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We establish an analogue of the Beurling theorem associated with the Rie-
mann–Liouville operator. We also derive some other versions of uncertainty
principle theorems associated with this operator.

1. Introduction and the main result

The uncertainty principle, which plays an important role in harmonic analysis,
states that a nonzero function and its Fourier transform cannot simultaneously be
very small at infinity. This principle has been researched on various aspects and has
several versions named after Hardy, Morgan, Cowling and Price, Gelfand, Beurling
and others. The Beurling theorem is the most general case since it implies the other
uncertainty principles.

The classical Beurling theorem was proved by Hörmander [1991] and general-
ized to d dimensions by Bonami et al. [2003]. Here we record the general case:

Lemma 1.1. For f ∈ L2(Rd) and N = 0, if∫
Rd

∫
Rd

| f (x)| | f̂ (y)| e‖x‖‖y‖

(1+‖x‖+‖y‖)N dx dy <∞,

then f (x) = P(x) e−a〈Ax,x〉, a > 0, where A is a real positive definite symmetric
matrix and P(x) is a polynomial of degree<(N−d)/2. In particular, f = 0 when
N ≤ d.

In the lemma and the rest of the paper, f̂ is the classic Fourier transform of f
in Rd , defined by

f̂ (λ)=
∫

Rd
f (x) e−i λ x dx, λ ∈ Rd .

The Beurling theorem has been generalized to different settings. L. Bouat-
tour established an analogue in the framework of Chébli–Trimèche hypergroups
(R+, ∗(A)) (see [Bouattour and Trimèche 2005]). J. Z. Huang and H. P. Liu [2007a;
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2007b] gave analogues for the Laguerre hypergroup and the Heisenberg group.
R. P. Sarkar and J. Sengupta [2007b] established the analogue of the Beurling
theorem on the full group SL(2,R). As for the noncompact semisimple Lie group
case, S. Thangavelu [2004] first gave the analogue on rank 1 symmetric spaces with
an additional condition like the one required in the Cowling–Price theorem, so he
called it the Cowbeurling Theorem; then R. P. Sarkar and J. Sengupta [2007a] re-
moved this additional condition and gave the analogue in rank 1 symmetric spaces;
recently, L. Bouattour [2008] generalized this result and gave the analogue for real
symmetric spaces of rank d . For more Beurling theorems in different settings, refer
to [Kamoun and Trimèche 2005; Parui and Sarkar 2008].

In this paper, for α ≥ 0 we consider the singular partial differential operators
11 =

∂

∂x
,

12 =
∂2

∂r2 +
2α+1

r
∂

∂r
−
∂2

∂x2 , (r, x) ∈ (0,+∞)×R, α = 0,

originally studied in [Baccar et al. 2006; Omri and Rachdi 2008]. The latter authors
have proved an uncertainty principle that generalized the Heisenberg–Pauli–Weyl
inequality for the classical Fourier transform:

Proposition [Omri and Rachdi 2008]. For all f ∈ L2(dvα), we have

‖ |(r, x)| f ‖2,vα ‖(µ
2
+ 2λ2)1/2Fα( f )‖2,γα =

2α+3
2
‖ f ‖22,vα

with equality if and only if

f (r, x)= Ce−(r
2
+x2)/2t2

0 for (r, x) ∈ R+×R, t0 > 0, C ∈ C,

where dvα is a measure defined on R+×R by

(1) dvα(r, x)= dc(r)⊗ dx with dc(r) def
=

r2α+1

2α 0(α+ 1)
√

2π
dr;

drα(µ, λ) is a measure defined on the set 0+

0+ = R+×R∪
{
(i t, x) : (t, x) ∈ R+× R, t 5 |x |

}
;

|(r, x)| is the Euclidean norm in R2, that is, |(r, x)| = (r2
+ x2)1/2; and Fα( f ) is

the generalized Fourier transform associated with the Riemann–Liouville operator.

Our main result is an analogue of the Beurling–Hörmander theorem for this
generalized Fourier transform Fα associated with the Riemann–Liouville operator:
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Theorem 1.2. Let K = R+×R, and assume N = 0. For f ∈ L2(K , dvα), if∫
0+

∫
K

| f (r, x)| |Fα( f )(µ, λ)| e|x ||λ|

(1+ |x | + |λ|)N dvα(r, x) drα(µ, λ) <∞,

then

f (r, x)= e−ax2
( k∑

j=0

ψ j (r)x j
)
,

where a> 0, k< N−1
2

, and ψ j (r)∈ L2
(
[0,+∞), r2α+1

2α0(α+1)
dr
)

. In particular,
when N 5 3,

f (r, x)= e−ax2
ψ(r),

where ψ(r) ∈ L2([0,+∞), r2α+1/(2α0(α + 1)) dr), and when N 5 1, we have
f = 0.

Section 2 contains some preliminary facts about the Riemann–Liouville operator
and the generalized Fourier transform. In Section 3, we prove Theorem 1.2. In
Section 4, we give some other uncertainty principles. In Section 5, we give a
stronger result but at the cost of more strictly constraining the function f (r, x) by
utilizing the Riemann–Liouville transform and its dual.

2. Preliminaries

In this section, we set some notation and theorems about the generalized Fourier
transform associated with Riemann–Liouville operator. For detailed information,
refer to [Baccar et al. 2006; Hamadi and Rachdi 2006; Omri and Rachdi 2008].

From this last reference we know that for all (µ, λ) ∈ C2, the system
11u(r, x)=−i λ u(r, x),

12u(r, x)=−µ2 u(r, x),

u(0, 0)= 1, (∂u/∂r)(0, x)= 0, x ∈ R

admits a unique solution ϕµ.λ, given by

(2) ϕµ,λ(r, x)= jα(r
√
µ2+ λ2) e−i λx for (µ, λ) ∈ R2,

where

(3) jα(x)= 2α 0(α+ 1) Jα(x)
xα
= 0(α+ 1)

∞∑
0

(−1)n

n!0(α+n+1)

( x
2

)2n
,
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and Jα(x) is a Bessel function of the first kind of index α. The modified Bessel
function jα has the following integral representation: for all µ, r ∈ R+ we have

jα(rµ)=


20(α+ 1)
√
π0(α+ 1/2)

∫ 1

0
(1− t2)α−1/2 cos(rµt) dt if α >−1/2,

cos(rµ) if α =−1/2.

The Riemann–Liouville integral transform associated with 11, 12 is defined by

Rα( f )(r, x)=


α

π

∫ 1

−1

∫ 1

−1
f (rs

√
1− t2, x + r t)(1− t2)α−1/2(1− s2)α−1 dt ds

if α > 0,
1
π

∫ 1

−1
f (r
√

1− t2, x + r t)
dt

√
1− t2

if α = 0.

Now we give some properties of the eigenfunction ϕµ,λ.

(i) The supremum of ϕµ,λ satisfies

sup
(r,x)∈R2

|ϕµ,λ (r, x)| = 1

if and only if (µ, λ) belongs to the set

0 = R2
∪
{
(i t, x) : (t, x) ∈ R2, |t |5 |x |

}
.

(ii) The eigenfunction ϕµ,λ has Mehler integral representation

ϕµ,λ(r, x)=


α

π

∫ 1

−1

∫ 1

−1
f (rs

√
1− t2, x + r t)(1− t2)α−1/2 (1− s2)α−1 dt ds

if α > 0,
1
π

∫ 1

−1
f (r

√
1− t2, x + r t)

dt
√

1− t2
if α = 0,

where f is a continuous function on R2.

From our definition, we can see that the transform Rα generalizes the “mean
operator” defined by

R0( f )(r, x)=
1
π

∫ 2π

0
f (r sin(θ), x + r cos(θ)) dθ.

In the remainder of the paper, we use the following notation:
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(i) L p(dvα) denotes the space of measurable functions f on K =R+×R such
that

‖ f ‖p,vα =

(∫
∞

0

∫
R

| f (r, x)|p dvα(r, x)
)1/p

<∞ if p ∈ [1,+∞),

‖ f ‖∞,vα = ess sup
(r,x)∈K

| f (r, x)|<+∞ if p =+∞.

(ii) 〈 , 〉vα is the inner product defined on L2(dvα) by

〈 f, g〉vα =
∫
∞

0

∫
R

f (r, x)g(r, x) dvα(r, x).

(iii) 0+ = R+×R∪
{
(i t, x) : (t, x) ∈ R+×R, t ≤ |x |

}
.

(iv) B0+ is a σ -algebra defined on 0+ by

B0+ =
{
θ−1(B) : B ∈B(R+×R)

}
,

where θ is the bijective function defined on the set 0+ by

θ(µ, λ)= (
√
µ2+ λ2, λ).

(v) 2 is the operator given by (2 ◦ f )(µ, λ) = f (θ(µ, λ)) for any function f
defined on 0+.

(vi) dγα is a measure on B0+ given by

γα(A)= vα(θ(A)) for A ∈B0+ .

(vii) Let L p(dγα) denote the space of measurable functions f on 0+ such that

‖ f ‖p,γα =

(∫∫
0+

| f (µ, λ)|pdγα(µ, λ)
)1/p

<∞ if p ∈ [1,+∞),

‖ f ‖∞,γα = ess sup
(µ,λ)∈0+

e| f (µ, λ)|<+∞ if p =+∞.

(viii) 〈 , 〉γα is the inner product defined on L2(dγα) by

〈 f, g〉γα =
∫
0+

f (µ, λ)g(µ, λ) dγα(µ, λ).

Proposition 2.1. (i) For all nonnegative measurable functions g on 0+, we have∫
0+

g(µ, λ) dγα(µ, λ)=
1

2α0(α+1)
√

2π

(∫
R

∫
∞

0
g(µ, λ)(µ2

+λ2)αµ dµ dλ

+

∫
R

∫
|λ|

0
g(iµ, λ)(λ2

−µ2)αµ dµ dλ
)
.
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(ii) For all measurable functions f on K , the function2◦ f is measurable on 0+.
Furthermore, if f is a nonnegative or integrable function on K with respect
to the measure dvα, then we have

(4)
∫
0+

(2 ◦ f )(µ, λ) dγα(µ, λ)=
∫
∞

0

∫
R

f (r, x) dvα(r, x).

Now we give the definition of the generalized Fourier transform associated with
the Riemann–Liouville operator and some relevant properties.

Definition 2.2. For f ∈ L1(dvα), the Fourier transform Fα associated with the
Riemann–Liouville operator is defined by

Fα( f )(µ, λ)=
∫

K
f (r, x)ϕµ,λ(r, x) dvα(r, x) for (µ, λ) ∈ 0+.

For this generalized Fourier transform, we have an inversion formula and an
Plancherel theorem, just as with the classical Fourier transform in Euclidean space.

Theorem 2.3 (inversion formula). Let f ∈ L1(dvα) such that Fα( f ) ∈ L1(dγα).
Then for almost every (r, x) ∈ K , we have

f (r, x)=
∫
0+

Fα( f )(µ, λ)ϕµ,λ(r, x) dγα(µ, λ).

Theorem 2.4 (Plancherel). The Fourier transform Fα can be extended to an iso-
morphism from L2(dvα) onto L2(dγα). In particular, for all f, g ∈ L2(dvα), we
have a version of Parseval’s equality:∫

0+

Fα( f )(µ, λ)Fα(g)(µ, λ) dγα(µ, λ)=
∫

K
f (r, x)g(r, x) dvα(r, x).

The next two important lemmas will be used later in our proof.

Lemma 2.5. For m ∈ N, let

8m(r)=

√
2α+10(α+1)m!
0(α+m+1)

e−r2/2 Lαm(r
2).

The family {8m(r)}m∈N forms an orthonormal basis of the space

L2(R+, r2α+1/(2α0(α+ 1)) dr)

where Lαm(x) is the Laguerre polynomial of degree m and order α defined by the
expansion [Stempak 1988]

∞∑
n=0

tn Lαn (x)=
1

(1− t)α+1 ext/(t−1).
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For the polynomial Lαm(x), from [Huang and Liu 2007b], we also have the ex-
plicit expression for Lαm(x):

Lαm(x)=
m∑

j=0

0(m+α+1)
0(m− j+1)0( j+α+1)

(−x) j

j !
.

From the explicit expression of the Laguerre polynomial of degree m and order α,
we know that there exists a function M : N→ R+ such that for each m ∈ N, we
have |8m(x)| ≤ M(m). The essence of this claim is that the polynomial doesn’t
grow as rapid as the exponential function when r approaches infinity.

Lemma 2.6 [Omri and Rachdi 2008, page 9]. For all m ∈ N ,∫
∞

0
e−r/2Lαm(r)Jα(

√
r y)rα/2 dr = (−1)m2 e−y/2 yα/2Lαm(y).

We make the variable replacements r = a2, y = b2, but for simplicity we still
use r and y instead of a, b. Then∫

∞

0
e−r2/2Lαm(r

2)Jα(r y)rα+1 dr = (−1)m e−y2/2 yαLαm(y
2),

that is,

(5)
∫
∞

0
Jα(r y) rα+18m(r) dr = (−1)m yα 8m(y).

3. Proof of the main result

In this section, we will prove Theorem 1.2. From the definition of the generalized
Fourier transform, we know that

Fα( f )(µ, λ)=
∫

K
f (r, x)ϕµ,λ(r, x) dvα(r, x).

Replace ϕµ,λ(r, x) by the expression in (2) to get

Fα( f )(µ, λ)=
∫
∞

0

∫
R

f (r, x) jα(r
√
µ2+ λ2) e−iλx dx dc(r)

If we let

F̃α( f )(µ, λ)=
∫
∞

0

∫
R

f (r, x) jα(rµ) e−iλx dx dc(r),

then Fα( f )(µ, λ)= (2 ◦ F̃α( f ))(µ, λ). Thus our condition,∫
K

∫
0+

| f (r, x)| |Fα( f )(µ, λ)| e|x ||λ|

(1+ |x | + |λ|)N dvα(r, x) drα(µ, λ) <∞,
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is equivalent to∫
K

∫
K

| f (r, x)| |F̃α( f )(µ, λ)| e|x ||λ|

(1+ |x | + |λ|)N dvα(r, x) dvα(µ, λ) <∞

by (4) (see Proposition 2.1). Defining

f λ(r)=
∫

R

f (r, x) e−iλx dx and fm(x)=
∫
∞

0
f (r, x)8m(r) dc(r),

we obtain

f̂m(λ)=

∫
∞

0
f λ(r)8m(r) dc(r).

Before we proceed, we first prove the following useful formula:

(6)
∣∣∣∣∫ ∞

0
F̃α( f )(µ, λ)8m(µ) dc(µ)

∣∣∣∣= 1
√

2π
| f̂m(λ)|.

Indeed,

(7)
∫
∞

0
F̃α( f )(µ, λ)8m(µ) dc(µ)

=

∫
∞

0

∫
∞

0

∫
R

f (r, x)e−iλ x jα(rµ)8m(µ) dx dc(r) dc(µ)

= 2α 0(α+ 1)
∫
∞

0

∫
∞

0
f λ(r)

Jα(rµ)
(rµ)α

µ2α+1

2α0(α+ 1)
√

2π
8m(µ) dµ dc(r).

By (5) (see Lemma 2.6), we know that the right-hand side equals

(−1)m
√

2π

∫
∞

0
f λ(r)8m(r) dc(r)=

(−1)m
√

2π
f̂m(λ),

which proves the claim.
We also need to prove the function f (r, x) is in L1(dvα). Since

(8)
∫
0+

∫
K

| f (r, x)| |Fα( f )(µ, λ)| e|x ||λ|

(1+ |x | + |λ|)N dvα(r, x) drα(µ, λ) <∞,

there must exist a λ0 ∈ R such that∫
K

| f (r, x)|e|x ||λ0|

(1+ |x | + |λ0|)N dvα(r, x) <+∞.

Since there exists a constant C > 0 such that (1+ |x | + |λ0|)
N < Ce|x ||λ0| for all

x ∈ R, we obtain∫
K
| f (r, x)| dvα(r, x) <

1
C

∫
K

| f (r, x)|e|x ||λ0|

(1+ |x | + |λ0|)N dvα(r, x) <+∞,

that is, f (r, x) ∈ L1(dvα(r, x)).
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To proceed, we first prove that for any m, n ∈ N,

(9)
∫

R

∫
R

| fm(x)|| f̂n(λ)|e|x ||λ|

(1+ |x | + |λ|)N dx dλ <+∞.

Since

| fm(x)| =
∣∣∣∣∫ ∞

0
f (r, x)8m(r) dc(r)

∣∣∣∣5 M(m)
∫
∞

0
| f (r, x)| dc(r)

and

| f̂n(λ)| =
√

2π
∣∣∣∣∫ ∞

0
F̃α( f )(µ, λ)8m(µ) dc(µ)

∣∣∣∣
5
√

2π M(n)
∫
∞

0
|F̃α( f )(µ, λ)| dc(µ),

we have, for any m, n ∈ N,∫
R

∫
R

| fm(x)|| f̂n(λ)|e|x | |λ|

(1+ |x | + |λ|)N dx dλ

5
√

2πM(m)M(n)
∫

K

∫
K

| f (r, x)||F̃α( f )(µ, λ) e|x | |λ|

(1+ |x | + |λ|)N dvα(r, x) dvα(µ, λ)

=
√

2πM(m)M(n)
∫

K

∫
0+

| f (r, x)||Fα( f )(µ, λ)| e|x ||λ|

(1+ |x | + |λ|)N dvα(r, x) dγα(µ, λ)

<+∞.

In particular, setting m = n, we get∫
R

∫
R

| fm(x)|| f̂m(λ)| e|x ||λ|

(1+ |x | + |λ|)N dx dλ <+∞.

Then by Lemma 1.1 (in this case d = 1), we have

fm(x)= Pm(x) e−am x2
,

where am is positive and Pm(x) is a polynomial with degree less than (N − 1)/2.
Further we claim that for all m ∈N, we have am = an = a. This holds since if there
exist m, n ∈ N such that am 6= an , then the equation∫

R

∫
R

| fm(x)|| f̂n(λ)|e|x | |λ|

(1+ |x | + |λ|)N dx dλ <+∞

cannot hold, since it is in contradiction with the same equation derived by exchang-
ing subscripts, which must be equally true. So, by Lemma 2.5,

f (r, x)=
∞∑
j=0

fm(x)8m(r)= e−ax2
( k∑

i=0

ψi (r) x i
)
,
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where k < N−1
2

and

ψi (r) ∈ L2
(
[0,+∞), r2α+1

2α0(α+1)
dr
)
.

Thus when N < 3 we have f (r, x) = e−ax2
ψ(r). In particular, when N < 1 we

know that f = 0, since fm(x) = 0 for each m ∈ N. This finishes the proof of
Theorem 1.2.

4. Some other versions of the uncertainty principle

We now derive other versions of the uncertainty principle as corollaries of our
theorem. We start with a Gelfand–Shilov type uncertainty principle, which it is
relatively straightforward to prove using Hölder’s inequality and reduction to the
absurd.

Theorem 4.1 (Gelfand–Shilov type). Let N = 0 and assume f ∈ L2(K , dvα(r, x))
satisfies ∫

K

| f (r, x)| e(a
p/p)|x |p

(1+ |x |)N dvα(r, x) <+∞,∫
0+

|Fα( f )(µ, λ)| e(b
q/q)|λ|q

(1+ |λ|)N dγα(µ, λ) <+∞,

where 1 < p, q <∞ satisfy 1/p + 1/q = 1, and a, b are positive numbers such
that ab= 1. Then f = 0 unless p = q = 2, ab= 1 and N > 0, and in this case, we
have

f (r, x)= e−ax2
( m∑

j=0

ϕ j (r) x j
)
,

where ϕ j (r) ∈ L2(R+, dc(r)) and m ≤ N − 1. In particular, when N 5 1,

f (r, x)= e−(a
2/2) x2

ψ(r),

where ψ(r) ∈ L2(R+, dc(r)), and when N < 1, we have f = 0.

Proof. Following the same procedure as in the proof of Theorem 1.2, we derive∫
R

| fm(x)| e(a
p/p)|x |p

(1 + |x |)N dx <∞,
∫

R

| f̂m(λ)| e(b
q/q)|λ|q

(1 + |λ|)N dλ <∞.

From Hölder’s inequality, we have

a |x | b |λ| ≤ a p
|x |p

p
+

bq
|λ|q

q
.
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Then∫
R

∫
R

| fm(x)| | f̂m(λ)| eab |x | |λ|

(1 + |x | + |λ|)2 N dx dλ

≤

∫
R

∫
R

| fm(x)| e(a
p/p)|x |p

(1 + |x |)N

| f̂m(λ)| e(b
q/q)|λ|q

(1 + |λ|)N dx dλ <∞.

So, when ab > 1, we could first derive the exact form of the function fm(x) from
the Beurling theorem. We then know that with this form for fm(x), the inequality∫

R

∫
R

| fm(x)| | f̂m(λ)| eab |x | |λ|

(1 + |x | + |λ|)2 N dx dλ <∞

cannot hold if fm(x) 6= 0. When ab = 1 and either p > 2 or q > 2, also from the
Beurling theorem, fm(x) is the product of polynomial and e− c x2

. We deduce that
the inequality ∫

R

| fm(x)| e(a
p/p)|x |p

(1 + |x |)N dx <∞

cannot hold when p > 2 and the inequality∫
R

| f̂m(λ)| e(b
q/q)|λ|q

(1 + |λ|)N dλ <∞

cannot hold when q > 2, if fm(x) 6= 0.
The conclusion in the last possible case, when ab = 1 and p = q = 2, can be

derived from the Beurling theorem directly. �

Following the same idea as in Section 3, we can derive a Morgan-type theorem,
which also gives a sharp lower bound for the Gelfand–Shilov type uncertainty
principle:

Theorem 4.2. Let f ∈ L2(K , dvα(r, x)) and suppose f satisfies∫
K
| f (r, x)| ea p

|x |p/p dvα(r, x) <∞,
∫
0+

|Fα( f )(µ, λ)|ebq
|λ|q/q dγα(µ, λ) <∞,

where 1 < p < 2, 1/p+ 1/q = 1, and a, b are positive numbers. Then f = 0 if
ab > |cos(pπ/2)|1/p.

Proof. By the same argument as in the proof of our main theorem, we have∫
R

| fm(x)| ea p
|x |p/p dx <∞ and

∫
R

| f̂m(λ) ebq
|λ|q/q dλ <∞.

Then [Bonami et al. 2003, Theorem 1.4], under the condition ab> |cos(pπ/2)|1/p,
implies that fm(x)= 0 for each m, so we have f (r, x)= 0. �
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Theorem 4.3 (Hardy type). Suppose f ∈ L2(K , dvα(r, x)) satisfies

| f (r, x)|5 C1e−a(r2
+x2) and |Fα( f )(µ, λ)|5 C2e−b (µ2

+λ2),

where C1,C2 are positive constants and a, b are positive real numbers such that
ab = 1

4 . If ab > 1
4 , then f = 0. If ab = 1

4 , then

f (r, x)= e−ax2
ψ(r),

where ψ(r) ∈ L2(R+, dc(r)).

Proof. To prove this corollary, we recall the well-known classical Hardy’s theorem
for the classical Fourier transform on R which says that if

| f (x)|5 Ce−ax2
and f̂ (λ)5 Ce−b λ2

,

where f̂ is the Fourier transform of f , then

(i) f = 0 when ab > 1
4 ;

(ii) f (x)= ce−ax2
when ab = 1

4 ;

(iii) there are infinitely many linearly independent functions satisfying the above
conditions when ab < 1

4 .

From the conditions in the corollary and using the same method used in Section 3,
we have

| fm(x)|5 C e−ax2
and | f̂m(λ)|5 C e−bλ2

.

So from the classical Hardy’s theorem, we have fm(x) = cm e−ax2
if ab = 1

4 for
each m ∈ N . Then

f (r, x)= e−ax2
( ∞∑

m=0

cm 8m(r)
)
= e−ax2

ψ(r),

where ψ(r) ∈ L2(R+, d c(r)). When ab > 1
4 , each fm(x) vanishes, so we have

f (r, x)= 0. �

Theorem 4.4 (Morgan type). Suppose f ∈ L2(K , dvα(r, x)) satisfies∫
∞

0
| f (r, x)| r2α+1 dr 5 C1e−a|x |p ,

∫
∞

0
|F̃α( f )(µ, λ)|µ2α+ 1 dµ5 C2e−b |λ|q ,

where C1,C2 are positive constants, 1 < p < 2, 1/p + 1/q = 1, and a, b are
positive numbers. Then f = 0 if (a p)1/p(b q)1/q > |cos(pπ/2)|1/p.

Proof. First let a = α p/p and b = βq/q . Then

α β > |cos(p π/2)|1/p.
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There exists an ε > 0, such that (α−ε) (β−ε) > |cos(p π/2)|1/p also holds. Then∫
R

| fm(x)| e(α−ε)
p
|x |p/p dx < M(m)

∫
R

e−(α
p
−(α− ε)p)/p |x |p dx <∞,∫

R

| f̂m(λ) e(β − ε)
q
|λ|q/q dλ < M(m)

∫
R

e−(β
q
−(β − ε)q )/q |λ|q dλ <∞.

By [Bonami et al. 2003, Theorem 1.4], we have fm(x) = 0 for each m ∈ N, so
f = 0. �

5. More on this topic

We now derive a sharper result than the main theorem, requiring an additional
constraint on the function f (r, x).

First we introduce some related notation and propositions about the dual of the
Riemann–Liouville operator. For more details, refer to [Baccar et al. 2006]. Let
C∗(R

2) be the function space of continuous functions on R2 even with respect to
the first variable, and S∗(R

2) the space of infinitely differentiable functions on R2,
rapidly decreasing together with all their derivatives even with respect to the first
variable. The dual Riemann–Liouville operator (or transform) is defined by∫
∞

0

∫
R

Rα( f )(r, x)g(r, x) dx r2α+1 dr =
∫
∞

0

∫
R

f (r, x) tRα(g)(r, x) dx r2α+1 dr,

where f ∈ C∗(R
2) and g ∈ S∗(R

2). This is also why tRα called the “dual”. We
also have for f ∈ S∗(R

2),

tRα( f )(r, x)=


2α
π

∫
∞

r

∫ √µ2−r2

−

√
µ2−r2

f (u, x + v)(µ2
− v2
− r2)α−1 dv µ dµ

if α > 0,
1
π

∫
R

f
(√

r2
+ (x − y)2, y

)
dy if α = 0.

Some propositions related to the dual Riemann–Liouville transform are needed
before going to our main result in this section.

Lemma 5.1 [Baccar et al. 2006, Lemma 3.6, page 9]. For f ∈ S∗(R
2),

Fα( f )(µ.λ)=∧α ◦ tRα( f ) (µ, λ) for (µ, λ) ∈ R2,

where ∧α is a constant multiple of the classical Fourier transform on R2 defined by

∧α( f )(µ, λ)=
∫
∞

0

∫
R

f (r, x) cos(rµ) exp(−iλ x)
1

√
2π2α0(α+ 1)

dx dr.

Lemma 5.2 [Baccar et al. 2006, Proposition 3.7]. (i) tRα is not injective when
applied to S∗(R

2).
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(ii) tRα(S∗(R2))= S∗(R
2).

To proceed, we still need to define two special subspaces of S∗(R
2). Denote by

S0
∗
(R2) the subspace of S∗(R

2) consisting of functions f such that

supp F̃α( f )⊂ {(µ, λ) ∈ R2
: |µ|= |λ|}.

Denote by S∗,0(R
2) the subspace of S∗(R

2) consisting of functions f such that∫
∞

0
f (r, x) r2k dr = 0 for all k ∈ N and x ∈ R.

From Lemma 5.2, we know that tRα is not a isomorphism between S∗(R
2) and

S∗(R
2). But things are different on the subspace S0

∗
(R2). We have the isomorphism

lemma as well as inversion formula for the operator tRα.

Lemma 5.3. The dual transform tRα is an isomorphism from S0
∗
(R2) onto S∗,0(R

2).

Lemma 5.4 [Baccar et al. 2006, Theorems 4.5 and 4.6]. For g ∈ S∗,0(R
2) the

inversion formula
(tRα)

−1(g)= (K 2
α ◦Rα)(g)

holds for tRα, where Rα is the Riemann–Liouville operator defined in Section 1
and the operator K 2

α is defined by

K 2
α(g)(r, x)= F−1

α

(
π

22α+102(α+ 1)
(µ2
+ λ2)α|µ|Fα(g)

)
(r, x).

Also K 2
α is an isomorphism from S0

∗
(R2) onto itself.

With the help of these lemmas, we derive our new analogue:

Theorem 5.5. Suppose f ∈ S0
∗
(R2) satisfies∫

K

∫
0+

| f (r, x)| |Fα( f )(µ, λ)| e‖(r,x)‖‖(µ,λ)‖4(µ, λ)
(1+‖(r, x)‖+‖(µ, λ)‖)N dγα(µ, λ) dvα(r, x) <∞.

Then
f (r, x)= (tRα)

−1(P(y) e−〈Ay,y〉),
where y= (r, x), P(y) is a polynomial with degree less than (N−2)/2, A is a real
positive definite symmetric 2×2 matrix, ‖ · ‖ is the usual norm in Cn , and 4(µ, λ)
is defined by

4(µ, λ)=
1

(µ2+ λ2)α|µ|
.

In particular, when N 5 2, we have f = 0.



BEURLING–HÖRMANDER THEOREM AND RIEMANN–LIOUVILLE OPERATOR 253

Proof. We first prove that for all (µ, λ) ∈ R2, there exists C > 0 such that∫
K

|
tRα( f )(r, x)| |Fα( f )(µ, λ)| e‖(r,x)‖‖(µ,λ‖)

(1+‖(r, x)‖+‖(µ, λ)‖)N dr dx

5 C
∫

K

| f (r, x)||Fα( f )(µ, λ) e‖(r,x)‖ ‖(µ,λ)‖

(1+‖(r, x)‖+‖(µ, λ)‖)N dvα(r, x).

We first consider the case when α > 0; then

tRα( f )(r, x)=
2α
π

∫
∞

r

∫ √µ2−r2

−

√
µ2−r2

f (µ, x + v)(µ2
− v2
− r2)α−1 dv µ dµ.

So we have∫
K

|
tRα( f )(r,x)|e‖(r,x)‖‖(µ,λ)‖

(1+‖(r,x)‖+‖(µ,λ)‖)N dr dx

=
2α
π

∫
∞

0

∫
R

∣∣∣∫∞r ∫√µ2−r2
√
µ2−r2

f (µ,x+v)(µ2
−v2
−r2)α−1dvµdµ

∣∣∣e‖(r,x)‖‖(µ,λ)‖
(1+‖(r,x)‖+‖(µ,λ)‖)N dx dr

=
2α
π

∫
∞

0

∫
R

∫
∞

r

∫ √µ2−r2

√
µ2−r2

| f (µ,x+v)|(µ2
−v2
−r2)α−1e‖(r,x)‖‖(µ,λ)‖

(1+‖(r,x)‖+‖(µ,λ)‖)N dvµdµdx dr.

Changing variables, let µ = µ, b = x + v, r = r , x = x . For simplicity we will
still use v instead of b. Then by a change of variables and integration, we see that
the right-hand side above is bounded above by

5 C1

∫
∞

0

∫
R

| f (r, x)| e‖(r,x)‖‖(µ,λ)‖

(1+‖(r, x)‖+‖(µ, λ)‖)N r2α+1 dr dx

5 C2 e
∫

K

| f (r, x)| e‖(r,x)‖‖(µ,λ)‖

(1+‖(r, x)‖+‖(µ, λ)‖)N dvα(r, x).

For the case α=0, our previous claim also holds by using the same method as in the
case α > 0, using a different variable replacement by letting a =

√

r2
+ (x − y)2,

y = y, and for simplicity still using r instead of a. This proves our claim.
By Proposition 2.1(i), and restricting the integral region 0+ to K , we derive the

inequality∫
K

∫
K

|
tRα( f )(r, x)| |Fα( f )(µ, λ)| e‖(r,x)‖‖(µ,λ‖)

(1+‖(r, x)‖+‖(µ, λ)‖)N dr dx dµ dλ

5 C ×
∫

K

∫
0+

| f (r, x)| |Fα( f )(µ, λ)| e‖(r,x)‖‖(µ,λ‖)4(µ, λ)
(1+‖(r, x)‖+‖(µ, λ)‖)N dvα(r, x) dγα(µ, λ)

<∞.
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By Lemma 5.1 we know that the above inequality satisfies the conditions of the
Beurling theorem (Lemma 1.1) in 2-dimensional Euclidean space. So

tRα( f )(r, x)= P(y) e−〈Ay,y〉,

where y = (r, x), P(y) is a polynomial such that its degree is less than (N −2)/2,
and A is a positive definite symmetric 2 × 2 matrix. From f ∈ S0

∗
(R2) and

Lemma 5.3 we know that P(y) e−〈Ay,y〉
∈ S∗,0(R

2) and

f (r, x)= (tRα)
−1(P(y) e−〈Ay,y〉).

In particular, if N 5 2, we have
tRα( f )(r, x)= 0,

which implies f (r, x)= 0 so our proof is finished. �

Remark. In this section, we gave another analogue of the Beurling–Hörmander
theorem. When compared with Theorem 1.2, which just gives the precise structure
of x but not r since we only know that ψ j (r) ∈ L2(R+, dc(r)), the new analogue
derived in this section gives the precise structure of both r and x . However, this
requires the additional condition that f ∈ S0

∗
(R2) and it’s difficult to remove this

condition because the dual Riemann–Liouville transform is not injective on the full
space S∗(R

2). To conquer this difficulty, a different method might be needed.
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