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We give a general lower bound for the normal Gromov norm of genuine
laminations in terms of the topology of the complementary regions.

In the special case of 3-manifolds, this yields a generalization of Agol’s
inequality from incompressible surfaces to tight laminations. In particular,
the inequality excludes the existence of tight laminations with nonempty
guts on 3-manifolds of small simplicial volume.

1. Results

Agol’s inequality [1999, Theorem 2.1] is the following (see Section 7 for notation):
Let M be a hyperbolic 3-manifold containing an incompressible, properly em-

bedded surface F. Then

Vol(M)≥−2V3χ(Guts(M − F)),

where V3 is the volume of a regular ideal tetrahedron in hyperbolic 3-space.
In [Agol et al. 2007], this inequality was improved to

Vol(M)≥ Vol(Guts(M − F))≥−Voctχ(Guts(M − F)),

where Voct is the volume of a regular ideal octahedron in hyperbolic 3-space.
In this paper we will, building on ideas from [Agol 1999], prove a general in-

equality for the (transversal) Gromov norm ‖M‖F and the normal Gromov norm
‖M‖norm

F of laminations.
To state the result in its general form we need two definitions.

Definition (pared acylindrical). Let Q be a manifold with a given decomposition

∂Q = ∂0 Q ∪ ∂1 Q.

The pair (Q, ∂1 Q) is called a pared acylindrical manifold if any continuous map of
pairs f : (S1

×[0, 1],S1
×{0, 1})→ (Q, ∂1 Q) that is π1-injective as a map of pairs
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is necessarily homotopic, as a map of pairs (S1
×[0, 1],S1

×{0, 1})→ (Q, ∂1 Q),
into ∂Q.

Definition (essential decomposition). Let (N , ∂N ) be a pair of topological spaces
such that N = Q ∪ R for two subspaces Q, R. Let

∂0 Q = Q∩ R, ∂1 Q = Q∩∂N , ∂1 R= R∩∂N , ∂Q = ∂0 Q∪∂1 Q, ∂R= ∂0 Q∪∂1 R.

We say that the decomposition N =Q∪R is an essential decomposition of (N , ∂N )
if the inclusions

∂1 Q→ Q→ N , ∂1 R→ R→ N , ∂N → N , ∂0 Q→ Q, ∂0 Q→ R

are each π1-injective (for each path component).

Theorem 1.1. Let M be a compact, orientable, connected n-manifold and F a
lamination (of codimension one) of M. Assume that N := M −F has a decompo-
sition N = Q ∪ R into orientable n-manifolds (with boundary) Q, R such that the
following assumptions are satisfied for ∂0 Q=Q∩R, ∂1 Q=Q∩∂N , ∂1 R= R∩∂N :

(i) Each path component of ∂0 Q has amenable fundamental group.

(ii) (Q, ∂1 Q) is pared acylindrical and ∂1 Q is acylindrical.

(iii) Q, ∂N , ∂1 Q, ∂1 R, ∂0 Q are aspherical.

(iv) The decomposition N = Q ∪ R is an essential decomposition of (N , ∂N ).

Then

‖M, ∂M‖norm
F ≥

1
n+ 1

‖∂Q‖.

In the case of 3-manifolds M carrying an essential lamination F, considering
Q = Guts(M −F) yields a special case:

Theorem 1.2. Let M be a compact 3-manifold with (possibly empty) boundary
consisting of incompressible tori, and let F be an essential lamination of M. Then

‖M, ∂M‖norm
F ≥−χ(Guts(M −F)).

More generally, if P is a polyhedron with f faces, then

‖M, ∂M‖norm
F,P ≥−

2
f − 2

χ(Guts(M −F)).

The following corollary applies, for example, to all hyperbolic manifolds M ob-
tained by Dehn-filling the complement of the figure-eight knot in S3. (It is known
that each of these M contains tight laminations. By the following corollary, all
these tight laminations have empty guts.)
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Corollary 1.3. If M is a finite-volume hyperbolic 3-manifold with Vol(M)<2V3=

2.02 . . . , then M carries no essential lamination F with ‖M‖norm
F,P = ‖M‖P for all

polyhedra P, and nonempty guts. In particular, there is no tight essential lamina-
tion with nonempty guts.

Calegari and Dunfield [2003] observed that their own results about tight lami-
nations with empty guts would imply the following corollary, in the presence of a
generalization of Agol’s inequality to the case of tight laminations.

Corollary 1.4 [Calegari and Dunfield 2003, Conjecture 9.7]. The Weeks manifold
(the closed hyperbolic manifold of smallest volume) admits no tight lamination F.

Taking into account the main result of [Li 2006], this can be strengthened:

Corollary 1.5. The Weeks manifold admits no transversely orientable essential
lamination.

We also have an application of Theorem 1.1 to higher-dimensional manifolds.

Corollary 1.6. Let M be a compact Riemannian n-manifold of negative sectional
curvature and finite volume. Let F ⊂ M be a geodesic (n−1)-dimensional hyper-
surface of finite volume. Then ‖F‖ ≤ 1

2(n+ 1)‖M‖.

The basic idea of Theorem 1.1, say for simplicity in the special situation of
Corollary 1.6, is the following: a simplex which contributes to a normalized fun-
damental cycle of M should intersect ∂Q = 2F in at most n+ 1 codimension-one
simplices. This is of course not true in general: simplices can wrap around M
many times and intersect F arbitrarily often, and even a homotopy rel vertices will
not change this. As an obvious example, look at the following situation: Let γ
be a closed geodesic transverse to F , and for some large N let σ be a straight
simplex contained in a small neighborhood of γ N. Then σ and F intersect N times
and, since σ is already straight, this number of intersections can of course not be
reduced by straightening. This shows that some more involved straightening must
take place, and that the acylindricity of F is an essential condition. The way to use
acylindricity will be to find a normalization such that many subsets of simplices are
mapped to cylinders, which degenerate and thus can be removed without changing
the homology class.

We remark that many technical points, including the use of multicomplexes, can
be omitted if (in the setting of Theorem 1.2) one does not consider incompressible
surfaces or essential laminations, but just geodesic surfaces in hyperbolic mani-
folds. In this case, all essential parts of the proof of Theorem 1.1 enter without the
notational complications caused by the use of multicomplexes. Therefore we have
given a fairly detailed outline of the proof for this special case in the beginning
of Section 6. This should help to motivate the general proof in the second half
of that section (156). (We mention that Theorem 1.1 is not true without assuming
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amenability of π1∂0 Q. This indicates that the proof of multicomplexes in the proof
of Theorem 1.1 seems unavoidable.)

2. Preliminaries

2A. Laminations. Let M be an n-manifold, possibly with boundary. In this paper
all manifolds will be smooth and orientable. (Hence they are triangulable by White-
head’s theorem and possess a locally finite fundamental class.) A (codimension 1)
lamination F of M is a foliation of a closed subset F of M , i.e., a decomposition of
a closed subset F⊂M into immersed codimension 1 submanifolds (leaves) so that
M is covered by charts φ j : R

n−1
×R→ M , the intersection of any leaf with the

image of any chart φ j being a union of plaques of the form φ j (R
n−1
× {∗}). (We

will denote by F both the lamination and the laminated subset of M , i.e., the union
of leaves.) If M has boundary, we will always assume without further mentioning
that F is either transverse to ∂M (that is, every leaf is transverse to F) or tangential
to ∂M (that is, ∂M is a leaf of F). If neither of these two conditions were true,
then the transverse and normal Gromov norm would be infinite, therefore all lower
bounds will be trivially true.

To construct the leaf space T of F, one considers the pull-back lamination F̃ on
the universal covering M̃ . The space of leaves T is defined as the quotient of M̃
under the following equivalence relation ∼. Two points x, y ∈ M̃ are equivalent
if either they belong to the same leaf of F̃, or they belong to the same connected
component of the metric completion M̃ − F̃ (for the path metric inherited by M̃−F̃

from an arbitrary Riemannian metric on M̃).

2B. Laminations of 3-manifolds. A lamination F of a 3-manifold M is called es-
sential if no leaf is a sphere or a torus bounding a solid torus, M −F is irreducible,
and ∂(M −F) is incompressible and end-incompressible in M −F, where again
the metric completion M −F of M −F is taken with respect to the path metric
inherited from any Riemannian metric on M ; see [Gabai and Oertel 1989, Chapter
1]. (Note that M −F is immersed in M , the leaves of F in the image of the
immersion are called boundary leaves.)

Examples of essential laminations are taut foliations or compact, incompress-
ible, boundary-incompressible surfaces in compact 3-manifolds. (We always con-
sider laminations without isolated leaves. If a lamination has isolated leaves, then
it can be converted into a lamination without isolated leaves by replacing each two-
sided isolated leaf Si with the trivially foliated product Si ×[0, 1], resp. each one-
sided isolated leaf with the canonically foliated normal I -bundle, without changing
the topological type of M .)

If F is an essential lamination, then the leaf space T is an order tree, with
segments corresponding to directed, transverse, efficient arcs. (An order tree T is
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a set T with a collection of linearly ordered subsets, called segments, such that the
axioms of [Gabai and Oertel 1989, Definition 6.9], are satisfied.) Moreover, T is an
R-order tree, that is, it is a countable union of segments and each segment is order
isomorphic to a closed interval in R. T can be topologized by the order topology
on segments (and declaring that a set is closed if the intersection with each segment
is closed). For this topology, π0T and π1T are trivial (see, for example, [Roberts
et al. 2003], Chapter 5, and its references).

The order tree T comes with a fixed-point free action of π1 M . Fenley [2007]
has exhibited hyperbolic 3-manifolds whose fundamental groups do not admit any
fixed-point free action on R-order trees. Thus there are hyperbolic 3-manifolds not
carrying any essential lamination.

If M is hyperbolic and F an essential lamination, then M −F has a characteristic
submanifold which is the maximal submanifold that can be decomposed into I -
bundles and solid tori, respecting boundary patterns (see [Jaco and Shalen 1979],
[Johannson 1979] for precise definitions). The complement of this characteristic
submanifold is denoted by Guts(F). It admits a hyperbolic metric with geodesic
boundary and cusps. (Be aware that some authors, like [Calegari and Dunfield
2003], include the solid tori into the guts.) If F = F is a properly embedded, in-
compressible, boundary-incompressible surface, then Agol’s inequality states that
Vol(M)≥−2V3χ(Guts(F)). This implies, for example, that a hyperbolic manifold
of volume < 2V3 can not contain any geodesic surface of finite area. Agol, Storm,
and Thurston [Agol et al. 2007], using estimates coming from Perelman’s work on
the Ricci flow, have improved this inequality to

Vol(M)≥ Vol(Guts(F))≥−Voctχ(Guts(F)).

Assume that F is a codimension one lamination of an n-manifold M such that
its leaf space T is an R-order tree. (For example this is the case if n = 3 and F

is essential.) An essential lamination is called tight if T is Hausdorff. It is called
unbranched if T is homeomorphic to R. It is said to have two-sided branching
[Calegari 2000, Definition 2.5.2] if there are leaves λ, λ1, λ2, µ, µ1, µ2 such that
the corresponding points in the T satisfy λ < λ1, λ < λ2, µ > µ1, µ > µ2, but
λ1, λ2 are incomparable and µ1, µ2 are incomparable. It is said to have one-sided
branching if it is neither unbranched nor has two-sided branching.

If M is a hyperbolic 3-manifold and carries a tight lamination with empty guts,
we know from [2003, Theorem 3.2] that π1 M acts effectively on the circle, i.e.,
there is an injective homomorphism π1 M → Homeo(S1). This implies that the
Weeks manifold cannot carry a tight lamination with empty guts [Calegari and
Dunfield 2003, Corollary 9.4]. The aim of this paper is to find obstructions to the
existence of laminations with nonempty guts.



114 THILO KUESSNER

2C. Simplicial volume and refinements. Let M be a compact, orientable, con-
nected n-manifold, possibly with boundary. Its top integer (singular) homology
group Hn(M, ∂M;Z) is cyclic. The image of a generator under the change-of-
coefficients homomorphism Hn(M, ∂M;Z)→ Hn(M, ∂M;R) is called a funda-
mental class and is denoted [M, ∂M]. If M is not connected, we define [M, ∂M]
to be the formal sum of the fundamental classes of its connected components.

The simplicial volume ‖M, ∂M‖ is defined as

‖M, ∂M‖ = inf
{ r∑

i=1
|ai |

}
,

where the infimum is taken over all singular chains
∑r

i=1 aiσi (with real coeffi-
cients) representing the fundamental class in Hn(M, ∂M;R).

If M − ∂M carries a complete hyperbolic metric of finite volume Vol(M), then

‖M, ∂M‖ =
1
Vn

Vol(M),

with Vn = sup {Vol(1) :1⊂ Hn geodesic simplex}; see [Gromov 1982; Thurston
1980; Benedetti and Petronio 1992; Francaviglia 2004].

More generally, let P be any polyhedron. Then the invariant ‖M, ∂M‖P is
defined in [Agol 1999] as follows: denoting by C∗(M, ∂M; P;R) the complex of
P-chains with real coefficients and by H∗(M, ∂M; P;R) its homology, there is a
canonical chain homomorphism ψ : C∗(M, ∂M; P;R)→ C∗(M, ∂M;R), given
by certain triangulations of P which are to be chosen so that all possible cancella-
tions of boundary faces are preserved. Then ‖M, ∂M‖P is defined as the infimum
of
∑r

i=1 |ai | over all P-chains
∑r

i=1 ai Pi such that ψ(
∑r

i=1 ai Pi ) represents the
fundamental class [M, ∂M]. Set VP := sup{Vol(1)}, where the supremum is taken
over all straight P-polyhedra 1⊂ H3.

Proposition 2.1 [Agol 1999, Lemma 4.1]. If M − ∂M admits a hyperbolic metric
of finite volume Vol(M), then

‖M, ∂M‖P =
1

VP
Vol(M).

(The proof in [Agol 1999] is quite short, and it does not give details for the
cusped case. However, the proof in the cusped case can be completed using the
arguments in [Francaviglia 2004, Sections 5 and 6].)

Let M be a manifold and F a codimension-one lamination of M . Let 1n be the
standard simplex in Rn+1, and σ : 1n

→ M some continuous singular simplex.
The lamination F induces an equivalence relation on 1n , whereby x ∼ y if and
only if σ(x) and σ(y) belong to the same connected component of L ∩σ(1n) for
some leaf L of F. We say that a singular simplex σ :1n

→ M is laminated if the
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equivalence relation ∼ is induced by a lamination F|σ of1n . We call a lamination
F of 1n affine if there is an affine mapping f : 1n

→ R such that x, y ∈ 1n

belong to the same leaf if and only if f (x) = f (y). We say that a lamination G

of 1n is conjugate to an affine lamination if there is a simplicial homeomorphism
H :1n

→1n such that H∗G is an affine lamination.
We say that a singular n-simplex σ : 1n

→ M , n ≥ 2, is transverse to F if it
is laminated and it is either contained in a leaf, or F|σ is conjugate to an affine
lamination G of 1n .

For n = 1, we say that a singular 1-simplex σ :11
→ M is transverse to F if it

is either contained in a leaf, or for each lamination chart φ :U→Rm−1
×R1 (with

m-th coordinate map φm : U → R1) one has that φm ◦ σ |σ−1(U ) : σ
−1(U )→ R1 is

locally surjective at all points of int(11), i.e., for all p ∈ int(11) ∩ σ−1(U ), the
image of φm ◦ σ |σ−1(U ) contains a neighborhood of φm ◦ σ(p).

We say that the simplex σ :1n
→M is normal to F if, for each leaf F , σ−1(F)

consists of normal disks, i.e., disks meeting each edge of 1n at most once. (If
F = ∂M is a leaf of F we also allow that σ−1(F) can be a face of 1n). In
particular, any transverse simplex is normal.

In the special case of foliations, F one has that the transversality of a singular
simplex σ is implied by (hence equivalent to) the normality of σ , as can be shown
along the lines of [Kuessner 2004, Section 1.3].

More generally, let P be any polyhedron. Then we say that a singular polyhe-
dron σ : P → M is normal to F if, for each leaf F , σ−1(F) consists of normal
disks, i.e., disks meeting each edge of P at most once (or being equal to a face of
P , if F is a boundary leaf).

transverse normal, not transverse not normal

Definition 2.2. Let M be a compact, oriented, connected n-manifold, possibly
with boundary, and let F be a foliation or lamination on M . Let1n be the standard
simplex and P any polyhedron. Let 6 be the set of singular simplices 1n

→ M
transverse to F. We define

‖M, ∂M‖F := inf
{ r∑

i=1
|ai | : ψ

( r∑
i=1

aiσi

)
represents [M, ∂M] for some σi ∈6

}
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and

‖M, ∂M‖norm
F,P := inf

{ r∑
i=1
|ai | :ψ

( r∑
i=1

aiσi

)
represents [M, ∂M] for some σi ∈6

}
.

In particular, we define ‖M, ∂M‖norm
F = ‖M, ∂M‖norm

F,1n .

All these norms are finite, under the assumption that F is transverse or tangential
to ∂M . There are obvious inequalities

‖M, ∂M‖ ≤ ‖M, ∂M‖norm
F ≤ ‖M, ∂M‖F.

In the case of foliations, this last inequalities becomes an equality.
(We remark that all definitions extend in an obvious way to disconnected man-

ifolds by summing over the connected components.)
The next proposition and lemma are straightforward generalizations of [Calegari

2000, Theorem 2.5.9] and of arguments in [Agol 1999].

Proposition 2.3. Let M be a compact, oriented 3-manifold.

(a) If F is an essential lamination which is either unbranched or has one-sided
branching such that the induced lamination of ∂M is unbranched, then

‖M, ∂M‖norm
F,P = ‖M, ∂M‖P

for each polyhedron P.

(b) If F is a tight essential lamination, then

‖M, ∂M‖norm
F,P = ‖M, ∂M‖P

for each polyhedron P.

Proof. Since F is an essential lamination, we know from [Gabai and Oertel 1989,
Theorem 6.1] that the leaves are π1-injective, the universal covering M̃ is homeo-
morphic to R3 and that the leaves of the pull-back lamination are planes, in partic-
ular aspherical. Therefore Proposition 2.3 is a special case of the next result. �

Lemma 2.4. Let M be a compact, oriented, aspherical manifold, and F a lamina-
tion of codimension one. Assume that the leaves are π1-injective and aspherical,
and that the leaf space T is an R-order tree.

(a) If the leaf space T is either R or branches in only one direction, so that the
induced lamination of ∂M has leaf space R, then ‖M, ∂M‖norm

F,P =‖M, ∂M‖P

for each polyhedron P.

(b) If the leaf space is a Hausdorff tree, then ‖M, ∂M‖norm
F,P =‖M, ∂M‖P for each

polyhedron P.
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Proof. To prove the wanted equalities, it suffices in each case to show that any
(relative) cycle can be homotoped to a cycle consisting of normal polyhedra. We
denote by F̃ the pull-back lamination of M̃ and by p : M̃→T = M̃/F̃ the projection
to the leaf space.

(a) First we consider the case that P is a simplex [Calegari 2000, Section 4.1] and F

is unbranched. For this case, we can repeat the argument in [Calegari 2000, Lemma
2.2.8]. Namely, given a (relative) cycle

∑r
i=1 aiσi , lift it to a π1 M-equivariant

(relative) cycle on M̃ and then perform an (equivariant) straightening, by induction
on the dimension of subsimplices of the lifts σ̃i as follows: for each edge ẽ of any
lift σ̃i , its projection p(ẽ) to the leaf space T is homotopic to a unique straight arc
str(p(ẽ)) in T ' R. It is easy to see (covering the arc by foliation charts and then
extending the lifted arc stepwise) that str(p(ẽ)) can be lifted to an arc str(ẽ) with
the same endpoints as ẽ, and that the homotopy between str(p(ẽ)) and p(ẽ) can
be lifted to a homotopy between str(ẽ) and ẽ. str(ẽ) is transverse to F, because its
projection is a straight arc in T . These homotopies of edges can be extended to a
homotopy of the whole (relative) cycle. Thus we have straightened the 1-skeleton
of the given (relative) cycle.

Now let us be given a 2-simplex f̃ : 12
→ M̃ with transverse edges. There is

an obvious straightening str(p( f̃ )) of p( f̃ ) : 12
→ T as follows: if, for t ∈ T ,

(p f̃ )−1(t) has two preimages x1, x2 on edges of12 (which are necessarily unique),
then str(p( f̃ )) maps the line which connects x1 and x2 in 12 constantly to t . It is
clear that this defines a continuous map str(p( f̃ )) :12

→ T .
Since the leaves F̃ of F̃ are connected (π0 F̃ = 0), str(p( f̃ )) can be lifted to

a map str( f̃ ) : 12
→ M̃ with p(str( f̃ )) = str(p( f̃ )). The 2-simplex str( f̃ ) is

transverse to F, because its projection is a straight simplex in T .
There is an obvious homotopy between p( f̃ ) and str(p( f̃ )). For each t ∈ T ,

the restriction of the homotopy to (p f̃ )−1(t) can be lifted to a homotopy in M̃ ,
because π1 M̃ = 0. Since π2 M̃ = 0, these homotopies for various t ∈ T fit together
continuously to give a homotopy between f̃ and str( f̃ ).

These homotopies of 2-simplices leave the (already transverse) boundaries point-
wise fixed; thus they can be extended to a homotopy of the whole (relative) cycle.
Hence we have straightened the 2-skeleton of the given (relative) cycle.

Assume that we have already straightened the k-skeleton, for some k ∈ N. The
analogous procedure, using πk−1 F̃ = 0 for all leaves, and πk M̃ = 0, πk+1 M̃ = 0,
allows to straighten the (k+1)-skeleton of the (relative) cycle. This finishes the
proof in the case that F is unbranched.

The generalization to the case that F has one-sided branching and the induced
lamination of ∂M is unbranched works as in [Calegari 2000, Theorem 2.6.6].

We remark that in the case that P is a simplex we get not only a normal cycle,
but even a transverse cycle.
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Now we consider the case of arbitrary polyhedra P . Let
∑r

i=1 aiσi be a P-
cycle. It can be subtriangulated to a simplicial cycle

∑r
i=1 ai

∑s
j=1 τi, j . Again the

argument in [Calegari 2000, Lemma 2.2.8], and the corresponding argument for
manifolds with boundary, shows that this simplicial cycle can be homotoped such
that each τi, j is transverse (and such that boundary cancellations are preserved).
But transversality of each τi, j implies by definition that σi =

∑s
j=1 τi, j is normal

(though in general not transverse) to F.

(b) By assumption M̃/F̃ is a Hausdorff tree. Its branching points are the projec-
tions of complementary regions: Indeed, if F is a leaf of F, then F̃ is a submanifold
of the contractible manifold M̃ . By asphericity and π1-injectivity of F , F̃ must
be contractible. By Alexander duality it follows that M̃ − F̃ has two connected
components. Therefore the complement of the point p(F̃) in the leaf space has (at
most) two connected components, so p(F̃) cannot be a branch point.

Again, to define a straightening of P-chains it suffices to define a canonical
straightening of singular polyhedra P such that straightenings of common bound-
ary faces will agree. Let ṽ0, . . . , ṽn be the vertices of the image of P . For each
pair {ṽi , ṽ j } there exists at most one edge ẽi j with vertices ṽi , ṽ j in the image of P .
Since the leaf space is a tree, we have a unique straight arc str(p(ẽi j )) connecting
the points p(ṽi ) and p(ṽ j ) in the leaf space. As in (a), one can lift this straight
arc str(p(ẽi j )) to an arc str(ẽi j ) in M̃ , connecting ṽi and ṽ j , which is transverse
to F. We define this arc str(ẽi j ) to be the straightening of ẽi j . As in (a), we have
homotopies of 1-simplices, which extend to a homotopy of the whole (relative)
cycle. Thus we have straightened the 1-skeleton.

Now let us be given the 3 vertices ṽ0, ṽ1, ṽ2 of a 2-simplex f̃ with straight
edges. If the projections p(ṽ0), p(ṽ1), p(ṽ2) belong to a subtree isomorphic to a
connected subset of R, then we can straighten f̃ as in (a). If not, the projection of
the 1-skeleton of this simplex has exactly one branch point, which corresponds to
a complementary region. (The projection may of course meet many branch points
of the tree, but the image of the projection, considered as a subtree, can have at
most one branch point. In general, a subtree with n vertices can have at most
n − 2 branch points.) The preimage of the complement of this complementary
region consists of three connected subsets of the 2-simplex (the “corners” around
the vertices). We can straighten each of these subsets and do not need to care
about the complementary region corresponding to the branch point. Thus we have
straightened the 2-skeleton.

Assume that we have already straightened the k-skeleton, for some k ∈N. Given
the k+2 vertices ṽ0, ṽ1, . . . , ṽk+1 of a (k+1)-simplex with straight faces, we have
(at most k) branch points in the projection of the simplex, which correspond to
complementary regions. Again we can straighten the parts of the simplex which
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do not belong to these complementary regions as in (a), since they are projected to
linearly ordered subsets of the tree. Thus we have straightened the (k+1)-skeleton.

Since, by the recursive construction, we have defined straightenings of simplices
with common faces by first defining (the same) straightenings of their common
faces, the straightening of a (relative) cycle will be again a (relative) cycle, in the
same (relative) homology class. �

Remark. For ‖M‖F instead of ‖M‖norm
F , equality (b) is in general wrong, and

equality (a) is unknown (but presumably wrong).

If F is essential but not tight, one may still try to homotope cycles to be trans-
verse, by possibly changing the lamination. In the special case that the cycle is
coming from a triangulation, this has been done by Brittenham [1995] and Gabai
[1999]. It is not obvious how to generalize their arguments to cycles with overlap-
ping simplices.

3. Retracting chains to codimension zero submanifolds

3A. Definitions. The results of this section are essentially all due to Gromov, but
we follow mainly our exposition in [Kuessner 2010]. We start with some recollec-
tions about multicomplexes; for details, see [Gromov 1982, Section 3; Kuessner
2010, Section 1].

A multicomplex K is a topological space |K | with a decomposition into sim-
plices, where each n-simplex is attached to the (n−1)-skeleton Kn−1 by a simplicial
homeomorphism f : ∂1n

→ Kn−1. (In particular, each n-simplex has n+1 distinct
vertices.) In contrast with simplicial complexes, in a multicomplex there may be
n-simplices with the same (n−1)-skeleton.

We call a multicomplex minimally complete if the following condition holds:
Let σ : 1n

→ |K | be a singular n-simplex such that ∂0σ, . . . , ∂nσ are distinct
simplices of K . Then σ is homotopic relative ∂1n to a unique simplex in K .

We call a minimally complete multicomplex K aspherical if all simplices σ 6= τ
in K satisfy σ1 6= τ1. That means that simplices are uniquely determined by their
1-skeleton.

Orientations of multicomplexes are defined as usual in simplicial theory. If σ is
a simplex, σ will denote the simplex with the opposite orientation.

A submulticomplex L of a multicomplex K is a subset of the set of simplices
closed under face maps. (K , L) is a pair of multicomplexes if K is a multicomplex
and L is a submulticomplex of K .

A group G acts simplicially on a pair of multicomplexes (K , L) if it acts on the
set of simplices of K , mapping simplices in L to simplices in L , so that the action
commutes with all face maps. For g ∈ G and σ a simplex in K , we denote by gσ
the simplex obtained by this action.
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3B. Construction of K (X). We recall the construction from [Kuessner 2010, Sec-
tion 1.3] (originally found in [Gromov 1982, pp. 45–46]).

For a topological space X , we denote by S∗(X) the simplicial set of all singular
simplices in X and by |S∗(X)| its geometric realization.

For a topological space X , a multicomplex K̂ (X) ⊂ |S∗(X)| is constructed as
follows. The 0-skeleton K̂0(X) equals S0(X). The 1-skeleton K̂1(X) contains one
element in each homotopy class (rel {0, 1}) of singular 1-simplices f : [0, 1]→ X
with f (0) 6= f (1). For n ≥ 2, assuming by recursion that the (n−1)-skeleton is
defined, the n-skeleton K̂n(X) contains one singular n-simplex in each homotopy
class (rel boundary) of singular n-simplices f : 1n

→ X with ∂ f ∈ K̂n−1(X).
We can choose K̂ (X) with the property that σ ∈ K̂ (X) ⇐⇒ σ ∈ K̂ (X) (recall
that the bar denotes orientation reversal). We will henceforth assume that K̂ (X) is
constructed according to this condition.

According to [Gromov 1982], |K̂ (X)| is weakly homotopy equivalent to X .
The multicomplex K (X) is defined as the quotient

K (X) := K̂ (X)/∼

where simplices in K̂ (X) are identified if and only if they have the same 1-skeleton.
Let p be the canonical projection p : K̂ (X)→ K (X).

K (X) is minimally complete and aspherical.
If X ′⊂ X is a subspace, we have (not necessarily injective) simplicial mappings

ĵ : K̂ (X ′)→ K̂ (X) and j : K (X ′)→ K (X).
If π1 X ′→ π1 X is injective (for each path-connected component of X ′), then j

is injective ([Kuessner 2010], Section 1.3) and we can (and will) consider K (X ′)
as a submulticomplex of K (X). (Since simplices in K̂ (X ′) have image in X ′, this
means that we assume we have constructed K̂ (X) so that simplices in K̂ (X) have
image in X ′ whenever this is possible.) If moreover πn X ′→πn X is injective for all
n≥ 2 (say, if X ′ is aspherical), then ĵ is also injective and K̂ (X ′) can be considered
as a submulticomplex of K̂ (X).

In particular, if X and X ′ are aspherical and π1 X ′→ π1 X is injective, there is
an inclusion

i∗ : C
simp
∗ (K (X), K (X ′))= C simp

∗ (K̂ (X), K̂ (X ′))→ C sing
∗ (X, X ′)

into the relative singular chain complex of (X, X ′).

3C. Infinite and locally finite chains. In this paper we will also work with infinite
chains, and in particular with locally finite chains on noncompact manifolds, as
introduced in [Gromov 1982, Section 0.2].

For a topological space X , a formal sum
∑

i∈I aiσi of singular k-simplices with
real coefficients (with a possibly infinite index set I , and the convention ai 6= 0
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for i ∈ I ) is an infinite singular k-chain. It is said to be a locally finite chain if
each point of X is contained in the image of at most finitely many σi . Infinite k-
chains form a real vector space denoted by C inf

k (X), and locally finite k-chains one
denoted by C lf

k (X). The boundary operator maps locally finite k-chains to locally
finite (k−1)-chains, hence, for a pair of spaces (X, X ′) the homology H lf

∗
(X, X ′)

of the complex of locally finite chains can be defined.
For a noncompact, orientable n-manifold X with (possibly noncompact) bound-

ary ∂X , one has a fundamental class [X, ∂X ] ∈ H lf
n (X, ∂X). We will say that an

infinite chain
∑

i∈I aiσi represents [X, ∂X ] if it is homologous to a locally finite
chain representing [X, ∂X ] ∈ H lf

n (X, ∂X).
For a simplicial complex K , we denote by C simp,inf

k (K ) the R-vector space of
(possibly infinite) formal sums

∑
i∈I aiσi with ai ∈ R and σi k-simplices in K .

If πn X ′ → πn X is injective for n ≥ 1, we have again the obvious inclusion i∗ :
C simp,inf
∗ (K̂ (X), K̂ (X ′))→ C inf

∗
(X, X ′).

The following observation is of course a well-known application of the homo-
topy extension property, but we will use it so often that we state it here for reference.

Observation 3.1. Let X be a topological space and σ0 : 1
n
→ X a singular

simplex. Let H : ∂1n
× I → X be a homotopy with H(x, 0) = σ0(x) for all

x ∈ ∂1n . Then there exists a homotopy H : 1n
× I → X with H |∂1n×I = H and

H |1n×{0} = σ0.
If X ′⊂ X is a subspace and the images of σ0 and H belong to X ′, we can choose

H so that its image belongs to X ′.

Lemma 3.2. Let (X, X ′) be a pair of topological spaces. Assume πn X ′→ πn X is
injective for each path component of X ′ and each n ≥ 1.

(a) Let
∑

i∈I aiτi ∈ C inf
n (X, X ′) be a (possibly infinite) singular n-chain. Assume

that I is countable, and that each path component of X and each nonempty
path component of X ′ contain uncountably many points. Then

∑
i∈I aiτi is

homotopic to a (possibly infinite) simplicial chain∑
i∈I

aiτ
′

i ∈ C simp,inf
n (K̂ (X), K̂ (X ′))⊂ C inf

∗
(X, X ′).

In particular,
∑

i∈I aiτ
′

i is homologous to
∑

i∈I aiτi .

(b) Let σ0 ∈ K̂ (X) and H : 1n
× [0, 1] → X a homotopy with H( · , 0) = σ0.

Consider a minimal triangulation 1n
× [0, 1] = 10 ∪ . . . 1n of 1n

× [0, 1]
into n+1 (n+1)-simplices. Assume that H(∂1n

×[0, 1]) consists of simplices
in K̂ (X). Then H is homotopic (rel 1n

× {0} ∪ ∂1n
× [0, 1]) to a map H :

1n
×[0, 1]→ X such that H |1i ∈ K̂ (X); in particular σ1 := H( · , 1)∈ K̂ (X).

Proof. (a) From the assumptions it follows that there exists a homotopy of the
0-skeleton such that each vertex is moved into a distinct point of X , and such
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that vertices in X ′ remain in X ′ during the homotopy. By Observation 3.1, this
homotopy can by induction be extended to a homotopy of the whole chain.

Now we prove the claim by induction on k (0 ≤ k < n). We assume that the
k-skeleton of

∑
i∈I aiτi consists of simplices in K̂ (X) and we want to homotope∑

i∈I aiτi such that the homotoped (k+1)-skeleton consists of simplices in K̂ (X).
By construction, each singular (k+1)-simplex σ in X with boundary a sim-

plex in K̂ (X) is homotopic (rel boundary) to a unique (k+1)-simplex in K̂ (X).
Since the homotopy keeps the boundary fixed, the homotopies of different (k+1)-
simplices are compatible. By Observation 3.1, the homotopy of the (k+1)-skeleton
can by induction be extended to a homotopy of the whole chain.

If the image of the (k+1)-simplex σ is contained in X ′, then it is homotopic
rel boundary to a simplex in K̂ (X ′), for a homotopy with image in X ′. Thus we
can realize the homotopy in such a way that all simplices with image in X ′ are
homotoped inside X ′.

(b) follows by the same argument as (a), successively applied to 10, . . . ,1n . �

We remark that there exists a canonical simplicial map

p : C simp,inf
∗ (K̂ (X), K̂ (X ′))→ C simp,inf

∗ (K (X), K (X ′)),

defined by induction. It is defined to be the identity on the 1-skeleton. If it is
defined on the (n−1)-skeleton, for n ≥ 2, then, for an n-simplex τ , p(τ ) ∈ K (X)
is the unique simplex with ∂i p(τ )= p(∂iτ) for i = 0, . . . , n.

3D. Action of G =5(A). We repeat the definitions from [Kuessner 2010, Section
1.5] (originally due to Gromov), as they will be frequently used in the remainder
of the paper.

Let (P, A) be a pair of minimally complete multicomplexes. We define its space
of nontrivial loops �∗A as the set of homotopy classes (rel {0, 1}) of continuous
maps γ : [0, 1]→ |A| with γ (0)= γ (1) and not homotopic (rel {0, 1}) to a constant
map.

We define

5(A) :=
{
{γ1, . . . , γn} : n ∈ N, γ1, . . . , γn ∈ A1 ∪�

∗A, γi (0)= γi (1) for all i,

γi (0) 6= γ j (0), γi (1) 6= γ j (1) for i 6= j
}
.

If γ, γ ′ are elements of A1 with γ ′ 6= γ and γ (0)= γ ′(1), we denote by γ ∗γ ′ ∈ A1

the unique edge of A in the homotopy class of the concatenation.1 If γ ∈ A1 and
γ ′ ∈ �∗A (or vice versa), with γ (1) 6= γ (0) = γ ′(1) = γ ′(0), we also denote

1We follow the usual convention of defining the concatenation of paths by γ ∗ γ ′(t) = γ (2t) if
t ≤ 1

2 and γ ∗ γ ′(t) = γ ′(2t − 1) if t ≥ 1
2 . Unfortunately this implies that, in order for 5(A) to act

on P , we will need the multiplication in 5(A) to satisfy, for example, {γ }{γ ′} = {γ ′ ∗ γ }. We hope
that this does not lead to confusion.
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by γ ∗ γ ′ ∈ A1 the unique edge in the homotopy class of the concatenation. If
γ, γ ′ ∈ �∗A with γ (1) = γ (0) = γ ′(1) = γ ′(0), we denote by γ ∗ γ ′ ∈ �∗A the
concatenation of homotopy classes of loops.

We then define a multiplication on 5(A) as follows: Given {γ1, . . . , γm} and
{γ ′1, . . . , γ

′
n}, we reindex the unordered sets {γ1, . . . , γm} and {γ ′1, . . . , γ

′
n} so that

γ j (1)= γ ′j (0) for 1≤ j ≤ i and γ j (1) 6= γ ′k(0) for j ≥ i + 1 and k ≥ i + 1. (Since
we are assuming that all γ j (1) are pairwise distinct, and also all γ ′j (0) are pairwise
distinct, such a reindexing exists for some i ≥ 0, and it is unique up to permuting
the indices ≤ i and permuting separately the indices of the γ j and γ ′k with j ≥ i+1
and k ≥ i + 1.) Moreover we permute the indices {1, . . . , i} so that there exists
some h with 0≤ h ≤ i satisfying the following conditions:

– For 1≤ j ≤ h we have either γ ′j 6= γ j ∈ A1 or γ ′j 6= γ
−1
j ∈�

∗A.

– For h < j ≤ i we have either γ ′j = γ j ∈ A1 or γ ′j = γ
−1
j ∈�

∗A.

With this fixed reindexing we define

{γ1, . . . , γm}{γ
′

1, . . . , γ
′

n} := {γ
′

1 ∗ γ1, . . . , γ
′

h ∗ γh, γi+1, . . . , γm, γ
′

i+1, . . . , γ
′

n}.

(Note that we have omitted all γ ′j ∗γ j with j > h. The choice of γ ′j ∗γ j rather than
γ j ∗ γ

′

j is just because we want to define a left action on (P, A).)
We have shown in [Kuessner 2010] (footnote to Section 1.5.1) that the product

belongs to 5(A). Moreover, the multiplication so defined is independent of the
chosen reindexing. It is clearly associative. A neutral element is given by the empty
set. The inverse to {γ1, . . . , γn} is given by {γ ′1, . . . , γ

′
n}, with γ ′i =γi if γi ∈ A1 and

γ ′i = γ
−1
i if γi ∈�

∗A. (Indeed, in this case h = 0; thus {γ1, . . . , γn}{γ
′

1, . . . , γ
′
n} is

the empty set.) Thus we have defined a group law on 5(A).

Remark. There is an inclusion

5(A)⊂map0
(

A0,
[
[0, 1], |A|

]
|P|
)
,

where
[
[0, 1], |A|

]
|P| is the set of homotopy classes (in |P|) rel {0, 1} of maps

from [0, 1] to |A|, and map0
(

A0,
[
[0, 1], |A|

]
|P|
)

is the set of maps f : A0 →[
[0, 1], |A|

]
|P| with

– f (y)(0)= y for all y ∈ A0, and

– f ( · )(1) : A0→ A0 is a bijection.

This inclusion is given by sending {γ1, . . . , γn} to the map f defined by f (γi (0))=
[γi ] for i =1, . . . , n, and f (y)=[cy] (the constant path) for y 6∈ {γ1(0), . . . , γn(0)}.
The inclusion is a homomorphism with respect to the group law defined by

[g f (y)] := [ f (y)] ∗ [g( f (y)(1))]

on map0(A0,
[
[0, 1], |A|

]
|P|).
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3E. Action of 5(A) on P. From now on we assume that P is aspherical. We
define an action of map0

(
A0,

[
[0, 1], |A|

]
|P|
)

on P . This gives an action of 5(A)
on P .

Let g ∈map0(A0, [(0, 1), |A|]|P|). Define gy = g(y)(1) for y ∈ A0 and gx = x
for x ∈ P0− A0. This defines the action on the 0-skeleton of P .

We extend this to an action on the 1-skeleton of P . Recall that, by minimal
completeness of P , 1-simplices σ are in one-to-one correspondence with homotopy
classes (rel {0, 1}) of (nonclosed) singular 1-simplices in |P| with vertices in P0.
Using this correspondence, define

gσ := [g(σ (0))] ∗ [σ ] ∗ [g(σ (1))],

where ∗ denotes concatenation of (homotopy classes of) paths.
In [Kuessner 2010, Section 1.5.1] we proved that this defines an action on P1

and that there is an extension of ths action to an action on P . (The extension is
unique because P is aspherical.)

We remark, because this will be one of the assumptions to apply Lemma 3.7,
that the action of any element g∈5(A) is homotopic to the identity. The homotopy
between the action of the identity and the action of {γ1, . . . , γr } given by the action
of {γ t

1 , . . . , γ
t
r }, 0≤ t ≤ 1, with γ t

i (s)= γi (st).
The next lemma follows directly from the construction, but we will use it so

often that we want to explicitly state it.

Lemma 3.3. Let (P, A) be a pair of aspherical, minimally complete multicom-
plexes, with the action of G = 5(A). If σ ∈ P is a simplex all of whose vertices
are not in A, then gσ = σ for all g ∈ G.

For a topological space and a subset P⊂ S∗(X) closed under face maps, the (an-
tisymmetric) bounded cohomology H∗b (P) and its pseudonorm are defined literally
like for multicomplexes in [Gromov 1982, Section 3.2]. The following well-known
fact will be needed for applications of Lemma 3.7 (to the setting of Theorem 1.1)
with P = K str(∂Q),G =5(K (∂0 Q)).

Lemma 3.4. (a) Let (P, A) be a pair of minimally complete multicomplexes.
If each connected component of |A| has amenable fundamental group, then
5(A) is amenable.

(b) Let X be a topological space, P ⊂ S∗(X) a subset closed under face maps,
and G an amenable group acting on P. Then the canonical homomorphism

id⊗1 : C simp
∗ (P)→ C simp

∗ (P)⊗ZG Z

induces an isometric monomorphism in bounded cohomology.

The proof of (a) is an obvious adaptation of that of [Kuessner 2010, Lemma 4].
Part (b) is proved by averaging bounded cochains; see [Gromov 1982].
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3F. Retraction to central simplices.

Lemma 3.5. Let (N , ∂N ) be a pair of topological spaces with N = Q∪ R for two
subspaces Q, R. Let

∂0 Q = Q∩ R, ∂1 Q = Q∩∂N , ∂1 R= R∩∂N , ∂Q = ∂0 Q∪∂1 Q, ∂R= ∂0 Q∪∂1 R.

Assume that ∂1 Q → Q → N , ∂1 R → R → N , ∂N → N , ∂0 Q → Q, ∂0 Q → R
are π1-injective, and that ∂N , ∂1 Q, ∂1 R, ∂0 Q are aspherical (so the corresponding
K ( · ) can be considered as submulticomplexes of K (N )).

In connection with the simplicial action of G =5(K (∂0 Q)) on K (N ), there is
a chain homomorphism

r : C simp,inf
∗ (K (N ))⊗ZG Z→ C simp,inf

∗ (K (Q))⊗ZG Z

in degrees ∗≥2, mapping C simp,inf
∗ (G K (∂N ))⊗ZG Z to C simp,inf

∗ (G K (∂1 Q))⊗ZG Z,
and such that

– if σ is a simplex in K (N ), then r(σ ⊗ 1)= κ ⊗ 1, where either κ is a simplex
in K (Q) or κ = 0;

– if σ is a simplex in K (Q), then r(σ ⊗ 1)= σ ⊗ 1;

– if σ is a simplex in K (R), then r(σ ⊗ 1)= 0.

Proof. This is [Kuessner 2010, Proposition 6]. (We have replaced the assumption
ker(π1∂0 Q → π1 Q) = ker(π1∂0 Q → π1 R) from that reference by the stronger
assumption of π1-injectivity, since this will be true in all our applications and
we have no need for the more general assumption.) The conclusion is stated in
[Kuessner 2010] for locally finite chains, but of course r extends linearly to infinite
chains. �

Remark. If some edge of σ is contained in K (∂0 Q)= K (Q)∩ K (R), then

σ ⊗ 1= 0 ∈ C simp,inf
∗ (K (N ))⊗ZG Z;

see [Kuessner 2010, Section 1.5.2]. (The proof is essentially the same as that of
Lemma 5.17 below.) In particular, if σ is contained in both K (Q) and K (R), then
r(σ ⊗ 1)= r(0)= 0.

3G. Fundamental cycles in K (N) and K ( Q). Let N be a (possibly noncompact)
connected, orientable n-manifold with (possibly noncompact) boundary ∂N . Then
H lf

n (N , ∂N ) ' Z by Whitehead’s theorem and a generator is called [N , ∂N ]. (It
is only defined up to sign, but this will not concern our arguments.) Recall that
an infinite chain is said to represent [N , ∂N ] if it is homologous to a locally finite
chain representing [N , ∂N ].
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If ∂N→ N is π1-injective and ∂N is aspherical, we know from Section 3B that

C simp,inf
∗ (K̂ (N ), K̂ (∂N ))⊂ C sing,inf

∗ (N , ∂N ).

Thus it makes sense to say that some chain z ∈C simp,inf
∗ (K̂ (N ), K̂ (∂N )) represents

the fundamental class [N , ∂N ].
If ∂1 Q→ Q is π1-injective and Q and ∂1 Q are aspherical, and if we set G :=

5(K (∂0 Q)), then C simp,inf
∗ (G K (∂1 Q)) = C simp,inf

∗ (G K̂ (∂1 Q)) ⊂ C sing,inf
∗ (∂Q), as

G maps simplices in im(K (∂Q)→ K (Q)) to simplices in im(K (∂Q)→ K (Q)).
Thus it makes sense to say that some chain z ∈ C simp,inf

∗ (K (Q),G K (∂1 Q)) repre-
sents the fundamental class [Q, ∂Q].

The projection p : K̂ (N )→ K (N ) is defined at the end of Section 3B.

Lemma 3.6. Let N be an orientable n-manifold with boundary (where n ≥ 2),
and let Q, R ⊂ N be orientable n-manifolds with boundary such that N = Q ∪ R
satisfies the assumptions of Lemma 3.5 and that ∂0 Q, ∂1 Q ⊂ ∂Q and ∂1 R ⊂ ∂R
are (n−1)-dimensional submanifolds (with boundary) of ∂Q or ∂R. Assume also
that Q is aspherical. Let

∑
i aiσi ∈ C simp,inf

n (K̂ (N ), K̂ (∂N )) represent [N , ∂N ].

(a)
∑

i
air(p(σi ))⊗1∈C simp,inf

n (K (Q),G K (∂1 Q))⊗ZG Z represents [Q, ∂Q]⊗1.

(b) ∂
∑

i
air(p(σi ))⊗ 1 ∈ C simp,inf

n (G K (∂Q))⊗ZG Z represents [∂Q]⊗ 1.

Remark. Explicitly, statement (a) means that the element on the left represents
the image of h⊗1 under the canonical homomorphism H sing,inf

n (Q, ∂Q)⊗ZG Z→

Hn(C
sing,inf
∗ (Q, ∂Q) ⊗ZG Z), where h ∈ H simp,inf

n (K (Q),G K (∂1 Q)) represents
[Q, ∂Q] ∈ H sing

n (Q, ∂Q). Similarly, (b) means that the element represents the
image of h⊗1 under the canonical homomorphism H simp,inf

n (G K (∂1 Q))⊗ZG Z→

Hn(C
simp,inf
∗ (G K (∂1 Q))⊗ZG Z), where h∈H simp,inf

n (G K (∂1 Q)) represents [∂Q]∈
H sing

n (∂Q).

Proof. Since p and r are chain maps, it suffices to check the claim for some chosen
representative of [N , ∂N ]. So let z ∈ C simp,inf

∗ (K̂ (N ), K̂ (∂N )) be a representative
of [N , ∂N ] chosen so that

p(z)= zQ + zR,

where zQ represents [Q, ∂Q] and zR represents [R, ∂R], and so that

∂zQ = w1+w2, ∂zR =−w2+w3

with w1 ∈ C simp,inf
n−1 (K (∂1 Q)) representing [∂1 Q], w2 ∈ C simp,inf

n−1 (K (∂0 Q)) repre-
senting [∂0 Q], and w3 ∈ C simp,inf

n−1 (K (∂1 R)) representing [∂1 R].
From Lemma 3.5 we have

r(p(z)⊗ 1)= zQ ⊗ 1,
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which implies the first claim, and

∂r(p(z)⊗ 1)= ∂zQ ⊗ 1= w1⊗ 1+w2⊗ 1.

Since w1+w2 represents [∂Q], this implies the second claim. �

Remark. From the remark after Lemma 3.5 we have w2 ⊗ 1 = 0. This implies
∂r(p(z)⊗1)= ∂zQ⊗1=w1⊗1, that is, ∂r(p(z)⊗1) represents at the same time
[∂Q]⊗ 1 and [∂1 Q]⊗ 1.

3H. Using amenability. The next lemma is well-known in slightly different for-
mulations and we reprove it here only for completeness. (It has of course a relative
version as well, but we will not need that for our argument.)

We will apply2 this lemma in the proof of Theorem 1.1 with X = ∂Q,G =
q∗(5(K (∂0 Q))) and K = G K str(∂1 Q).

Lemma 3.7. Let X be a closed, orientable manifold and K ⊂ S∗(X) closed under
face maps. Assume that

– there is an amenable group G acting on K , such that the action of each g ∈G
on |K | is homotopic to the identity, and

– there is a fundamental cycle z ∈ C simp
∗ (K ) such that z⊗ 1 is homologous to a

cycle h =
∑s

j=1 b jτ j ⊗ 1 ∈ C simp
∗ (K )⊗ZG Z.

Then

‖X‖ ≤
s∑

j=1

|b j |.

Proof. If ‖X‖= 0, there is nothing to prove. Thus we may assume ‖X‖ 6= 0, which
implies [Gromov 1982, p. 17] that there is β ∈H n

b (X), a bounded cohomology class
dual to [X ] ∈ Hn(X), with ‖β‖ = 1/‖X‖.

Let p :C simp
∗ (K )→C simp

∗ (K )⊗ZG Z be the homomorphism defined by p(σ )=
σ ⊗ 1. Since G is amenable we have, by the proof of [Gromov 1982, Lemma 4b],
an “averaging homomorphism” Av : H∗b (K )→ H∗b (C∗(K )⊗ZG Z) such that Av
is left-inverse to p∗ and Av is an isometry. Hence

‖Av(β)‖ = ‖β‖ =
1
‖X‖

.

2If a group G acts simplicially on a multicomplex M , then C∗(M)⊗ZG Z are abelian groups with
well-defined boundary operator ∂∗ ⊗ 1, even though M/G may not be a multicomplex, like for the
action of G =5X (X) on K (X), for a topological space X .

We remark that C∗(M)⊗ZG Z ' C∗(M)⊗RG R is just the quotient chain complex for the G-
action. In particular, even though C∗(M) is an RG-module, it does not make any difference whether
we tensor over ZG or RG.
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Moreover, denoting by
[∑s

j=1 b jτ j⊗1
]

the homology class of
∑s

j=1 b jτ j⊗1, we
have obviously ∣∣∣∣Av(β)[ s∑

j=1
b jτ j ⊗ 1

]∣∣∣∣≤ ‖Av(β)‖
s∑

j=1
|b j |

and therefore

‖X‖ =
1

‖Av(β)‖
≤

∑s
j=1 |b j |∣∣∣Av(β)[∑s
j=1 b jτ j ⊗ 1

]∣∣∣ .
It remains to prove that Av(β)

[∑s
j=1 b jτ j ⊗ 1

]
= 1. For this we have to look at

the definition of Av, which is as follows:
Let γ ∈C∗b (K ) be a bounded cochain. By amenability there exists a bi-invariant

mean av : B(G)→ R on the bounded functions on G with infg∈G δ(g)≤ av(δ)≤
supg∈G δ(g) for all δ ∈ B(G). Then, given any p(σ ) ∈ C∗(K )⊗ZG Z, one can
fix an identification between G and Gσ , the set of all σ ′ with p(σ ′) = p(σ ),
and thus consider the restriction of γ to Gσ as a bounded cochain on G. Define
Av(γ )(p(σ )) to be the average av of this bounded cochain on G ' Gσ . (This
definition is independent of all choices; see [Ivanov 1985].)

Now, if z =
∑s

j=1 b jτ j is a fundamental cycle, we have β(z)= 1.
If g ∈G is arbitrary, then left multiplication with g is a chain map on C simp

∗ (K ),
as well as on C sing

∗ (X). Since the action of g on |K | is homotopic to the identity,
it induces the identity on the image of C simp

∗ (K )→C sing
∗ (X). Thus, for each cycle

z ∈ C simp
∗ (K ) representing [X ] ∈ H sing

∗ (X), the cycle gz ∈ C simp
∗ (K ) must also

represent [X ].
If gz represents [X ], then β(gz)= β([X ])= 1. In conclusion, β(p(z′))= 1 for

each z′ with p(z′) = p(z). By the definition of Av, this implies Av(β)(p(z)) = 1
for each fundamental cycle z. In particular, Av(β)

[∑s
j=1 b jτ j ⊗ 1

]
= 1, which

finishes the proof of the lemma. �

Remark. In the proof of Theorem 1.1, we will work with C simp
∗ (K )⊗ZG Z rather

than C simp
∗ (K ). This is analogous to Agol’s construction of “crushing the cusps to

points” in [Agol 1999]. However C simp
∗ (K (Q))⊗Z5(∂0 Q) Z 6= C simp

∗ (K (Q/∂0 Q));
thus one cannot simplify our arguments by working directly with Q/∂0 Q.

4. Disjoint planes in a simplex

In this section, we will discuss the possibilities for how a simplex can be cut by
planes without producing parallel arcs in the boundary. (More precisely, we pose
the additional condition that the components of the complement can be colored
by black and white such that all vertices belong to black components, and we
actually want to avoid only parallel arcs in the boundary of white components.)
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For example, for the 3-simplex, it will follow that there is essentially only the
possibility in Case 1 pictured below; meanwhile, in Case 2, each triangle has a
parallel arc with another triangle, regardless how the quadrangle is triangulated.

Case 1 Case 2

Let1n
⊂Rn+1 be the standard simplex3 with vertices v0, . . . , vn . It is contained

in the plane E = {(x1, . . . , xn+1) ∈ Rn+1
: x1+ · · ·+ xn+1 = 1}.

In this section we will be interested in (n−1)-dimensional affine planes P ⊂ E
whose intersection with1n either contains no vertex, consists of exactly one vertex,
or consists of a face of 1n . For such planes we define their type as follows.

Definition 4.1. Let P ⊂ E be an (n−1)-dimensional affine plane such that P∩1n

contains no vertex, consists of exactly one vertex, or consists of a face of 1n .

– If P ∩1n
= ∂01

n , we say that P is of type {0}.

– If P ∩1n
= ∂ j1

n with j ≥ 1, we say that P is of type {01 . . . ĵ . . . n}.

– If P ∩ {v0, . . . , vn} = {v0}, we say that P is of type {0}.

– If P ∩{v0, . . . , vn} =∅ or P ∩{v0, . . . , vn} = {v j } with j ≥ 1, we say that P
is of type {0a1 . . . ak} with a1, . . . , ak ∈ {1, . . . , n} if the following condition
is satisfied: vi belongs to the same connected component of 1n

− (P ∩1n)

as v0 if and only if i ∈ {a1, . . . , ak}.

Observation 4.2. Let P1 be a plane of type {0a1 . . . ak} and P2 a plane of type
{0b1 . . . bl}. Assume that Q1 := P1 ∩1

n
6= ∅ and Q2 := P2 ∩1

n
6= ∅. Then

Q1 ∩ Q2 = ∅ implies that either {a1, . . . , ak} = {b1, . . . , bl} or exactly one of the
following conditions holds:

– {a1, . . . , ak} ⊂ {b1, . . . , bl}.

– {b1, . . . , bl} ⊂ {a1, . . . , ak}.

– {a1, . . . , ak} ∪ {b1, . . . , bl} = {1, . . . , n}.

3As usual, vi is the vertex with all coordinates except the i-th equal to zero, and ∂i1
n denotes

the subsimplex spanned by all vertices except vi . We will occasionally identify singular 1-simplices
σ :11

→M with paths e : [0, 1]→M by the rule e(t)=σ(t, 1−t). In particular, e(0)=σ(v0)= ∂1σ
and e(1)= σ(v1)= ∂0σ .
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Proof. 1n
− Q1 consists of two connected components, C1 and C2. Similarly,

1n
−Q2 consists of two connected components, D1 and D2. Choose the numbering

so v0 ∈ C1 and v0 ∈ C2. In particular, C1 ∩ D1 6=∅.
Since Q1∩ Q2 =∅, it follows that Q2 is contained in one of C1 or C2, and Q1

is contained in one of D1 or D2.
If Q1⊂ D1, either we have C1⊂ D1, which implies {a1, . . . , ak} ⊂ {b1, . . . , bl},

or we have C2⊂ D1, which implies {1, . . . , n}−{a1, . . . , ak}⊂ {b1, . . . , bl}, hence
{a1, . . . , ak} ∪ {b1, . . . , bl} = {1, . . . , n}.

If instead Q1 ⊂ D2, we have Q2 ⊂ C1. After interchanging Q1 and Q2 we are
back in the case of the previous paragraph. �

Notational remark. Arc will mean the intersection of an (n−1)-dimensional affine
plane P ⊂ E (such that P ∩1n

6=∅ either contains no vertex, consists of exactly
one vertex or consists of a face) with a 2-dimensional subsimplex τ 2

⊂ 1n . If an
arc consists of only one vertex, we call it a degenerate arc.

Definition 4.3 (parallel arcs). Let P1, P2⊂ E be (n−1)-dimensional affine planes.
Let τ be a 2-dimensional subsimplex of 1n with vertices vr , vs, vt . We say that
the disjoint arcs e1, e2 obtained as intersections of P1 and P2, respectively, with τ
are parallel arcs if one of the following conditions holds:

– Both are nondegenerate and any two of {vr , vs, vt } belong to the same con-
nected component of τ − e1 if and only if they belong to the same connected
component of τ − e2.

– One, say e1, is nondegenerate, the other, say with vertices vs, vt , is contained
in a face, and vr does not belong to the same connected component of τ − e1

as either vs and vt .

– One, say e1, is nondegenerate, the other is degenerate, say equal to vr , and
vs, vt do not belong to the same connected component of τ − e1 as vr .

– Both are degenerate and equal.

– Both are contained in a face and equal.

– One is degenerate, the other is contained in a face.

Lemma 4.4. Let 1n
⊂ Rn+1 be the standard simplex. Let P1, P2 ⊂ E be (n−1)-

dimensional affine planes with Qi = Pi ∩1
n
6= ∅ for i = 1, 2. Let P1 be of type

{0a1 . . . ak} with 1 ≤ k ≤ n − 2 and P2 of type {0b1 . . . bl} with l arbitrary. Then
either Q1 ∩ Q2 6=∅, or Q1 and Q2 have a parallel arc.

Proof. Assume that Q1 ∩ Q2 = ∅. By Observation 4.2, there are four possible
cases:

– {0a1 . . . ak} = {0b1 . . . bl}. Then we clearly have parallel arcs.
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– {0a1 . . . ak} is a proper subset of {0b1 . . . bl}, i.e., 1 ≤ k < l ≤ n − 1 and
a1 = b1, . . . , ak = bk . There is at least one index, say i , not contained in
{0b1 . . . bl}. The 2-dimensional subsimplex with vertices v0, va1, vi intersects
P1 and P2 in parallel arcs, because P1 and P2 both separate v0 and vak from vi .

– {0b1 . . . bl} is a proper subset of {0a1 . . . ak}, i.e., 0 ≤ l < k ≤ n − 2 and
a1 = b1, . . . , al = bl . There are two indices i, j not contained in {0a1 . . . ak}.
The 2-dimensional subsimplex with vertices v0, vi , v j intersects P1 and P2 in
parallel arcs, because P1 and P2 both separate v0 from vi and v j .

– {a1, . . . , ak}∪{b1, . . . , bl}= {1, . . . , n}. Since k≤ n−2, there are two indices
i, j not contained in ∈ {0a1 . . . ak}. Hence i, j ∈ {b1, . . . , bl}. There exists an
index h ∈ {a1, . . . , ak} such that h 6∈ {b1, . . . , bl}; otherwise, we would have
{a1, . . . , ak} ⊂ {b1, . . . , bl}, hence {1, . . . , n} = {a1, . . . , ak} ∪ {b1, . . . , bl} ⊂

{b1, . . . , bl}, contradicting Q2 6=∅. Now the 2-dimensional subsimplex with
vertices vi , v j , vh intersects P1 and P2 in parallel arcs, because both P1 and
P2 separate vi and v j from vh . �

Definition 4.5 (canonical coloring of complementary regions). Let P1, P2, . . .⊂ E
be a (possibly infinite) set of (n−1)-dimensional affine planes with Qi := Pi ∩1

n

nonempty and Qi ∩Q j =∅ for all i 6= j . Assume that each Qi either contains no
vertices or consists of exactly one vertex.

A coloring of the connected components of1n
−
⋃

i Qi by the colors black and
white, and of all the Qi by black, is called a canonical coloring (associated to
P1, P2, . . . ) if all the vertices of 1n are colored black and each Qi is incident to
at least one white component.

Definition 4.6 (white-parallel arcs). Let {Pi : i ∈ I } be a set of (n−1)-dimensional
affine planes Pi ⊂ E , with Qi := Pi ∩1

n
6=∅ for i ∈ I . Assume that Qi ∩Q j =∅

for all i 6= j ∈ I , and that we have a canonical coloring associated to {Pi : i ∈ I }.
We say that arcs ei , e j obtained as intersections of Pi , Pj (i, j ∈ I ) with some 2-
dimensional subsimplex of 1n are white-parallel arcs if they are parallel arcs and
belong to the boundary of the closure of the same white component.

We mention two consequences of Lemma 4.4. They will not be needed for the
proof of Lemma 4.13, but they will be necessary for the proof of Theorem 1.1.

Corollary 4.7. Let 1n
⊂ Rn+1 be the standard simplex. Let P1, . . . , Pm ⊂ E be a

finite set of (n−1)-dimensional affine planes and let Qi = Pi∩1
n for i = 1, . . . ,m.

Assume that Qi ∩ Q j =∅ for all i 6= j , and that we have an associated canonical
coloring such that Qi and Q j do not have a white-parallel arc for i 6= j .

Then, unless m = 0, we have m = n + 1 and P1 is of type {0}, Pn+1 is of type
{0 1 . . . n− 1}, and Pi is of type {01 . . . î−1 . . . n} for i = 2, . . . , n.
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Proof. If the conclusion were not true, there would exist a plane P1 of type
{0a1 . . . ak} with 1 ≤ k ≤ n − 2. Let W be the white component of the canonical
coloring that is incident to P1. Because, for a canonical coloring, no vertex belongs
to a white component, there must be at least one more plane P2 incident to W . Since
Q1∩Q2=∅, from Lemma 4.4 we get that Q1 and Q2 have a parallel arc. Because
Q1 and Q2 are incident to W , the arc is white-parallel. �

Corollary 4.8. Let 1n
⊂ Rn+1 be the standard simplex. Let P1, P2, . . . ⊂ E be a

(possibly infinite) set of (n−1)-dimensional affine planes and let Qi = Pi ∩1
n for

i = 1, 2, . . . . Assume that we have an associated canonical coloring.
Let Pi be of type {0ai

1 . . . a
i
c(i)}, for i = 1, 2, . . . . Then either

– c(1) ∈ {0, n− 1}, or

– whenever, for some i ∈ {2, 3, . . .}, P1 and Pi bound a white component of
1n
−∪ j Q j , then they must have a white-parallel arc.

Proof. Assume that c(1) 6∈ {0, n − 1}. The white component W bounded by P1

is bounded by a finite number of planes; thus we can apply Corollary 4.7, and
conclude that P1 has a white-parallel arc with each other plane adjacent to W . �

Definition 4.9. Let P ⊂ E be an (n−1)-dimensional affine plane and T a triangu-
lation of the polytope Q := P ∩1n . We say that T is minimal if all vertices of T
are vertices of Q. We say that an edge of some simplex in T is an exterior edge if
it is an edge of Q.

Observation 4.10. Let P ⊂ E be an (n−1)-dimensional affine plane and T a
triangulation of the polytope Q := P ∩1n . If T is minimal, each edge of Q is an
(exterior) edge of (exactly one) simplex in T .

Proof. By minimality, the triangulation does not introduce new vertices. Thus
every edge of Q is an edge of some simplex. �

Observation 4.11. Let P ⊂ E be an (n−1)-dimensional affine plane with Q :=
P ∩1n

6=∅. Assume that P is of type {0a1 . . . ak}. Then either

(a) Each vertex of Q arises as the intersection of P with an edge e of 1n . The
vertices of e are vi and v j with i ∈ {0, a1, . . . , ak} and j 6∈ {0, a1, . . . , ak}. (We
will denote such a vertex by (viv j ).)

(b) Two vertices (vi1v j1) and (vi2v j2) of Q are connected by an edge of Q (i.e., an
exterior edge of any triangulation) if either i1 = i2 or j1 = j2.

Proof. (a) holds because e has to connect vertices in distinct components of1n
−Q.

Statement (b) holds because the edge of Q has to belong to some 2-dimensional
subsimplex of 1n , with vertices either vi1, v j1, v j2 or vi1, vi2, v j1 . �
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Remark. If, for an affine hyperplane P ⊂ E , Q = P ∩ 1n consists of exactly
one vertex, then we will consider the minimal triangulation of Q to consist of
one (degenerate) (n−1)-simplex. This convention helps to avoid needless case
distinctions.

Lemma 4.12. Let {Pi ⊂ E : i ∈ I } be a set of (n−1)-dimensional affine planes and
let Qi := Pi ∩1

n for i ∈ I . Assume that Qi ∩ Q j = ∅ for all i 6= j and that we
have an associated canonical coloring. Assume that we have fixed, for each i ∈ I ,
a minimal triangulation Qi =

⋃
a τia of Qi .

If P1 is of type {0a1
1 . . . a

1
c(1)} with 1≤ c(1)≤ n−2, then for each simplex τ1a ⊂

Q1 there exists some j ∈ I and some simplex τ jb ⊂ Q j (of the fixed triangulation
of Q j ) such that τia and τ jb have a white-parallel arc.

Proof. Let w1, . . . , wn be the n vertices of the (n−1)-simplex τ1k . By Observation
4.11(a), each wl arises as intersection of Q1 with some edge (vrlvsl ) of 1n , and
the vertices vrl , vsl satisfy rl ∈ {0, a1

1, . . . , a1
c(1)} and sl 6∈ {0, a1

1, . . . , a1
c(1)}.

For the canonical coloring, there must be a white component W bounded by
P1. We distinguish the cases whether W and v0 belong to the same connected
component of 1n

− Q1 or not.

Case 1: W and v0 belong to the same connected component of 1n
− Q1.

Since c(1)≤ n−2, there exist at most n−1 possible values for rl . Hence there
exists l 6= m ∈ {1, . . . , n} such that vrl = vrm .

Let e be the edge of τ1k ⊂ Q1 connecting wl and wm . By Observation 4.11(b), e
is an exterior edge. Consider the 2-dimensional subsimplex τ 2

⊂1n with vertices
vrl , vsl , vsm . We conclude that P1 intersects τ 2 in e, i.e., in an arc separating vrl

from the other two vertices of τ 2.
Note that rl ∈ {0, a1

1, . . . , a1
c(1)}; hence vrl belongs to the same component of

1n
− Q1 as v0. In particular, vrl belongs to the same component of 1n

− Q1 as
W . On the other hand, since the coloring is canonical, all vertices are colored
black, and vrl cannot belong to the white component W . Thus there must be some
plane Pj such that Q j bounds W and separates vrl from Q1. (The possibility that
Pj ∩ 1

n
= {vrl } is allowed.) In particular, some (possibly degenerate) exterior

edge f of Q j separates vrl from vsl , vsm . Thus e and f are white-parallel arcs. By
Observation 4.10, f is an edge of some τ jl .

Case 2: W and v0 don’t belong to the same connected component of 1n
− Q1.

Since n− c(1)≤ n−1, there exist some l 6=m ∈ {1, . . . , n} such that vsl = vsm .
Let e be the edge of τ1k ⊂ Q1 connecting wl and wm . e is an exterior edge

by Observation 4.11(b). Consider the 2-dimensional subsimplex τ 2
⊂ 1n with

vertices vrl , vrm , vsl . P1 intersects τ 2 in e, i.e., in an arc separating vsl from the
other two vertices of τ 2.
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We have sl 6∈ {0, a1
1, . . . , a1

c(1)}; hence vsl does not belong to the same component
of1n

−Q1 as v0. This implies that vsl belongs to the same component of1n
−Q1

as W . On the other hand, since the coloring is canonical, vsl cannot belong to the
white component W and there must be some plane Pj such that Q j bounds W and
separates vsl from Q1. In particular, some exterior edge f of Q j separates vsl from
vrl , vrm . Thus e and f are white-parallel arcs. By Observation 4.10, f is an edge
of some τ jl . �

Lemma 4.13. Let {Pi : i ∈ I } be a set of (n−1)-dimensional affine planes with
Qi := Pi ∩1

n
6=∅ for i ∈ I . Let Pi be of type {0a(i)1 . . . a(i)ki

} for i ∈ I . Assume that
Qi ∩ Q j = ∅ for i 6= j ∈ I , and that we have an associated canonical coloring.
Assume that for each Qi one has fixed a minimal triangulation Qi = ∪

t (i)
k=1τik .

For each i ∈ I , let

Di = ]{τik⊂Qi : there is no τ jl ⊂Q j such that τik, τ jl have a white-parallel arc}.

Then ∑
i∈I

Di = 0 or
∑
i∈I

Di = n+ 1.

Proof. First we remark that the number of planes may be infinite, but we may
of course remove pairs of planes Pi , Pj whenever they are of the same type and
bound the same white component. This removal of Pi , Pj and the common white
component does not affect

∑
i∈I Di . Since there are only finitely many different

types of planes, we may without loss assume that we start with a finite number
P1, . . . , Pm of planes. (It may happen that after this removal no planes and no
white components remain. In this case

∑
i∈I Di∈I = 0.) So we assume now that

we have a finite number of planes P1, . . . , Pm , and no two planes of the same type
bound a white region.

The first case to consider is that all planes are of type {0a1 . . . ak} with k = 0
or k = n − 1. Since all vertices are colored black, this means that m = n + 1
and (upon renumbering) P1 is of type {0}, Pn+1 is of type {0 1 . . . n − 1}, and Pi

is of type {01 . . . î−1 . . . n} for i = 2, . . . , n. Hence D1 = · · · = Dn+1 = 1 and∑n+1
i=1 Di = n+ 1.
Now we assume that there exists Pi , say P1, of type {0a(1)1 . . . a(1)k1

} with 1 ≤
c(1) ≤ n− 2. Let W be the white component bounded by P1 and, without loss of
generality, let P2, . . . , Pl be the other planes bounding W . Then Lemma 4.12 says
that each simplex in the chosen triangulation of Q1 has a parallel arc with some
simplex in the chosen triangulation of each of Q2, . . . , Ql . In particular, D1 = 0.
For j ∈ {2, . . . , l}, if 1 ≤ c( j) ≤ n− 2, the same argument shows that D j = 0. If
j ∈{2, . . . , l} and c( j)=0 or c( j)=n−1, then Q j consists of only one simplex. By
Corollary 4.8, this simplex has a parallel arc with (some exterior edge of) Q1 and
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thus (by Observation 4.10) with some simplex of the chosen triangulation of Q1.
This shows that D j =0 also in this case. Altogether we conclude that

∑l
j=1 D j =0

and thus
∑m

i=1 Di =
∑m

i=l+1 Di . Hence we can remove4 the white component W
and its bounding planes P1, . . . , Pl to obtain a smaller number of planes and a new
canonical coloring without changing

∑m
i=1 Di . Since we start with finitely many

planes, we can repeat this reduction finitely many times and will end up either with
an empty set of planes or with a set of planes of type {0a1 . . . ak}, with k = 0 or
k = n− 1. Thus either

∑m
i=1 Di = 0 or

∑m
i=1 Di = n+ 1. �

We have thus proved that, in the presence of a canonical coloring, the number of
(n−1)-simplices without white-parallel arcs in a minimal triangulation of the Qi is
0 or n+1. We remark that in the proof of Theorem 1.1 we will actually count only
those triangles that have neither a white-parallel arc nor a degenerate arc. Thus, in
general, we may remain with even less than n+ 1 (n−1)-simplices.

5. A straightening procedure

In this section we will always work with the following set of assumptions.

Assumption I. Q is an aspherical n-dimensional manifold with aspherical bound-
ary ∂Q. We have (n−1)-dimensional submanifolds ∂0 Q, ∂1 Q ⊂ ∂Q such that
∂Q = ∂0 Q ∪ ∂1 Q, ∂∂0 Q = ∂∂1 Q, and ∂1 Q 6=∅ is aspherical.

The example that one should have in mind is a nonpositively curved manifold
Q with totally geodesic boundary ∂1 Q and cusps corresponding to ∂0 Q.

In the case of nonpositively curved manifolds with totally geodesic boundary,
there is a well-known straightening procedure that homotopes each relative cycle
into a straight relative cycle. It is explained for closed hyperbolic manifolds in
[Benedetti and Petronio 1992, Lemma C.4.3].

However, we will need a more subtle straightening procedure, which considers
relative cycles with a certain 0-1 labeling of their edges and straightens the 1-
labeled edges into certain distinguished 1-simplices. This straightening procedure
will be explained in Section 5C. Before that, we explain a construction which will
“morally” (although not literally) reduce the proof of Theorem 1.1 to the case that
∂0 Q ∩C is path-connected, for each path component C of ∂Q.

5A. Making ∂0 Q ∩ C connected.
Construction 5.1. Let Assumption I be satisfied. There exists a continuous map
of triples q : (Q, ∂Q, ∂1 Q)→ (Q, ∂Q, ∂1 Q) that is (as a map of triples) homotopic
to the identity and such that, for each path component C of ∂Q, the image A :=
q(∂0 Q ∩C) is path-connected.

4To remove a white component means that this component together with the neighboring black
components will form one new black component.
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Moreover, for each path component F of ∂1 Q, the path components of ∂F ⊂
∂0 Q∩∂1 Q can be numbered by E F

0 , . . . , E F
s and one can choose points xE F

i
∈ E F

i
such that q(xE F

i
)≡ xE F

0
for i = 0, . . . , s.

Proof. For each path component F of ∂1 Q, number the path components of ∂F ⊂
∂0 Q ∩ ∂1 Q by E F

0 , . . . , E F
s , where s depends on F . Choose one point x F

E ∈ E for
each path component E ⊂ F of ∂0 Q ∩ ∂1 Q. Whenever E0, Ei is a pair of path
components of ∂0 Q∩∂1 Q adjacent to the same path component F of ∂1 Q, choose
a 1-dimensional submanifold lE F

0 E F
i
⊂ ∂1 Q with

∂lE F
0 E F

i
= {xE F

0
} ∪ {xE F

i
}.

The lE F
0 E F

i
may be chosen succesively in such a way that they are disjoint from

each other (apart from the common vertex xE F
0

) and disjoint from ∂0 Q (apart from
the vertices xE F

0
and xE F

i
).

For each pair {E F
0 , E F

i } let h : lE F
0 E F

i
→{xE F

0
} be the constant map from lE F

0 E F
i

to xE F
0

. For each path component F of ∂1 Q, the union

s⋃
i=1

lE F
0 E F

i

is an embedded wedge of arcs in ∂1 Q; hence it is contractible. In particular, h
is homotopic to the identity. By the homotopy extension property there exists
g : F→ F with

g|lE F
0 E F

i
= h ≡ xE0

for all lE F
0 E F

i
, and g∼ id by a homotopy extending the homotopy between h and id.

Thus we defined g on each path component F of ∂1 Q with F ∩ ∂0 Q 6= ∅. On
path components F of ∂1 Q with F ∩ ∂0 Q = ∅ we define g = id. Hence we have
defined g on all of ∂1 Q.

On path components C of ∂0 Q with C ∩ ∂1 Q = ∅, we define f = id. Again
by the homotopy extension property there exists f : ∂Q → ∂Q with f |∂1 Q = g,
f |C = id for path components C of ∂0 Q with C ∩ ∂1 Q = ∅, and f ∼ id by a
homotopy extending the homotopy of g. (Of course, f does not preserve the path
components of ∂0 Q that intersect ∂1 Q.)

Once again by the homotopy extension property there exists q : Q → Q with
q ∼ id such that q extends f and the homotopy between q and id extends the
homotopy between f and id.

Due to the stepwise construction, q is a map of triples, homotopic to the identity
by a homotopy of triples. Moreover, A := q(∂0 Q ∩C) is path-connected for each
component C of ∂Q. Indeed, any two points in ∂0 Q ∩ C can be connected by a
sequence of paths which either have image in ∂0 Q or belong to

⋃s
i=1 lE F

0 E F
i

for
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some path component F of ∂1 Q ∩C . The image of these paths under q , in both
cases, is in A. �

Remark. The map q induces a simplicial map q : K (Q)→ K (Q) and a homo-
morphism q∗ :5(K (∂0 Q))→5(K (A)) defined by

q∗({γ1, . . . , γn}) := {q(γ1), . . . , q(γn)},

such that q∗(g)q(σ )= q(gσ) for each σ ∈ K (Q) and g ∈5(K (∂0 Q)).

Proof. Continuous maps q : Q→ Q induce simplicial maps q : K (Q)→ K (Q).
(The simplicial map agrees with q on the 0-skeleton, and it maps each 1-simplex
e ∈ K1(Q) to the unique 1-simplex of K1(Q) that is in the homotopy class rel
{0, 1} of q(e).)

Let e ∈ K1(Q). By construction, {γ1, . . . , γn}e = [α ∗ e ∗ β] for some α, β ∈
{γ1, . . . , γn} ∪ {ce(0), ce(1)}. Thus

{q(γ1), . . . , q(γn)}q(e)= [q(α) ∗ q(e) ∗ q(β)] = q({γ1, . . . , γn}e).

This implies the claim for the 1-skeleton, and thus, by the asphericity of K (Q),
for all σ ∈ K (Q). �

5B. Definition of K str( Q). Let Q, ∂Q, ∂1 Q, ∂0 Q satisfy Assumption I.
Recall that we have defined in Section 3B an aspherical multicomplex K (Q)⊂

S∗(Q) with the property that (for aspherical Q) each singular simplex in Q, with
boundary in K (Q) and pairwise distinct vertices, is homotopic rel boundary to a
unique simplex in K (Q).

The aim of this subsection is to describe a selection procedure yielding a sub-
set K str

∗
(Q) ⊂ S∗(Q). The final purpose of the straightening procedure will be

to produce a large number of (weakly) degenerate simplices, in the sense of the
following definition.

Definition 5.2. Let Q be an compact manifold with boundary ∂Q. We say that a
simplex in S∗(Q) is degenerate if one of its edges is a constant loop. We say that
it is weakly degenerate if it is degenerate or its image is contained in ∂Q.

Notational remark. For subsets K str
∗
(Q)⊂ S∗(Q) we define

K str
∗
(∂0 Q) := K str

∗
(Q)∩ S∗(∂0 Q),

K str
∗
(∂1 Q) := K str

∗
(Q)∩ S∗(∂1 Q),

K str
∗
(∂0 Q Q) := K str

∗
(Q)∩ S∗(∂0 Q).

Lemma 5.3. Let Q, ∂Q, ∂1 Q, ∂0 Q satisfy Assumption I. Let K (Q)⊂ S∗(Q) be as
defined in Section 3B. Let q : Q→ Q and {xE F

i
∈ ∂0 Q ∩ ∂1 Q : 0≤ i ≤ s} be given

by Construction 5.1.
Then there exists a subset K str

∗
(Q)⊂ S∗(Q), closed under face maps, such that:
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(i) If C is a path component of ∂0 Q with C ∩ ∂1 Q = ∅, then K str
0 (Q) contains

each point in C.

(ii) For a path component F of ∂1 Q with F∩∂0 Q=∅, there is exactly one point
xF ∈ K str

0 (Q)∩ F , while
for a path component F of ∂1 Q with F ∩ ∂0 Q 6=∅, we have K str

0 (Q)∩ F =
{xE F

0
, . . . , xE F

s
}.

(iii) K str
0 (Q)= K str

0 (∂Q).

(iv) K str
1 (Q) consists of

– all 1-simplices e ∈ K (Q) with ∂e ∈ K str
0 (Q),

– exactly one 1-simplex for each nontrivial homotopy class (rel boundary)
of loops e with ∂0e = ∂1e ∈ K str

0 (Q), and
– the constant loop for the homotopy class of the constant loop at x , if

x ∈ K str
0 (Q).

(v) For n ≥ 2, if σ ∈ Sn(Q) is an n-simplex with ∂σ ∈ K str
n−1(Q), then σ is

homotopic rel boundary to a unique τ ∈ K str
n (Q).

(vi) If σ ∈ K str
n (Q) is homotopic rel boundary to some τ ∈ Kn(Q), then σ = τ .

(vii) If σ ∈ K str
n (Q) is homotopic rel boundary to a simplex τ ∈ Sn(∂1 Q), then

σ ∈ K str
n (∂1 Q); if σ ∈ K str

1 (Q) is homotopic rel boundary to a simplex τ ∈
S1(∂0 Q), then σ ∈ K str

1 (∂0 Q).

(viii) K str
∗
(Q) is aspherical, i.e., if σ, τ ∈ K str

∗
(Q) have the same 1-skeleton, then

σ = τ .

Proof. K str
∗
(Q) is defined by induction on the dimension of simplices as follows.

Definition of K str
0 (Q): Choose K str

0 (Q) such that conditions (i)–(iii) are satisfied.
Note that we have chosen a nonempty set of 0-simplices since we are assuming
∂1 Q 6=∅.

Definition of K str
1 (Q): For an ordered pair (x, y) ∈ K str

0 (Q)×K str
0 (Q) with x 6= y,

there exists unique simplex in K1(Q) in each homotopy class (rel boundary) of arcs
e from x to y. Choose these 1-simplices so they belong to K str

1 (Q). (Uniqueness
implies that (vi) is true for n = 1.) For pairs (x, x) ∈ K str

0 (Q)× K str
0 (Q), choose

one simplex in each homotopy class (rel boundary) of loops e from x to itself. For
the homotopy class of the constant loop, choose the constant loop.

Choose the 1-simplices in ∂0 Q and/or ∂1 Q whenever this is possible. (If a 1-
simplex is homotopic into both ∂0 Q and ∂1 Q, then it is necessarily homotopic into
∂0 Q ∩ ∂1 Q. Indeed, a disk realizing a homotopy between 1-simplices in ∂0 Q and
∂1 Q can be made transversal to ∂0 Q ∩ ∂1 Q and then intersects ∂0 Q ∩ ∂1 Q in an
arc or loop.) Hence (vii) is satisfied for n = 1.
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Definition of K str
n (Q) for n ≥ 2, assuming that K str

n−1(Q) is defined: For an (n+1)-
tuple κ0, . . . , κn of (n−1)-simplices in K str

n−1(Q), satisfying ∂iκ j = ∂ j−1κi for all
i, j , there are two possibilities:

– If no edge of any κi is a loop, then, by the asphericity of Q, there is a
unique n-simplex σ ∈ Kn(Q) with ∂iσ = κi for i = 0, . . . , n. In this case set
κ := σ . Uniqueness implies that (vi) is satisfied for n. (By the construction in
Section 3B, we have κ ∈ Kn(∂1 Q) if κ is homotopic rel boundary into ∂1 Q.)

– Otherwise, choose an n-simplex κ ∈ Sn(Q) with ∂iκ = κi for i = 0, . . . , n.
Since Q is aspherical, κ exists and is unique up to homotopy rel boundary.
Choose the simplices in ∂1 Q whenever this is possible.

By construction, K str
∗
(Q) is closed under face maps and satisfies the conditions

(i)–(vii). Condition (viii) follows by induction on the dimension of subsimplices
of σ and τ from condition (v). �

The simplices in K str
∗
(Q) will be called straight simplices.

We remark that K str
∗
(Q) is not a multicomplex because simplices in K str

∗
(Q)

need not have pairwise distinct vertices. (Note also that simplices in K (Q) belong
to K str(Q) if and only if all their vertices belong to K str

0 (Q), by construction.)

Observation 5.4. Let Q, ∂Q, ∂1 Q, ∂0 Q satisfy Assumption I. Let K str
∗
(Q)⊂ S∗(Q)

satisfy conditions (i)–(viii) from Lemma 5.3. Then q : Q→ Q induces a simplicial
map q : K str(Q)→ K str(Q), compatible with the simplicial map q : K (Q)→ K (Q)
from Section 5A.

Proof. By construction, q maps K str
0 (Q) to itself. Indeed:

– If C is a path component of ∂0 Q with C ∩ ∂1 Q = ∅, then q(v) = v for each
v ∈ C .

– If F is a path component F of ∂1 Q with F∩∂0 Q=∅, then q(v)= v for each
v ∈ F (in particular for the unique v ∈ F ∩ K str

0 (Q)).

– If F is a path component of ∂1 Q with F ∩ ∂0 Q 6=∅, then we have K str
0 (Q)∩

F = {xE F
0
, . . . , xE F

s
}, and q(xE F

i
)= xE F

0
for i = 0, . . . , s by Construction 5.1.

Hence q induces a simplicial map on K str(Q). (The simplicial map agrees with
q on the 0-skeleton, and it maps each 1-simplex e ∈ K str

1 (Q) to the unique 1-
simplex of K str

1 (Q) that is in the homotopy class rel {0, 1} of q(e). Since K str(Q)
is aspherical, this determines the simplicial map q uniquely.) �

5C. Definition of the straightening.

Definition 5.5. Let (Q, ∂1 Q) be a pair of topological spaces and let z=
∑

i∈I aiτi ∈

C inf
n (Q) be a (possibly infinite) singular chain.
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(a) A set of cancellations of z is a symmetric set C ⊂ Sn−1(Q)× Sn−1(Q) with
(η1, η2) ∈ C ⇒ η1 = η2 and η1 = ∂kτi1, η2 = ∂lτi2 for some i1, i2 ∈ I and
k, l ∈ {0, . . . , n}.

(b) Let z=
∑

i∈I aiτi ∈C inf
n (Q). If C is a set of cancellations for z, the associated

simplicial set ϒz,C is the simplicial set generated5 by {1i : i ∈ I }, subject to
the identifications ∂k1i1 = ∂l1i2 if and only if (∂kτi1, ∂lτi2) ∈ C.

(c) Let z=
∑

i∈I aiτi ∈C inf
n (Q). Choose a minimal presentation for ∂z (meaning

that no further cancellation is possible). Define

J = J∂z :=
{
(i, a) ∈ I ×{0, . . . , n} : ∂aτi occurs with a nonzero coefficient

in the chosen presentation of ∂z
}
.

Let C be a set of cancellations for z. Then the simplicial set ∂ϒz,C is defined
as the set consisting of |J | (n−1)-simplices 1i,a, (i, a) ∈ J , together with all
their iterated faces and degenerations, subject to the identifications ∂a∂a1τi1 =

∂a∂a2τi2 for all a= 0, . . . , n−1, whenever (∂a1τi1, ∂a2τi2)∈C and (i1, a1)∈ J .

(d) If z =
∑

i∈I aiτi ∈ C inf
n (Q) is a relative cycle, then a set of cancellations C is

called sufficient if the formal sum
∑

i∈I
∑n

k=0(−1)kai∂kτi can be reduced to
a chain in C inf

n−1(∂Q) by substracting (possibly infinitely many) multiples of
(∂a1τi1 − ∂a2τi2) with (∂a1τi1, ∂a2τi2) ∈ C.

Observations 5.6. Let (Q, ∂1 Q) be a pair of topological spaces.

(a) If z =
∑

i∈I aiτi ∈ C inf
n (Q) is a singular chain, C is a set of cancellations,

and ϒ := ϒz,C is the associated simplicial set, the geometric realization |ϒ | is
obtained from |I | copies of the standard n-simplex 1i , i ∈ I , with identifications
∂a11i1 = ∂a21i2 if and only if (∂a1τi1, ∂a2τi2) ∈ C. For a minimal presentation of
∂z and ∂ϒ := ∂ϒz,C, |∂ϒ | is the subspace of |ϒ | containing all simplices ∂a11i1

with (i1, a1) ∈ J .

(b) There exists an associated continuous map τ : |ϒ | → Q with τ |1i = τi (upon
the identification 1i =1

n). If z is a relative cycle, i.e., if ∂z ∈ C inf
n−1(∂1 Q), then τ

maps |∂ϒ | to ∂1 Q.

(c) Let z1 =
∑

i∈I aiτi , z2 =
∑

i∈I aiσi ∈ C inf
n (Q, ∂1 Q) be relative cycles and let

C1,C2 be sufficient sets of cancellations of z1 and z2, respectively. Assume that
(∂a1τi1, ∂a2τi2)∈C1 if and only if (∂a1σi1, ∂a2σi2)∈C2, and that there exist minimal
presentations of ∂z1, ∂z2 such that Jz1 = Jz2 .

If the associated continuous maps τ, σ : |ϒ |→Q are homotopic, for a homotopy
mapping |∂ϒ | to ∂Q, then

∑
i∈I aiτi and

∑
i∈I aiσi ∈ C inf

∗
(Q, ∂Q) are relatively

homologous.

5That is, the subset of Ssing
∗ (Q) containing the |I | n-simplices1i , i ∈ I , together with all simplices

obtained by iterated applications of face and degeneracy operators. See [May 1967, Example 1.5].
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We emphasize that we do not assume that C is a complete list of cancellations,
and the simplicial map τ∗ : C

simp
∗ (ϒ)→ C sing

∗ (Q) need not be injective.

After having set up the necessary notations, we will now define the actual
straightening. We first mention that there is of course an analogue of the classical
straightening of [Benedetti and Petronio 1992, Lemma C.4.3] in our setting.

Observation 5.7. Let Q, ∂Q, ∂1 Q, ∂0 Q satisfy Assumption I. Suppose K str
∗
(Q) ⊂

S∗(Q) satisfy conditions (i)–(viii) from Lemma 5.3. Then there exists a “canonical
straightening” map

strcan : C
simp,inf
∗ (K (Q))→ C simp,inf

∗ (K str(Q)),

mapping C simp,inf
∗ (K (∂1 Q)) to C simp,inf

∗ (K str(∂1 Q)), with the following properties:

(i) strcan is a chain map.

(ii) If z =
∑

i∈I aiτi ∈ C simp,inf
∗ (K (Q)) and

∑
i∈I aiσi :=

∑
i∈I ai strcan(τi ), then

the maps τ, σ : |ϒ | → Q (defined by Observation 5.6(b) after fixing a set of
cancellations C and a minimal presentation of ∂z) are homotopic.

Moreover, if z =
∑

i∈I aiτi is a relative cycle with ∂z ∈ C simp,inf
∗ (K (∂1 Q)), the

same is true for
∑

i∈I aiσi , and

τ, σ : (|ϒ |, |∂ϒ |)→ (Q, ∂1 Q)

are homotopic as maps of pairs.
In particular,

∑
i∈I ai strcan(τi ) is relatively homologous to

∑
i∈I aiτi .

Proof. We define strcan, and the homotopy to the identity, by induction on the
dimension of simplices. (During the construction we take care that strcan and the
homotopy preserve K (∂1 Q).)

0-simplices. If C is a path component of ∂0 Q with C ∩ ∂1 Q = ∅, we define
strcan(v) = v for each 0-simplex v in C . The homotopy H(v) is for each v given
by the constant map.

If C is a path component of ∂0 Q with C ∩ ∂1 Q 6= ∅, there is at least one path
component F of ∂1 Q with C∩F 6=∅. By Construction 5.1 and condition (ii) from
Lemma 5.3, for each such F , there is a straight 0-simplex xE F

i
∈ C ∩ F . Choose

one such straight 0-simplex (among the xE F
i

) for each path component C of ∂0 Q,
denote it xC , and for each v ∈ C we define strcan(v) := xC ∈ K str

0 (Q)∩C and we
choose the homotopy H(v) to belong to C .

If v∈∂1 Q, then there is (at least) one straight 0-simplex in the same path compo-
nent F of ∂1 Q, we choose strcan(v)∈ F∩K str

0 (Q) and there exists H(v)∈ K1(∂1 Q)
with ∂H(v)= v− strcan(v).

If v 6∈ ∂Q, then we define strcan(v) to be some straight 0-simplex in ∂Q and we
fix arbitrarily some H(v) ∈ K1(Q) with ∂H(v)= v− strcan(v).
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1-simplices. For e ∈ K1(Q) we define

strcan(e) := [H(∂1e) ∗ e ∗ H(∂0e)],

where, as always, [ · ] denotes the unique 1-simplex in K str
1 (Q), that is homotopic

rel boundary to the path in brackets.
The simplex e is homotopic to strcan(e) by the canonical homotopy that is inverse

to the homotopy moving H(∂1e) or H(∂0e) into constant maps. In particular, the
restriction of this homotopy to ∂1e, ∂0e gives H(∂1e), H(∂0e). Thus, for differ-
ent edges with common vertices, the homotopies are compatible. We thus have
constructed a homotopy for the 1-skeleton ϒ1.

We note that, for v ∈ ∂1 Q, the homotopy H(v) is either constant or lies in
K1(∂1 Q), Thus if τ ∈ K1(∂1 Q) then strcan(τ ) ∈ K str

1 (∂1 Q) and the homotopy
between τ and strcan(τ ) takes place in ∂1 Q.

n-simplices. We assume inductively, that for some n≥ 1, we have defined strcan on
K∗≤n(Q), mapping K∗≤n(∂1 Q) to K str

∗≤n(∂1 Q), and satisfying (i) and (ii).
Let τ ∈ K (Q) be an (n+1)-simplex. Then we have by (ii) a homotopy between

∂τ and strcan(∂τ ). By Observation 3.1 this homotopy extends to τ . The resulting
simplex τ ′ satisfies ∂τ ′ ∈ K str

n (Q). Condition (v) from Lemma 5.3 means that τ ′

is homotopic rel boundary to a unique simplex strcan(τ ) ∈ K str
n+1(Q). This proves

the inductive step.
If τ ∈ K (∂1 Q), then we can inductively assume that the homotopy of ∂τ has im-

age in ∂1 Q. Then condition (vii) from Lemma 5.3 implies strcan(τ ) ∈ K str
n+1(∂1 Q).

Moreover, since ∂1 Q is aspherical, the homotopy of τ can be chosen to have image
in ∂1 Q.

By construction, for any set of cancellations C, the induced maps τ and σ are
homotopic. In particular, if we chose a sufficient set of cancellations in the sense
of Definition 5.5(d), then Observation 5.6(c) implies that

∑r
i=1 ai strcan(τi ) is (rel-

atively) homologous to
∑r

i=1 aiτi . �

However, we want to define a more refined straightening, which will be defined
only on relative cycles with some kind of additional information.

Before stating the definition of distinguished 1-simplices, we remark that there is
a left and right action of the pseudogroup0 :=�(∂Q) (as defined in Section 3D) on
K str

1 (Q): if e ∈ K str
1 (Q), γ1 ∈ π1(∂Q, ∂1e), γ2 ∈ π1(∂Q, ∂0e), then let γ1eγ2 be the

unique straight 1-simplex homotopic rel {0, 1} to γ1∗e∗γ2. (The left action agrees
with the action defined in Section 3D.) The cosets 0K str

1 (Q)0 in Definition 5.8 are
with respect to this action.

For x, y ∈ K str
0 (Q) we will denote K str

1,xy := {e ∈ K str
1 (Q) : ∂1e = x, ∂0e = y}.

Definition 5.8. Let Q, ∂Q, ∂1 Q, ∂0 Q satisfy Assumption I.
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Let q : Q→ Q and {xE F
i
∈ ∂0 Q ∩ ∂1 Q} be given by Construction 5.1.

Let K str
∗
(Q)⊂ S∗(Q) satisfy conditions (i)–(viii) from Lemma 5.3.

A set D ⊂ K str
1 (Q) is called a set of distinguished 1-simplices if it satisfies the

following conditions:

(ix) ∂0e, ∂1e ∈ K str
0 (Q) for each e ∈ D.

(x) For each (x, y) ∈ K str
0 (Q)× K str

0 (Q), the set

Dxy := {e ∈ D : ∂1e = x, ∂0 = y}

contains exactly one element in each double coset 0 f 0 ∈ 0K str
1,xy(Q)0,

where 0 =�(∂Q).

(xi) For all x ∈ K str
0 (Q), the constant loop cx belongs to D.

(xii) If e ∈ D, then ē ∈ D, where the bar denotes orientation reversal.

(xiii) If F, F ′ are path components of ∂1 Q and

{xE F
i
∈ ∂0 Q ∩ F}, {xE F ′

j
∈ ∂0 Q ∩ F ′}

are given by Construction 5.1, then q(DxE F
i

x
E F ′

j
)=DxE F

0
x

E F ′
0

for all xE F
i
, xE F ′

j
.

(xiv) If x1, x2 ∈C1 and y1, y2 ∈C2 for some path components C1,C2 of ∂Q, then
for each e1 ∈ Dx1 y1 there exists some e2 ∈ Dx2 y2 with q(e2) = gq(e1) for
some g ∈ H := q∗(5(K (∂0 Q))).

In connection with (xiii) we note that if F ∩∂0 Q =∅, there is only one straight
0-simplex xE F

0
in F . Similarly, if F ′∩∂0 Q=∅, there is only one straight 0-simplex

xE F ′
0

in F ′. In particular, if F ∩ ∂0 Q = ∅ and F ′ ∩ ∂0 Q = ∅, condition (xiii) is
empty.

Observation 5.9. Let the assumptions of Definition 5.8 be satisfied. Then a set D
of distinguished 1-simplices exists.

Proof. For each path component C of ∂Q we fix some xC ∈ j str
0 (C).

For each pair {C1,C2} of path components, we select for membership in DxC1 xC2

one simplex e with

∂1e = xC1, ∂0e = xC2

in each coset of 0K str
1,xC1 xC2

(Q)0. If e is selected for DxC1 xC2
, we select ē for

DxC2 xC1
. If C1=C2, then in particular for the coset of the constant loop we choose

the constant loop for DxC1 xC2
.

For each path component C of ∂Q and each path component F of C ∩ ∂1 Q,
we conclude that q(xC) and q(xE F

0
) belong to the path-connected set q(∂0 Q ∩C).



144 THILO KUESSNER

Therefore we have a sequence of 1-simplices α1, . . . , αm ∈ K1(∂0 Q) with images
in distinct path components of ∂0 Q ∩C , such that

∂1q(α1)= q(xC), ∂0q(α1)= ∂1q(α2), . . . ,

∂0q(αm−1)= ∂1q(αm), ∂0q(αm)= q(xE F
0
).

To prepare the definition of the Dx,y , we first describe, for each x ∈C∩K str
0 (Q),

a sequence {α1, . . . , αk} of 1-simplices:

– If C ∩ ∂1 Q = ∅, then k = 1 and for each x ∈ C we choose arbitrarily a
1-simplex α1 in C with ∂1α1 = xC , ∂0α1 = x .

– If C ∩ ∂0 Q = ∅, then C ∩ K str
0 (Q) = {xC} by condition (ii) of Lemma 5.3,

and we let k = 0.

– If C∩∂0 Q∩∂1 Q 6=∅, again by condition (ii) of Lemma 5.3 we have x = xE F
i

for some path component F of ∂1 Q and some i ; thus we have the sequence
α1, . . . , αm constructed above with ∂1q(α1)= q(xC), ∂0q(α1)= ∂1q(α2), . . . ,
∂0q(αm−1)= ∂1q(αm), ∂0q(αm)= q(xE F

i
), where the last equality holds true

because q(xE F
i
)= xE F

0
= q(xE F

0
).

Let x, y ∈ K str
0 (Q). Let C1,C2 be the path components of ∂Q with x ∈ C1

and y ∈ C2. We have constructed sequences of 1-simplices α1, . . . , αk ∈ K1(∂Q)
and β1, . . . , βl ∈ K1(∂Q) such that ∂1q(α1) = q(xC1), ∂0q(α1) = ∂1q(α2), . . . ,
∂0q(αk−1)= ∂1q(αk), ∂0q(αk)= q(x), and ∂1q(β1)= q(xC2), ∂0q(β1)= ∂1q(β2),
. . . , ∂0q(βk−1)= ∂1q(βk), ∂0q(βk)= q(y). Note that all q(αi ) and q(βi ) are either
constant or contained in q(K1(∂0 Q)).

Let H := q∗(5(K (∂0 Q))). Define

g := {q(α1), q(α1)} . . . {q(αk), q(αk)}{q(βl), q(βl)} . . . {q(β1), q(β1)} ∈ H.

(If k = l = 0, this just means g = 1.)
We have g = g−1 and

ge ∈ K str
1,q(x)q(y)(Q) ⇐⇒ e ∈ K str

1,q(xC1 )q(xC2 )
(Q).

By construction, the g associated to xE F
i
, xE F ′

j
agrees with the g associated to

xE F
0
, xE F ′

0
.

We are given DxC1 xC2
and we want to define Dxy such that condition (xiii) is

satisfied.
First, if C1 ∩ ∂1 Q =∅ or C2 ∩ ∂1 Q =∅, then we can fix an arbitrary choice of

Dx,y satisfying conditions (x)–(xii). (Condition (xiii) is empty in this case.)
So let us assume C1 ∩ ∂1 Q 6=∅ and C2 ∩ ∂1 Q 6=∅. We note that

q : (Q, ∂Q, ∂1 Q)→ (Q, ∂Q, ∂1 Q)



AGOL’S INEQUALITY AND NONEXISTENCE OF TIGHT LAMINATIONS 145

is homotopic to the identity as a map of triples, by the construction in Section 5A.
This implies that cosets of 0K str

1,xy(Q)0 are in one-to-one correspondence (by
applying q) with those of 0K str

1,q(x)q(y)0. Thus it suffices to describe q(Dxy) ⊂

K str
1,q(x)q(y).
Let

0 f 0 ∈ 0K str
1,q(x)q(y)(Q)0

be a double coset. Then the double coset

0(g f )0 ∈ 0K str
1,q(xC1 )q(xC2 )

(Q)0

is the image under q of some double coset

0e′0 ∈ 0K str
1,xC1 xC2

(Q)0

Let e be the unique distinguished simplex in 0e′0. Then we choose gq(e) to be
the distinguished simplex in 0 f 0. This is possible because gq(e) belongs to the
double coset 0 f 0. Indeed,

q(e) ∈ 0(g f )0

means that q(e)= q∗(γ1)g f q∗(γ2) for some loops γ1 and γ2 based at xC1 and xC2 ,
respectively, and this implies gq(e′)= q∗(γ ′1) f q∗(γ ′2) with

γ ′1 := [αm ∗ . . . ∗α1 ∗ γ1 ∗α1 ∗ . . . ∗αm], γ
′

2 := [βn ∗ . . . ∗β1 ∗ γ2 ∗β1 ∗ . . . ∗βn].

This defines Dxy . By construction, condition (xiv) is satisfied if e1 ∈ DxC1 xC2
.

In general, if e1 ∈ Dx1 y1 , then we get e ∈ DxC1 xC2
and g1 ∈ H with q(e1)= g1q(e)

and e2 ∈ Dx2 y2, g2 ∈ H with q(e2)= g2q(e); thus q(e2)= g2g−1
1 q(e1).

Condition (xiii) is implied because q(xE F
i
) = xE F

0
, q(xE F ′

j
) = xE F ′

0
and the g

associated to xE F
i
, xE F ′

j
agrees with the g associated to xE F

0
, xE F ′

0
.

One checks easily that (xi) and (xii) are true for Dxy , since they are true for
DxC1 xC2

. �

Definition 5.10. Let Q, ∂Q, ∂0 Q, ∂1 Q satisfy Assumption I. Let z =
∑

i∈I aiτi ∈

C inf
n (Q) be a singular chain and let ϒ be the associated simplicial set (for some set

of cancellations C).
We say that a 0-1 labeling of the elements of the 1-skeleton ϒ1 is admissible if

∂e1 ∩ ∂e2 =∅ for all 1-labeled vertices e1, e2.

Lemma 5.11. Let Q, ∂Q, ∂1 Q, ∂0 Q satisfy Assumption I. Let q : Q→ Q be given
by Construction 5.1.

Let K str
∗
(Q) ⊂ S∗(Q) satisfy conditions (i)–(viii) from Lemma 5.3, and let D ⊂

K str
1 (Q) be a set of distinguished 1-simplices.
Let z =

∑
i∈I aiτi ∈ C simp,inf

∗ (K (Q)) be a relative cycle with

∂z ∈ C simp,inf
∗ (K (∂1 Q)).
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Let a set of cancellations C for z and a minimal presentation of ∂z be given. Let
ϒ, ∂ϒ be the associated simplicial sets, τ : (|ϒ |, |∂ϒ |)→ (Q, ∂1 Q) the associated
continuous mapping.

Assume that we have an admissible 0-1 labeling of ϒ1. Then there exists a
relative cycle

z′ =
∑
i∈I

aiτ
′

i ∈ C simp,inf
∗ (K str(Q), K str(∂1 Q))

satisfying the following conditions:

(i) The associated continuous mappings

τ, τ ′ : (|ϒ |, |∂ϒ |)→ (Q, ∂1 Q)

are homotopic by a homotopy mapping |∂ϒ | to ∂Q.

(ii) If an edge of some τi is labeled by 1, the corresponding edge of τ ′i belongs to D.

Remark. The homotopy in (i) does not necessarily map |∂ϒ | to ∂1 Q, but to ∂Q.

Proof. First we apply the canonical straightening strcan from Observation 5.7. The
resulting chain

∑
i∈I ai strcan(τi ) satisfies (i), but not necessarily (ii).∑

i∈I ai strcan(τi ) inherits the admissible labeling from
∑

i∈I aiτi . Thus we can,
without loss of generality, restrict ourselves to the case that all τi belong to K str(Q).

Let e ∈ K str
1 (Q) be a 1-labeled edge, and set x = ∂1e ∈ K str

0 (Q), y = ∂0e ∈
K str

0 (Q). By Definition 5.8, the coset 0e0 contains a unique distinguished 1-
simplex str(e) ∈ Dxy . (We use the notation from Definition 5.8; in particular,
0 :=�(∂Q).)

That str(e) ∈ 0e0 means6 that there are loops γ1, γ2 ⊂ ∂Q based at x and y,
respectively, such that str(e)∼ γ1 ∗e∗γ2 rel {0, 1}. There is an obvious homotopy
between e and γ1 ∗e∗γ2, which moves ∂1e along γ 1 and ∂0e along γ2. (Of course,
we change the homotopy class relative boundary, so we cannot keep the endpoints
fixed during the homotopy.) If e and/or ∂0e and/or ∂1e have image in ∂1 Q, then
their images remain in ∂Q (and end up in ∂1 Q) during the homotopy.

Using Observation 3.1, the homotopy thus constructed between e and str(e) can
be extended to a homotopy from

τ : (|ϒ |, |∂ϒ |)→ (Q, ∂1 Q)

to some
τ̂ : (|ϒ |, |∂ϒ |)→ (Q, ∂1 Q),

such that τ̂ is a simplicial map from ϒ to S∗(Q). (If a 0-labeled edge has one or
both vertices adjacent to 1-labeled edges, then the 0-labeled edge just follows the

6If ∂0e, ∂1e 6∈ ∂1 Q, then str(e) ∈ 0e0 means, of course, str(e) = e. Similarly, if only one vertex
of e belongs to ∂1 Q, then only that vertex is moved during the homotopy.
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homotopy of the vertices. Edges labeled with 0 but not adjacent to 1-labeled edges
can remain fixed during the homotopy.) The homotopy maps |∂ϒ | to ∂Q.

Next we apply homotopies rel boundary to the (already homotoped images of)
all 0-labeled edges f ∈K str

1 (Q), to homotope them to edges in K str
1 (Q). If f and/or

∂0 f and/or ∂1 f have image in ∂1 Q, then their images remain in ∂Q (and end up
in ∂1 Q) during the homotopy.

Now we have a simplicial map τ̂ : ϒ → S∗(Q), such that all 1-simplices are
mapped to K str

1 (Q), and such that

τ̂ (e) ∈ D ⊂ K str
1 (Q)

holds for all 1-labeled edges e. Then we can, as in the proof of Observation 5.7,
by induction on n, apply homotopies rel boundary to all n-simplices to homotope
them into K str

n (Q). Simplices in ∂1 Q remain in ∂Q (and end up in ∂1 Q) during
the homotopy.

We obtain a homotopy (of pairs), which keeps the 1-skeleton fixed, to a simpli-
cial map

τ ′ : ϒ→ K str(Q),

mapping ∂ϒ to K str(∂1 Q) and satisfying conditions (i) and (ii) of Lemma 5.11. �

A somewhat artificial formulation of the conclusion of Lemma 5.11 is that we
have constructed a chain map

str : C simp,inf
∗ (ϒ, ∂ϒ)→ C simp,inf

∗ (K str(Q), K str(∂1 Q)).

Unfortunately, this somewhat artificial formulation can not be simplified because
str depends on the chain

∑
i∈I aiτi . That is, we do not get a chain map

str : C simp,inf
∗ (K (Q), K (∂1 Q))→ C simp,inf

∗ (K str(Q), K str(∂1 Q)).

5D. Straightening of crushed cycles. Recall from Section 3H that ( · ) ⊗ZG Z

means the tensor product with the trivial ZG-module Z, that is, the quotient under
the G-action. We first state obvious generalizations of Observation 5.6 to the case
of tensor products with a factor with trivial G-action.

Observation 5.12. Let (Q, ∂1 Q) be a pair of topological spaces. Let G be a group
acting on a pair (K , ∂K ) with K ⊂ S∗(Q) and ∂K ⊂ S∗(∂1 Q) both closed under
face maps.

(i) If
z =

∑
i∈I

aiτi ⊗ 1 ∈ C simp,inf
∗ (K , ∂K )⊗ZG Z

is a relative cycle, so is

ẑ =
∑
i∈I

∑
g∈G

ai (gτi ) ∈ C simp,inf
∗ (K , ∂K ).
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If C is a sufficient set of cancellations for z, there exists a set of cancellations Ĉ

for ẑ such that (η1, η2) ∈ Ĉ implies (η1⊗ 1, η2⊗ 1) ∈ C.
If ∂z =

∑
a,i cai∂aτi ⊗ 1 is a minimal presentation for ∂z, then

∂ ẑ =
∑

g∈G

∑
a,i

cai∂a(gτi )

is a minimal presentation for ẑ.

(ii) Let ϒ̂, ∂ϒ̂ be the simplicial sets associated to ẑ, the sufficient set of cancella-
tions Ĉ and the minimal presentation of ∂ ẑ. They come with an obvious G-action.
Then we have an associated continuous mapping τ̂ : (|ϒ̂ |, |∂ϒ |)→ (Q, ∂1 Q).

Corollary 5.13. Let Q, ∂Q, ∂1 Q, ∂0 Q satisfy Assumption I. Let q : Q → Q be
given by Construction 5.1. Let K str

∗
(Q) ⊂ S∗(Q) satisfy conditions (i)–(viii) from

Lemma 5.3, and let D ⊂ K str
1 (Q) be a set of distinguished 1-simplices.

Let G :=5(K (∂0 Q)) with its action on K str(Q) defined in Observation 5.4, and
let H := q∗(G) as defined in Section 5A. Let∑

i∈I
aiτi ⊗ 1 ∈ C simp,inf

n (K (Q),G K (∂1 Q))⊗ZG Z

be a relative cycle. Fix a sufficient set of cancellations C and a minimal presen-
tation for ∂z. Let ϒ̂, ∂ϒ̂ be defined by Observation 5.12. Assume that we have a
G-invariant admissible 0-1 labeling of the edges of ϒ̂ .

Then there is a well-defined chain map

q ◦ str : C simp,inf
∗ (ϒ̂)⊗ZG Z→ C simp,inf

∗ (H K str(Q))⊗ZH Z,

mapping C simp,inf
∗ (∂ϒ̂)⊗ZG Z to C simp,inf

∗ (G K str(∂1 Q))⊗ZH Z, satisfying the fol-
lowing conditions:

(i) If e ∈ ϒ̂1 is a 1-labeled edge, str(e⊗ 1)= f ⊗ 1, then f ∈ D.

(ii) If Q is an orientable manifold with boundary ∂Q, and if∑
i∈I

aiτi ⊗ 1 ∈ C simp,inf
∗ (K (Q),G K (∂1 Q))⊗ZG Z

represents7 the image of [Q, ∂Q]⊗ 1, then∑
i∈I

ai q ◦ str(τi ⊗ 1) ∈ C simp,inf
∗ (H K str(Q), H K str(∂1 Q))⊗ZH Z

represents7 the image of [Q, ∂Q]⊗ 1 and

∂
∑
i∈I

ai q ◦ str(τi ⊗ 1) ∈ C simp,inf
∗ (H K str(∂1 Q))⊗ZH Z

represents the image of [∂Q]⊗ 1.

7See the remark following Lemma 3.6.
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Proof. We can apply Lemma 5.11 to the infinite chain
∑

i∈I,g∈H ai (gτi ) to obtain
a chain map str : C simp,inf

∗ (ϒ̂)→ C simp,inf
∗ (K str(Q)), given by

str(gτi ) := (gτi )
′.

The map q : (K str(Q), K str(∂1 Q))→ (K str(Q), K str(∂1 Q)) is defined by Obser-
vation 5.4. (We actually have q ◦ str(gτi ) ∈ K str(Q). We need H K str(Q) in the
statement of Corollary 5.13 just to have the tensor product well-defined.)

We are going to define q ◦ str(σ ⊗ z) := q(str(σ ))⊗ z for each σ ∈ ϒ̂ and z ∈ Z.
For this to be well-defined, we need this fact:

Claim. For each σ ∈ K , g ∈ G, there exists h ∈ H with q(str(gσ))= hq(str(σ )).

Proof. By condition (viii) from Lemma 5.3 (asphericity of K str(Q)), it suffices to
check this for the 1-skeleton.

0-simplices. If σ = v ∈ S0(∂0 Q) then v and gv belong to the same path com-
ponent C of ∂0 Q, hence str(v) and str(gv) belong to the same path component
C . Let γ : [0, 1] → ∂0 Q be a path with γ (0) = str(v), γ (1) = str(gv). Let
γ ′ be the unique 1-simplex in K (∂0 Q) which is homotopic rel boundary to γ .
Let g′ := {γ ′, γ ′} ∈ G = 5(K (∂0 Q)). Then g′ str(v) = str(gv), which implies
q(str(gv))= hq(str(v)) with h = q∗(g′) ∈ H .

If σ = v 6∈ ∂0 Q, then gv = v, hence q(str(gv))= q(str(v)).

1-simplices. In a first step we prove that for e ∈ K1(Q) and g ∈ G we have
strcan(ge) = g′ strcan(e) with g′ ∈ G. Then we show that, if e ∈ K str

1 (Q) and
g ∈ G, there exists h ∈ H with q(str(ge))= hq(str(e)). Hence altogether we will
get q(str(ge)) = q(str(strcan(ge))) = q(str(g′ strcan(e))) = h q(str(strcan(e))) =
h q(str(e)).

Step 1. This is basically a case analysis.
First case: If both vertices of e do not belong to ∂0 Q, then also both vertices

of strcan(e) do not belong to ∂0 Q, and we have ge = e, g strcan(e) = str(e), which
implies the conclusion.

Second case: If both vertices of e belong to ∂0 Q, then strcan(e) ∼ α1 ∗ e ∗ α2

and strcan(ge) ∼ β1 ∗ ge ∗ β2 for some paths α1, α2, β1, β2 in ∂0 Q. Moreover,
by the definition of the action (Section 3.3) we have ge ∼ γ2 ∗ e ∗ γ1 for some
γ1, γ2 ∈ K1(∂0 Q). Thus strcan(ge) ∼ β1 ∗ γ1 ∗ α

−1
1 ∗ strcan(e) ∗ α−1

2 ∗ γ2 ∗ β2; in
particular strcan(ge)= g′ strcan(e) for some g′ ∈ G.

Third case: Finally we consider the case that one vertex, say ∂0e, belongs to
∂0 Q, but ∂1e does not. Then we are in the situation of the second case with
γ2 = 1 and α2 = β2, except that α2 is not contained in ∂0 Q. We get strcan(ge) ∼
β1 ∗ γ1 ∗ α

−1
1 ∗ strcan(e). Since β1 ∗ γ1 ∗ α

−1
1 is contained in ∂0 Q, this implies that

strcan(ge)= g′ strcan(e) for some g′ ∈ G.
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Step 2. Let e ∈ K str
1 (Q).

If e is a 1-labeled edge, with x = ∂1e, y = ∂0e ∈ K str
0 (Q), then we have by

condition (xiv) from Definition 5.8 that

q(str(ge))= hq(e2)

for some e2 ∈ Dxy and some h ∈ H . But e2 belongs to the same coset in 0K str
1 (Q)0

as e; thus e2 = str(e), which proves the claim for e.
If f is adjacent to one 1-labeled edge e and q(str(ge)) = hq(str(e)), then

q(str(g f ))= hq(str( f )) because the homotopy of f just followed that of e, and the
homotopy of g f just followed that of ge; for example, if ∂1 f =∂1e and q(str(ge))∼
q∗(α)∗q(str(e))∗q∗(β) with α, β ∈ K1(∂0 Q), then q(str(g f ))∼ q∗(α)∗q(str( f )).
Similarly if f is adjacent to two 1-labeled edges.

Finally, if a 0-labeled straight 1-simplex f is not adjacent to a 1-labeled edge,
we have str( f ) = f and str(g f ) = g f , which implies that str(g f ) = g str( f ) and
q(str(g f ))= q∗(g) str( f ).

This concludes the proof of the claim. �

Thus q ◦ str is well-defined; by Lemma 5.11, it satisfies the equation in part (i)
of our corollary. To prove part (ii), we first observe that, if

∑
i∈I aiτi represents

[Q, ∂Q], then, by Observation 5.6(c) and condition (i) from Lemma 5.11 (together
with q ∼ id), the element ∑

i∈I
ai q ◦ str(τi )=

r∑
i=1

ai q(τ ′i )

represents [Q, ∂Q] and the claim follows. Thus it suffices to check: if
∑

i∈I aiτi⊗1
is (relatively) homologous to

∑
j∈J b jκ j ⊗ 1, then q ◦ str(

∑
i∈I aiτi ⊗ 1) is (rela-

tively) homologous to q ◦ str
(∑

j∈J b jκ j ⊗ 1
)
.

So let∑
i∈I

aiτi ⊗ 1−
∑
j∈J

b jκ j ⊗ 1= ∂
∑

k∈K
ckηk ⊗ 1 mod C simp,inf

∗ (G K (∂1 Q))⊗ZG Z

for some chain
∑

k∈K ckηk⊗1∈C simp,inf
∗ (K (Q))⊗ZG Z. In complete analogy with

Lemma 5.11, we may extend str to the simplicial set built by the gηk , their faces
and degenerations, and obtain a singular chain q

(
str
(∑

k∈K ckηk
))

with boundary

∂q ◦ str
(∑

k∈K
ckηk

)
= q ◦ str

(∑
i∈I

aiτi ⊗ 1
)
− q ◦ str

(∑
j∈J

b jκ j ⊗ 1
)

mod C simp,inf
∗ (H K str(∂1 Q))⊗ZH Z.

This gives the first claim of (ii). The second claim of (ii) follows because ∂ maps
[Q, ∂Q] to [∂Q]. �
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5E. Removal of 0-homologous chains.

Definition 5.14. Let Q be an n-dimensional compact manifold with boundary ∂Q.
We define rmv : S∗(Q)→ S∗(Q) by

rmv(σ )=
{

0 if σ is weakly degenerate (Definition 5.2),
σ else.

Lemma 5.15. Assume that Q is a n-dimensional compact manifold with boundary
∂Q. Let K str

∗
(Q) ⊂ S∗(Q) satisfy conditions (i)–(viii) from Lemma 5.3. Then the

map from C simp
∗ (K str(Q), K str(∂0 Q)∪ K str(∂1 Q)) to itself defined by

rmv([σ ]) := [rmv(σ )]

is a well-defined chain map. Moreover, if

r∑
j=1

a jτ j ∈ C simp
∗ (K str(Q), K str(∂0 Q)∪ K str(∂1 Q))⊂ C sing

∗ (Q, ∂Q)

represents [Q, ∂Q], then
∑r

j=1 a j rmv(τ j ) represents [Q, ∂Q].

Proof. If σ ∈ K str(∂0 Q)∪ K str(∂1 Q), then rmv(σ ) ∈ K str(∂0 Q)∪ K str(∂1 Q); thus
rmv is well-defined. We next prove it is a chain map.

Assume that rmv(σ )= 0. If σ has image in ∂Q, then rmv(σ ) and rmv(∂σ ) both
vanish; thus ∂ rmv(σ )= rmv(∂σ ).

If some edge e of σ , say connecting the i-th and j-th vertices, is a constant
loop, then all faces of σ except possibly ∂iσ and ∂ jσ have a constant edge. Thus
rmv(∂kσ) = 0 if k 6∈ {i, j}. Moreover, since e is constant, corresponding edges of
∂iσ and ∂ jσ are homotopic rel boundary and thus agree (possibly up to orientation)
by condition (v) from Lemma 5.3. By induction on the dimension of subsimplices
we get, again using condition (v) from Lemma 5.3, that ∂iσ = (−1)i− j∂ jσ . Alto-
gether we get rmv(∂σ )= 0; thus ∂ rmv(σ )= rmv(∂σ ).

Assume that rmv(σ )= σ . Since no edge of σ is a constant loop, of course also
no edge of a face ∂iσ is a constant loop. If the image of ∂iσ is not contained in
∂Q, this implies rmv(∂iσ) = ∂iσ = ∂i rmv(σ ). If ∂iσ has image in ∂Q, then of
course [∂iσ ] = [0] = [∂i rmv(σ )], which implies rmv(∂iσ)= ∂i rmv(σ ).

Now we prove that rmv sends relative fundamental cycles to relative funda-
mental cycles. Let

∑r
j=1 a jτ j be a straight relative cycle representing the relative

homology class [Q, ∂Q]. We denote by J1 ⊂ {1, . . . , r} the indices of those τ j

which have a constant edge. The sum
∑

j∈J1
a jτ j is a relatively 0-homologous

relative cycle. Indeed, each face of ∂iτk not contained in ∂Q has to cancel against
some face of some τl , because

∑r
j=1 a jτ j is a relative cycle. If ∂iτk is degenerate,

then necessarily l ∈ J1. Moreover, if τk is degenerate and ∂iτk is nondegenerate, it
follows from the earlier part of the proof that ∂iτk cancels against some ∂ jτk .
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Thus
∑

j∈J1
a jτ j represents some relative homology class. The isomorphism

Hn(C
sing
∗ (Q, ∂Q)) → R is given by pairing with the volume form of an arbi-

trary Riemannian metric. After smoothing the relative cycle, we can apply Sard’s
lemma, and conclude that degenerate simplices have volume 0. Thus

∑
j∈J1

a jτ j

is 0-homologous.
We denote by J2⊂{1, . . . , r} the indices of those τ j which are contained in ∂Q.

For j ∈ J2 we have [τ j ] = [0] ∈ C sing
∗ (Q, ∂Q).

Thus
∑

j 6∈J1∪J2
a jτ j is another representative of the homology class [Q, ∂Q].

But, by Definition 5.14, it also represents (rmv)∗([Q, ∂Q]). �

Consider a subgroup H⊂5(K (A)) for some A⊂∂Q. For instance, A=q(∂0 Q)
in the setting of Construction 5.1, and H = q∗(5(K (∂0 Q)))⊂5(K (A)).

A 1-simplex e is a constant loop if and only if he is a constant loop for all
h ∈ H . This implies that a simplex σ is degenerate if and only if hσ is degen-
erate for all hσ . Moreover, H maps simplices in ∂Q to simplices in ∂Q. Thus
rmv(σ ) = 0 if and only if rmv(hσ) = 0 for all h ∈ H , that is, rmv is well defined
on C simp,inf

∗ (H K str(Q))⊗ZH Z for each subgroup H .

Lemma 5.16. Assume that Q is a n-dimensional compact manifold with boundary
∂Q. Let the assumptions of Corollary 5.13 be satisfied. Then we can extend rmv to
a well-defined chain map from (H K str(Q), H K str(∂1 Q))⊗ZH Z to itself by defining

rmv(σ ⊗ z)=
{

0 if rmv(σ )= 0,
σ ⊗ z else.

Moreover, if
∑

j∈J a jτ j ⊗ 1 ∈ C simp,inf
∗ (H K str(Q), H K str(∂1 Q)) ⊗ZH Z repre-

sents the image of [Q, ∂Q] ⊗ 1, then
∑
∈J a j rmv(τ j ⊗ 1) represents the image of

[Q, ∂Q]⊗ 1.

Proof. Well-definedness of rmv follows from the remark before Lemma 5.16. The
same proof as for Lemma 5.15 shows that rmv is a chain map.

If
∑r

j=1 a jτ j represents [Q, ∂Q], the second claim follows from Lemma 5.15. If∑
j∈J a jτ j⊗1 is homologous to

∑s
i=1 biκi⊗1 and

∑s
i=1 biκi represents [Q, ∂Q],

then, because rmv is a chain map, rmv
(∑

j∈J a jτ j ⊗ 1
)

and rmv
(∑s

i=1 biκi ⊗ 1
)

are homologous, which implies the second claim. �

The proof of Theorem 1.1 will pursue the idea of straightening a given cycle
in such a way that many simplices either become weakly degenerate or will have
an edge in ∂0 Q. In the first case, they will disappear after application of rmv. In
the second case, they disappear in view of the following observation, which is a
variant of an argument used in [Gromov 1982].

Lemma 5.17. (a) Let Assumption I be satisfied for a manifold Q and consider
the action of G = 5(K (∂0 Q)) on K (Q). Let σ ∈ K (Q) be a simplex. If
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str(σ ) has an edge in ∂0 Q, then

str(σ ⊗ 1)= 0 ∈ C simp,inf
∗ (K (Q))⊗ZG Z.

(b) If q : Q→ Q is given by Construction 5.1, H = q∗(G), and σ ∈ K (Q) is a
simplex such that q(str(σ )) has an edge in q(∂0 Q), then

q(str(σ ⊗ 1))= 0 ∈ C simp,inf
∗ (K (Q))⊗ZH Z.

Proof. (a) Let γ be the edge of str(σ ) with image in ∂0 Q. Then g = {γ, γ } is
an element of G = 5(K (∂0 Q)) and g str(σ ) = str(σ ). In the simplicial chain
complex C simp,inf

∗ (K (Q)), one has str(σ ) = − str(σ ). Thus g str(σ ) = − str(σ ),
which implies str(σ ⊗ 1)= str(σ )⊗ 1= 0.

(b) Let γ be the edge of q(str(σ )) with image in q(∂0 Q). Let γ ′ be the corre-
sponding edge of str(σ ). Let g = {γ ′, γ ′} ∈ G and h = q∗(g) = {γ, γ } ∈ H . The
same argument as in (a) shows hq(str(σ ))=−q(str(σ )). �

6. Proof of Main Theorem

As discussed in the introduction, before tackling the proof of Theorem 1.1 in full
generality, we prove some particular cases as motivation.

Example 6.1. M is a connected, orientable, hyperbolic n-manifold, F is an ori-
entable, geodesic (n−1)-submanifold, and Q = M − F . For simplicity we assume
that M and F are closed; thus Q is a hyperbolic manifold with geodesic boundary
∂1 Q 6=∅, and ∂0 Q =∅.

Outline of proof that ‖M‖norm
F ≥ ‖∂Q‖/(n + 1). Start with a fundamental cycle∑r

i=1 aiσi of M such that σ1, . . . , σr are normal to F . Since we want to consider
laminations without isolated leaves, we replace F by a trivially foliated product
neighborhood F. We can assume after a suitable homotopy that each component
of σ−1

i (∂Q) either contains no vertex of 1n or consists of exactly one vertex, and
that each vertex of 1n belongs to σ−1

i (F), for i = 1, . . . , r .
Each σ−1

i (Q) consists of polytopes, which can be further triangulated (without
introducing new vertices) in a coherent way (i.e., such that boundary cancellations
between different σi ’s will remain) into τi1, . . . , τis(i).

The sum
∑r

i=1 ai (τi1+ · · ·+ τis(i)) is a relative fundamental cycle for Q.
For each σi , preimages of the boundary leaves of F cut 1n into regions which

we color with black (components of σ−1
i (F)) and white (components of σ−1

i (Q)).
If σ−1

i (∂Q) contains vertices, these vertices are colored black. This is a canonical
coloring (Definition 4.5).
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The edges of the simplices τi, j fall into two classes: “old edges”, i.e., subarcs
of edges of σi , and “new edges”, which are contained in the interior of some sub-
simplex of σi of dimension ≥ 2.

We label the edges of τi j in such a way that old edges are labeled 1 and new
edges are labeled 0. This is an admissible labeling (Definition 5.10). With this
labeling, we apply the straightening procedure8 from Section 5 to get a straight
cycle

∑r
i=1 ai (str(τi1)+ · · · + str(τis(i))). (Thus old edges are straightened to dis-

tinguished 1-simplices.)
After straightening we apply the map rmv from Section 5D to remove all weakly

degenerate simplices (simplices contained in ∂Q or having a constant edge). By
Lemma 5.15, this does not change the homology class. In particular, the boundary
of the relative cycle, ∂

∑
i, j ai rmv(str(τi j )) still represents the fundamental class

[∂Q] of ∂Q.

Claim. For each σi , after straightening there remain at most n + 1 faces of non-
degenerate simplices str(τi j ) contributing to ∂

∑
i, j ai rmv(str(τi j )).

Proof of claim. In view of Lemma 4.13, it suffices to show a subclaim: If , for a
fixed i , the faces T1 = ∂k1τi j1 and T2 = ∂k2τi j2 of τi j1 and τi j2 have a white-parallel
arc (Definition 4.9), then rmv(str(τi j1)) and rmv(str(τi j2)) vanish.
In particular the corresponding straightened faces9 str(T1), str(T2)

do not occur (with nonzero coefficient) in ∂
∑

i, j rmv(str(τi j )).
To prove the subclaim, let W be the white region of 1n con-

taining T1 and T2 in its boundary. By the assumption of the
subclaim, there is a white square bounded by two arcs e1⊂ T1,
e2⊂ T2 and two arcs f1, f2 which are subarcs of edges of1n .
(The square is a formal sum of two triangles, U1+U2, which
are 2-dimensional faces of some τi j ’s.)

e2

e1

f2f1

We want to show that all edges of str(τi j1) belong to Sstr
1 (∂Q). Note that T1, T2⊂

∂W are mapped to ∂Q. Let x1, x2 ∈ Sstr
0 (Q) be the unique elements of Sstr

0 (Q) in
the same connected component C1,C2 of ∂Q as σi (T1) and σi (T2), respectively.
In particular ∂0 str(e1) = x1 = ∂1 str(e1) and ∂0 str(e2) = x2 = ∂1 str(e2). Thus e1

and e2 are straightened to loops str(e1) and str(e2) based at x1 and x2, respectively.
The straightenings str( f1), str( f2) of the other two arcs connect x1 to x2, and they
are distinguished 1-simplices because they arise as straightenings of old edges.
Thus str( f1) = str( f2), by uniqueness of distinguished 1-simplices in each coset

8Under the assumptions of Example 6.1, straight simplices can be chosen to be the totally
geodesic simplices with vertices in Sstr

0 (Q). Distinguished simplices are chosen according to
Observation 5.9.

9For a subsimplex T of an affine subset S ⊂1n we get a singular simplex σi |T by restricting σi
to T . We denote by str(T ) the straightening of σi |T .
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0K str
1 (Q)0 of 0=�(∂Q). This is why we have performed the straightening con-

struction in Section 5 such that there should be only one distinguished 1-simplex,
in each coset, for any given pair of connected components.

This means that the square is straightened to a cylinder.
But (Q, ∂Q) is acylindrical; thus either both str(e1) and str(e2) are constant (in

which case rmv(str(τi j1))= rmv(str(τi j2))= 0), or the cylinder must be homotopic
into ∂Q. In the latter case, str( f1)must be homotopic into, and therefore contained
in, ∂Q. In particular, ∂0 str( f1) and ∂1 str( f1) belong to the same component of ∂Q.
This implies ∂0 str( f1)= ∂1 str( f1). Since str( f1) is a distinguished 1-simplex, this
implies that str( f1) is constant.

Let P1, P2 be the affine planes whose intersections with 1n contain T1 and T2,
respectively. There is an arc f1 connecting P1 ∩1

n to P2 ∩1
n such that str( f1)

is contained in ∂Q. This implies that for each other arc f connecting P1 ∩1
n to

P2 ∩1
n its straightening str( f ) must be homotopic into, and therefore contained

in, ∂Q.
If P1 and P2 are of the same type, then all edges of str(τi j1) connect P1∩1

n to
P2 ∩1

n; hence all edges of str(τi j1) belong to Sstr
1 (∂Q). If P1 and P2 are not of

the same type, the existence of a parallel arc implies that at least one of them, say
P1, must be of type {0a1 . . . ak} with k 6∈ {0, n− 1}. Then, if P3 is any other plane
bounding W , it follows from Corollary 4.8 that P3 has a white-parallel arc with P1.
Repeating the argument in the last paragraph with P1 and P3 in place of P1 and P2,
we conclude that for each arc f connecting P1 ∩1

n to P3 ∩1
n its straightening

str( f ) must be homotopic into, and therefore contained in, ∂Q. Hence, for each
τi j1 in the chosen triangulation of W , its 1-skeleton is straightened into ∂Q.

Since straight simplices σ (of dimension ≥ 2) with ∂σ in the geodesic boundary
∂Q must be in ∂Q, this implies by induction that the k-skeleton of str(τi j1) is in
∂Q for each k. In particular, str(τi j1) ∈ Sstr

n (∂Q). Hence rmv(str(τi j1)) = 0. This
proves the subclaim.

By Lemma 4.13, the subclaim implies the claim. �

Since
∑r

i=1 ai∂
∑

j rmv(str(τi j )) represents the fundamental class [∂Q], we
conclude that ‖∂Q‖ ≤ (n+ 1)

∑r
i=1 |ai |, as desired. �

The simplifications of Example 6.1 in comparison to the general proof below
are essentially all due to the fact that ∂0 Q = ∅. In the next example, if F is not
geodesic, then Q 6= N and thus ∂0 Q 6=∅ (even though ∂M and ∂F are both empty).
Thus the generalization to ∂0 Q 6= ∅ would be necessary even if one only wanted
to consider closed manifolds M and F .

Example 6.2. M is a connected, closed, hyperbolic 3-manifold, F ⊂ M a closed,
incompressible surface, N = M − F , Q = Guts(N ).
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Outline of proof that ‖M‖norm
F ≥

1
4‖∂Q‖. Start with a fundamental cycle

∑r
i=1 aiσi

of M , such that σ1, . . . , σr are normal to F . As in Example 6.1 we get a relative
fundamental cycle

∑r
i=1 ai (τi1+· · ·+ τis(i)) of N . We cannot apply the argument

from Example 6.1 to N because N is not acylindrical. Therefore we would like to
work with a relative fundamental cycle for the acylindrical manifold Q.

N is aspherical. Using Lemma 3.2, we can assume that all τi j belong to K (N ).
Then we can apply the retraction r from Lemma 3.5. Since r is only defined after
tensoring with Z over ZG, we get r(τi j ⊗ 1) = κi j ⊗ 1 with κi j ∈ K (Q) only
determined up to choosing one κi j in its G-orbit.

Since Q is aspherical, we have K (Q)= K̂ (Q), that is, the κi j can be considered
as simplices in Q and we can apply Lemma 3.6(b) to obtain a fundamental cycle
for ∂Q.

The rest of the proof basically boils down to copying the proof of Example 6.1,
with τi j replaced by κi j ; but taking care of the ambiguity in the choice of κi j . The
details can be found in the full-fledged proof of the theorem we’re about to give. �

Proof of Theorem 1.1. The theorem is trivially true if n = 1. Hence we assume
n ≥ 2.

If ∂1 Q is empty, the equality ∂Q = ∂0 Q and the amenability of π1∂0 Q would
imply ‖∂Q‖ = 0, and Theorem 1.1 would be trivially true. Hence we assume
∂1 Q 6=∅. In particular, Q satisfies Assumption I from Section 5.

Consider a relative cycle
∑r

i=1 aiσi , representing [M, ∂M], such that σ1, . . . , σr

are normal to F. Our aim is to show that
r∑

i=1
|ai | ≥

1
n+1
‖∂Q‖.

Define

N = M −F.

Since each σi is normal to F, we have for each i = 1, . . . , r that, after application
of a simplicial homeomorphism hi : 1

n
→ 1n , the image of σ−1

i (N ) consists of
polytopes, which can each be further triangulated in a coherent way (i.e., such that
boundary cancellations between different σi ’s will remain) into simplices θi j , with
j ∈ Ĵi . (It is possible that | Ĵi | = ∞, because N may be noncompact.) We choose
these triangulations of the σ−1

i (N ) to be minimal (Definition 4.9); that is, we do
not introduce new vertices. (Compatible minimal triangulations of the σ−1

i (N ) do
exist: one starts with common minimal triangulations of the common faces and
extends them to minimal triangulations of each polytope.)

Because boundary cancellations are preserved, we see that
∑r

i=1 ai
∑

j∈ Ĵi
θi j

is a countable (possibly infinite) relative cycle representing the fundamental class
[N , ∂N ] in the sense of Section 3B.
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We fix a sufficient set of cancellations CM for the relative cycle
∑r

i=1 aiσi , in
the sense of Definition 5.5. This induces a sufficient set of cancellations CN for
the relative cycle

∑r
i=1

∑
j∈ Ĵi

aiθi j .

If ∂M is a leaf of F, then all faces of z contributing to ∂z are contained in ∂N .
We call these faces exterior faces. We can assume that, for each i ,

– each component of σ−1
i (∂N ) either contains no vertex of 1n , or consists of

exactly one vertex, or consists of an exterior face, and

– and each vertex of 1n belongs to σ−1
i (F).

Indeed, by a small homotopy of the relative fundamental cycle
∑r

i=1 aiσi , pre-
serving normality, we can obtain that no component of σ−1

i (∂N ) contains a vertex
of 1n , except for exterior faces. Afterwards, if some vertices of

∑r
i=1 aiσi do not

belong to F, we may homotope a small neighborhood of the vertex, until the vertex
(and no other point of the neighborhood) meets ∂N . This, of course, preserves
normality to F.

Since each σi is normal to F, in particular each σi is normal to the union of
boundary leaves

∂1 N := ∂N − (∂M ∩ ∂N ).

Thus for each σi , after application of a simplicial homeomorphism hi :1
n
→1n ,

the image of σ−1
i (∂1 N ) consists of a (possibly infinite) set

Q1, Q2, . . .⊂1
n,

such that
Qi = Pi ∩1

n

for some affine hyperplanes P1, P2, . . . . We define a coloring by declaring that
(images under hi of) components of

σ−1
i (int(N )) := σ−1

i (N − ∂1 N )

are colored white and (images under hi of) components of σ−1
i (F) are colored

black. (In particular, all Qi are colored black.) Since we assume that all vertices
of 1n belong to σ−1

i (F), and since each boundary leaf is adjacent to at least one
component of σ−1

i (int(N )), this is a canonical coloring (Definition 4.5).

By Lemma 3.2(a), we can homotope the relative cycle
∑r

i=1
∑

j∈ Ĵi
θi j , which

belongs to C inf
n (N , ∂N ), to a relative cycle

r∑
i=1

ai
∑
j∈ Ĵi

θ̂i j

such that each θ̂i j is a simplex of K̂ (N ), as defined in Section 3B, and such that
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the boundary ∂
∑r

i=1
∑

j∈ Ĵi
θi j is homotoped into K̂ (∂N ). Then consider

r∑
i=1

∑
j∈ Ĵi

aiτi j :=
r∑

i=1

∑
j∈ Ĵi

ai p(θ̂i j ) ∈ C simp,inf
n (K (N )),

where p : K̂ (N )→ K (N ) is the projection defined at the end of Section 3B, and
τi j := p(θ̂i j ) for all i, j .

Consider Q ⊂ N as in the assumptions of Theorem 1.1. We define

G :=5(K (∂0 Q)).

We have by assumption that N =Q∪R is an essential decomposition (as defined
in the introduction), which means exactly that the assumptions of Lemma 3.5 are
satisfied. Thus, according to Lemma 3.5, there exists a retraction

r : C simp,inf
n (K (N ))⊗ZG Z→ C simp,inf

n (K (Q))⊗ZG Z

for n ≥ 2, mapping C simp,inf
n (G K (∂N ))⊗ZG Z to C simp,inf

n (G K (∂1 Q))⊗ZG Z, such
that, for each simplex τi j ∈ K (N ), we either have r(τi j ⊗ 1)= 0 or

r(τi j ⊗ 1)= κi j ⊗ 1

for some simplex κi j ∈ K (Q). (Recall that we’ve assumed that n ≥ 2.) Thus

r
( r∑

i=1
ai
∑
j∈ Ĵi

τi j ⊗ 1
)
=

r∑
i=1

ai
∑
j∈Ji

κi j ⊗ 1,

with Ji ⊂ Ĵi for all i . (It may still be possible that |Ji | = ∞.) We remark that κi j

is only determined up to choosing one κi j in its G-orbit.
Since r is a chain map, we get a sufficient set of cancellations for

r∑
i=1

ai
∑
j∈Ji

κi j⊗1
by setting

CQ
:=
{
(∂kκi1 j1 ⊗ 1, ∂lκi2 j2 ⊗ 1) : (∂kτi1 j1, ∂lτi2 j2) ∈ CN}.

By assumption, Q is aspherical. We can therefore apply Lemma 3.6 and get

∂
( r∑

i=1
ai
∑
j∈Ji

κi j ⊗ 1
)
∈ C simp,inf
∗ (G K (∂1 Q))⊗ZG Z

represents (the image of) [∂Q]⊗ 1.
Lemma 3.4(a) gives that G is amenable. Together with Lemma 3.7 this implies

‖∂Q‖ ≤
r∑

i=1
|ai |(n+ 1)|Ji |.

In the remainder of the proof, we will use Lemma 5.16 to improve this inequality,
getting rid of the unspecified (possibly infinite) numbers |Ji |.
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Q, ∂Q, ∂0 Q, ∂1 Q satisfy Assumption I (page 135). Thus there exists a simpli-
cial set

K str
∗
(Q)⊂ S∗(Q)

satisfying conditions (i)–(viii) from Lemma 5.3, and a set

D ⊂ K str
1 (Q)

of distinguished 1-simplices (Definition 5.8).
Recall that, for each i , ∑

j∈ Ĵi

θi, j

was defined by choosing a triangulation of σ−1
i (N ). The simplices θi, j thus have

“old edges”, i.e., subarcs of edges of σi , and “new edges”, whose interior is con-
tained in the interior of some subsimplex of σi of dimension ≥ 2.

Associated to z =
∑r

i=1 ai
∑

j∈ Ĵi
θi j and CN (and an arbitrary minimal presen-

tation of ∂z) are, by Definition 5.5, simplicial sets ϒN , ∂ϒN .
The only possibility that two old edges have a vertex in ϒN in common is that

this vertex is a vertex of σi .
So the labeling of edges of

∑r
i=1 ai

∑
j∈ Ĵi

θi j by labeling old edges not contain-
ing a vertex of any σi with label 1 and all other edges with label 0 is an admissible
labeling (Definition 5.10).

Associated to

w =
r∑

i=1
ai
∑
j∈Ji

κi j ⊗ 1

and CQ (and an arbitrary minimal presentation of ∂w) there are simplicial sets
ϒ, ∂ϒ . By our definition of CQ , ϒ is isomorphic to a simplicial subset of ϒN ,
namely to the subset generated by the set

{τ ∈ ϒN
: r(τ ⊗ 1) 6= 0}

together with all iterated faces and degenerations. In particular, the admissible 0-1
labeling of ϒN induces an admissible 0-1 labeling of ϒ .

By Construction 5.1, there is a map of triples q : (Q, ∂Q, ∂1 Q)→ (Q, ∂Q, ∂1 Q)
which is (as a map of triples) homotopic to the identity, and such that q(∂0 Q ∩C)
is path-connected for each path component C of ∂Q.

We define

A := q(∂0 Q), H := q∗(G)= q∗(5(K (∂0 Q)))⊂5(K (A)).

We observe that H is a quotient of G, hence amenable, even though 5(K (A))
need not be amenable.
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Let ϒ̂, ∂ϒ̂ be defined by Observation 5.12. By Corollary 5.13, there is a chain
map

q ◦ str : C simp,inf
∗ (ϒ̂)⊗ZG Z→ C simp,inf

∗ (H K str(Q))⊗ZH Z,

mapping C simp,inf
∗ (∂ϒ̂)⊗ZG Z to C simp,inf

∗ (H K str(∂1 Q))⊗ZH Z such that

∂
r∑

i=1
ai
∑
j∈Ji

q(str(κi j ))⊗ 1

represents (the image of) [∂Q] ⊗ 1 and such that 1-labeled edges are mapped to
distinguished 1-simplices. (We keep in mind that κi j is only determined up to
G-action; thus q(str(κi j )) is determined only up to choosing one simplex in its
H -orbit.)

We then apply Lemma 5.16 to get the cycle

∂
r∑

i=1
ai
∑
j∈Ji

rmv(q(str(κi j ))⊗ 1) ∈ C simp,inf
∗ (H K str(∂1 Q))⊗ZH Z

representing (the image of) [∂Q]⊗1. We want to show that this is actually a finite
chain of l1-norm at most

(n+ 1)
r∑

i=1
|ai |.

Claim. For each i ,
∂
∑
j∈Ji

rmv(q(str(κi j ))⊗ 1)

is the formal sum of at most n+ 1 (n−1)-simplices L ⊗ 1 with coefficient 1.

Proof. This is a consequence of the following subclaim and Lemma 4.13:

Assume that for some fixed i ∈ I , for the chosen triangulation

σ−1
i (N )=

⋃
j∈ Ĵi

θi j

and the associated canonical coloring, there exist j1, j2∈ Ĵi and k1, k2∈{0, . . . , n}
such that the faces

T1 = ∂k1θi j1 ∈ Sn−1(∂N ), T2 = ∂k2θi j2 ∈ Sn−1(∂N )

have a white-parallel arc (Definition 4.9). Then

rmv(q(str(κi j1))⊗ 1)= 0, rmv(q(str(κi j2))⊗ 1)= 0.

To prove the subclaim, note first that

∂klθi jl ∈ Sn−1(∂N )

implies (by Lemma 3.5 and Construction 5.1)

∂kl q(str(κi jl )) ∈ H K str
∗
(∂1 Q)
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for l = 1, 2. Now assume (for a contradiction) that

rmv(q(str(κi j1))⊗ 1) 6= 0.

By the subclaim’s hypothesis, there are white-parallel arcs e1, e2 of T1 and T2,
respectively. This means that there are arcs e1, e2 in a 2-dimensional subsimplex
τ 2
⊂1n of the standard simplex, and subarcs f1, f2 of some edge of τ 2, all satis-

fying

∂0e1 = ∂1 f2, ∂0 f2 = ∂0e2, ∂1e2 = ∂0 f1, ∂1 f1 = ∂1e1

and such that e1, f2, e2, f1 bound a square in the boundary of a white component.
(See figure on page 154. We will use the same letter for an affine subset of 1n

and for the singular simplex obtained by restricting σi to this subset.) The square
is of the form U1+U2, where U1,U2 are (n−2)-fold iterated faces of some θi j ’s.
Hence ∂U1 = e1+ f2+ ∂2U1 and ∂U2 =−e2− f1− ∂2U1, in other words,

∂(U1+U2)= e1+ f2− e2− f1 and ∂2U1 =−∂2U2.

We emphasize that we assume e1 and e2 to be edges of θi j1 and θi j2 , respectively,
but f1, f2 need not be edges of θi j1 or θi j2 .

Notational remark. For each iterated face f = ∂k1 . . . ∂klθi j with i ∈ I, j ∈ Ji , we
will denote by f ′ the (n−l)-simplex with

f ′⊗ 1= ∂k1 . . . ∂klκi j ⊗ 1= r(∂k1 . . . ∂kl τi j ⊗ 1)= r(∂k1 . . . ∂kl p(θ̂i j )⊗ 1).

(The last two equations are true because r, p and the homotopy from
∑

i, j aiθi j to∑
i, j θ̂i j are chain maps.) In other words, if f is an iterated face of some τi j , then

f ′ is, up to the ambiguity by the H -action, the corresponding iterated face of κi j .

By Lemma 3.5 we have e′1, e′2 ∈ G K (∂1 Q). Thus we can (and will) choose
κi j1, κi j2 in their G-orbits in such a way that e′1, e′2 ∈ K (∂1 Q), which implies that
str(e′1), str(e′2) ∈ K str(∂1 Q).

Since r, p and the homotopy are chain maps, we have

∂2U ′1⊗ 1=−∂2U ′2⊗ 1.

That is,

∂2U ′1 = g∂2U ′2

for some g ∈ G.
Since U ′1 and U ′2 belong to different κi j ’s, say κi j1 and κi j2 , we can, upon replac-

ing κi j2 by gκi j2 , assume that

∂2U ′1 = ∂2U ′2,
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that is, U ′1+U ′2 is a square. (Since g maps ∂e′2 to ∂e′1, this second choice of κi j2 in
its G-orbit preserves the condition that e′2 ∈ K str(∂1 Q).)

F

F
xk xk

xl

xl

cylinder

Let F and F ′ be the path components of ∂1 Q such that e′1 ⊂ F and e′2 ⊂ F ′.
Then ∂1 str( f ′1), ∂0 str( f ′2) ∈ F and ∂0 str( f ′1), ∂1 str( f ′2) ∈ F ′.

We note that f ′1 and f ′2 are edges with label 1. By condition (i) of Corollary 5.13,
this implies that str( f ′1) and str( f ′2) are distinguished 1-simplices.

By conditions (ix) and Condition (xiii) of Definition 5.8 we have

∂1q(str( f ′1))= xE F
0
= ∂0q(str( f ′2)), ∂0q(str( f ′1))= xE F ′

0
= ∂1q(str( f ′2)).

That is, q(str(e′1)) and q(str(e′2)) are loops in ∂1 Q, based respectively at xE F
0

and
xE F ′

0
.

Since the square q(str(U ′1 +U ′2)) realizes a homotopy between q(str( f ′1)) and
q(str( f ′2)), we have

q(str( f ′1))= γ1q(str( f ′2))γ2

with

γ1 = q(str(e′1)), γ2 = q(str(e′2)) ∈�(∂1 Q)⊂ 0 =�(∂Q).

By condition (x) from Definition 5.8 this implies

q(str( f ′1))= q(str( f ′2)).

This means that q(str(U ′1))+ q(str(U ′2)) is a cylinder with the boundary circles
q(str(e′1)) and q(str(e′2)) in ∂1 Q.

(This is why we have performed the straightening construction in Section 5 in
such a way that there should be only one distinguished 1-simplex in each coset.)
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The assumption rmv(q◦str(κi j1)⊗1) 6=0 made at the top of page 161 implies that
the loops q(str(e′1)) and q(str(e′2)) are not 0-homotopic. Indeed, if one of them is 0-
homotopic (and thus constant), so is the other, because they are homotopic through
the cylinder. But q(str(e′1)) and q(str(e′2)) are edges of q(str(κi j1)) and q(str(κi j2)),
respectively. In particular, q(str(κi j1)) and q(str(κi j2)) then have a constant loop as
an edge. By Lemma 5.16 and Definition 5.2, this implies rmv(q ◦str(κi j1)⊗1)= 0.

Thus we can assume that q(str(e′1)) and q(str(e′2)) are not 0-homotopic, that is,
the cylinder

q(str(U ′1))+ q(str(U ′2))

is π1-injective as a map of pairs. Since (Q, ∂1 Q) is a pared acylindrical manifold,
the cylinder must then be homotopic into ∂Q, as a map of pairs

(S1
×[0, 1],S1

×{0, 1})→ (Q, ∂1 Q).

Since ∂1 Q is acylindrical, the cylinder must then either degenerate (that is, S1
×

[0, 1]→ ∂Q homotopes to a map that factors over the projection S1
×[0, 1]→S1;

in particular, q(str(e′1)) = q(str(e′2))) or be homotopic into ∂0 Q (and hence into
q(∂0 Q), since q ∼ id). In the second case the vertices xE F

0
, xE F ′

0
must belong to

∂0 Q and we get by condition (vii) from Lemma 5.3 that q(str(e′1)) and q(str(e′2)) lie
in K str

1 (∂0 Q). By Lemma 5.17 this implies that q(str(κi j1))⊗1 and q(str(κi j2))⊗1
vanish.

Thus we can assume that the cylinder degenerates. In particular, q(str( f ′1)) and
q(str( f ′2)) lie in K str

1 (∂1 Q).
Let P1, P2 be the affine planes whose intersections with 1n contain T1 and T2,

respectively. Let W be the white component whose boundary contains the white-
parallel arcs of T1, T2. We have seen that there are arcs f1, f2 connecting P1∩1

n

to P2 ∩1
n such that

q(str( f ′1)), q(str( f ′2)) ∈ K str
1 (∂1 Q).

This implies that for each other arc f connecting P1∩1
n to P2∩1

n the straight-
ening q(str( f ′)) must be (homotopic into — and therefore, by condition (vii) from
Lemma 5.3), contained in — ∂1 Q.

If P1 and P2 are of the same type (Definition 4.1), this shows that for all arcs
f ⊂W we have

q(str( f ′)) ∈ K str
1 (∂1 Q)

If P1 and P2 are not of the same type, then the existence of a parallel arc implies
that at least one of them, say P1, must be of type {0a1 . . . ak} with k 6∈ {0, n− 1}.
Then, for each plane P3 6= P1 with P3∩1

n
⊂ ∂W , it follows from Corollary 4.8 that

P3∩1
n has a white-parallel arc with P1∩1

n . Thus, repeating the argument with P1

and P3 in place of P1 and P2, we prove that there are arcs in ∂1 Q connecting P1∩1
n
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to P3∩1
n , and consequently for each arc f ⊂W connecting P1∩1

n to P3∩1
n ,

the straightening str( f ′) must be homotopic into, and thus contained in, ∂1 Q.
Consequently, also for arcs connecting P2 ∩1

n to P3 ∩1
n , we conclude that

q(str( f ′)) must be homotopic into, and therefore contained in, ∂1 Q. This finally
shows that the 1-skeleta of q(str(κi j1)) and q(str(κi j2)) belong to K str

1 (∂1 Q). By the
π1-injectivity of ∂1 Q → Q, the asphericity of K (∂1 Q), and condition (vii) from
Lemma 5.3, this implies that the 2-skeleta of q(str(κi j1)) and q(str(κi j2)) belong
to K str

1 (∂1 Q). Inductively, if the k-skeleta of q(str(κi j1)) and q(str(κi j2)) belong to
K str

k (∂1 Q), then by the asphericity of K (Q) and K (∂1 Q) together with condition
(vii) from Lemma 5.3 we obtain that the k+1-skeleta of q(str(κi j1)) and q(str(κi j2))

belong to K str
k+1(∂1 Q). This provides the inductive step and thus our inductive proof

shows that q(str(κi j1)) and q(str(κi j2)) belong to K str(∂1 Q).
By Definitions 5.2 and 5.14 and Lemma 5.16 this implies

rmv(q(str(κi j1))⊗ 1)= 0, rmv(q(str(κi j2))⊗ 1)= 0.

So we have shown the subclaim: if T1 = ∂k1θi j1 and T2 = ∂k2θi j2 have a white-
parallel arc, then rmv(q(str(κi j1)) ⊗ 1) = 0 and rmv(q(str(κi j2)) ⊗ 1) = 0. In
particular, q(str(T ′1)) and q(str(T ′2)) do not occur (with nonzero coefficient) in

∂
∑
j∈Ji

rmv(q(str(κi j ))⊗ 1).

By Lemma 4.13, for a canonical coloring associated to a set of affine planes
P1, P2, . . . , and a fixed triangulation of each Qi = Pi ∩1

n , we have at most n+1
(n−1)-simplices whose 1-skeleton does not contain a white-parallel arc. This show
that the subclaim implies the claim. �

The upshot is that we have presented [∂Q] ⊗ 1 as a finite chain of l1-norm
at most (n + 1)

∑r
i=1 |ai |. By Lemma 3.4(a) we know that G = 5(K (∂0 Q)) is

amenable. Hence H = q∗(G) is amenable. Thus Lemma 3.7, applied to X = ∂Q
and K = H K str(∂1 Q) with its H -action, implies ‖∂Q‖ ≤ (n+ 1)

∑r
i=1 |ai |. This

concludes the proof of Theorem 1.1. �

Theorem 1.1 is not true without assuming the amenability of π1∂0 Q. Coun-
terexamples can be found, for example, using [Jungreis 1997] or [Kuessner 2003,
Theorem 6.3].

Remark. In [Agol 1999], Theorem 1.1 has been proven for incompressible sur-
faces in hyperbolic 3-manifolds. We compare the steps of the proof in [Agol 1999]
with the arguments in our paper:

Agol’s step 1 is the normalization procedure, which we restated in Lemma 2.4.
Step 2 consists in choosing compatible triangulations of the polytopes σ−1

i (N ).
Step 3 boils down to the statement that, for each component Qi of Q, there

exists a retraction r : N̂→ p−1(Qi ), for the covering p : N̂→ N corresponding to
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π1 Qi . Such a statement cannot be correct because it would (together with Agol’s
step 7) imply ‖N‖ ≥ ‖Q‖ whenever Q is a π1-injective submanifold of N . This
inequality is true for submanifolds with amenable boundary, but not in general. In
fact, one only has the more complicated retraction

r : C∗(K (N ), K (N ′))⊗ZG Z→ C∗(K (Q), K (∂Q))⊗ZG Z,

with G =5(K (∂0 Q)). This is why much of the latter arguments become notation-
ally awkward, although conceptually not much is changing. Moreover, the action
of G is basically the reason why Theorem 1.1 is true only for amenable G.

Basically, the reason why the retraction r : N̂→ Q does not exist, is as follows.
Let R j be the connected components of N̂ − p−1(Qi ). Then R j is homotopy
equivalent to each connected component of ∂R j . If ∂R j were connected for each
j , this homotopy equivalence could be extended to a homotopy equivalence r :
N̂ → p−1(Qi ). However, in most cases ∂R j will be disconnected, and then such
an r cannot exist.

We note that also the weaker construction of cutting off simplices does not work.
A simplex may intersect Qi in many components and it is not clear which compo-
nent to choose.

Step 4 from Agol’s proof puts a hyperbolic metric with geodesic boundary on Q.
His step 5 is the straightening procedure, corresponding to Sections 5B–5D in

this paper. We remark that the straightening procedure must be slightly more com-
plicated than in [Agol 1999] because it is not possible, as suggested in that same
paper, to homotope all edges between boundary components of ∂Q into shortest
geodesics. This is the reason why we can only straighten chains with an admis-
sible 0-1 labeling of their edges (and why our straightening homomorphism in
Section 5C is only defined on C simp

∗ (|ϒ |) and not on all of C sing
∗ (Q)).

Agol’s step 6 consists in removing degenerate simplices. This corresponds to
Section 5E in this paper.

His step 7 proves that each triangle in σ−1
i (∂N ) contributes only once to the

constructed fundamental cycle of ∂Q. Since, in our argument, we do not work
with the covering p : N̂ → N , we have no need for this justification.

His step 8 counts the remaining triangles per simplex (after removing degenerate
simplices). It seems to have used the combinatorial arguments which we work out
for arbitrary dimensions in Section 4.

We mention that the arguments of Section 4 are the only part of the proof
which gets easier if one restricts to 3-manifolds rather than arbitrary dimensions.
Moreover, the proof for laminations is the same as for hypersurfaces except for
Lemma 2.4. Thus, upon these two points it seems that even in the case of in-
compressible surfaces in 3-manifolds the proof of Theorem 1.1 cannot be further
simplified.



166 THILO KUESSNER

7. Specialization to 3-manifolds

Guts of essential laminations. We start by recalling the guts-terminology. Let
M be a compact 3-manifold with (possibly empty) boundary consisting of in-
compressible tori, and F an essential lamination transverse or tangential to the
boundary. N = M −F is a, possibly noncompact, irreducible 3-manifold with
incompressible, aspherical boundary ∂N . We set

∂0 N = ∂N ∩ ∂M, ∂1 N = ∂N − ∂0 N .

(Thus ∂1 N is the union of boundary leaves of the lamination.) By the proof of
[Gabai and Kazez 1998, Lemma 1.3], the noncompact ends of N are essential I -
bundles over noncompact subsurfaces of ∂1 N . After cutting off each of these ends
along an essential, properly fibered annulus, one obtains a compact 3-manifold to
which one can apply the JSJ-decomposition [Jaco and Shalen 1979; Johannson
1979]. Hence we have a decomposition of N into the characteristic submani-
fold Char(N ) (which consists of I -bundles and Seifert fibered solid tori, where
the fibrations have to respect boundary patterns as defined in [Johannson 1979,
p. 83]) and the guts of N , Guts(N ). The I -fibered ends of N will be added to the
characteristic submanifold, which thus may become noncompact, while Guts(N )
is compact. (We mention that there are different notions of guts in the literature.
Our notion is compatible with that of [Agol 1999; Agol et al. 2007], but differs
from the definition in [Gabai and Kazez 1998] or [Calegari and Dunfield 2003] by
taking the Seifert fibered solid tori into the characteristic submanifold and not into
the guts. Thus, solid torus guts in the paper of Calegari–Dunfield is the same as
empty guts in our setting.) If ∂0 N ∩ ∂Q 6=∅ consists of annuli A1, . . . , Ak , then,
to be consistent with the setting of Theorem 1.1, we add components Ai × [0, 1]
to Char(N ) (without changing the homeomorphism type of N ), which implies
∂0 N ∩ ∂Q =∅.

For Q = Guts(N ) we set

∂1 Q = ∂1 N ∩ ∂Q = ∂N ∩ ∂Q = Q ∩ ∂N , ∂0 Q = ∂Q− ∂1 Q.

For R = Char(N ) we set

∂1 R = ∂N ∩ ∂R, ∂0 R = ∂R− ∂1 R.

Then ∂0 N ∩ ∂Q =∅ implies ∂0 Q = Q ∩ R.
∂0 Q consists of essential tori and annuli; in particular π1∂0 Q is amenable. The

guts of N has the following properties: the pair (Q, ∂1 Q) is a pared acylindrical
manifold (Definition 4.3), Q, ∂1 Q, ∂1 R are aspherical, and the inclusions

∂0 Q→ Q, ∂1 Q→ Q, Q→ N , ∂0 R→ R, ∂1 R→ R, R→ N
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are π1-injective; see [Jaco and Shalen 1979; Johannson 1979]. It follows from
Thurston’s hyperbolization theorem for Haken manifolds that Q admits a hyper-
bolic metric with geodesic boundary ∂1 Q and cusps corresponding to ∂0 Q. (In
particular, we have χ(∂Q) ≤ 0; thus ∂Q is aspherical, and ∂1 Q is a hyperbolic
surface, thus acylindrical.)

Theorem 7.1. Let M be a compact 3-manifold with (possibly empty) boundary
consisting of incompressible tori, and let F be an essential lamination of M. Then

‖M, ∂M‖norm
F ≥−χ(Guts(F)).

More generally, if P is a polyhedron with f faces, then

‖M, ∂M‖norm
F,P ≥−

2
f −2

χ(Guts(F)).

Proof. Let N = M −F. Since F is essential, N is irreducible (hence aspherical,
since ∂N 6= ∅) and has incompressible, aspherical boundary. Let R = Char(N )
be the characteristic submanifold and Q = Guts(N ) be the complement of the
characteristic submanifold of N . The discussion before Theorem 7.1 shows that
the decomposition N = Q ∪ R satisfies the assumptions of Theorem 1.1.

From the computation of the simplicial volume for surfaces [Gromov 1982,
section 0.2] and χ(Q)= 1

2
χ(∂Q) (which is a consequence of Poincaré duality for

the closed 3-manifold Q ∪∂Q Q), it follows that

−χ(Guts(F))=− 1
2
χ(∂ Guts(F))= 1

4‖∂ Guts(F)‖.

Thus, the first claim is obtained as application of Theorem 1.1 to Q = Guts(F).
The second claim — the generalization to arbitrary polyhedra — is obtained as

in [Agol 1999]. Namely, one uses the same straightening as above, and asks again
how many nondegenerate 2-simplices may, after straightening, occur in the inter-
section of ∂Q with some polyhedron Pi . In [Agol 1999, p. 11], it is shown that
this number is at most 2 f − 4, where f is the number of faces of Pi . The same
argument as above then shows that

r∑
i=1
|ai | ≥

1
2 f −4

‖∂ Guts(F)‖,

giving the wanted inequality. �

The following corollary applies, for example, to all hyperbolic manifolds obtained
by Dehn-filling the complement of the figure-eight knot in S3. (It was proved in
[Hatcher 1992] that each hyperbolic manifold obtained by Dehn-filling the com-
plement of the figure-eight knot in S3 carries essential laminations.)
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Corollary 7.1. If M is a finite-volume hyperbolic manifold with Vol(M) < 2V3 =

2.02 . . . , then M carries no essential lamination F with

‖M, ∂M‖norm
F,P = ‖M, ∂M‖P

for all polyhedra P, and nonempty guts. In particular, there is no tight essential
lamination with nonempty guts.

Proof. The derivation of this corollary from Theorem 1.2 is exactly the same as
in [Agol 1999] for the usual (nonlaminated) Gromov norm. Namely, by [Sleator
et al. 1988] (or [Agol 1999], end of Section 6) there exists a sequence Pn of straight
polyhedra in H3 with

lim
n→∞

Vol(Pn)

fn − 2
= V3,

where fn denotes the number of faces of Pn . Assuming that M carries a lamination
F with ‖M, ∂M‖norm

F,Pn
= ‖M, ∂M‖Pn for all n, one gets

−χ(Guts(F))≤
fn − 2

2
‖M, ∂M‖F,Pn =

fn − 2
2
‖M, ∂M‖Pn ≤

fn − 2
2

Vol(M)
Vol(Pn)

,

which tends to
Vol(M)

2V3
< 1.

On the other hand, if Guts(F) is not empty, it is a hyperbolic manifold with
nonempty geodesic boundary; hence χ(Guts(F))≤−1, giving a contradiction. �

Definition 7.2. The Weeks manifold is the closed 3-manifold obtained by applying
(−5

1 ,−
5
2)-surgery at the Whitehead link [Rolfsen 1976, p. 68].

It is known that the Weeks manifold is hyperbolic and that its hyperbolic volume
is approximately 0.94 . . . . It is actually the hyperbolic 3-manifold of smallest
volume.

Corollary 7.3 [Calegari and Dunfield 2003, Conjecture 9.7]. The Weeks manifold
admits no tight lamination F.

Proof. According to [Calegari and Dunfield 2003], the Weeks manifold cannot
carry a tight lamination with empty guts. Since tight laminations satisfy ‖M‖norm

F,P =

‖M‖ for each polyhedron (see Lemma 2.4), and since the Weeks manifold has
volume smaller than 2V3, it follows from Corollary 7.1 that it cannot carry a tight
lamination with nonempty guts neither. �

The same argument shows that a hyperbolic 3-manifold M of volume less than
2V3 and such that there is no injective homomorphism π1 M→Homeo+(S1) can-
not carry a tight lamination, because it was shown in [Calegari and Dunfield 2003]
that the existence of a tight lamination with empty guts implies the existence of an
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injective homomorphism π1 M→ Homeo+(S1). Some methods for excluding the
existence of injective homomorphisms π1 M→Homeo+(S1) have been developed
in that same paper (which yielded in particular the nonexistence of such homomor-
phisms for the Weeks manifold, used in the corollary above), but in general it is
still hard to apply this criterion to other hyperbolic 3-manifolds of volume < 2V3.

As indicated in [Calegari 2003], an approach to a generalization of some of
the above arguments to essential, nontight laminations, yielding possibly a proof
for nonexistence of essential laminations on the Weeks manifold, could consist
in trying to define a straightening of cycles (as in the proof of Lemma 2.4) upon
possibly changing the essential lamination.

As a consequence of a result of Tao Li, one can at least exclude the existence of
transversely orientable essential laminations on the Weeks manifold.

Corollary 7.4. The Weeks manifold admits no transversely orientable essential
lamination F.

Proof. According to [Li 2006, Theorem 1.1], if a closed, orientable, atoroidal 3-
manifold M contains a transversely orientable essential lamination, then it contains
a transversely orientable tight essential lamination. Hence Corollary 7.4 is a direct
consequence of Corollary 7.3. �

8. Higher dimensions

We want to finish this paper showing that Theorem 1.1 is interesting also in higher
dimensions. While in dimension 3 the assumptions of Theorem 1.1 hold for any
essential lamination, it is likely that this will not be the case for many laminations
in higher dimensions. However, the most straightforward, but already interest-
ing, application of the inequality is Corollary 8.1, which means that, for a given
negatively curved manifold M , we can give an explicit bound on the topological
complexity of geodesic hypersurfaces. Such a bound seems to be new except, of
course, in the 3-dimensional case, where it goes back to [Agol 1999] and (with no
explicit constants) to [Hass 1995].

Corollary 8.1. Let M be a compact Riemannian n-manifold of negative sectional
curvature and finite volume. Let F ⊂ M be a geodesic (n−1)-dimensional hyper-
surface of finite volume. Then

‖F‖ ≤ n+1
2
‖M‖.

Proof. Consider N = M − F . (N , ∂N ) is acylindrical. This is well-known and
can be seen as follows: assume that N contains an essential cylinder; then the
double DN = N ∪∂1 N N contains an essential 2-torus. But, since N is a negatively
curved manifold with geodesic boundary, we can glue the Riemannian metrics to
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get a complete negatively curved Riemannian metric on DN . In particular, DN
contains no essential 2-torus, giving a contradiction.

Moreover, the geodesic boundary ∂N is π1-injective and negatively curved, thus
aspherical. Therefore we can choose Q = N , in which case the other assumptions
of Theorem 1.1 are trivially satisfied. From Theorem 1.1 we conclude that

‖M‖norm
F ≥

1
n+ 1

‖∂N‖.

The boundary of N consists of two copies of F , hence ‖∂N‖ = 2‖F‖. The leaf
space of F̃ ⊂ M̃ is a Hausdorff tree; thus Lemma 2.4(b) implies ‖M‖norm

F = ‖M‖.
The claim follows. �

This statement should be read as follows: for a given manifold M (with given
volume) one has an upper bound on the topological complexity of compact geo-
desic hypersurfaces.

For hyperbolic manifolds one can use the Chern–Gauss–Bonnet theorem and the
proportionality principle to reformulate Corollary 8.1 as follows: If M is a closed
hyperbolic n-manifold and F a closed (n−1)-dimensional geodesic hypersurface,
then Vol(M)≥ Cnχ(F) for a constant Cn depending only on n.
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