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Recently, Cappell and Miller extended the classical construction of the an-
alytic torsion for de Rham complexes to coupling with an arbitrary flat
bundle and the holomorphic torsion for ∂̄-complexes to coupling with an
arbitrary holomorphic bundle with compatible connection of type (1, 1).
Cappell and Miller also studied the behavior of these torsions under metric
deformations. On the other hand, Mathai and Wu generalized the classical
construction of the analytic torsion to the twisted de Rham complexes with
an odd degree closed form as a flux and later, more generally, to the Z2-
graded elliptic complexes. Mathai and Wu also studied the properties of an-
alytic torsions for the Z2-graded elliptic complexes, including the behavior
under metric and flux deformations. In this paper we define the Cappell–
Miller holomorphic torsion for the twisted Dolbeault-type complexes and
the Cappell–Miller analytic torsion for the twisted de Rham complexes. We
obtain variation formulas for the twisted Cappell–Miller holomorphic and
analytic torsions under metric and flux deformations.

1. Introduction

Ray and Singer, in the celebrated works [1971; 1973], defined the analytic torsion
for de Rham complexes and the holomorphic torsion for ∂-complexes of complex
manifolds. They studied properties of these torsions, including the behavior under
metric deformations and coupled the Riemannian Laplacian and the ∂-Laplacian
with unitary flat vector bundles and obtained self-adjoint operators. Hence, the
analytic torsion and holomorphic torsion are real numbers in the acyclic cases
considered by Ray and Singer and are expressed as elements of real determinant
line in the nonacyclic case.

Recently, Cappell and Miller [2010] extended the classical construction of the
analytic torsion to coupling with an arbitrary flat bundle and the holomorphic tor-
sion to coupling with an arbitrary holomorphic bundle with compatible connection
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of type (1, 1); see Definition 3.1. This includes both unitary and flat (not nec-
essarily unitary) bundles as special cases. However, in this general setting, the
associated operators are not necessarily self-adjoint and the torsions are complex-
valued. Cappell and Miller also studied the behavior of these torsions under metric
deformations.

Mathai and Wu [2008; 2010b] generalized the classical construction of the Ray–
Singer torsion for de Rham complexes to the twisted de Rham complex with an
odd degree closed differential form H as a flux. Later, in [Mathai and Wu 2010a],
they extended this to Z2-graded elliptic complexes. The definitions use pseudo-
differential operators and residue traces. Mathai and Wu also studied the properties
of analytic torsion for Z2-graded elliptic complexes, including the behavior under
the variation of metric and flux.

Let E be a holomorphic bundle with a compatible type-(1, 1) connection D
(see Definition 3.1) over a complex manifold W of complex dimension n and H ∈
A0,1(W,C) be a ∂-closed differential form of type (0, odd). In Definition 3.5,
for each p, 1 ≤ p ≤ n, we define the twisted Cappell–Miller holomorphic torsion
τholo,p(W, E, H) as a nonvanishing element of the determinant line:

τholo,p(W, E, H) ∈ Det H p,•
∂E
(W, E, H)⊗

(
Det H•,n−p

D1,0 (W, E, H)
)
(−1)n+1

.

We show that the variation of the twisted Cappell–Miller holomorphic torsion
τholo,p(W, E, H) under the deformation of the metric is given by a local formula;
see Theorem 3.8. We also show that along any deformation of H that fixes the
cohomology class [H ] and the natural identification of determinant lines, the vari-
ation of the twisted Cappell–Miller holomorphic torsion τholo,p(W, E, H) under
the deformation of the flux is given by a local formula; see Theorem 3.12.

Let E be a complex flat vector bundle over a closed manifold M endowed with
a flat connection ∇ and let H be an odd degree flux form. Then the Cappell–Miller
analytic torsion τ(∇,H) (see Definition 4.2) for the twisted de Rham complexes is
an element of Det H•(M,E⊕E′,H), where E′ is the dual of the vector bundle E.
We show that the variation of the twisted Cappell–Miller analytic torsion τ(∇,H)

under the deformation of the metric is given by a local formula; see Theorem 4.3.
We also show that along any deformation of H that fixes the cohomology class [H]
and the natural identification of determinant lines, the variation of the twisted
Cappell–Miller analytic torsion τ(∇,H) under the deformation of the flux is given
by a local formula; see Theorem 4.4. In particular, we show that if the manifold M
is an odd-dimensional closed oriented manifold, then the twisted Cappell–Miller
analytic torsion is independent of the Riemannian metric and the representative H

in the cohomology class [H]. See also [Su 2011, Section 6]. We also compare the
twisted Cappell–Miller analytic torsion with the twisted refined analytic torsion
[Huang 2010]; see Theorem 4.5.
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In the paper just cited we defined and studied the refined analytic torsion of
Braverman and Kappeler [2007; 2008b] for the twisted de Rham complexes. Later,
Su [2011] defined and studied the Burghelea–Haller [2007; 2008; 2010] analytic
torsion for the twisted de Rham complexes and compared the twisted Burghelea–
Haller torsion with the twisted refined analytic torsion. Su [2011] also briefly
discussed the twisted Cappell–Miller analytic torsion when the dimension of the
manifold is odd.

The rest of the paper is organized as follows. In Section 2, we define and cal-
culate the Cappell–Miller torsion for the Z2-graded finite-dimensional bigraded
complex. In Section 3, we first define the Dolbeault-type bigraded complexes
twisted by a flux form and its (co)homology groups. We then define the Cappell–
Miller holomorphic torsion for the twisted Dolbeault-type bigraded complexes. We
prove variation theorems for the twisted Cappell–Miller holomorphic torsion under
metric and flux deformations. In Section 4, we first define the de Rham bigraded
complex twisted by a flux form and its (co)homology groups. Then we define
the Cappell–Miller analytic torsion for the twisted de Rham bigraded complex.
We prove variation theorems for the twisted Cappell–Miller analytic torsion under
metric and flux deformations.

Throughout this paper, a bar over an integer means taking the value modulo 2.

2. The Cappell–Miller torsion for a Z2-graded finite-dimensional bigraded
complex

In this section we define and calculate the Cappell–Miller torsion for the Z2-graded
finite-dimensional bigraded complex. For the Z-graded case, see [Cappell and
Miller 2010, Section 6]. Throughout this section k is a field of characteristic zero.

Determinant lines of a Z2-graded finite-dimensional bigraded complex. Given a
k-vector space V of dimension n, the determinant line of V is the line Det(V ) :=∧nV , where

∧nV denotes the n-th exterior power of V . By definition, we set
Det(0) := k. Further, we denote by Det(V )−1 the dual line of Det(V ). Let

C0
= Ceven

=

[m/2]⊕
i=0

C2i ,

C1
= Codd

=

[(m−1)/2]⊕
i=0

C2i+1,

where C i , i = 0, . . . ,m, are finite-dimensional k-vector spaces. Let

(2-1) (C•, d) : · · ·
d
−→ C0 d

−→ C1 d
−→ C0 d

−→ · · ·
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be a Z2-graded cochain complex of finite dimensional k-vector spaces. Denote by
H•(d)= H 0(d)⊕ H 1(d) its cohomology. Set

(2-2)
Det(C•) := Det(C0)⊗Det(C1)−1,

Det(H•(d)) := Det(H 0(d))⊗Det(H 1(d))−1.

Assume that C• has another differential d∗ : Ck
→ Ck−1 giving the complex

(C•, d∗) : · · ·
d∗
←− C0 d∗

←− C1 d∗
←− C0 d∗

←− · · · .

Denote its homology by H•(d∗)= H0(d∗)⊕ H1(d∗). Set

Det(H•(d∗)) := Det(H0(d∗))⊗Det(H1(d∗))−1.

The fusion isomorphisms. (See [Braverman and Kappeler 2007, Section 2.3].)
For two finite-dimensional k-vector spaces V and W , we denote by µV,W the
canonical fusion isomorphism

(2-3) µV,W : Det(V )⊗Det(W )→ Det(V ⊕W ).

For v ∈ Det(V ), w ∈ Det(W ), we have

(2-4) µV,W (v⊗w)= (−1)dim V ·dim WµW,V (w⊗ v).

By a slight abuse of notation, denote by µ−1
V,W the transpose of the inverse of µV,W .

Similarly, if V1, . . . , Vr are finite-dimensional k-vector spaces, we define an
isomorphism

(2-5) µV1,...,Vr : Det(V1)⊗ · · ·⊗Det(Vr )→ Det(V1⊕ · · ·⊕ Vr ).

The isomorphism between determinant lines. For k = 0, 1, fix a direct sum de-
composition

(2-6) Ck
= Bk

⊕ H k
⊕ Ak,

such that Bk
⊕ H k

= (Ker d) ∩ Ck and Bk
= d(Ck−1) = d(Ak−1). Then H k

is naturally isomorphic to the cohomology H k(d) and d defines an isomorphism
d : Ak

→ Bk+1.
Fix ck ∈ Det(Ck) and xk ∈ Det(Ak). Let d(xk) ∈ Det(Bk+1) be the image of xk

under the map Det(Ak)→Det(Bk+1) induced by the isomorphism d : Ak
→ Bk+1.

Then there is a unique element hk ∈ Det(H k) such that

(2-7) ck = µBk ,H k ,Ak
(
d(xk−1)⊗ hk ⊗ xk

)
,

whereµBk ,H k ,Ak is the fusion isomorphism; see (2-5) and [Braverman and Kappeler
2007, Section 2.3].
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Define the canonical isomorphism

(2-8) φC• = φ(C•,d) : Det(C•)−→ Det(H•(d))

by the formula

(2-9) φC• : c0⊗ c−1
1 7→ h0⊗ h−1

1 .

Following the sign convention of [Braverman and Kappeler 2007, (2-14)], Equa-
tion (2.10) of [Huang 2010] introduced a sign-refined version of the canonical
isomorphism (2-8). Here we follow the sign convention of [Cappell and Miller
2010, Section 6].

Similarly, for k = 0, 1, fix a direct sum decomposition

(2-10) Ck
= Bk ⊕ Hk ⊕ Ak,

such that Bk ⊕ Hk = (Ker d∗) ∩ Ck and Bk = d∗(Ck+1) = d∗(Ak+1). Then Hk

is naturally isomorphic to the homology Hk(d∗) and d∗ defines an isomorphism
d∗ : Ak→ Bk−1.

Similarly, fix ck ∈ Det(Ck) and yk ∈ Det(Ak). Let d∗(yk) ∈ Det(Bk−1) denote
the image of yk under the map Det(Ak)→Det(Bk−1) induced by the isomorphism
d∗ : Ak→ Bk−1. Then there is a unique element h′k ∈ Det(H k) such that

(2-11) ck = µBk ,Hk ,Ak

(
d∗(yk+1)⊗ h′k ⊗ yk

)
,

whereµBk ,Hk ,Ak is the fusion isomorphism; see (2-5) and [Braverman and Kappeler
2007, Section 2.3].

Define the canonical isomorphism

(2-12) φ′C• = φ
′

(C•,d∗) : Det(C•)−→ Det(H•(d∗))

by the formula

(2-13) φ′C• : c0⊗ c−1
1 7→ h′0⊗ h′1

−1
.

The Cappell–Miller torsion for a Z2-graded finite-dimensional bigraded com-
plex. Let C• = C0

⊕ C1 and C̃• = C̃0
⊕ C̃1 be finite-dimensional Z2-graded k-

vector spaces. The fusion isomorphism

µC•,C̃• : Det(C•)⊗Det(C̃•)→ Det(C•⊕ C̃•)

is defined by the formula

(2-14) µC•,C̃• := (−1)M(C
•,C̃•)µ

C0,C̃0 ⊗µ
−1
C1,C̃1 ,

where

(2-15) M(C•, C̃•) := dim C1
· dim C̃0.
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Consider the element c := c0 ⊗ c−1
1 of Det(C•). Then, for the bigraded complex

(C•, d, d∗), the Cappell–Miller torsion is the algebraic torsion invariant

(2-16) τ(C•, d, d∗) := (−1)S(C•)φC•(c)(φ′C•(c))−1

∈ Det(H•(d))⊗Det(H•(d∗))−1,

where (−1)S(C•) is defined by the formula

(2-17) S(C•) :=
∑

k=0,1

(
dim Bk−1 · dim Bk+1

+ dim Bk+1
· dim Hk

+ dim Bk−1 · dim H k).
Calculation of the Z2-graded Cappell–Miller torsion. We first compute the tor-
sion in the case that the combinatorial Laplacian 1 := d∗d + dd∗ is bijective.

For k = 0, 1, define

(2-18) Ck
+
:= Ker d∗ ∩Ck, Ck

−
:= Ker d ∩Ck .

The proof of the following proposition is similar to the proof of the Z-graded case
[Cappell and Miller 2010, Section 6.2, Claim B].

Proposition 2.1. Suppose that the combinatorial Laplacian 1 has no zero eigen-
value. Then the cohomology group H•(d)=0 and the homology group H•(d∗)=0.
Moreover,

(2-19) τ(C•, d, d∗)= Det(d∗d|C0
+
) ·Det(d∗d|C1

+
)−1,

Proof. The proof of the first assertion that H•(d)= 0 and H•(d∗)= 0 is standard,
so we skip the proof.

To compute τ(C•, d, d∗) (see (2-16)), we first compute φ′C•(c). For each k =
0, 1, we now have the direct sum decomposition

(2-20) Ck
= d∗Ck+1

⊕ dCk−1.

We also have the isomorphisms

(2-21) d : d∗Ck+1 ∼= dCk, d∗ : dCk ∼= d∗Ck+1.

By (2-18), (2-20) and (2-21), we know that

(2-22) Ck
+
= d∗Ck+1, Ck

−
= dCk−1.

By (2-6), (2-10), (2-21), (2-22) and the first assertion we know that

(2-23) Ck
+
= Bk ∼= Ak, Ck

−
= Bk ∼= Ak .

Let { d∗yk+1,i | 1≤ i ≤ dim Bk } be a basis for Bk = d∗Ck+1 ∼= Ak . Since

d∗d : d∗Ck+1
→ d∗Ck+1
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is an isomorphism, there is a unique vector

xk,i ∈ Bk = d∗Ck+1

such that

(2-24) d∗dxk,i = d∗yk+1,i .

Then { xk,i | 1≤ i ≤ dim Bk } is also a basis for Bk ∼= Ak . Since d : d∗Ck+1
→ dCk

is an isomorphism, it follows that { dxk,i | 1 ≤ i ≤ dim Bk } is a basis for Bk+1
=

dCk ∼= Ak+1. Hence, in view of the decomposition (2-20), we conclude that

{ d∗yk+1,i | 1≤ i ≤ dim Bk } ∪ { dxk−1,i | 1≤ i ≤ dim Bk−1 }

forms a basis for Ck . In particular, by the first assertion and (2-6), we have

(2-25) dim Bk
= dim Bk−1.

With this particular choice of basis, we set

yk+1 := yk+1,1 ∧ · · · ∧ yk+1,dim Bk ∈ Det(Ak+1)

xk−1 := xk−1,1 ∧ · · · ∧ xk−1,dim Bk−1 ∈ Det(Bk−1).

Let d∗yk+1 and dxk−1 be the induced elements in Det(Bk) and Det(Ak). Set

(2-26) ck = µBk ,Ak (d
∗yk+1⊗ dxk−1).

To compute φ′C•(c) (see (2-13)), we need to compute h′k ∈ Det(Hk(d∗))∼= k.
If L is a complex line and x, y ∈ L with y 6= 0, we denote by [x : y] ∈ k the

unique number such that x = [x : y]y. Then

(2-27) h′k = [ck : µBk ,Ak (d
∗yk+1⊗ dxk−1)] by (2-24)

= [µBk ,Ak (d
∗yk+1⊗ dxk−1) : µBk ,Ak (d

∗yk+1⊗ dxk−1)] by (2-26)

= 1.

We next compute φC•(c). By (2-9), we need to compute hk . By our choice of
basis, we have

(2-28) hk = [ck : µBk ,Ak (dxk−1)⊗ xk]

= [µBk ,Ak (d
∗yk+1⊗ dxk−1) : µBk ,Ak (dxk−1)⊗ xk] by (2-26)

= [µBk ,Ak (d
∗dxk ⊗ dxk−1) : µAk ,Bk (dxk−1)⊗ xk] by (2-23), (2-24)

= (−1)dim Bk dim Ak [µBk ,Ak (d
∗dxk ⊗ dxk−1) : µBk ,Ak (xk ⊗ dxk−1)]

= (−1)dim Bk−1 dim Bk+1
Det(d∗d|Ck

+
), by (2-23), (2-25).

Combining (2-16), (2-17), (2-27), (2-28) with the first assertion gives (2-19). �
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We now compute the torsion in the case that the combinatorial Laplacian 1 :=
d∗d+dd∗ is not bijective. For simplicity, we restrict to the case k=C for the rest
of discussion in this section. The operator 1 maps Ck into itself. For an arbitrary
interval I ⊂ [0,∞), let Ck

I ⊂ Ck denote the linear span of the generalized eigen-
vectors of the restriction of 1 to Ck , corresponding to eigenvalue λ with |λ| ∈ I.
Since both d and d∗ commute with1, we have d(Ck

I)⊂Ck+1
I and d∗(Ck

I)⊂Ck−1
I .

Hence, we obtain a subcomplex C•I of C•. We denote by H•I(d) the cohomology of
the complex (C•I, dI) and H•,I(d∗) the homology of the complex (C•I, d∗I). Denote
by dI and d∗I the restrictions of d and d∗ to Ck

I and denote by 1I the restriction
of 1 to Ck

I. Then 1I = d∗IdI + dId∗I. For k = 0, 1, we also denote by Ck
±,I the

restrictions of Ck
±

to Ck
I.

For each λ ≥ 0, we have C• = C•
[0,λ] ⊕ C•(λ,∞). Then H•(λ,∞)(d) = 0 whereas

H•
[0,λ](d) ∼= H•(d) and H•,(λ,∞)(d∗) = 0 whereas H•,[0,λ](d∗) ∼= H•(d∗). Hence

there are canonical isomorphisms

8λ : Det(H•(λ,∞)(d))→ C, 9λ : Det(H•
[0,λ](d))→ Det(H•(d))

8′λ : Det(H•,(λ,∞)(d∗))→ C, 9 ′
∗

λ : Det(H•,[0,λ](d∗))−1
→ Det(H•(d∗))−1.

In the sequel, we will write t for 8λ(t) ∈ C and t ′ for 8′λ(t
′) ∈ C.

Proposition 2.2. Let (C•, d, d∗) be a Z2-graded bigraded complex of finite-dimen-
sional k-vector spaces. Then, for each λ≥ 0,

(2-29) τ(C•, d, d∗)= Det(d∗d|C0
+,(λ,∞)

) ·Det(d∗d|C1
+,(λ,∞)

)−1
· τ(C•

[0,λ], d, d∗),

where we view τ(C•
[0,λ], d, d∗) as an element of Det(H•(d))⊗Det(H•(d∗))−1 via

the canonical isomorphism 9λ ⊗ 9
′∗

λ : Det(H•
[0,λ](d)) ⊗ Det(H•,[0,λ](d∗))−1

→

Det(H•(d))⊗Det(H•(d∗))−1.
In particular, the right side of (2-29) is independent of λ≥ 0.

Proof. Recall the natural isomorphisms

Det(H k
[0,λ](d)⊗ H k

(λ,∞)(d))∼= Det(H k
[0,λ](d)⊕ H k

(λ,∞)(d))(2-30)

= Det(H k(d)),

Det(Hk,[0,λ](d∗)⊗ Hk,(λ,∞)(d∗))∼= Det(Hk,[0,λ](d∗)⊕ Hk,(λ,∞)(d∗))(2-31)

= Det(Hk(d∗)).

From (2-16), Proposition 2.1, (2-30) and (2-31) we obtain the result. �

3. Twisted Cappell–Miller holomorphic torsion

In this section we first review the ∂-Laplacian for a holomorphic bundle with
compatible type (1,1) connection introduced in [Cappell and Miller 2010]. Then
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we define the Dolbeault-type bigraded complexes twisted by a flux form and its
cohomology and homology groups. We define the Cappell–Miller holomorphic
torsion for the twisted Dolbeault-type bigraded complexes. We also prove variation
theorems for the twisted Cappell–Miller holomorphic torsion under metric and flux
deformations.

The ∂-Laplacian for a holomorphic bundle with compatible type (1, 1) connec-
tion. In this section we review some materials from [Cappell and Miller 2010];
see also [Liu and Yu 2010].

Let (W, J ) be a complex manifold of complex dimension n with the complex
structure J and let gW be any Hermitian metric on T W . Let E→W be a holomor-
phic bundle over W endowed with a linear connection D and let hE be a Hermitian
metric on E .

The complex structure J induces a splitting T W ⊗R C = T (1,0)W ⊕ T (0,1)W ,
where T (1,0)W and T (0,1)W are eigenbundles of J corresponding to eigenvalues i
and −i , respectively. Let T ∗(1,0)W and T ∗(0,1)W be the corresponding dual bun-
dles. For 0≤ p, q ≤ n, let

Ap,q(W, E)= 0
(
W,

∧p
(T ∗(1,0)W )⊗

∧q
(T ∗(0,1)W )⊗ E

)
be the space of smooth (p, q)-forms on W with values in E . Set

A•,•(W, E)=
n⊕

p,q=0

Ap,q(W, E).

Let ∂ : Ap,q(W,C)→W p,q+1(W,C) and ∂ : Ap,q(W,C)→ Ap+1,q(W,C) be the
standard operators obtained by decomposing by type the exterior derivative

d = ∂ + ∂

acting on complex-valued smooth forms of type (p, q). From d2
= 0, we have

∂2
= 0, ∂2

= 0.
Since E is holomorphic, the operator ∂ on A•,•(W,C) has a unique natural

extension to A•,•(W, E) (see [Cappell and Miller 2010, page 139])

∂E : Ap,q(W, E)→W p,q+1(W, E).

Under the splitting 0(W, (T ∗W ⊗R C)⊗C E) = A1,0(W, E)⊕ A0,1(W, E), the
connection D decomposes as a sum D = D1,0

⊕ D0,1 with

D1,0
: 0(W, E)→ A1,0(W, E), D0,1

: 0(W, E)→ A0,1(W, E).

Extend the connection D on0(W, E) in a unique way to A•,•(W, E) by the Leibniz
formula [Berline et al. 2004, page 21]. The extended D again decomposes as a sum
D=D1,0

+D0,1 also satisfying the Leibniz formula [Berline et al. 2004, page 131].
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Recall the following definition from [Cappell and Miller 2010, pages 139–140]
or [Liu and Yu 2010, Definition 2.1].

Definition 3.1. The connection D is said to be compatible with the holomorphic
structure on E if D0,1

= ∂E . The connection D is said to be of type (1, 1) if the
curvature D2 is of type (1, 1), that is, (D1,0)2 = 0 and (D0,1)2 = 0.

The complex Hodge star operator ? acting on forms is a complex conjugate
linear mapping

? : Ap,q(W,C)→ An−p,n−q(W,C)

induced by a conjugate linear bundle isomorphism; see [Cappell and Miller 2010,
page 141] for this and other statements on this page.

The natural conjugate mapping

conj : Ap,q(W,C)→ Aq,p(W,C)

is a complex linear mapping induced by the bundle automorphism

T ∗W ⊗R C→ T ∗W ⊗R C, v⊗ λ 7→ v⊗ λ, v ∈ T ∗W, λ ∈ C,

of the complexified cotangent bundle. Define ?̂ := conj ? . Then

?̂= conj ? : Ap,q(W,C)→ An−q,n−p(W,C)

is a complex linear mapping. Clearly, ?̂= conj ?= ? conj.
As pointed out by Cappell and Miller, since ?̂ is complex linear, it may be

coupled to a complex linear bundle mapping, for example, the identity mapping.
We also denote by ?̂ the complex linear mapping

?̂ : Ap,q(W, E)→ An−q,n−p(W, E).

Recall that the adjoint ∂∗ of ∂ with respect to the chosen Hermitian inner product
on T W is given by

∂∗ =− ? ∂ ? .

In particular,
∂∗ =−?̂ conj ∂ conj ?̂=−?̂ ∂ ?̂.

Let D be a compatible (1, 1) connection. Following Cappell and Miller, we define

∂∗E,D1,0 =−?̂ D1,0 ?̂

and the ∂-Laplacian for the holomorphic bundle E with compatible type-(1, 1)
connection D by

�E,∂ = ∂E∂
∗

E,D1,0 + ∂
∗

E,D1,0∂E .

Note that (∂∗E,D1,0)
2
= 0, since (D1,0)2 = 0 and ?̂2

= ?2
=±1.
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Denote by δE the adjoint of the ∂-operator ∂E with respect to the inner product
〈 · , · 〉E on A•,•(W, E) induced by the Hermitian metrics gW and hE . Then the
associated self-adjoint ∂-Laplacian is defined as

�E = (∂E + δE)
2
= ∂EδE + δE∂E .

Recall that, in general, the operator �E,∂ is not self-adjoint with respect to the inner
product 〈 · , · 〉E on A•,•(W, E), but has the same leading symbol as the operator
�E ; see [Cappell and Miller 2010, Section 3]. When the connection on E is
compatible with the Hermitian inner product 〈 · , · 〉E on A•,•(W, E), the operator
�E,∂ recovers the self-adjoint operators considered in [Bismut 1993; Bismut et al.
1988a; 1988b; 1988c; 1990; Bismut and Lebeau 1989; 1991]. When the bundle
E is unitary flat, the operator �E,∂ recovers the self-adjoint operators of [Ray and
Singer 1973]. For more details about the operator �E,∂ , see [Cappell and Miller
2010].

Twisted Dolbeault-type cohomology and homology groups. For each 0 ≤ p ≤ n,
denote by Ap,0(W, E) := Ap,even(W, E) and Ap,1(W, E) := Ap,odd(W, E). Let
H ∈ A0,1(W,C) and ∂H

E := ∂E + H ∧ · . We assume that ∂H = 0. Then, as in the
de Rham case, (∂H

E )
2
= 0. Hence, we can consider the twisted complex

(Ap,•(W, E), ∂H
E ) : · · ·

∂
H
E−→ Ap,0(W, E)

∂
H
E−→ Ap,1(W, E)

∂
H
E−→ Ap,0(W, E)

∂
H
E−→· · · .

Define the twisted Dolbeault-type cohomology groups of (Ap,•(W, E), ∂H
E ) as

H p,k
∂E
(W, E, H) :=

Ker(∂H
E : Ap,k(W, E)→ Ap,k+1(W, E))

Im(∂H
E : Ap,k−1(W, E)→ Ap,k(W, E))

, k = 0, 1.

Define H := conj H . Let D1,0
H := D1,0

+H ∧· . Then (D1,0
H )2 = 0. Hence, we can

also consider the twisted complex

(A•,p(W, E),D1,0
H ) : · · ·

D1,0
H
−→ A0,p(W, E)

D1,0
H
−→ A1,p(W, E)

D1,0
H
−→ A0,p(W, E)

D1,0
H
−→· · · .

Define the twisted Dolbeault-type cohomology groups of (A•,p(W, E), D1,0
H ) as

H k,p
D1,0(W, E, H) :=

Ker(D1,0
H : Ak,p(W, E)→ Ak+1,p(W, E))

Im(D1,0
H : Ak−1,p(W, E)→ Ak,p(W, E))

, k = 0, 1.

Define ∂∗,HE,D1,0 :=−?̂ (D1,0
+conj H∧· ) ?̂=−?̂ D1,0

H ?̂. Then (∂∗,HE,D1,0)2=0. Again
we can consider the twisted complex

(Ap,•(W, E), ∂∗,HE,D1,0) : · · ·
∂
∗,H
E,D1,0
←−−−− Ap,0(W, E)

∂
∗,H
E,D1,0
←−−−− Ap,1(W, E)
∂
∗,H
E,D1,0
←−−−− Ap,0(W, E)

∂
∗,H
E,D1,0
←−−−− · · · .
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Define the twisted Dolbeault-type homology groups of (Ap,•(W, E), ∂∗,HE,D1,0) as

Hk(Ap,•(W,E),∂∗,HE,D1,0) :=
Ker(∂∗,HE,D1,0 : Ap,k(W,E)→ Ap,k−1(W,E))

Im(∂∗,HE,D1,0 : Ap,k+1(W,E)→ Ap,k(W,E))
, k=0,1.

The operator ?̂ induces a C-linear isomorphism from (Ap,•(W, E), ∂∗,HE,D1,0) to
(An−•,n−p(W, E),±D1,0

H ). Hence, as in the Z-graded case (see [Cappell and Miller
2010, page 151] or [Liu and Yu 2010, (2.19)]), we have the isomorphism

(3-1) H n−k,n−p
D1,0 (W, E, H)∼= Hk(Ap,•(W, E), ∂∗,HE,D1,0), k = 0, 1.

ζ -function and ζ -regularized determinant. In this section we briefly recall some
definitions of ζ -regularized determinants of non-self-adjoint elliptic operators. See
[Braverman and Kappeler 2007, Section 6] for more details. Let F be a com-
plex (respectively, holomorphic) vector bundle over a closed smooth (respectively,
complex) manifold N . Let D : C∞(N , F)→ C∞(N , F) be an elliptic differential
operator of order m ≥ 1. Assume that θ is an Agmon angle; see, for example,
[Braverman and Kappeler 2007, Definition 6.3]. Let 5 : L2(N , F)→ L2(N , F)
denote the spectral projection of D corresponding to all nonzero eigenvalues of D.
The ζ -function ζθ (s, D) of D is defined as

(3-2) ζθ (s, D)= Tr5D−s
θ , Re s >

dim N
m

.

Seeley [1967] (see also [Shubin 2001]) showed that ζθ (s, D) has a meromorphic
extension to the whole complex plane and that 0 is a regular value of ζθ (s, D).

Definition 3.2. The ζ -regularized determinant of D is defined by the formula

Det′θ (D) := exp
(
−

d
ds

∣∣∣
s=0
ζθ (s, D)

)
.

Define
LDet′θ (D)=−

d
ds

∣∣∣
s=0
ζθ (s, D).

Let Q be a 0-th order pseudo-differential projection, that is, a 0-th order pseudo-
differential operator satisfying Q2

= Q. Set

(3-3) ζθ (s, Q, D)= Tr Q5D−s
θ , Re s >

dim M
m

.

The function ζθ (s, Q, D) also has a meromorphic extension to the whole complex
plane and by [Wodzicki 1984, Section 7], it is regular at 0.

Definition 3.3. Suppose that Q is a 0-th order pseudo-differential projection com-
muting with D. Then V := Im Q is D invariant subspace of C∞(M, E). The ζ -
regularized determinant of the restriction D|V of D to V is defined by the formula

Det′θ (D|V ) := eLDet′θ (D|V ),
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where

(3-4) LDet′θ (D|V )=−
d
ds

∣∣∣
s=0
ζθ (s, Q, D).

Remark 3.4. The prime in Det′θ and LDet′θ indicates that we ignore the zero
eigenvalues of the operator in the definition of the regularized determinant. If the
operator is invertible we usually omit the prime and write Detθ and LDetθ instead.

Twisted Cappell–Miller holomorphic torsion. For each 0≤ p≤ n, the twisted flat
∂-Laplacian, defined as

�H
E,∂ := (∂

H
E + ∂

∗,H
E,D1,0)2,

maps Ap,k(W, E), k = 0, 1, into itself. Suppose that I is an interval of the form
[0, λ], (λ, µ] or (λ,∞)(µ > λ ≥ 0). Denote by 5E,I the spectral projection of
�H

E,∂ corresponding to the set of generalized eigenvalues, whose absolute values
lie in I. Set

Ap,k
I (W, E) :=5E,I(Ap,k(W, E))⊂ Ap,k(W, E), k = 0, 1.

If the interval I is bounded, then for each 0 ≤ p ≤ n, the space Ap,k
I (W, E),

k = 0, 1, is finite-dimensional. The differentials ∂H
E and ∂∗,HE,D1,0 commute with

�H
E,∂ , so the subspace Ap,k

I (W, E) is a subcomplex of the twisted bigraded complex
(Ap,•(W, E), ∂H

E , ∂
∗,H
E,D1,0). Clearly, for each λ ≥ 0, the complex Ap,k

(λ,∞)(W, E) is
doubly acyclic, that is,

H k(Ap,•
(λ,∞)(W, E), ∂H

E )= 0 and Hk(A
p,•
(λ,∞)(W, E), ∂∗,HE,D1,0)= 0.

Since
Ap,k(W, E)= Ap,k

[0,λ](W, E)⊕ Ap,k
(λ,∞)(W, E),

we have the isomorphisms

H k(Ap,•
[0,λ](W, E), ∂H

E )
∼= H p,k

∂E
(W, E, H)

and, by (3-1),

Hk(A
p,•
[0,λ](W, E), ∂∗,HE,D1,0)∼=H n−k(A•,n−p

[0,λ] (W, E),±D1,0
H )∼=H n−k,n−p

D1,0 (W, E, H).

In particular, we have the isomorphisms

Det H•(Ap,•
[0,λ](W, E), ∂H

E )
∼= Det H p,•

∂E
(W, E, H),(3-5)

Det H•(A
p,•
[0,λ](W, E), ∂∗,HE,D1,0)∼= Det H n−•,n−p

D1,0 (W, E, H).(3-6)

For any λ ≥ 0, 0 ≤ p ≤ n, let τp,[0,λ] denote the Cappell–Miller torsion of the
twisted bigraded complex (Ap,k

[0,λ](W, E), ∂H
E , ∂

∗,H
E,D1,0); see (2-16). Then, by (3-5)
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and (3-6), we can view τp,[0,λ] as an element of the determinant line

(3-7) τp,[0,λ] ∈ Det H p,•
∂E
(W, E, H)⊗

(
Det H n−•,n−p

D1,0 (W, E, H)
)−1

∼= Det H p,•
∂E
(W, E, H)⊗

(
Det H•,n−p

D1,0 (W, E, H)
)(−1)n+1

.

For each k = 0, 1 and each 0≤ p ≤ n, set

Ap,k
+,I(W, E) := Ker(∂H

E ∂
∗,H
E,D1,0)∩ Ap,k

I (W, E),

Ap,k
−,I(W, E) := Ker(∂∗,HE,D1,0∂

H
E )∩ Ap,k

I (W, E).

Clearly,

Ap,k
I (W, E)= Ap,k

+,I(W, E)⊕ Ap,k
−,I(W, E), if 0 /∈ I.

Let θ ∈ (0, 2π) be an Agmon angle of the operator �H
E,∂ ; see, for example, [Braver-

man and Kappeler 2007, Section 6]. Since the leading symbol of the operator �H
E,∂

is positive definite, the ζ -regularized determinant

Detθ (∂
∗,H
E,D1,0∂

H
E )|Ap,k

+,I(W,E)

is independent of the choice of the Agmon angle θ of the operator �H
E,∂ .

For any 0≤ λ≤ µ≤∞, one easily sees that

(3-8)
∏

k=0,1

(
Detθ (∂

∗,H
E,D1,0∂

H
E )|Ap,k

+,(λ,∞)(W,E)
)(−1)k

=

( ∏
k=0,1

(
Detθ (∂

∗,H
E,D1,0∂

H
E )|Ap,k

+,(λ,µ)(W,E)
)(−1)k

)

·

( ∏
k=0,1

(
Detθ (∂

∗,H
E,D1,0∂

H
E )|Ap,k

+,(µ,∞)(W,E)
)(−1)k

)
By Proposition 2.2 and (3-8), we know that the element

(3-9) τholo,p(W, E, H) := τp,[0,λ] ·
∏

k=0,1

(
Detθ (∂

∗,H
E,D1,0∂

H
E )|Ap,k

+,(λ,∞)(W,E)
)(−1)k

is independent of the choice of λ. It is also independent of the choice of the Agmon
angle θ ∈ (0, 2π) of the operator �H

E,∂ .

Definition 3.5. The nonvanishing element of the determinant

τholo,p(W, E, H) ∈ Det H p,•
∂E
(W, E, H)⊗

(
Det H•,n−p

D1,0 (W, E, H)
)(−1)n+1

defined in (3-9) is called the twisted Cappell–Miller holomorphic torsion.
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Twisted Cappell–Miller holomorphic torsion under metric deformation. Let gW
u ,

u ∈ R, be a smooth family of Hermitian metrics on the complex manifold W .
Denote by ?u the Hodge star operators associated to the metrics gW

u and denote by

∂
∗,H
E,D1,0,u := −?̂u (D1,0

+ conj H ∧ · ) ?̂u .

Let �H
E,∂,u = (∂

H
E + ∂

∗,H
E,D1,0,u)

2 be the flat Laplacian operators associated to the
metrics gW

u .
Fix u0 ∈ R and choose λ ≥ 0 so that there are no eigenvalues of �H

E,∂,u whose
absolute values are equal to λ. Then there exists δ > 0 such that the same is true
for all u ∈ (u0−δ, u0+δ). In particular, if we denote by Ap,•

[0,λ],u(W, E) the span of
the generalized eigenvectors of �H

E,∂,u corresponding to eigenvalues with absolute
value ≤ λ, then dim Ap,•

[0,λ],u(W, E) is independent of u ∈ (u0− δ, u0+ δ).
For any λ≥ 0, 0≤ p ≤ n, let τp,[0,λ],u denote the Cappell–Miller torsion of the

twisted bigraded complex (Ap,•
[0,λ](W, E), ∂H

E , ∂
∗,H
E,D1,0,u). Set

αu = ?
−1
u ·

d
du
?u = ?̂

−1
u ·

d
du
?̂u .

Let Q p,k be the spectral projection onto Ap,k
[0,λ](W, E). The proof of the following

lemma is similar to the proof of [Cappell and Miller 2010, Lemma 7.1], where the
untwisted case was treated.

Lemma 3.6. Under the assumptions above, we have

d
du
τp,[0,λ],u =−

∑
k=0,1

(−1)k Tr(αu Q p,k) · τp,[0,λ],u .

Lemma 3.7. Under the assumptions above, we have

d
du

( ∑
k=0,1

(−1)k LDetθ (∂
∗,H
E,D1,0,u∂

H
E )|Ap,k

+,(λ,∞)(W,E)

)
=

∑
k=0,1

(−1)k Tr(αu Q p,k)+
∑

k=0,1

(−1)k
∫

W
bn,p,k,u,

where bn,p,k,u is given by a local formula.

Proof. Set

(3-10) f (s,u)=
∑

k=0,1

(−1)k
∫
∞

0
t s−1Tr

(
exp

(
−t (∂∗,HE,D1,0,u∂

H
E )|Ap,k

+,(λ,∞)(W,E)
))

dt

= 0(s)
∑

k=0,1

(−1)kζ
(
s,(∂∗,HE,D1,0,u∂

H
E )|Ap,k

+,(λ,∞)(W,E)
)
.

The equality

(3-11) d
du
∂
∗,H
E,D1,0,u|Ap,k+1

−,(λ,∞)(W,E)
=−

[
αu, ∂

∗,H
E,D1,0,u|Ap,k+1

−,(λ,∞)(W,E)
]
,
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follows easily from ∂
∗,H
E,D1,0,u := −?̂u (D1,0

+ conj H ∧ · ) ?̂u and the equality

?−1
u ·

d
du
?u =−

d
du
?u · ?

−1
u .

If A is of trace class and B is a bounded operator, it is well known that Tr(AB)=
Tr(B A). By this and the semigroup property of the heat operator, we have

(3-12)

Tr
(
∂
∗,H
E,D1,0,u|Ap,k+1

−,(λ,∞)(W,E)
αu∂

H
E |Ap,k

+,(λ,∞)(W,E)
exp

(
−t (∂∗,HE,D1,0,u∂

H
E )|Ap,k

+,(λ,∞)(W,E)
))

= Tr
(

exp
(
−

t
2
(∂
∗,H
E,D1,0,u∂

H
E )|Ap,k

+,(λ,∞)(W,E)

)
∂
∗,H
E,D1,0,u|Ap,k+1

−,(λ,∞)(W,E)

·αu∂
H
E |Ap,k

+,(λ,∞)(W,E)
exp

(
−

t
2
(∂
∗,H
E,D1,0,u∂

H
E )|Ap,k

+,(λ,∞)(W,E)

))
= Tr

(
αu∂

H
E |Ap,k

+,(λ,∞)(W,E)
exp

(
−

t
2
(∂
∗,H
E,D1,0,u∂

H
E )|Ap,k

+,(λ,∞)(W,E)

)
· exp

(
−

t
2
(∂
∗,H
E,D1,0,u∂

H
E )|Ap,k

+,(λ,∞)(W,E)
)
∂
∗,H
E,D1,0,u|Ap,k+1

−,(λ,∞)(W,E)

)
= Tr

(
αu(∂

H
E ∂
∗,H
E,D1,0,u)|Ap,k+1

−,(λ,∞)(W,E)
exp

(
−t (∂H

E ∂
∗,H
E,D1,0,u)|Ap,k+1

−,(λ,∞)(W,E)
))

Now, by (3-10), (3-11) and (3-12), we have

(3-13)
d

du
f (s, u)=

∑
k=0,1

(−1)k
∫
∞

0
t s−1 Tr

(
t
[
αu, ∂

∗,H
E,D1,0 |Ap,k+1

−,(λ,∞)(W,E)
]

× exp
(
−t (∂∗,HE,D1,0∂

H
E )|Ap,k

+,(λ,∞)(W,E)
))

dt

=

∑
k=0,1

(−1)k
∫
∞

0
t s−1

×Tr
(

tαu

(
(∂
∗,H
E,D1,0∂

H
E )|Ap,k

+,(λ,∞)(W,E)
exp

(
−t (∂∗,HE,D1,0∂

H
E )|Ap,k

+,(λ,∞)(W,E)
)

− (∂
H
E ∂
∗,H
E,D1,0,u)|Ap,k+1

−,(λ,∞)(W,E)
exp

(
−t (∂H

E ∂
∗,H
E,D1,0,u)|Ap,k+1

−,(λ,∞)(W,E)
)))

dt

=

∑
k=0,1

(−1)k
∫
∞

0
t s Tr

(
αu(�

H
E,∂,u)|Ap,k

(λ,∞)(W,E)

× exp
(
−t (�H

E,∂,u)|Ap,k
(λ,∞)(W,E)

))
dt

=−

∑
k=0,1

(−1)k
∫
∞

0
t s d

dt
Tr
(
αu exp

(
−t (�H

E,∂,u)|Ap,k
(λ,∞)(W,E)

))
dt

= s
∑

k=0,1

(−1)k
∫
∞

0
t s−1 Tr

(
αu exp

(
−t (�H

E,∂,u)|Ap,k
(λ,∞)(W,E)

))
dt,

where the second equality holds by (3-12) and we used integration by parts for the
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last equality. Since �H
E,∂,u is an elliptic operator, the dimension of Ap,•

[0,λ](W, E) is
finite. Then we can rewrite (3-13) as

(3-14) d
du

f (s, u)= s
∑

k=0,1

(−1)k
∫ 1

0
t s−1 Tr

(
αu exp

(
−t (�H

E,∂,u)|Ap,k(W,E)
))

dt

+ s
∑

k=0,1

(−1)k
∫
∞

1
t s−1 Tr

(
αu exp

(
−t (�H

E,∂,u)|Ap,k(W,E)
))

dt

− s
∑

k=0,1

(−1)k
∫ 1

0
t s−1 Tr

(
αu exp

(
−t (�H

E,∂,u)|Ap,k
[0,λ](W,E)

))
dt

− s
∑

k=0,1

(−1)k
∫
∞

1
t s−1 Tr

(
αu exp

(
−t (�H

E,∂,u)|Ap,k
[0,λ](W,E)

))
dt.

Now dim W = 2n is even, so for small time asymptotic expansion for

Tr
(
αu exp

(
−t (�H

E,∂,u)|Ap,k(W,E)
))

has a term an,p,k,u t0 in its expansion about t = 0. That means

Tr
(
αu exp

(
−t (�H

E,∂,u)|Ap,k(W,E)
))
− an,p,k,u t0

does not contain a constant term as t ↓ 0. Hence, the integrals∑
k=0,1

(−1)k
∫ 1

0
t s−1 Tr

(
αu exp

(
−t (�H

E,∂,u)|Ap,k(W,E)
))
− an,p,k,u t0 dt

do not have poles at s = 0. But the integrals∑
k=0,1

(−1)k
∫ 1

0
t s−1an,p,k,u t0 dt

have poles of order 1 with residue an,p,k,u , k=0, 1. And, because of the exponential
decay of Tr

(
αu exp

(
−t (�H

E,∂,u)|Ap,k(W,E)
))

and Tr
(
αu exp

(
−t (�H

E,∂,u)|Ap,k
[0,λ](W,E)

))
for large t , the integrals of the second and fourth terms on the right-hand side of
(3-14) are entire functions in s. Hence we have

(3-15) d
du

∣∣∣
s=0

f (s,u)=−s
( ∑

k=0,1

(−1)k
∫ 1

0
t s−1(Tr[αu Q p,k]−an,p,k,u

)
dt
)∣∣∣

s=0

=−

∑
k=0,1

(−1)k Tr[αu Q p,k]+
∑

k=0,1

(−1)kan,p,k,u .

Hence, the result follows. �

By combining Lemma 3.6 with Lemma 3.7, we obtain the main theorem of this
section. For the untwisted case, see [Cappell and Miller 2010, Theorem 4.4].
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Theorem 3.8. Let W be a complex manifold of complex dimension n and let E be
a holomorphic bundle with connection D that is compatible and of type (1, 1) over
W . Suppose that H ∈ A0,1(W,C) and ∂H = 0. Let gW

u , u ∈ (u0 − δ, u0 + δ),
be a smooth family of Riemannian metrics on the complex manifold W . Then
the corresponding twisted Cappell–Miller holomorphic torsion τholo,p,u(W, E, H)
varies smoothly and the variation of τholo,p,u(W, E, H) is given by a local formula

d
du
τholo,p,u(W, E, H)=

( ∑
k=0,1

(−1)k
∫

W
bn,p,k,u

)
· τholo,p,u(W, E, H).

We have the following corollary. See also [Mathai and Wu 2010a, Theorem 5.3,
Corollary 7.1] for the case of analytic torsion on Z2-graded elliptic complexes.

Corollary 3.9. Let W be a complex manifold of complex dimension n and let E
be a holomorphic bundle with connection D that is compatible and of type (1, 1)
over W . Suppose that H ∈ A0,1(W,C) and ∂H = 0. Let F1, F2 be two flat complex
bundles over W of the same dimension. Then

τholo,p(W, E ⊗ F1, H)⊗
(
τholo,p(W, E ⊗ F2, H)]−1)

in the tensor product of determinant lines(
Det H p,•

∂E
(W, E ⊗ F1, H)⊗

(
Det H•,n−p

D1,0 (W, E ⊗ F1, H)
)
(−1)n+1)

⊗

(
Det H p,•

∂E
(W, E ⊗ F2, H)⊗

(
Det H•,n−p

D1,0 (W, E ⊗ F2, H)
)
(−1)n+1)−1

is independent of the Hermitian metric gW chosen.

This follows from the fact that the two bundles E ⊗ F1 and E ⊗ F2 are lo-
cally identical as bundles. For the untwisted case, see [Cappell and Miller 2010,
Corollary 4.5].

Twisted Cappell–Miller holomorphic torsion under flux deformation. Suppose
that the flux form H is deformed smoothly along a one-parameter family with
parameter v ∈ R in such a way that the cohomology class [H ] ∈ H 0,1(W,C)

is fixed. Then (d/dv)H = −∂B for some form B ∈ A0,0(W,C) that depends
smoothly on v. Let β = B∧ · . Fix v0 ∈R and choose λ> 0 such that there are no
eigenvalues of �H

E,∂,v0
of absolute value λ. Then there exists δ > 0 small enough

that the same holds for the spectrum of �H
E,∂,v|Ap,k

(λ,∞)(W,E)
for v ∈ (v0− δ, v0+ δ).

For simplicity, we omit the parameter v in the notation in the following discussion.
Recall that Q p,k is the spectral projection onto Ap,k

[0,λ](W, E).
The proof of the following lemma is similar to the proof of [Mathai and Wu

2008, Lemma 3.7]; see also [Huang 2010, Lemma 4.7].
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Lemma 3.10. Under the assumptions above, we have

d
dv
τp,[0,λ] =−

∑
k=0,1

(−1)k Tr[βQ p,k] · τp,[0,λ],

upon identification of determinant lines under the deformation.

Lemma 3.11. Under the assumptions above, we have

d
dv

( ∑
k=0,1

(−1)k LDetθ (∂
∗,H
E,∇1,0∂

H
E )|Ap,k

+,(λ,∞)(W,E)

)
=

∑
k=0,1

(−1)k Tr[βQ p,k] +
∑

k=0,1

(−1)k
∫

W
cn,p,k,

where cn,p,k is given by a local formula.

Proof. Under the deformation, we have

d
dv
∂

H
E = [β, ∂

H
E ],

d
dv
∂
∗,H
E,D1,0 =−[β, ∂

∗,H
E,D1,0].

Following the proof of [Mathai and Wu 2008, Lemma 3.5], we obtain the desired
variation formula. �

By combining Lemma 3.10 with Lemma 3.11, we obtain the main theorem of
this section.

Theorem 3.12. Let W be a complex manifold of complex dimension n and let E
be a holomorphic bundle with connection D that is compatible and of type (1, 1)
over W . Along any one parameter deformation of H that fixes the cohomology
class [H ] and the natural identification of determinant lines, we have the variation
formula

d
dv
τholo,p(W, E, H)=

( ∑
k=0,1

(−1)k
∫

W
cn,p,k

)
· τholo,p(W, E, H).

As with Corollary 3.9, we have the following corollary. See also [Mathai and
Wu 2010a, Corollary 7.1] for the case of analytic torsion on Z2-graded elliptic
complexes.

Corollary 3.13. Let W be a complex manifold of complex dimension n and let E
be a holomorphic bundle with connection D that is compatible and of type (1, 1)
over W . Suppose that H ∈ A0,1(W,C) and ∂H = 0. Let F1, F2 be two flat complex
bundles over W of the same dimension. Then

τholo,p(W, E ⊗ F1, H)⊗
(
τholo,p(W, E ⊗ F2, H)

)−1

is invariant under any deformation of H by an ∂-exact form, up to natural identifi-
cation of the determinant lines.
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4. Twisted Cappell–Miller analytic torsion

In this section we first define the de Rham bigraded complex twisted by a flux
form H and its (co)homology groups. Then we define the Cappell–Miller an-
alytic torsion for the twisted de Rham bigraded complex. We obtain the varia-
tion theorems of the twisted Cappell–Miller analytic torsion under metric and flux
deformations. Su, in a recent preprint [2011], also briefly discussed the twisted
Cappell–Miller analytic torsion when dimension of the manifold M is odd.

The twisted de Rham complexes. Suppose M is a closed oriented m-dimensional
smooth manifold and let E be a complex vector bundle over M endowed with a
flat connection ∇. We denote by �p(M,E) the space of p-forms with values in
the flat bundle E, that is, �p(M,E)= 0(M,

∧p
(T ∗M)R⊗E) and by

∇ :�•(M,E)→�•+1(M,E)

the covariant differential induced by the flat connection on E. Fix a Riemannian
metric gM on M and let ? :�•(M,E)→�m−•(M,E) denote the Hodge ? operator.
We choose a Hermitian metric hE so that together with the Riemannian metric gM

we can define a scalar product 〈 · , · 〉M on �•(M,E). Define the chirality operator
0 = 0(gM) :�•(M,E)→�•(M,E) by [Braverman and Kappeler 2007, (7-1)]

(4-1) 0ω := ir (−1)q(q+1)/2 ?ω, ω ∈�q(M,E),

where r = (m+1)/2 if m is odd and r =m/2 if m is even. The numerical factor in
(4-1) has been chosen so that 02

= Id; see [Berline et al. 2004, Proposition 3.58].
Assume H is an odd degree closed differential form on M . Let �0/1(M,E) :=

�even /odd(M,E) and ∇H
:= ∇ +H∧ · . Assume that H does not contain a 1-form

component, which can be absorbed in the flat connection ∇.
It is not difficult to check that (∇H)2 = 0. Clearly, for each k = 0, 1, we have
∇

H
: �k(M,E) → �k+1(M,E). Hence we can consider the twisted de Rham

complex
(4-2)

(�•(M,E),∇H) : · · ·
∇

H

−→�0(M,E)
∇

H

−→�1(M,E)
∇

H

−→�0(M,E)
∇

H

−→ · · · .

We define the twisted de Rham cohomology group of (�•(M,E),∇H) as

H k(M,E,H) :=
Ker(∇H

:�k(M,E)→�k+1(M,E))

Im(∇H :�k−1(M,E)→�k(M,E))
, k = 0, 1.

The groups H k(M,E,H), k = 0, 1, are independent of the choice of the Riemann-
ian metric on M or the Hermitian metric on E. Replacing H by H′ =H− dB for
some B ∈ �0(M) gives an isomorphism εB := eB

∧ · : �•(M,E)→ �•(M,E)
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satisfying

εB ◦∇
H
=∇

H′
◦ εB.

Therefore εB induces an isomorphism on the twisted de Rham cohomology. Also
denote by εB the map

(4-3) εB : H•(M,E,H)→ H•(M,E,H′).

Denote by ∇H,∗ the adjoint of ∇H with respect to the scalar product 〈 · , · 〉M . Then
the Laplacian

1H
:= ∇

H,∗
∇

H
+∇

H
∇

H,∗

is an elliptic operator and therefore the complex (4-2) is elliptic. By Hodge theory,
we have the isomorphism Ker1H∼= H•(M,E,H). For more details of the twisted
de Rham cohomology, see, for example, [Mathai and Wu 2008].

Now denote by ∇ ′ the connection on E dual to the connection ∇ with respect
to the Hermitian metric hE [Braverman and Kappeler 2007, Section 10.1]. Denote
by E′ the flat bundle (E,∇ ′), referring to E′ as the dual of the flat vector bundle E.
We emphasize that, similar to the untwisted case [Braverman and Kappeler 2007,
(10-8); Cappell and Miller 2010, (8.4)],

∇
H,∗
= 0∇ ′

H
0,

where ∇ ′H =∇ ′+H∧ · .
Let∇H,]

:=0∇H0. Then (∇H,])2=0. Clearly,∇H,]
:�k(M,E)→�k−1(M,E).

Hence we can consider the twisted de Rham complex

(4-4) (�•(M,E),∇H,]) : · · ·
∇

H,]

←−−�0(M,E)
∇

H,]

←−−�1(M,E)

∇
H,]

←−−�0(M,E)
∇

H,]

←−− · · · .

We also define the homology group of the complex (�•(M,E),∇H,]) as

Hk(�
•(M,E),∇H,]) :=

Ker(∇H,]
:�k(M,E)→�k−1(M,E))

Im(∇H,] :�k+1(M,E)→�k(M,E))
, k = 0, 1.

Similarly, the groups Hk(�
•(M,E),∇H,]), k = 0, 1, are independent of the choice

of the Riemannian metric on M or the Hermitian metric on E. Suppose that H

is replaced by H′′ = H− δB′ for some B′ ∈ �0(M) and δ the adjoint of d with
respect to the scalar product induced by the Riemannian metric gM . Then there is
an isomorphism εB′ := eB′

∧ · :�•(M,E)→�•(M,E) satisfying

εB′ ◦∇
H,]
=∇

H′′,]
◦ εB′ .
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Therefore εB′ induces an isomorphism on the twisted de Rham homology. Also
denote by εB′ the map

(4-5) εB′ : H•(�•(M,E),∇H,])→ H•(�•(M,E),∇H′′,]).

Denote by ∇H,],∗ the adjoint of ∇H,] with respect to the scalar product 〈 · , · 〉M .
Then we have the equalities

∇
H,],∗
=∇

′H, 1′
H
:= ∇

′H,∗
∇
′H
+∇

′H
∇
′H,∗
=∇

H,]
∇

H,],∗
+∇

H,],∗
∇

H,].

Again the Laplacian 1′H is an elliptic operator and thus the complex (4-4) is ellip-
tic. By Hodge theory, we have the isomorphism Ker1′H ∼= H•(�•(M,E),∇H,]).
In particular, for k = 0, 1,

(4-6) Hk(�
•(M,E),∇H,])∼= H k(M,E′,H).

Definition of twisted Cappell–Miller analytic torsion. The flat Laplacian

1H,]
:= (∇H

+∇
H,])2

maps �k(M,E) into itself. Suppose I is an interval of the form [0, λ], (λ, µ], or
(λ,∞) (µ>λ≥ 0). Denote by5],I the spectral projection of1H,] corresponding
to the set of generalized eigenvalues, whose absolute values lie in I. Set

�k
I(M,E) :=5],I(�k(M,E))⊂�k(M,E).

If the interval I is bounded, then the space �k
I(M,E) is finite dimensional. Since

∇
H and ∇H,] commute with 1]H, the subspace �•I(M,E) is a subcomplex of the

twisted de Rham bi-complex (�•(M,E),∇H,∇H,]). Clearly, for each λ ≥ 0, the
complex �•(λ,∞)(M,E) is doubly acyclic, that is, H k(�•(λ,∞)(M,E),∇H)= 0 and
Hk(�

•

(λ,∞)(M,E),∇H,])= 0. Since

(4-7) �k(M,E)=�k
[0,λ](M,E) ⊕ �k

(λ,∞)(M,E),

the homology Hk(�
•

[0,λ](M,E),∇H,]) of the complex (�•
[0,λ](M,E),∇H,]) is nat-

urally isomorphic to the homology Hk(�
•(M,E),∇H,]) ∼= H k(M,E′,H) (see

(4-6)), and the cohomology H k(�•
[0,λ](M,E),∇H) of (�•

[0,λ](M,E),∇H) is natu-
rally isomorphic to the cohomology H k(M,E,H).

Similar to the Z-graded case [Cappell and Miller 2010, Section 8], the chirality
operator 0 establishes a complex linear isomorphism of the homology groups with
cohomology groups

Hk(�
•

[0,λ](M,E),∇H,])∼= H m−k(�•
[0,λ](M,E),∇H)∼= H m−k(M,E,H).
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In particular, we have the isomorphism

(4-8)
Det H•(�•(M,E),∇H,])∼= Det H•(�•[0,λ](M,E),∇H,])

∼= (Det H•(M,E,H))(−1)m .

Using Poincaré duality, we also have the isomorphism

(4-9) Det H m−k(M,E,H)−1 ∼= Det H k(M,E′,H),

where E′ is the dual vector bundle of the vector bundle E . Therefore, we have

Det H•(M,E,H)⊗Det H m−•(M,E,H)−1

∼=Det H•(M,E,H)⊗Det H•(M,E′,H) by (4-9)(4-10)
∼=Det H•(M,E⊕E′,H).

For k = 0, 1, set

(4-11)
�k
+,I(M,E) := Ker(∇H

∇
H,])∩�k

I(M,E),

�k
−,I(M,E) := Ker(∇H,]

∇
H)∩�k

I(M,E).

Clearly,
�k

I(M,E)=�k
+,I(M,E)⊕�k

−,I(M,E) if 0 /∈ I.

Let θ ∈ (0, 2π) be an Agmon angle; see [Shubin 2001]. Since the leading symbol of
∇

H,]
∇

H is positive definite, the ζ -regularized determinant Detθ (∇H,]
∇

H)|�k
+,I(M,E)

is independent of the choice of θ .
For any 0≤ λ≤ µ≤∞, one easily sees that∏

k=0,1

(
Detθ (∇H,]

∇
H)|�k

+,(λ,∞)(M,E)
)(−1)k

=

( ∏
k=0,1

(
Detθ (∇H,]

∇
H)|�k

+,(λ,µ)(M,E)
)(−1)k

)

·

( ∏
k=0,1

(
Detθ (∇H,]

∇
H)|�k

+,(µ,∞)(M,E)
)(−1)k

)
.

For any λ≥ 0, denote by τ[0,λ] the Cappell–Miller torsion of the twisted de Rham
bigraded complex

(
�•
[0,λ](M,E),∇H,∇H,]

)
. Via the isomorphisms

H•(�•[0,λ](M,E),∇H,])∼= H•(�•(M,E),∇H,]),

H•(�•
[0,λ](M,E),∇H)∼= H•(M,E,H),

and (4-10), we can view τ[0,λ] as an element of Det H•(M,E⊕E′,H). In particular,
if m is odd, then, up to an isomorphism,

(4-12) τ[0,λ] ∈ Det H•(M,E,H)⊗Det H•(M,E,H)∼= Det H•(M,E⊕E′,H).



104 RUNG-TZUNG HUANG

The proof of the following lemma is similar to the proof of [Cappell and Miller
2010, Theorem 8.3].

Lemma 4.1. The element

τ[0,λ] ·
∏

k=0,1

(
Detθ (∇H,]

∇
H)|�k

+,(λ,∞)(M,E)
)(−k)

is independent of the choice of λ.

We now define the Cappell–Miller analytic torsion for the de Rham complex
twisted by a flux.

Definition 4.2. Let (E,∇) be a complex vector bundle over a connected oriented
m-dimensional closed Riemannian manifold M and H be a closed odd degree form
(not a 1-form). Further, let

∇
H
=∇ +H∧ · and ∇

H,]
= 0∇H0.

Let θ ∈ (0, 2π) be an Agmon angle for the operator 1H,]
:= (∇H

+ ∇
H,])2.

The Cappell–Miller torsion τ(∇,H) for the twisted de Rham bigraded complex
(�•(M,E),∇H,∇H,]) is an element of Det H•(M,E,H)⊗

(
Det H•(M,E,H)

)
(−1)m+1

defined as

(4-13) τ(∇,H) := τ[0,λ] ·
∏

k=0,1

(
Detθ (∇H,]

∇
H)|�k

+,(λ,∞)(M,E)
)(−k)

.

Twisted Cappell–Miller analytic torsion under metric and flux deformations. In
this section we obtain the variation formulas for the twisted Cappell–Miller analytic
torsion τ(∇,H) under the metric and flux deformations. In particular, we show that
if the manifold M is an odd-dimensional closed oriented manifold, then the twisted
Cappell–Miller analytic torsion is independent of the Riemannian metric and the
representative H in the cohomology class [H]. See also [Su 2011].

The proof of the following theorem is similar to the proof of Theorem 3.8.

Theorem 4.3. Let (E,∇) be a complex vector bundle over a m-dimensional con-
nected oriented closed Riemannian manifold M and H be a closed odd degree
form (not a 1-form). Let gM

v , a ≤ v ≤ b, be a smooth family of Riemannian metrics
on M. Then the corresponding twisted Cappell–Miller analytic torsion τv(∇,H)

varies smoothly and the variation of τv(∇,H) is given by a local formula

d
dv
τv(∇,H)=

( ∑
k=0,1

(−1)k
∫

M
bm/2,k,v

)
· τv(∇,H).

In particular, if the dimension of the manifold M is odd, then twisted Cappell–
Miller analytic torsion τ(∇,H) is independent of the Riemannian metric gM .
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For the untwisted case considered in [Bismut and Zhang 1992], the variation of
the torsion can be integrated to an anomaly formula.

The proof of the following is similar to that of [Mathai and Wu 2010a, Theorem
6.1]. See also [Mathai and Wu 2008, Theorem 3.8].

Theorem 4.4. Let (E,∇) be a complex vector bundle over a m-dimensional con-
nected oriented closed Riemannian manifold M and H be a closed odd degree form
(not a 1-form). Under the natural identification of determinant lines and along any
one parameter deformation Hv of H that fixes the cohomology class [H], we have
the variation formula

d
dv
τ(∇,Hv)=

( ∑
k=0,1

(−1)k
∫

M
cm/2,k,v

)
· τ(∇,Hv).

In particular, if the dimension of the manifold M is odd, then, under the nat-
ural identification of determinant lines, the twisted Cappell–Miller analytic tor-
sion τ(∇,H) is independent of any deformation of H that fixes the cohomology
class [H].

Relationship with the twisted refined analytic torsion. In this section we assume
that M is a closed compact oriented manifold of odd dimension. Recall that in
[Huang 2010, (3.13)], for each λ > 0, we define the twisted refined torsion ρ0[0,λ]
of the twisted finite-dimensional complex (�•

[0,λ](M,E),∇H) corresponding to the
chirality operator 0[0,λ]. In our setting, as in the Z-graded case [Braverman and
Kappeler 2008a, (5.1)], the twisted Cappell–Miller torsion can be described as (see
(4-12))

(4-14) τ[0,λ] := ρ0[0,λ] ⊗ ρ0[0,λ] ∈ Det H•(M,E,H)⊗Det H•(M,E,H).

By combining (3.14), (3.20), (5.28) and Definition 4.5 of [Huang 2010], the
twisted refined analytic torsion can be written as

(4-15) ρan(∇
H)=±ρ0[0,λ] ·

∏
k=0,1

(
Detθ (∇H,]

∇
H)|�k

+,(λ,∞)(M,E)
)−k/2

· exp
(
−iπ(η(BH

0 (∇
H))− rank E · ηtrivial)

)
,

where η(BH
0 (∇

H))− rank E · ηtrivial is the ρ-invariant of the twisted odd signature
operator BH

0 (∇
H) defined in [Huang 2010, (3.2)].

By combining (4-13), (4-14) with (4-15), we have the following comparison
theorem of the twisted Cappell–Miller analytic torsion and twisted refined analytic
torsion.

Theorem 4.5. Let (E,∇) be a complex vector bundle over a connected oriented
odd-dimensional closed Riemannian manifold M and H be a closed odd degree
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form (not a 1-form). Further, let ∇H
=∇ +H∧ · . Then

τ(∇,H) · exp
(
−2iπ(η(BH

0 (∇
H))− rank E · ηtrivial)

)
= ρan(∇

H)⊗ ρan(∇
H).

Su in [2011, Theorem 5.1] compared the twisted Burghelea–Haller analytic tor-
sion which he introduced with the twisted refined analytic torsion. By combining
[Su 2011, Theorem 5.1] with Theorem 4.5, we can also obtain the comparison
theorem of the twisted Burghelea–Haller torsion and the twisted Cappell–Miller
analytic torsion. We skip the details.
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