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We show that a compact embedded annulus of constant mean curvature in
R3 tangent to two spheres of the same radius along its boundary curves and
having nonvanishing Gaussian curvature is part of a Delaunay surface. In
particular, if the annulus is minimal, it is part of a catenoid. We also show
that a compact embedded annulus of constant mean curvature with negative
meeting a sphere tangentially and a plane at a constant contact angle ≥ π/2
(in the case of positive Gaussian curvature) or ≤ π/2 (in the negative case)
is part of a Delaunay surface. Thus, if the contact angle is ≥ π/2 and the
annulus is minimal, it is part of a catenoid.

Delaunay surfaces are rotational surfaces (surfaces of revolution) of constant
mean curvature in R3. Besides cylinders and spheres, they are divided into undu-
loids, nodoids, and (allowing the case of zero mean curvature in the definition,
for convenience) the catenoid, recognized long ago [Bonnet 1860] as the only
nonplanar minimal surface of rotation in R3.

Thus a Delaunay surface meets every plane perpendicular to the axis of rota-
tion under a constant angle. Conversely, if a compact surface of constant mean
curvature meets two parallel planes in constant contact angles, it is part of a De-
launay surface. This can be proved by using Alexandrov’s moving plane argument
[Alexandrov 1962; Hopf 1989] with planes perpendicular to the parallel planes.

A compact immersed minimal annulus meeting two parallel planes in constant
contact angles is also part of a catenoid. This result is not true when the con-
stant mean curvature is nonzero: Wente [1995] constructed examples of immersed
constant mean curvature annuli in a slab or in a ball meeting the boundary planes
or the boundary sphere perpendicularly. Compared to the above first case, we
may ask whether a compact minimal annulus or a compact embedded constant
mean curvature annulus meeting two spheres in constant contact angles is part of
a catenoid or of a plane. In [Park and Pyo ≥ 2011], it is shown that if a compact
embedded minimal annulus meets two concentric spheres perpendicularly then the
minimal annulus is part of a plane.
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In this paper, we show that a compact embedded constant mean curvature annu-
lus A in R3 meeting two spheres S1 and S2 of the same radius ρ tangentially and
having nonvanishing Gaussian curvature K is part of a Delaunay surface. More
precisely, depending on the values of K and the mean curvature H we have three
cases: (i) K < 0 and H > −1/ρ, in which case A is part of a unduloid if H < 0,
part of a catenoid if H = 0 and part of a nodoid if H > 0, (ii) K > 0 and
−1/ρ < H < −1/2ρ, in which case A is part of a unduloid, and (iii) K > 0
and H < −1/ρ, in which case A is part of a nodoid. In the first two cases, A

stays outside of the balls B1 and B2 bounded by S1 and S2. If (iii) holds, then
A⊂ B1 ∩ B2.

We also show that a compact embedded constant mean curvature annulus B

in R3 with negative (respectively, positive) Gaussian curvature meeting a unit
sphere tangentially and a plane in constant contact angle ≥ π/2 (respectively,
≤ π/2) is part of a Delaunay surface. In particular, a compact embedded mini-
mal annulus in R3 meeting a sphere tangentially and a plane in constant contact
angle ≥ π/2 is part of a catenoid.

To prove Theorems 3.1 and 3.2, we use the −ρ-parallel surface Ã of A (respec-
tively, B̃ of B), that is, the parallel surface of A (respectively, of B) with distance
ρ in the direction to the centers of the spheres. We use Alexandrov’s moving plane
argument [Alexandrov 1962; Hopf 1989] to prove that Ã and B̃ are rotational.
Since Ã and B̃ are the parallel surfaces of A and B respectively, A and B are also
rotational and, hence, are part of a Delaunay surface or part of a catenoid.

1. Constant mean curvature annulus meeting spheres tangentially

In the following, we may assume that the spheres have radius 1. Let A be a compact
embedded annulus with constant mean curvature H meeting two unit spheres S1

and S2 tangentially along the boundary curves γ1 and γ2. We fix the unit normal N
of A in such a way that N points away from the center of Si along each γi . Let
Y : A(1, R)→R3 be a conformal parametrization of A from an annulus A(1, R)=
{(x, y) ∈ R2

: 1 ≤
√

x2+ y2 ≤ R}. We define X by X = Y ◦ exp on the strip
B = {(u, v) ∈ R2

: 0 ≤ u ≤ log R}. Then X is periodic with period 2π . Let
z = u+ iv and λ2

:= |Xu|
2
= |Xv|2 with λ > 0.

Let hi j , i, j = 1, 2, be the coefficients of the second fundamental form of X with
respect to N . Note that the Hopf differential φ(z) dz2

= (h11 − h22 − 2ih12) dz2

is holomorphic for constant mean curvature surfaces [Hopf 1989]. The theorem
of Joachimsthal [do Carmo 1976] says that γ1 and γ2 are curvature lines of A.
Hence h12 ≡ 0 on u = 0 and u = log R. Since h12 is harmonic and periodic, we
have h12 ≡ 0 on B. This implies that z is a conformal curvature coordinate and
h11−h22 is constant [McCuan 1997]. Let c= h11−h22. If A is minimal, then we
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have K < 0 and c= 2h11 > 0 by the choice of N . When H =−1, A is part of the
unit sphere S1 = S2 by the boundary comparison principle for the mean curvature
operator [Gilbarg and Trudinger 2001]. We assume that H 6= −1 in the following.
The principal curvatures of A are

(1) κ1 = H +
c

2λ2 and κ2 = H −
c

2λ2 .

We use for γ1 and γ2 the parametrizations γ1(v)= X (0, v) and γ2(v)= X (log R, v),
for v∈[0, 2π). In the following, we assume that A has nonzero Gaussian curvature.

Lemma 1.1. Each γi (v), i = 1, 2, has constant speed
√

c/2(1+ H) and κ2 is −1
on γ1 and γ2. As spherical curves, γ1 and γ2 are convex. On A \ ∂A, we have
λ2 < c/2(1+ H) when K < 0 and λ2 > c/2(1+ H) when K > 0.

Proof. The curvature vector of γ1(v) is

Eκ =
1
|Xv|

d
dv

(
Xv
|Xv|

)
=

1
|Xv|2

Xvv −
Xv
|Xv|4

(Xv · Xvv)(2)

=
1
λ2

(
−
λu

λ
Xu + h22 N

)
.

Let the center of S1 be the origin of R3. Since A is tangential to S1 along γ1, we have
N (0, v)= X (0, v)= γ1(v) on γ1. Since γ1 is on the unit sphere S1, the curvature
vector Eκ of γ1 satisfies (Eκ · γ1)(v)=−1. Hence we have κ2 = h22/λ

2
=−1 on γ1.

Since λ2
= |γ1v|

2 on γ1, we have |γ1v| =
√

c/2(1+ H) from (1). By choosing the
center of S2 as the origin of R3, we get the results for γ2.

The Gaussian curvature K satisfies

1 log λ=−Kλ2,

where 1= ∂2/∂u2
+ ∂2/∂v2. We can rewrite this equation as

(3) λ1λ= |∇λ|2− Kλ4.

Since λv(0, v) = 0 and λv(log R, v) = 0 and K 6= 0, λ does not have interior
maximum when K < 0, and does not have interior minimum when K > 0. Since
λ2
= c/2(1+ H) on γ1 and γ2, it follows that λ2 < c/2(1+ H) on A \ ∂A when

K < 0 and λ2 > c/2(1+ H) when K > 0. Moreover we have λu ≤ 0 on u = 0 and
λu ≥ 0 on u = log R when K < 0 and λu ≥ 0 on u = 0 and λu ≤ 0 on u = log R
when K > 0. Since Xu/|Xu| ∈ T Si is perpendicular to γi , the geodesic curvature
of γi as a spherical curve is Eκ · (Xu/|Xu|)=−λu/λ

2. Hence γ1 and γ2 are convex
as spherical curves. �

Remark 1.2. If λ2
≡ c/2(1+ H) on A, then K ≡ 0 and A is part of a cylinder.
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2. The −1-parallel surface

The −1-parallel surface Ã of A is defined by

X̃ = X − N .

The image of γ1 (respectively, of γ2) in Ã is a point corresponding to the center
of S1 (respectively, of S2). We denote the centers of S1 and S2 by O and O2 for
simplicity. We fix the unit normal Ñ of Ã to be N . Since z = u+ iv is a curvature
coordinate of X , we have

(4) X̃u =

(
1+

h11

λ2

)
Xu and X̃v =

(
1+

h22

λ2

)
Xv.

Since κ2 = −1 on γi by Lemma 1.1, X̃ is singular for u = 0 and u = log R. By
Lemma 1.1, we have λ2

6= c/2(1+ H) on A \ ∂A, which implies that 1+ κ2 6= 0
on A \ ∂A. When K < 0, we have κ1 > 0 on A \ ∂A. Hence X̃ is regular for
0< u < log R and we have H >−1.

Now suppose that K > 0. Since κ2 =−1 on γi by Lemma 1.1, we have κ1 < 0
and H <−1/2. We consider two cases separately: H <−1 and −1< H <−1/2.
If H <−1, then c< 0 from λ2

= c/2(1+ H) > 0 on γi . Hence we have κ1 <−1,
which implies that X̃ is regular for 0<u< log R. If−1< H <−1/2, then we must
have c> 0. This implies that 1+κ1 6= 0. Otherwise we have 0< 2λ2(1+H)=−c,
which contradicts c > 0. Hence X̃ is regular for 0< u < log R.

Remark 2.1. When K < 0 or K > 0 and −1< H <−1/2, A stays outside of the
balls B1 and B2 bounded by S1 and S2. If K > 0 and H <−1, then A⊂ B1 ∩ B2.

Lemma 2.2. The mean curvature H̃ and the Gaussian curvature K̃ of Ã satisfies
(1+ H)K̃ = (1+ 2H)H̃ − H. On Ã \ {O, O2}, we have the following:

(i) If K < 0 and H >−1, then κ̃1 > 0, κ̃2 > 1 and H̃ > 1.

(ii) If K >0 and−1< H <−1/2, then 0< c/2λ2(1+H)<min{1,−H/(1+H)},
κ̃1 < 0, κ̃2 < H/(1+ H) and H̃ < H/(1+ H).

(iii) If K > 0 and H <−1, then 0< c/2λ2(1+H) < 1, κ̃1 > (1+2H)/2(1+H),
κ̃2 > H/(1+ H) and H̃ > H/(1+ H).

Proof. Since

h̃12 = N · X̃uv =

(
1+

h11

λ2

)
(N · Xuv)= 0,

(u, v) is a curvature coordinate (not conformal) for Ã except for O and O2. We
have

h̃11 = N · X̃uu =

(
1+

h11

λ2

)
h11, h̃22 = N · X̃vv =

(
1+

h22

λ2

)
h22.



A CMC ANNULUS TANGENT TO SPHERES IS DELAUNEY 201

The principal curvatures of Ã are

κ̃1 =
κ1

1+ κ1
=

H/(1+ H)+
(
c/2λ2(1+ H)

)
1+

(
c/2λ2(1+ H)

) ,

κ̃2 =
κ2

1+ κ2
=

H/(1+ H)−
(
c/2λ2(1+ H)

)
1−

(
c/2λ2(1+ H)

) .

From κ1+ κ2 = 2H , we have H = H̃− K̃
1−2H̃− K̃

or (1+ H)K̃ = (1+ 2H)H̃ − H .
It is straightforward to see that

H̃ =
H/(1+ H)−

(
c/2λ2(1+ H)

)2

1−
(
c/2λ2(1+ H)

)2 .

Note that κ2 < 0 on A. First suppose that K < 0. Then we have κ1 > 0, which
implies that κ̃1 = κ1/(1+ κ1) > 0. Since c/2λ2(1+ H) > 1 by Lemma 1.1, we
have κ̃2 > 1 and H̃ > 1.

When K >0, we have κ1=H+c/2λ2<0. If−1<H <−1/2, then we have c>
0 because λ2

= c/2(1+H)> 0 on γi . It follows that c/2λ2(1+H)<−H/(1+H).
By Lemma 1.1, we also have c/2λ2(1+ H) < 1. Therefore 0 < c/2λ2(1+ H) <
min{1,−H/(1 + H)}. It is easy to see that κ̃1 < 0, κ̃2 < H/(1 + H) < 0 and
H̃ < H/(1+ H) < 0.

When K > 0 and H < −1, we have c < 0 and 0 < c/2λ2(1+ H) < 1. It is
straightforward to see that κ̃1 > (1+ 2H)/(1+ H), κ̃2 > H/(1+ H) and H̃ >

H/(1+ H). �

This lemma says that Ã is a linear Weingarten surface with two singular points O
and O2 and is positively curved outside O and O2.

Lemma 2.3. Ã is embedded.

Proof. Let ν(v) = (Xu/|Xu|)(0, v). Note that ν is a closed curve in the unit
sphere S1. We claim that ν is convex as a spherical curve. Otherwise, there is a
great circle η intersecting the image of ν at no less than 3 points ν(v1), . . . , ν(vn).
(It is possible that ν maps an interval (va, vb) ⊂ [0, 2π) into a single point. We
choose the vi ’s in such a way that ν maps no two vi ’s to the same point.) Each ν(vi )

determines a great circle S1
vi
⊂ S1 contained in the plane perpendicular to ν(vi ).

At each γ1(vi ), γ1 is tangent to S1
vi

. Since η and S1
vi

are perpendicular, γ1 can-
not be convex when n ≥ 3. Hence ν intersect every geodesic of S1 at no more
than two points. This shows that ν is convex as a spherical curve. Similarly,
(Xu/|Xu|)(log R, v) is also convex as a spherical curve.

Since Ã is a parallel surface of A, the tangent cone Tan(O, Ã) of Ã at O is
the cone formed by rays from O through ν. Since ν is a convex spherical curve,
Tan(O, Ã) is convex. This shows that a small neighborhood of O in Ã is embedded
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and nonnegatively curved as a metric space [Alexandrov 1948]. Similarly, there
is a neighborhood of O2 in Ã which is embedded and nonnegatively curved as a
metric space.

Hadamard showed that a closed surface S in R3 with strictly positive Gauss-
ian curvature is the boundary of a convex body [Hopf 1989]. In particular, S is
embedded. Alexandrov [1948] generalized Hadamard’s theorem to nonnegatively
curved metric spaces. Since Ã is a nonnegatively curved closed metric space, Ã is
embedded. �

Remark 2.4. We have νv = (λu/λ
2)Xv. At points where λu 6= 0, the curvature

vector of ν is

Eκν =
1
λu

(
−
λu

λ
Xu + h22 N

)
.

The geodesic curvature of ν as a spherical curve Eκν · N = h22/λu .

3. Main results

We use Alexandrov’s moving plane argument [Alexandrov 1962; Hopf 1989] to
prove the theorems.

Theorem 3.1. A compact embedded constant mean curvature annulus A with non-
vanishing Gaussian curvature meeting two spheres S1 and S2 of the same radius
tangentially is part of a Delaunay surface. In particular, if A is minimal, then A

is part of a catenoid.

Proof. We suppose that the radius of S1 and S2 is 1. By Lemma 2.2 and Lemma 2.3,
Ã is a compact embedded surface with two singular points O and O2 and satisfying
(1+H)K̃ = (1+2H)H̃ −H at regular points. A small neighborhood of a regular
point of Ã can be represented as the graph of a function f (x, y) satisfying

(5) 2(1+ H)( fxx fyy − f 2
xy)+ 2H(1+ f 2

x + f 2
y )

2

= (1+ 2H)
(
(1+ f 2

y ) fxx − 2 fx fy fxy + (1+ f 2
x ) fyy

)
(1+ f 2

x + f 2
y )

1/2.

This equation can be rewritten as

(6) det
(
2(1+ H)D2 f + A(D f )

)
=W 4,

where

A(D f )=−(1+ 2H)
(
(1+ f 2

x )W fx fy W
fx fy W (1+ f 2

y )W

)
and W =

√
1+ f 2

x + f 2
y .

Equation (6) is elliptic with respect to f if 2(1 + H)D2 f + A(D f ) is positive
definite. Since det

(
2(1+ H)D2 f + A(D f )

)
=W 4 > 0, this happens if

(7) Tr
(
2(1+ H)D2 f + A(D f )

)
= 2(1+ H)1 f − (1+ 2H)(2+ f 2

x + f 2
y )W
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is strictly positive.
First we consider the case K < 0. Since H̃ > 1 by Lemma 2.2, we have

(8) 1 f + f 2
y fxx − 2 fx fy fxy + f 2

x fyy > 2W 3/2,

for f representing Ã. We may assume that f is defined on B(0, ε)⊂ TpÃ so that
∇ f (0)= E0 and D2 f is diagonal. For sufficiently small ε = ε(p), (8) implies that
(7) is strictly positive. Hence (6) is elliptic with respect to f representing Ã.

When −1< H <−1/2, (7) is automatically satisfied.
Now we consider the case K > 0 and H < −1. Since H̃ > H/(1 + H) by

Lemma 2.2, we have

(9) 1 f + f 2
y fxx − 2 fx fy fxy + f 2

x fyy >
2H

1+H
W 3/2.

Assuming that f is defined on B(0, ε)⊂TpÃ with∇ f (0)=E0 and D2 f is diagonal,
(9) implies that

1 f − 1+2H
2(1+H)

(2+ f 2
x + f 2

y )W

is strictly positive for sufficiently small ε. So det
(
−2(1+H)D2 f − A(D f )

)
=W 4

is elliptic for f representing Ã. The ellipticity of (6) for f representing Ã en-
ables us to use the maximum principle and the boundary point lemma [Gilbarg
and Trudinger 2001].

Since Ã is convex and embedded, we can use Alexandrov’s moving plane ar-
gument [Alexandrov 1962; Hopf 1989] to show that Ã is rotational as follows.
Let 5θ be the plane containing the line segment OO2 ⊂ R3 and making angle θ
with a fixed vector EE which is perpendicular to OO2. Fix a positive constant L
such that each plane 5L

θ that is parallel to 5θ with distance L from 5θ does not
meet Ã for all θ . Let5l

θ be the plane between5L
θ and5θ with distance l from5θ .

When 5l
θ intersects Ã, we reflect the 5L

θ side part of Ã about 5l
θ . Denote this

reflected surface by Ãref
l,θ . As we decrease l from L , there might be a first lθ ≥ 0 for

which Ãref
lθ ,θ is tangent to Ã at an interior point or at a boundary point of ∂Ãref

lθ ,θ .
We call this point the first touch point. If there is no nonnegative l with the first
touch point, we repeat the process for 5L

θ+π to find lθ+π , which must be positive.
At the first touch point, we apply the comparison principles for (5) to see that the
part of Ã in the 5θ side and Ãref

lθ ,θ are identical and, hence, lθ = 0. This implies
that 5θ is a symmetry plane for Ã. Since θ can be chosen arbitrarily, Ã should
be rotational and, hence, A is also rotational. Since the Delaunay surfaces and the
catenoid are the only nonplanar rotational minimal and constant mean curvature
surfaces, A is part of a Delaunay surface or part of a catenoid. �

We used the embeddedness of A to prove that Ã is embedded. Whether there
is a nonembedded minimal or constant mean curvature annulus meeting two unit
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spheres tangentially is an interesting question. Moreover we raise the following
questions.

(1) Is a compact immersed minimal annulus or a compact embedded minimal
or constant mean curvature surface meeting a sphere perpendicularly or in
constant contact angles part of a catenoid or part of a Delaunay surface?
Nitsche showed that an immersed disk type minimal or constant mean cur-
vature surface meeting a sphere in constant contact angle is either a flat disk
or a spherical cap [Nitsche 1985].

(2) Is a compact immersed minimal annulus or a compact embedded minimal
or constant mean curvature surface meeting two spheres in constant contact
angles part of a catenoid or a plane or part of a Delaunay surface?

(3) Is a compact immersed minimal or constant mean curvature annulus or a com-
pact embedded minimal or constant mean curvature surface meeting a sphere
and a plane in constant contact angles part of a catenoid or part of a Delaunay
surface? We give an affirmative answer to this problem in a special case in
the following.

Theorem 3.2. A compact embedded constant mean curvature annulus B with neg-
ative (respectively, positive) Gaussian curvature meeting a sphere tangentially and
a plane in constant contact angle≥π/2 (respectively,≤π/2) is part of a Delaunay
surface. In particular, if B is minimal and the constant contact angle is≥π/2 then
B is part of a catenoid.

The angle is measured between the outward conormal of B and the outward
conormal of the bounded domain in 5 bounded by the boundary curve. Since the
proof of this theorem is similar to that of Theorem 3.1, we omit some previously
proved details.

Proof. Denote the sphere by S2 and the plane by5. We may assume that the radius
of S2 is 1. Let α be the constant contact angle between B and 5. If α = π/2, then
we can reflect B about 5 to get a constant mean curvature annulus meeting two
unit spheres tangentially. Hence B is part of a catenoid or a Delaunay surface by
Theorem 3.1.

In the following, we assume that α 6=π/2. As in the case for A in Section 1, there
is a conformal parametrization X of B from a strip {(u, v) ∈ R2

: 0 ≤ u ≤ log R}
for which z = u+ iv is a curvature coordinate. We fix the normal N of B to point
away from the center of S2. Let c1(v)= X (0, v) be on 5 and c2(v)= X (log R, v)
be on S2 with ∂X3/∂u > 0 along c1. As in Lemma 1.1, c2 has constant speed
√

c/2(1+ H) and κ2=−1 along c2. Since K 6=0 on B and z=u+iv is a curvature
coordinate, we have κ2 < 0 on c1. The curvature of c1 is |Eκ| = −κ2/ sinα > 0,
which shows that c1 is locally convex. Since c1 is a Jordan curve, it is convex.
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First, we assume that K < 0 and α >π/2. Since (Eκ/|Eκ|) ·(Xu/Xu|)= cosα < 0
on c1, it follows from (2) that λu>0 on c1. Since λv(log R, v)=0 (see Lemma 1.1),
it follows from (3) that λu ≥ 0 on c2. Otherwise, λ will have an interior maximum,
which contradicts (3). Hence we have λ2 < c/2(1 + H) on B \ c2. Note that
κ1 > 0 and κ2 < 0 in B. From λu ≤ 0 on c2, we see that c2 is convex as a
spherical curve (see Lemma 1.1). Arguing as in the proof of Lemma 2.3, we see
that (Xu/|Xu|)(log R, v) is also convex as a spherical curve.

When K > 0 and α < π/2, we have (Eκ/|Eκ|) · (Xu/|Xu|) = cosα > 0 on c1.
Hence λu < 0 on c1. Since λv(log R, v) = 0, it follows from (3) that λ does not
have interior minimum. Then we have λu ≤ 0 on c2 and λ2> c/2(1+H) on B\c2.
Note that κ1 < 0 and κ2 < 0 in B. From λu ≤ 0 on c2, it follows that c2 is convex
as a spherical curve. Moreover (Xu/|Xu|)(log R, v) is convex as a spherical curve
(see Lemma 2.3).

Let B̃ be the −1-parallel surface of B. As in Section 2, we can show that B̃ is
regular except for O2: the image of c2, and H >−1 when K < 0 and H <−1/2
when K > 0. As in Lemma 2.2, we see that mean curvature H̃ and the Gaussian
curvature K̃ of B̃ satisfies (1 + H)K̃ = (1 + 2H)H̃ − H and (i) if K < 0 and
H > −1, then κ̃1 > 0, κ̃2 > 1 and H̃ > 1, (ii) if K > 0 and −1 < H < −1/2,
then 0 < c/2λ2(1+ H) < min{1,−H/(1+ H)}, κ̃1 < 0, κ̃2 < H/(1+ H) and
H̃ < H/(1+ H), and (iii) if K > 0 and H < −1, then 0 < c/2λ2(1+ H) < 1,
κ̃1 > (1+ 2H)/2(1+ H), κ̃2 > H/(1+ H) and H̃ > H/(1+ H).

The convexity of (Xu/|Xu|)(log R, v) as a spherical curve implies that there
is a neighborhood of O2 in B̃ which is embedded and nonnegatively curved as a
metric space. Let 5̃ be the plane parallel to 5 and containing c̃1. The curvature
of c̃1 is |κ̃2|/ sinα, which does not vanish. Hence c̃1 is locally convex. Using
the orthogonal projection onto 5̃, c̃1 may be considered as a (sinα)-parallel curve
of c1 in 5̃. Hence c̃1 is also a convex Jordan curve.

Suppose that K < 0 and α > π/2. Since κ1 > 0, X̃u is a positive multiple of Xu

by (4). The positivity of κ̃1 and κ̃2 implies that B̃ meets 5̃ in constant angle π−α.
Suppose that K > 0 and α < π/2. If −1 < H < −1/2, then we have c > 0 and
κ1>−1. Hence X̃u is a positive multiple of Xu by (4). The negativity of κ̃1 and κ̃2

implies that B̃ meets 5̃ in constant angle α. When K > 0 and H < −1, we have
c < 0 and κ1 < −1. Hence X̃u is negative multiple of Xu by (4). In this case, B̃

lies below 5̃ and κ̃1 and κ̃2 are both positive. It is straightforward to see that B̃

meets 5̃ in constant angle α.
Let B̆ be the singular surface obtained from B̃ by attaching the disk in 5̃

bounded by c̃1 to B̃. Since B̃ meets 5̃ in acute angle, B̆ is a nonnegatively curved
metric space. By Alexandrov’s generalization [1948] of Hadamard’s theorem, B̆ is
the boundary of a convex body. Therefore B̆ is embedded. Note again that H̃ , K̃ ,
κ̃1 and κ̃2 satisfy the statements of Lemma 2.2. Hence (5) is elliptic for functions
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representing B̃ locally. We can apply Alexandrov’s moving plane argument to B̃

using planes perpendicular to 5̃ as in the proof of Theorem 3.1 to see that B̃ is
rotational. Hence B is rotational and, as a result, is part of a Delaunay surface or
part of a catenoid. �
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