi-Jordan algebra.

The need for a second operator W arises as follows. We wish to include split
quasi-Jordan algebras (where the product G is right commutative) among unital
quadratic quasi-Jordan algebras. But in general, it is not true that Ux Vy,x = Vx,yUx
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for unital quadratic quasi-Jordan algebras, as will become clear after Lemma 4. The
operator W is responsible, so to speak, for ensuring that U( · ) and V( · ,· ) “commute”
(QQJ2). Moreover, we want to be able to construct quasi-Jordan algebras from
unital quadratic quasi-Jordan algebras (Section 4).

Lemma 3. Any unital quadratic Jordan algebra is a unital quadratic quasi-Jordan
algebra in which Wa =Ua for all a ∈=. In this case Ux is K-quadratic with respect
to x.

Proof. This is immediately checked from the definitions. �

The real motivation for Definition 2 is the following lemma.

Lemma 4. Let (D,`,a , e) be a unital K-dialgebra. We need not suppose that the
field K is of characteristic other than 2. Define

Ux y = (x ` y)a x = x ` (y a x), Wx y = (x a y)a x = x a (y a x).

Then (D,U,W, e) is a unital quadratic quasi-Jordan algebra, for which U and W
are homogeneous of degree 2 (as maps D→ EndK (D)).

The unital quadratic quasi-Jordan algebra built from a unital dialgebra D will
be denoted by (Q Q(D), e).

Proof. It is clear that Uex = x for all x ∈ D. Next, Wee = (e a e) a e = e.
The homogeneity condition — that is, Uλx y = λ2Ux y and Wλx y = λ2Wx y for any
x, y ∈ = and any scalar λ— is also easy to check.

To show that QQJ3 holds, we write

UUx yz =U(x`y)ax z =
(
((x ` y)a x)` z

)
a ((x ` y)a x)

= ((x ` y)a x)`
(
z a ((x ` y)a x)

)
= ((x ` y)a x)`

(
z a (x ` (y a x))

)
= ((x ` y)a x)`

(
z a (x a (y a x))

)
= ((x ` y)` x)`

(
z a (x a (y a x))

)
= (x ` y)`

(
x ` (z a (x a (y a x)))

)
= (x ` y)`

(
(Ux z)a (y a x)

)
=UxUyUx z.

To simplify the rest of the proof we introduce some notation. If a1, a2, . . . , an

are elements of D and 1≤ k ≤ n, we set

a1a2 . . . ak−1âkak+1 . . . an−1an

= (a1 ` a2 ` · · · ` ak−2 ` ak−1)` ak a (ak+1 a ak+2 a · · · a an−1 a an),

where the right-hand side is well defined by associativity.
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Next we verify the axiom QQJ2. We have

WcUx Vy,x z = WcUx [(y` x)a z+ (z` x)a y]

= Wc
[(

x ` ((y` x)a z)
)
a x+

(
x ` ((z` x)a y)

)
a x
]

=
(
ca ((x ` ((y` x)a z))a x)

)
ac+

(
ca ((x ` ((z` x)a y))a x)

)
ac

= ĉxyxzxc+ ĉxzxyxc;

on the other hand

WcVx,yUx z = WcVx,y((x ` z)a x)

= Wc
[(
(x ` y)a ((x ` z)a x)

)
+
(
(((x ` z)a x)` y)a x

)]
= (ca ((x ` y)a ((x ` z)a x)))ac+

(
ca ((((x ` z)a x)` y)a x)

)
ac

= ĉxyxzxc+ ĉxzxyxc.

Thus, QQJ2 follows. Finally that Ux and Wx belong to EndK (D) for any x ∈ D
is evident. �

It is not hard to see that Ux Vy,x and Vx,yUx need not coincide for unital quadratic
quasi-Jordan algebras. In fact, from the proof of Lemma 4 it follows that

Ux Vy,x z =
(
x ` ((y ` x)a z)

)
a x +

(
x ` ((z ` x)a y)

)
a x,(6)

Vx,yUx z =
(
(x ` y)a ((x ` z)a x)

)
+
(
(((x ` z)a x)` y)a x

)
.(7)

Taking x = e, one obtains from (6) that UeVy,ez= y`eaz+z`ea y, and from (7)
that Ve,yUez = y a z+ z ` y. Thus, for nonzero y ∈ Z B(D) we have UeVy,ee = 0,
but Ve,yUee = 2y, which is nonzero if the characteristic is not 2.

3. Linearization

We now turn to the “linearization interpretation” of the axioms in Definition 2. We
restrict ourselves to the case of unital quadratic quasi-Jordan algebras (Q Q(D), e).

Recall that in the proof of Lemma 4 we used the equality

Vx,yz = (x ` y)a z+ (z ` y)a x .

Recall also that Ux y = (x ` y)a x . If we replace x by x+αz in this latter equality,
we obtain

Ux+αz y =Ux y+ (Vx,yz)α+ (Uz y)α2
;

that is, we can consider to Vx,y as the “linearization” of Ux , which justifies its
presence in axiom QQJ2.

One can see, after a cumbersome calculation, that if the field of scalars over
which a unital quadratic quasi-Jordan algebra (Q Q(D), e) is defined has at least
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four elements, the linearization of QQJ2 is

(8) Wv(Ux Vy,wz+Vw,Vy,x zx)=Wv(Vw,yUx z+Vx,y Vw,zx) for v, x, y, z, w ∈ D.

If the field of scalars has at least five elements, linearizing QQJ3 we obtain

(9) UxUy Vx,wz+ Vw,UyUx zx = VVw,y x,zUx y,

for all x, y, z, w ∈ D. Thus, if D is a dialgebra with a bar unit defined over a field
with at least five elements, the axioms QQJ2 and QQJ3 for (Q Q(D), e) can be
linearized in the form (8) and (9) respectively.

4. Relation to quasi-Jordan algebras

Let (D,`,a, e) be a unital dialgebra. The unital quadratic quasi-Jordan algebra
(Q Q(D), e) is restrictive, that is, it satisfies the condition

(10) Vz,(V(Vy,ye),x e)e−V(Vz,(Vy,ye)e),x e = 2Vy,(Vz,(Vy,x e)e−V(Vz,ye),x e)e,

for all x, y, z ∈ =. Indeed, (10) is the Bremner–Kolesnikov identity for the quasi-
Jordan product defined from dialgebras [Bremner 2010; Felipe 2009; Kolesnikov
2008].

It is well known that any unital Jordan algebra (J, •, e) over a field of charac-
teristic other than 2 gives rise to a unital quadratic Jordan algebra (and so also a
unital quadratic quasi-Jordan algebra) for which, if Rx y denotes the product of y
by x ,

Ux y = (2R2
x − Rx2)y and x • y = 1

2(Ux+y −Ux −Uy)e = Kx,ye.

At the same time, Bremner [2010] has shown that the Bremner–Kolesnikov identity
holds in Jordan algebras. Hence, we have

K(Ka,(Kb,be)e),ce− Ka,(K(Kb,be),ce)e = 2K(K(Ka,be),ce−Ka,(Kb,ce)e),be,

for all a, b, c∈ J . Since Vx,y and Kx,y act differently on a element, this last equality
is distinct from (10). This is not surprising, because in general the quasi-Jordan
algebra arising from a dialgebra is not a Jordan algebra.

We know that by means of the right and left products of a K-dialgebra over a
field K of characteristic other than 2, we can build a new product on the same
underlying vector space (see below after the next definition) with respect to which
it becomes a quasi-Jordan algebra (in fact, this new product is right commutative).
See [Velásquez and Felipe 2008; 2009] for details.

Definition 5. A quasi-Jordan algebra is a vector space = over a field K of a char-
acteristic other than 2 equipped with a bilinear product G : =×=→= such that

(11) x G (y G z)= x G (z G y) (right commutativity)
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and

(12) (y G x) G x2
= (y G x2) G x (right Jordan identity)

for all x, y, z ∈ =, where x2
= x G x . A unit of a quasi-Jordan algebra = is an

element e ∈ = such that x G e = x for all x ∈ =.

Example 6. As noted earlier, quasi-Jordan algebras appear in the study of the
product

(13) x G y := 1
2(x a y+ y ` x),

where x and y are elements in a dialgebra (D,`,a) over a field K of characteristic
other than 2. The quasi-Jordan algebra defined over D with the product (13) is
denoted by (=(D), G).

From the results above we see that if D has a bar unit e, our construction defines
over D a unital quadratic quasi-Jordan algebra (Q Q(D), e). In this case we have:

Lemma 7. For any x ∈ Q Q(D), the linear transformation Ux can be recovered as

Ux y = (2R2
x − Rx2)y,

where Rx is right multiplication by x (that is, the element of End(=(D)) defined by
Rx y = y G x). The product G in ((=(D), G), e) is recovered as y G x = 1

2 Vx,ye.

Proof. We prove the first statement; the proof of the equality y G x = 1
2 Vx,ye is

similar. In fact,

(2R2
x − Rx2)y

= 2(y G x) G x − y G (x G x)

=
1
2

(
(yax+x`y)ax+x`(yax+x`y)

)
−

1
4

(
ya(xax+x`x)+(xax+x`x)`y

)
= (x ` y)a x =Ux y. �

For a quasi-Jordan algebra = we introduce

Z r (=)= {z ∈ = : x G z = 0 for all x ∈ =}.

We denote by=ann the subspace of= spanned by elements of the form xGy−yGx ,
with x, y ∈ =, and call it the annihilator ideal of the quasi-Jordan algebra =. Then
= is a Jordan algebra if and only if =ann

= {0}. It follows from right commutativity
(11) that in any quasi-Jordan algebra

x G (y G z− z G y)= 0.

The last identity implies that =ann
⊂ Z r (=). One can prove that both =ann and

Z r (=) are two-sided ideals of =. Now recall from [Velásquez and Felipe 2008]
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that if = is a unital quasi-Jordan algebra, with a specific unit e, then

(14) =
ann
= Z r (=), =ann

= {x ∈ = : e G x = 0}.

It is now clear that units in quasi-Jordan algebras are not unique; indeed, the set of
units Ur (=) of = is given by

Ur (=)= {x + e : x ∈ =ann
}.

Definition 8. Let = be a quasi-Jordan algebra and let I be an ideal in = such that
=

ann
⊂ I ⊂ Z r (=). We say that = is split over I if there is a subalgebra J of = such

that = = I ⊕ J as a direct sum of subspaces.

Clearly, if = is split over an ideal I with complement J , then J is a Jordan
algebra with respect to the product G restricted to J . This is equivalent to saying
that (J, G|J ) is a Jordan algebra. In fact, for x, y ∈ J , then x G y, y G x ∈ J and
x G y− yGx ∈ I ∩ J ={0}; that is, G|J is commutative and therefore the right Jordan
identity over = implies that (J, G|J ) is a Jordan algebra.

Additionally, for a, b ∈ I and x, y ∈ J we have

(a+ x) G (b+ y)= a G y+ x G y,

because I ⊂ Z r (=).
Reciprocally, let (J, •) be a Jordan algebra and let M be a Jordan bimodule over

J . We consider the direct sum = := M⊕ J and we define the product G over = by

(a+ x) G (b+ y)= ay+ x • y,

for all a, b ∈ M and x, y ∈ J . Then (=, G) is a quasi-Jordan algebra, called the
demisemidirect product of M with J .

It is possible to see that =ann ∼= M J and

Z r (=)= M ⊕{y ∈ Z(J ) : uy = 0 for all u ∈ M},

where Z(J )= {y ∈ J : x • y = 0 for all x ∈ J }. Finally, M ∼= M⊕{0} is an ideal of
= such that =ann

⊂ M ⊂ Z r (=). In addition, =/M ∼= J and = is split over M with
complement J .

Let (=, •) be an algebra. Assume that == I⊕ J , where (J, •) is a Jordan algebra
and I is an ideal of =. In general I is not a Jordan bimodule over J with respect
to the product • . However, we can define a new product on = by

(15) (a+ x) G (b+ y)= a • y+ x • y,

for all a, b ∈ I and x, y ∈ J .

Lemma 9. Let (=, •) be an algebra such that = = I ⊕ J , where (J, •) is a Jordan
algebra and I is an ideal of =. Suppose that (a • x2) • x = (a • x) • x2 for all a ∈ I
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and x ∈ J , where x2
= x • x. Then (=, G) is a quasi-Jordan algebra, where G is the

product defined by (15). Moreover =ann
⊂ I ⊂ Z r (=).

We refer to (=, G) as the demisemidirect product of I with J .

Proof. The product (15) is right commutative; in fact, if a, b, c ∈ I and x, y, z ∈ J ,

(a+ x) G ((b+ y) G (c+ z))= a • (y • z)+ x • (y • z)

= a • (z • y)+ x • (z • y)

= (a+ x) G ((c+ z) G (b+ y)).

Observe that (a+ x) G (a+ x)= a • x + x2. Now

((b+ y) G (a+ x)) G (a • x + x2)= (b • x) • x2
+ (y • x) • x2

= (b • x2) • x + (y • x2) • x

= ((b+ y) G (a • x + x2)) G (a+ x).

Thus, the right Jordan identity holds. On the other hand,

(a+ x) G (b+ y)− (b+ y) G (a+ x)= a • y− b • x ∈ I.

It shows that =ann
⊂ I . Finally, we have

(a+ x) G b = (a+ x) G (b+ 0)= a • 0+ x • 0= 0,

which implies that I ⊂ Z r (=). �

Theorem 10. Let = be a quasi-Jordan algebra and let I be an ideal of = such that
=

ann
⊂ I ⊂ Z r (=). Then = is split over I if and only if = is the demisemidirect

product of I with a Jordan algebra J .

Proof. This follows from Lemma 9 and the discussion preceding that lemma. �

The property of being a split quasi-Jordan algebra is important for us, among
other reasons because every quasi-Jordan algebra is isomorphic to a subalgebra of
a split quasi-Jordan algebra.

Now suppose that = is a split quasi-Jordan algebra with a specific unit e. Since,
by (14), =ann and Z r (=) coincide, there is a Jordan algebra J such that ===ann

⊕J .
Because e ∈ = is a unit in =, there are elements a ∈ =ann and ε ∈ J such that

e = a+ ε. If b+ y ∈ =, with b ∈ =ann and y ∈ J , we have

b+ y = (b+ y) G e = (b+ y) G (a+ ε)= b G ε+ y G ε = (b+ y) G ε.

The last equality implies that ε is a unit in = and a unit in the Jordan algebra J .
Also, ε is the only element in J such that a+ ε is a unit in = for all a ∈ =ann. This
shows that the units in a split quasi-Jordan algebra are of the form a+ε, where a ∈
=

ann and ε is the unique unit of a unital Jordan algebra; hence Ur (=)==
ann
⊕{ε}.
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Theorem 11. Let == =ann
⊕ J be a unital split quasi-Jordan algebra and ε ∈ J a

unit of = which is also the unique unit of the Jordan algebra J . Then (=,U,W, ε)
is a unital quadratic quasi-Jordan algebra in which U and W are defined as follows
(if x, y ∈ J , we denote the product of x with y by xy instead of x G y):

(16) Ua+x(b+ y)= b+Ux y, Wa+x(b+ y)=−a G y+ (xy),

where a, b ∈ =ann, x, y ∈ J and Ux y = (2R2
x − Rx2)y. Here Rx y = yx = xy.

As the reader probably has noticed, where no misunderstanding can arise, we
will use the letter U to denote simultaneously the map Ua+x for any a+ x ∈ = and
the map Uz for every z ∈ J .

Proof. Keep in mind that J is a Jordan algebra. We have Uε(b+ y) = b+Uε y =
b+ y; thus Uε = Id . At the same time, Wεε = ε.

Obviously Ua+x(b+ y) and Wa+x(b+ y) are linear with respect to (b+ y) and
Uλ(a+x)ε =Uλxε = λ

2Uxε = λ
2Ua+xε.

Next,

(17) UUa+x (b+y)(c+ z)=Ub+Ux y(c+ z)= c+UUx yz.

On the other hand,

Ua+xUb+yUa+x(c+ z)=Ua+xUb+y(c+Ux z)(18)

=Ua+x(c+UyUx z)= c+UxUyUx z;

since UUx yz =UxUyUx z. From (17) and (18) we have

UUa+x (b+y) =Ua+xUb+yUa+x .

Next we check condition QQJ2. First we obtain

(19) V(b+y),(a+x)(c+ z)= (U((b+c)+(y+z))−U(b+y)−U(c+z))(a+ x)

= (a+Uy+zx)− (a+Uy x)− (a+Uzx)

=−a+ (Uy+zx −Uy x −Uzx)=−a+ Vy,x z.

Similarly, V(a+x),(b+y)(c+ z)=−b+ Vx,yz. Hence

Ua+x V(b+y),(a+x)(c+ z)=Ua+x(−a+ Vy,x z)=−a+Ux Vy,x z,

which implies that

(20) Wd+wUa+x V(b+y),(a+x)(c+ z)=Wd+w(−a+Ux Vy,x z)

=−d G (Ux Vy,x z)+w(Ux Vy,x z).
Observe also that

V(a+x),(b+y)Ua+x(c+ z)= V(a+x),(b+y)(c+Ux z)=−b+ Vx,yUx z,
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and from this we conclude that

Wd+wV(a+x),(b+y)Ua+x(c+ z)=Wd+w(−b+ Vx,yUx z)(21)

=−d G (Vx,yUx z)+w(Vx,yUx z).

Using the commutativity property Ux Vy,x = Vx,yUx of Jordan algebras, it fol-
lows from (20) and (21) that Wd+wUa+x V(b+y),(a+x) =Wd+wV(a+x),(b+y)Ua+x for
all (a+ x), (b+ y), (d +w) ∈ =. This concludes the proof of the theorem. �

Let = = =ann
⊕ J be a unital split quasi-Jordan algebra with ε ∈ J as unit,

then we denote ℘(=) for the unital quadratic quasi-Jordan algebra (=,U,W, ε)
corresponding to the previous theorem.

5. Split unital quadratic quasi-Jordan algebras

For a unital quadratic quasi-Jordan algebra (=,U,W, e) we put

Z r (=)= {z ∈ = :Wx z = 0 for all x ∈ =}.

We denote by =ann the subspace of = spanned by elements of the form

(Ux Vy,x − Vx,yUx)z, with x, y, z ∈ =.

= is a unital quadratic Jordan algebra if and only if =ann
={0} and Ux is K-quadratic

with respect to all x ∈ =. From QQJ2 follows that =ann
⊂ Z r (=).

Proposition 12. If (=,U,W, e) is a unital quadratic quasi-Jordan algebra, the
unit e does not belong to =ann.

Proof. Otherwise, one can write e =
∑
(Uxi Vyi ,xi − Vxi ,yi Uxi )zi , where the sum is

finite. Applying We to this equality and taking into account QQJ1 and QQJ2 we
obtain e = 0, which is impossible. �

In fact a more general statement holds: e does not belong to Z r (=).

Definition 13. We say that a unital quadratic quasi-Jordan algebra (=,U,W, e) is
split if there exists a subspace Q J such that = = =ann

⊕ Q J as a direct sum of
subspaces and Ux Q J ⊂ Q J for all x ∈ Q J .

Lemma 14. Let (=,U,W, e) be a split unital quadratic quasi-Jordan algebra such
that = = =ann

⊕ Q J. Then, if U is K-quadratic, Q J is a unital quadratic Jordan
algebra.

Proof. Take x, y, z ∈ Q J . We have (Ux Vy,x − Vx,yUx)z ∈ =ann
∩ Q J ; therefore

(Ux Vy,x − Vx,yUx)z = 0,

so Ux Vy,x = Vx,yUx for all x, y ∈ Q J . This shows that (Q J,U|Q J ,W|Q J , e) is a
unital quadratic Jordan algebra. �
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Now suppose that (D,`,a , e) is a unital split dialgebra such that D=Dann
⊕A,

where A is an associative algebra (so ` = a on A) and e is a bar unit of D which
is the unique unit of A. (Dann, the annihilator ideal of D, is the subspace of D
spanned by elements of the form x a y − x ` y; see [Velásquez and Felipe 2009]
for details). Then

(a+ i)a (b+ j)= (a a j)+ i j and (a+ i)` (b+ j)= (i ` b)+ i j,

where a, b ∈ Dann and i, j ∈ A, moreover Dann is spanned by elements of the form
a a i and k ` b.

Theorem 15. If D = Dann
⊕ A is a unital split dialgebra as above, the unital

quadratic quasi-Jordan algebra (Q Q(D), e) is split.

Proof. Since Ux y = (x ` y)a x = xyx ∈ A if x, y ∈ A, it is sufficient to check that
Dann
= (Q Q(D))ann. Now, it is easy to show through calculation that the term in

the expression

(22) U(a+i)V(b+ j),(a+i)(c+ k)− V(a+i),(b+ j)U(a+i)(c+ k)

that belongs to A is (i(( j i)k)) i+(i((ki) j)) i−((i j)((ik)i))−(((ik) i) j)= T ; but
since A is associative we conclude that T = 0. The remaining four terms are of
the form d a l and m ` f . It follows that (Q Q(D))ann

⊂ Dann. On the other hand,
taking i = j = e in (22), this expression will be equal to aa k+k`a−ba k−k`b.
Setting b = 0 we conclude that the elements of the form d a l and m ` f (which
span Dann) can be obtained by means of (22). Thus Dann

⊂ (Q Q(D))ann. This
completes the proof of the theorem. �

Proposition 16. Let ℘(=) = (=,U,W, ε) be the unital quadratic quasi-Jordan
algebra associated to a unital split quasi-Jordan algebra = = =ann

⊕ J with ε ∈ J
as a unit. Then ℘(=) is split.

Proof. It follows from (16) that Ux y ∈ J for any x, y ∈ J . At the same time,

(Ua+x V(b+y),(a+x)−V(a+x),(b+y)Ua+x)(c+z)= (−a+Ux Vy,x z)−(−b+Vx,yUx z)

= b−a,

where a, b, c∈=ann and x, y, z ∈ J . We obtain b=Ux V(b+y),x−Vx,(b+y)Ux)(c+z)
by setting a = 0. Since b ∈ =ann is arbitrary, this implies that ℘(=)ann

= =
ann. �

6. Concluding remarks

We propose a few possible directions of work:

(i) Inner ideals play a role in the theory of quadratic Jordan algebras analogous
to that played by the one-sided ideals in the theory of associative algebras. It
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is therefore important to develop a corresponding ideal theory for quadratic
quasi-Jordan algebras.

(ii) Although representations do not play as much of a role in the theory of Jordan
algebras as they do in the associative or Lie theories, we propose to develop a
representation theory for unital quadratic quasi-Jordan algebras. There exists
some previous work of McCrimmon about this subject for quadratic Jordan
algebras.

(iii) One of the most controversial concepts about dialgebras and quasi-Jordan al-
gebras, one which is still under study, is that of a regular or invertible element.
We think the reason for this is the nonuniqueness of the unit in these algebraic
structures. Hence, an interesting subject of study could be the notion of a
regular element on a unital quadratic quasi-Jordan algebra. Maybe this could
help unify views and opinions in the near future.

(iv) There are some techniques for establishing identities in Jordan algebras and
quadratic Jordan algebras, among which the best known are Macdonald’s prin-
ciple, Kocher’s principle and McCrimmon’s principle. It would be useful to
find corresponding principles for unital quadratic quasi-Jordan algebras with
the help of which we may know, for instance, whether (8) and (9) hold for
any unital quadratic quasi-Jordan algebra.
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