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Libgober and Wood proved that the Chern number c1cn−1 of a compact
complex manifold of dimension n can be determined by its Hirzebruch χ y-
genus. Inspired by the idea of their proof, we show that, for compact, spin,
almost-complex manifolds, more Chern numbers can be determined by the
indices of some twisted Dirac and signature operators. As a byproduct,
we get a divisibility result of certain characteristic number for such man-
ifolds. Using our method, we give a direct proof of the result of Libgober
and Wood, which was originally proved by induction.

1. Introduction and main results

Suppose (M, J ) is a compact, almost-complex 2n-manifold with a given almost
complex structure J . This J makes the tangent bundle of M into a n-dimensional
complex vector bundle TM . Let ci (M, J ) ∈ H 2i (M;Z) be the i-th Chern class of
TM . Suppose we have a formal factorization of the total Chern class as follows:

1+ c1(M, J )+ · · ·+ cn(M, J )=
n∏

i=1

(1+ xi ),

i.e., x1, . . . , xn are formal Chern roots of TM . The Hirzebruch χy-genus of (M, J ),
χy(M, J ), is defined by

χy(M, J )=
( n∏

i=1

xi (1+ ye−xi )

1− e−xi

)
[M].

Here [M] is the fundamental class of the orientation of M induced by J and y is
an indeterminate. If J is specified, we simply denote χy(M, J ) by χy(M).
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When the almost complex structure J is integrable (equivalently, when M is an
n-dimensional compact complex manifold), χy(M) can be obtained by

χ p(M)=
n∑

q=0

(−1)qh p,q(M), χy(M)=
n∑

p=0

χ p(M) · y p,

where h p,q( · ) is the Hodge number of type (p, q). This is given by the Hirzebruch–
Riemann–Roch Theorem, proved in [Hirzebruch 1966] for projective manifolds
and in [Atiyah and Singer 1968] in the general case.

The formula

(1-1)
n∑

p=0

χ p(M) · y p
=

( n∏
i=1

xi (1+ ye−xi )

1− e−xi

)
[M]

implies that χ p(M), the index of the Dolbeault complex, can be expressed as a
rational combination of some Chern numbers of M . Conversely, we can address
the following question.

Question 1.1. For an n-dimensional compact complex manifold M , given a par-
tition λ = λ1λ2 · · · λl of weight n, can the Chern number cλ1cλ2 · · · cλl [M] be
determined by χ p(M), or more generally by the indices of some other elliptic
differential operators?

For the simplest case cn[M], the answer is affirmative and well-known [Hirze-
bruch 1966, Theorem 15.8.1]:

cn[M] = χy(M)|y=−1 =

n∑
p=0

(−1)pχ p(M).

The next-to-simplest case is the Chern number c1cn−1[M]. The answer here is also
affirmative, as was proved by Libgober and Wood [1990, pp. 141–143]:

(1-2)
n∑

p=2

(−1)p
(

p
2

)
χ p(M)=

n(3n− 5)
24

cn[M] +
1

12
c1cn−1[M].

The idea of their proof is quite enlightening: expanding both sides of (1-1) at
y =−1 and comparing the coefficients of the term (y+ 1)2, one gets (1-2).

Inspired by this idea, in this paper we consider twisted Dirac operators and
signature operators on compact, spin, almost-complex manifolds and show that the
Chern numbers cn , c1cn−1, c2

1cn−2 and c2cn−2 of such manifolds can be determined
by the indices of these operators.

Remark 1.2. Equation (1-2) was also obtained later by Salamon [1996, p. 144],
who applied this result extensively to hyper-Kähler manifolds.
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Let M be a compact, almost-complex 2n-manifold. We still use x1, . . . , xn to
denote the corresponding formal Chern roots of the n-dimensional complex vector
bundle TM . Suppose E is a complex vector bundle over M . Set

Â(M, E) :=
(

ch(E) ·
n∏

i=1

xi/2
sinh(xi/2)

)
[M],

L(M, E) :=
(

ch(E) ·
n∏

i=1

xi (1+ e−xi )

1− e−xi

)
[M],

where ch(E) is the Chern character of E . The celebrated Atiyah–Singer index
theorem [Hirzebruch et al. 1992, pp. 74–81] states that L(M, E) is the index of
the signature operator twisted by E and when M is spin, Â(M, E) is the index of
the Dirac operator twisted by E .

Definition 1.3. Set

Ay(M) :=
n∑

p=0

Â(M,3p(T ∗M)) · y
p and L y(M) :=

n∑
p=0

L(M,3p(T ∗M)) · y
p,

where 3p(T ∗M) denotes the p-th exterior power of the dual of TM .

Our main result is the following:

Theorem 1.4. Let M be a compact, almost-complex manifold.

(1)
n∑

p=0

(−1)p Â(M,3p(T ∗M))= cn[M],

n∑
p=1

(−1)p
· p · Â(M,3p(T ∗M))=

1
2
(
ncn[M] + c1cn−1[M]

)
,

n∑
p=2

(−1)p
(

p
2

)
Â(M,3p(T ∗M))=

(n(3n−5)
24

cn +
3n−2

12
c1cn−1+

1
8

c2
1cn−2

)
[M];

(2)
n∑

p=0

(−1)p L(M,3p(T ∗M))= 2ncn[M],

n∑
p=1

(−1)p
· p · L(M,3p(T ∗M))= 2n−1(ncn[M] + c1cn−1[M]

)
,

n∑
p=2

(−1)p
(

p
2

)
L(M,3p(T ∗M))

= 2n−2
(n(3n−5)

6
cn +

3n−2
3

c1cn−1+ c2
1cn−2− c2cn−2

)
[M].
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Corollary 1.5. (1) The Chern numbers cn[M], c1cn−1[M] and c2
1cn−2[M] can be

determined by Ay(M).

(2) The characteristic numbers cn[M], c1cn−1[M] and c2
1cn−2[M] − c2cn−2[M]

can be determined by L y(M).

(3) When M is a spin manifold, the Chern numbers cn[M], c1cn−1[M], c2
1cn−2[M]

and c2cn−2[M] can be expressed by using linear combinations of the indices
of some twisted Dirac and signature operators.

As remarked in [Libgober and Wood 1990, p. 143], it was shown by Milnor
[1960] that every complex cobordism class contains a non-singular algebraic vari-
ety. Milnor also showed that two almost-complex manifolds are complex cobordant
if and only if they have the same Chern numbers. Hence Libgober and Wood’s
result implies that the characteristic number

n(3n−5)
24

cn[N ] +
1
12

c1cn−1[N ]

is always an integer for any compact, almost-complex 2n-manifold N .
Note that the right-hand side of the third equality in Theorem 1.4 is(n(3n−5)

24
cn[M] +

1
12

c1cn−1[M]
)
+

1
8

(
2(n− 1)c1cn−1[M] + c2

1cn−2[M]
)
.

Corollary 1.6. For a compact, spin, almost-complex manifold M , the integer

2(n− 1)c1cn−1[M] + c2
1cn−2[M]

is divisible by 8.

Example 1.7. The total Chern class of the complex projective space CPn is given
by c(CPn) = (1+ g)n+1, where g is the standard generator of H 2(CPn

;Z) ∼= Z.

CPn is spin if and only if n is odd, as c1(CPn) = (n+ 1)g. Suppose n = 2k + 1.
Then

2(n−1)c1cn−1[CPn
]+c2

1cn−2[CPn
] = 8(k+1)2

(
k(2k+1)+ 1

3 k(k+1)(2k+1)
)
.

It is easy to check that CP4 does not satisfy this divisibility result.

2. Proof of the main result

Lemma 2.1. Let M be a compact, almost-complex manifold. Then:

Ay(M)=
( n∏

i=1

(
xi (1+ ye−xi (1+y))

1− e−xi (1+y) · e−xi (1+y)/2
)
[M],

L y(M)=
( n∏

i=1

(
xi (1+ ye−xi (1+y))

1− e−xi (1+y) · (1+ e−xi (1+y))

))
[M].
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Proof. From

c(TM)=

n∏
i=1

(1+ xi )

we have (see, for example, [Hirzebruch et al. 1992, p. 11])

c(3p(T ∗M))=
∏

1≤i1<···<i p≤n

(
1− (xi1 + · · ·+ xi p)

)
.

Hence

ch(3p(T ∗M))y
p
=

∑
1≤i1<···<i p≤n

e−(xi1+···+xi p )y p
=

∑
1≤i1<···<i p≤n

( p∏
j=1

ye−xi j

)
.

Therefore

n∑
p=0

ch(3p(T ∗M))y
p
=

n∑
p=0

( ∑
1≤i1<···<i p≤n

( p∏
j=1

ye−xi j

))
=

n∏
i=1

(1+ ye−xi ).

So

(2-1) Ay(M)=
n∑

p=0

Â(M,3p(T ∗M)) · y
p

=

(( n∑
p=0

ch(3p(T ∗M))y
p
)
·

n∏
i=1

xi/2
sinh(xi/2)

)
[M]

=

( n∏
i=1

(
(1+ ye−xi ) ·

xi/2
sinh(xi/2)

))
[M]

=

( n∏
i=1

(
xi (1+ ye−xi )

1− e−xi
· e−xi/2

))
[M].

Since for the evaluation only the homogeneous component of degree n in the xi

enters, then we obtain an additional factor (1+ y)n if we replace xi by xi (1+ y)
in (2-1). We therefore obtain

Ay(M)=
(

1
(1+ y)n

n∏
i=1

(
xi (1+ y)(1+ ye−xi (1+y))

1− e−xi (1+y) · e−xi (1+y)/2
))
[M]

=

( n∏
i=1

(
xi (1+ ye−xi (1+y))

1− e−xi (1+y) · e−xi (1+y)/2
))
[M].
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Similarly,

L y(M)=
( n∏

i=1

(
(1+ ye−xi ) ·

xi (1+ e−xi )

1− e−xi

))
[M]

=

(
1

(1+ y)n

n∏
i=1

(
xi (1+ y)(1+ ye−xi (1+y))

1− e−xi (1+y) · (1+ e−xi (1+y))

))
[M]

=

( n∏
i=1

(
xi (1+ ye−xi (1+y))

1− e−xi (1+y) · (1+ exi (1+y))

))
[M]. �

Lemma 2.2. Set z = 1+ y. We have

Ay(M)=
( n∏

i=1

(
(1+ xi )− (xi +

1
2 x2

i )z+
(11

24 x2
i +

1
8 x3

i
)
z2
+ · · ·

))
[M],

L y(M)=
( n∏

i=1

(
2(1+ xi )− (2xi + x2

i )z+
(7

6 x2
i +

1
2 x3

i
)
z2
+ · · ·

))
[M].

Proof.
xi (1+ ye−xi (1+y))

1− e−xi (1+y) =−xi y+
xi (1+ y)

1− e−xi (1+y) =−xi (z− 1)+
xi z

1− e−xi z

=−xi (z− 1)+
(
1+ 1

2 xi z+ 1
12 x2

i z2
+ · · ·

)
= (1+ xi )−

1
2 xi z+ 1

12 x2
i z2
+ · · · .

So we have

Ay(M)=
( n∏

i=1

xi (1+ ye−xi (1+y))

1− e−xi (1+y) · e−xi (1+y)/2
)
[M]

=

( n∏
i=1

(
(1+ xi )−

1
2 xi z+ 1

12 x2
i z2
+ · · ·

)(
1− 1

2 xi z+ 1
8 x2

i z2
+ · · ·

))
[M]

=

( n∏
i=1

(
(1+ xi )− (xi +

1
2 x2

i )z+
( 11

24 x2
i +

1
8 x3

i
)
z2
+ · · ·

))
[M].

Similarly,

L y(M)=
( n∏

i=1

(
xi (1+ ye−xi (1+y))

1− e−xi (1+y) · (1+ e−xi (1+y))

))
[M]

=

( n∏
i=1

(
(1+ xi )−

1
2 xi z+ 1

12 x2
i z2
+ · · ·

)(
2− xi z+ 1

2 x2
i z2
+ · · ·

))
[M]

=

( n∏
i=1

(
2(1+ xi )− (2xi + x2

i )z+
( 7

6 x2
i +

1
2 x3

i
)
z2
+ · · ·

))
[M]. �
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Let f (x1, . . . , xn) be a symmetric polynomial in x1, . . . , xn . Then f (x1, . . . , xn)

can be expressed in terms of c1, . . . , cn in a unique way. We use h( f (x1, . . . , xn))

to denote the homogeneous component of degree n in f (x1, . . . , xn). For instance,
when n = 3,

h(x1+ x2+ x3+ x2
1 x2+ x2

1 x3+ x2
2 x1+ x2

2 x3+ x2
3 x1+ x2

3 x2)

= x2
1 x2+ x2

1 x3+ x2
2 x1+ x2

2 x3+ x2
3 x1+ x2

3 x2

= (x1+ x2+ x3)(x1x2+ x1x3+ x2x3)− 3x1x2x3 = c1c2− 3c3.

The next lemma is a crucial technical ingredient in the proof of our main result.

Lemma 2.3.

(1) h1 := h
( n∑

i=1

(
xi

∏
j 6=i

(1+ x j )

))
= ncn .

(2) h11 := h
( ∑

1≤i< j≤n

(
xi x j

∏
k 6=i, j

(1+ xk)

))
=

n(n− 1)
2

cn .

(3) h2 := h
( n∑

i=1

(
x2

i

∏
j 6=i

(1+ x j )

))
=−ncn + c1cn−1.

(4) h12 := h
( ∑

1≤i< j≤n

(
(x2

i x j + xi x2
j )
∏

k 6=i, j

(1+ xk)

))
= (n− 2)(−ncn + c1cn−1).

(5) h22 :=h
( ∑

1≤i< j≤n

(
x2

i x2
j

∏
k 6=i, j

(1+xk)

))
=

n(n−3)
2

cn−(n−2)c1cn−1+c2cn−2.

(6) h3 := h
( n∑

i=1

(
x3

i

∏
j 6=i

(1+ x j )

))
= ncn − c1cn−1+ c2

1cn−2− 2c2cn−2.

Now we can complete the proof of Theorem 1.4; we postpone the proof of
Lemma 2.3 to the end of this section.

Proof. From Lemma 2.2, the constant term in Ay(M) is( n∏
i=1

(1+ xi )

)
[M] = cn[M].

The coefficient of z is( n∑
i=1

(
−
(
xi +

1
2 x2

i
)∏

j 6=i

(1+ x j )
))
[M] =

(
− h1−

1
2 h2

)
[M]

= −
1
2

(
ncn[M] + c1cn−1[M]

)
.
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The coefficient of z2 is( n∑
i=1

(( 11
24 x2

i +
1
8 x3

i
)∏

j 6=i
(1+ x j )

)
+

∑
1≤i< j≤n

(
(xi +

1
2 x2

i )(x j +
1
2 x2

j )
∏

k 6=i, j
(1+ xk)

))
[M]

=
( 11

24 h2+
1
8 h3+ h11+

1
2 h12+

1
4 h22

)
[M]

=

(n(3n−5)
24

cn +
3n−2

12
c1cn−1+

1
8

c2
1cn−2

)
[M].

Similarly, for L y(M), the constant term is(
2n

n∏
i=1

(1+ xi )

)
[M] = 2ncn[M].

The coefficient of z is( n∑
i=1

(
−(2xi + x2

i )
∏
j 6=i

2(1+ x j )

))
[M] = (−2nh1− 2n−1h2)[M]

= −2n−1(ncn[M] + c1cn−1[M]).

The coefficient of z2 is( n∑
i=1

(( 7
6 x2

i +
1
2 x3

i
)∏

j 6=i
2(1+x j )

)
+

∑
1≤i< j≤n

(
(2xi+x2

i )(2x j+x2
j )
∏

k 6=i, j
2(1+xk)

))
[M]

=

(7·2n−2

3
h2+ 2n−2h3+ 2nh11+ 2n−1h12+ 2n−2h22

)
[M]

= 2n−2
(n(3n−5)

6
cn +

3n−2
3

c1cn−1+ c2
1cn−2− c2cn−2

)
[M]. �

Proof of Lemma 2.3. In the following proof, x̂i means deleting xi . Parts (1) and
(2) are quite obvious. For (3),

h2 =

n∑
i=1

(
h
(

x2
i

∏
j 6=i

(1+ x j )

))
=

n∑
i=1

(
xi

∑
j 6=i

x1 · · · x̂ j · · · xn

)
=

n∑
i=1

(xi cn−1− cn)

=−ncn + c1cn−1.

For (4),

h12 =
∑

1≤i< j≤n

(
h
(
(x2

i x j + xi x2
j )
∏

k 6=i, j
(1+ xk)

))
=

∑
1≤i< j≤n

(
(xi + x j )

∑
k 6=i, j

x1 · · · x̂k · · · xn

)
= (n− 2)

n∑
i=1

(
xi

∑
k 6=i

x1 · · · x̂k · · · xn

)
= (n−2)h2 = (n−2)(−ncn+ c1cn−1).
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For (5),

c2cn−2 =

( ∑
1≤i< j≤n

xi x j

)( ∑
1≤k<l≤n

x1 · · · x̂k · · · x̂l · · · xn

)

=

∑
1≤i< j≤n

(
xi x j

∑
1≤k<l≤n

x1 · · · x̂k · · · x̂l · · · xn

)

=

∑
1≤i< j≤n

(
x1x2 · · · xn + (x2

i x j + xi x2
j )
∑

k 6=i, j

x1 · · · x̂k · · · x̂i · · · x̂ j · · · xn

+ x2
i x2

j

∑
1≤k<l≤n

k 6=i, j
l 6=i, j

x1 · · · x̂k · · · x̂l · · · x̂i · · · x̂ j · · · xn

)

=
n(n− 1)

2
cn + h12+ h22.

Therefore,

h22 = c2cn−2−
n(n− 1)

2
cn − h12 =

n(n− 3)
2

cn − (n− 2)c1cn−1+ c2cn−2.

For (6),

(c2
1− 2c2)cn−2

=

( n∑
i=1

x2
i

)( ∑
1≤ j<k≤n

x1 · · · x̂ j · · · x̂k · · · xn

)
=

n∑
i=1

(
x2

i

∑
1≤ j<k≤n

x1 · · · x̂ j · · · x̂k · · · xn

)

=

n∑
i=1

((
x3

i

∑
1≤ j<k≤n

j 6=i
k 6=i

x1 · · · x̂ j · · · x̂k · · · x̂i · · · xn)+ (x2
i

∑
k 6=i

x1 · · · x̂k · · · x̂i · · · xn

))

= h3+ h2.

Hence h3 = (c2
1− 2c2)cn−2− h2 = ncn − c1cn−1+ c2

1cn−2− 2c2cn−2. �

3. Concluding remarks

Libgober and Wood’s proof [1990, p. 142, Lemma 2.2] of (1-2) is by induction.
Here, using our method, we can give a quite direct proof. We have shown that

χy(M)=
( n∏

i=1

xi (1+ ye−xi (1+y))

1− e−xi (1+y)

)
[M]

=

( n∏
i=1

(
(1+ xi )−

1
2 xi z+ 1

12 x2
i z2
+ · · ·

))
[M].
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The coefficient of z2 is( n∑
i=1

( 1
12

x2
i

∏
j 6=i

(1+ x j )

)
+

∑
1≤i< j≤n

(
1
4

xi x j

∏
k 6=i, j

(1+ xk)

))
[M]

=
( 1

12 h2+
1
4 h11

)
[M] = n(3n−5)

24
cn[M] +

1
12

c1cn−1[M].

It is natural to ask what the coefficients are for higher-order terms (y+ 1)p, for
p ≥ 3. Unfortunately the coefficients become very complicated for such terms. In
[Libgober and Wood 1990, pp. 144–145] there is a detailed remark on the coef-
ficients of the higher-order terms of χy(M). Note that the expression of Ay(M)
(resp. L y(M)) has an additional factor e−xi (1+y)/2 (resp. 1+ exi (1+y)) relative to
than that of χy(M). Hence we cannot expect that there are explicit expressions of
higher-order coefficients similar to Theorem 1.4.
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