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TATE RESOLUTIONS AND WEYMAN COMPLEXES

DAVID A. COX AND EVGENY MATEROV

We construct generalized Weyman complexes for coherent sheaves on pro-
jective space and describe explicitly how the differentials depend on the
differentials in the corresponding Tate resolution. We apply this to define
the Weyman complex of a coherent sheaf on a projective variety and ex-
plain how certain Weyman complexes can be regarded as Fourier–Mukai
transforms.

Introduction

In this paper we study the relation between the terms and the maps of two very
important complexes in algebra and algebraic geometry: Tate resolutions and Wey-
man complexes. In the first section of the paper, we define the generalized Weyman
complex of a coherent sheaf on projective space and construct an explicit functor
that takes the Tate resolution of the sheaf to its generalized Weyman complex. The
second section then applies this to coherent sheaves on projective varieties and
Fourier–Mukai transforms.

We begin by recalling Tate resolutions and Weyman complexes.

Tate resolutions. Let K be a field of characteristic 0 and W a vector space over
K of dimension N + 1 with dual W ∗. Let E =

∧
(W ∗) be the exterior algebra

of W ∗ and S = Sym(W ) the symmetric algebra of W . We grade E and S so that
elements of W have degree 1 and elements of W ∗ have degree−1. Thus Symk(W )

has the degree k and
∧k
(W ∗) has the degree −k. It is well-known that coherent

sheaves on the projective space P(W ) = (W ∗− {0})/∼ can be described in terms
of graded S-modules. The Bernstein–Gel’fand–Gel’fand (BGG) correspondence
described in [Bernšteı̆n et al. 1978] (see also [Gel’fand and Manin 1988, Chapter 4,
§ 3; Kapranov 1983]) consists of a pair of adjoint functors R and L, which define
an equivalence between the derived category of bounded complexes of finitely
generated S-modules and the category of complexes of graded free E-modules.
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Eisenbud, Fløystad, and Schreyer [2003a] showed that the essential part of the
BGG correspondence is given via the Tate resolution. Namely, a correspondence

R : {sheaves on P(W )} → {complexes of E-modules}

is given by assigning to a coherent sheaf F on P(W ) a bi-infinite complex (the
Tate resolution)

T •(F) : · · · → T p(F)→ T p+1(F)→ · · · , p ∈ Z

of free graded E-modules. By [Eisenbud et al. 2003a, Theorem 4.1] the terms of
the Tate resolution T •(F) are given by

T p(F)=
⊕

i

Ê(i − p)⊗K H i (P(W ),F(p− i)),

where Ê =HomK (E, K )= ωE is a dualizing module for E . Tate resolutions give
constructive methods for computing Beilinson monads [Eisenbud et al. 2003a] and
Chow forms [Eisenbud et al. 2003b], and are also related to Castelnuovo–Mumford
regularity — see [Cox and Materov 2009] for an example.

The description of maps in Tate resolutions is a difficult and challenging prob-
lem. Knowledge of the maps leads to explicit formulas for sparse resultants, as in
Khetan [2003; 2005]. Tate resolutions for Veronese embeddings were described
in [Cox 2007], where it was shown that the maps can be given by the Bezoutian
of homogeneous forms. For Segre embeddings, Cox and Materov [2008] give a
description of the maps via hyperdeterminants.

Weyman complexes. We recall the Weyman complex for a resultant. Let X be an
irreducible projective variety with a very ample line bundle OX (1) and a vector
bundle V. Let W = H 0(X,OX (1)) and set d = dim(X). The incidence variety

Z =
{
( f0, . . . , fd , x) ∈W d+1

× X | f0(x)= · · · = fd(x)= 0
}

gives the commutative diagram of projections

Z

$$

p2

&&

p1

  

W d+1
× X π2

//

π1

��

X

W d+1.

Also let A = Sym((W d+1)∗) be the coordinate ring of the affine space W d+1.
Then Weyman’s Basic Theorem for Resultants [2003, (9.1.2)] states that for the
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free graded A-modules

(0-1) F p(V)=
⊕

i

∧i−p K d+1
⊗K H i (X,V(p− i))⊗K A(p− i)

there exist minimal graded differentials of degree 0,

F p(V)−→ F p+1(V),

such that the resulting complex F•(V), when regarded as a complex of sheaves on
W d+1, satisfies

F•(V)' Rp1∗(p∗2V).

The complex F•(V) has certain functorial properties [Weyman 2003, (9.1.2)] and
can be used to compute resultants [Weyman 2003, (9.1.3)]. Other properties of
F•(V) are described in sections (5.1.3), (5.1.4), (5.1.6) of the same reference.

Weyman writes (0-1) as F−p rather than F p. We use F p to emphasize the
relation to the Tate resolution. The relation becomes clear when we write the
Weyman complex using the projective embedding i : X ↪→P(W ) induced by OX (1).
This gives the sheaf F= i∗V on P(W ), and (0-1) becomes

F p(V)=
⊕

i

∧i−p K d+1
⊗K H i (P(W ),F(p− i))⊗K A(p− i).

In contrast, the Tate resolution of F has

(0-2) T p(F)=
⊕

i

Ê(i − p)⊗K H i (P(W ),F(p− i)).

Our results. Our main results can be summarized as follows:

• First, we give an explicit formula for the differentials in the Weyman complex
in terms of the differentials in the corresponding Tate resolution.

• Second, our construction works for any coherent sheaf F on P(W ) and allows
us to replace W d+1 with W ` for any ` satisfying 1≤ `≤ dim(W )− 1.

The idea is that for 1 ≤ ` ≤ dim(W )− 1, there is an additive functor W` from
the category of finitely generated graded free E-modules and homomorphisms of
degree 0 such that W•`(F)=

(
W`(T •(F)),W`(d p)

)
p∈Z

.
The statement and proof of our main result, Theorem 1.4, is the subject of

Section 1. In Section 2 we define generalized Weyman complexes for irreducible
projective varieties and, in the case of a vector bundle, interpret the Weyman com-
plex as a Fourier–Mukai transform.
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1. Generalized Weyman complexes

1.1. Notation. Fix an integer ` satisfying 1≤ `≤ dim(W )− 1 and let

A` = Sym((W `)∗)

be the coordinate ring of the affine space W `. We give the polynomial ring A` the
usual grading where every variable has degree 1. Note also that W `

= K `
⊗K W ,

so that A` = Sym(K `
⊗K W ∗), provided we identify K ` with its dual using the

standard basis of K `.

1.2. The functor W`. We define an additive functor W` from finitely generated
graded free E-modules and homomorphisms of degree 0 to finitely generated
graded free A`-modules and homomorphisms of degree 0 as follows. For the free
E-module Ê( j), set

W`(Ê( j))=
∧j K `

⊗K A`(− j).

For morphisms, let H and H ′ be finite-dimensional K -vector spaces and let

ϕ : Ê(a)⊗K H −→ Ê(b)⊗K H ′

be an E-module homomorphism of degree 0. By [Eisenbud et al. 2003a, Proposi-
tion 5.6], ϕ is uniquely determined by

ϕ−b : Ê(a)−b⊗K H =
∧a−bW ⊗K H −→ Ê(b)−b⊗K H ′ = H ′.

We define

(1-1) W`(ϕ) :W`(Ê(a))−→W`(Ê(b))

as follows. Recall the comultiplication map

8 :
∧a K `

−→
∧b K `

⊗K
∧a−b K `

and the injective map

9 :
∧a−b K `

⊗K
∧a−bW ∗ −→ Syma−b(K `

⊗K W ∗)= (A`)a−b

coming from the Schur functor decomposition of Syma−b(K `
⊗K W ∗) (see [Wey-

man 2003, (2.3.3)]). Finally, ϕ−b determines ϕ̃−b : H →
∧a−b W ∗⊗ H ′. Putting

these maps together, we get the composition

(1-2)

∧a K `
⊗K H

8⊗ϕ̃−b // ∧b K `
⊗K

∧a−b K `
⊗K

∧a−bW ∗⊗K H ′

1⊗9⊗1
��∧b K `

⊗K (A`)a−b⊗K H ′,
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which in turn determines an A`-module homomorphism of degree 0,

W`(ϕ) :
∧a K `

⊗K H ⊗K A`(−a)−→
∧b K `

⊗K H ′⊗K A`(−b).

This is the desired map (1-1). Note that 9 is given explicitly by

v1∧· · ·∧va−b⊗w1∧· · ·∧wa−b 7→
∑
σ∈Sa−b

sgn(σ ) v1⊗wσ(1) · · · va−b⊗wσ(a−b),

and 8 is given by the formula

v1∧· · ·∧va 7→
∑

sgn(I, I ′) vI⊗vI ′,

where vI = vi1∧· · ·∧vi p , I ={i1, . . . , i p}⊂ {1, . . . , a}, sgn(I, I ′) is the sign of the
permutation whose bottom row is (I, I ′), and I ′= {1, . . . , a}\I is the complement
to I . It follows that we have a completely explicit formula for W`(ϕ).

1.3. Generalized Weyman complexes. We now define the generalized Weyman
complex of a coherent sheaf on P(W ).

Definition 1.1. Let T •(F)= (T p, d p)p∈Z be the Tate resolution of a coherent sheaf
F on P(W ). Then the `-th Weyman complex of F is the complex of free graded
A`-modules given by

W•`(F)=
(
W`(T p),W`(d p)

)
p∈Z
.

Using (0-2), it follows that

Wp
` (F)=

⊕
i

∧i−p K `
⊗K H i (P(W ),F(p− i))⊗K A`(p− i).

Note also that W•`(F) is a complex by functoriality and is minimal since the Tate
resolution T •(F) is minimal. In contrast to the bi-infinite Tate resolution, however,
the Weyman complex is finite. More precisely, one sees easily that

Wp
` (F)= 0 whenever p <−` or p > dim(supp(F)).

Remark 1.2. Our results about W•`(F) are parallel (and were inspired by) the
properties of the functor U•` introduced by Eisenbud and Schreyer [2003b]. They
define this functor on graded free E-modules by

U`(Ê( j))=
∧jU`,

where U` is the tautological subbundle on the Grassmannian G` of codimension
` subspaces of P(W ). When applied to the Tate resolution of a coherent sheaf F

on P(W ), this gives the complex U•`(F) of locally free sheaves on G` defined in
[Eisenbud et al. 2003b]. As we develop the properties of W•`, we will explain how
our functor relates to the corresponding properties of U•`.
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Our first result, similar to [Eisenbud et al. 2003b, Proposition 1.3], shows that
F is uniquely determined by W•`(F) provided ` is sufficiently large.

Proposition 1.3. Let F be a coherent sheaf on P(W ). If ` > dim(supp(F)), then
F is determined by the complex W•`(F).

Proof. A map ϕ : Ê(a)⊗K H→ Ê(b)⊗K H ′ gives W`(ϕ) :W`(Ê(a))→W`(Ê(b)).
We claim that ϕ 7→W`(ϕ) is injective when 0≤ b ≤ a ≤ `.

To prove this, assume that W`(ϕ) is trivial. This implies that the map defined
in (1-2) vanishes. Since 9 is injective, it follows that

8⊗ ϕ̃−b :
∧a K `

⊗K H →
∧b K `

⊗K
∧a−b K `

⊗K
∧a−bW ∗⊗K H ′

is trivial, which in turn implies that

8⊗ϕ−b :
∧a K `

⊗K
∧a−bW ⊗K H →

∧b K `
⊗K

∧a−b K `
⊗K H ′

is trivial. Then the commutative diagram

∧a K `
⊗K

∧a−bW ⊗K H
8⊗1⊗1 //

1⊗ϕ−b

��

∧b K `
⊗K

∧a−b K `
⊗K

∧a−bW ⊗K H

1⊗1⊗ϕ−b
��∧a K `

⊗K H ′
8⊗1 // ∧b K `

⊗K
∧a−b K `

⊗K H ′

and the injectivity of 8 (this uses 0≤ b≤ a ≤ `) show that 1⊗ϕ−b = 0. It follows
that ϕ−b and hence ϕ are trivial, as claimed.

Now we argue as in the proof of [Eisenbud et al. 2003b, Proposition 1.3]. Set
d = dim(supp(F)), so that T−1(F)→ T 0(F) looks like

Ê(d + 1)⊗K H d(P(W ),F(−d − 1)) //

++

((

Ê(d)⊗K H d(P(W ),F(−d))⊕ ⊕
...

++

...⊕ ⊕
Ê(1)⊗K H 0(P(W ),F(−1)) // Ê(0)⊗K H 0(P(W ),F(0)).

Since `>d=dim(supp(F)), all of the maps ϕ in this diagram satisfy 0≤a≤b≤ `,
which means that these maps are determined uniquely by the map

W−1
` (F)→W0

`(F)

in the Weyman complex. Thus the Weyman complex of F determines

T−1(F)→ T 0(F),
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which in turn determines F by usual properties of the Tate resolution (see the proof
of [Eisenbud et al. 2003b, Proposition 1.3] for the details). �

1.4. Main theorem. Now consider the incidence variety

Z` = {( f1, . . . , f`, x) ∈W `
×P(W ) | f1(x)= · · · = f`(x)= 0}

and the commutative diagram of projections

(1-3)

Z`

%%

p2

((

p1

  

W `
×P(W ) π2

//

π1

��

P(W )

W `.

Here is the main theorem of this section.

Theorem 1.4. Let F be a coherent sheaf on P(W ) and assume 1≤`≤dim(W )−1.
Then W•`(F), if regarded as a complex of sheaves on W `, represents Rp1∗(p∗2F)

in the derived category of coherent sheaves on W `.

Before we can prove this theorem, however, we need some preliminary work.

1.5. A special Weyman complex. First observe that since W `
=Spec(A`) is affine,

Rp1∗(p∗2F) can be regarded as a complex of sheaves that computes the cohomology
groups Hq(Z`, p∗2F). The natural action of K×= K \{0} on W ` (and correspond-
ing trivial action on P(W )) makes Hq(Z`, p∗2F) into a graded A`-module. Here
is a special case where this module is known explicitly.

Proposition 1.5. If ` satisfies 1 ≤ ` ≤ dim(W )− 1, then the graded A`-module
Hq(Z`, p∗2�

a
P(W )(a)) is given by

Hq(Z`, p∗2�
a
P(W )(a))=

{∧a K `
⊗K A`(−a)=W`(Ê(a)) q = 0

0 q > 0.

Proof. The proof of [Weyman 2003, (5.1.2)] is easily adapted to show that

Hq(Z`, p∗2�
a
P(W )(a))

is the q-th cohomology of the complex

· · · →

⊕
i≥0

∧i−q K `
⊗K H i (P(W ),�a

P(W )(a+q−i))⊗K A`(q−i)→

⊕
i≥0

∧i−q−1K `
⊗K H i (P(W ),�a

P(W )(a+q+1−i))⊗K A`(q+1−i)→ · · ·(1-4)
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Note dim(P(W )) = N since dim(W ) = N + 1. The Bott vanishing theorem
(proved in many papers, including [Huang 2001]) states that

H i (P(W ),�a
P(W )(k))= 0

whenever

i /∈ {0, a, N } or i = 0, k ≤ a or i = a, k 6= 0 or i = N , k ≥ a− N .

Then the general q-th term of the complex above for i ∈ {0, a, N } reduces to∧
−q K `

⊗K H 0(P(W ),�a
P(W )(a+ q))⊗K A`(q)⊕∧a−q K `

⊗K Ha(P(W ),�a
P(W )(q))⊗K A`(q − a)⊕∧N−q K `

⊗K H N (P(W ),�a
P(W )(a+ q − N ))⊗K A`(q − N ).

We have the following cases with respect to the different i :

• If i = 0, then either
∧
−q K `

= 0 for q > 0, or H 0(P(W ),�a
P(W )(a+ q))= 0

for q ≤ 0 from the Bott vanishing theorem. Therefore, the first summand is
zero for all q .

• If i = a, then the Bott vanishing theorem implies∧a−q K `
⊗K Ha(P(W ),�a

P(W )(q))⊗K A`(q − a)

=

{∧a K `
⊗K Ha(P(W ),�a

P(W ))⊗K A`(−a) if q = 0,
0 if q 6= 0.

• If i = N , then
∧N−q K `

= 0 for q < 0 because we assume that

`≤ dim(W )− 1= N .

If q ≥ 0, then the Bott vanishing theorem says that

H N (P(W ),�a
P(W )(a+ q − N ))= 0.

Our conclusion is that the complex reduces to

· · · −→
∧a K `

⊗K Ha(P(W ),�a
P(W ))⊗K A`(−a)−→ · · · ,

where the nonzero module occurs where q = 0. Since Ha(P(W ),�a
P(W ))= K , it

follows that

Hq(Z`, p∗2�
a
P(W )(a))=

{∧a K `
⊗K A`(−a)=W`(Ê(a)) if q = 0,

0 if q > 0. �
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Corollary 1.6. The derived functor Rp1∗(p∗2�
a
P(W )(a)) is canonically represented

by the complex of graded A`-modules consisting of W`(Ê(a)) concentrated in
degree 0. In other words,

Rp1∗(p∗2�
a
P(W )(a))= p1∗(p∗2�

a
P(W )(a))=W`(Ê(a)).

1.6. Homomorphisms. Proposition 1.5 gives isomorphisms

γ a
:W`(Ê(a))' H 0(Z`, p∗2�

a
P(W )(a)), a ≥ 0.

We next explore how these isomorphisms interact with the homomorphisms W`(ϕ)

from (1-1). The simplest case begins with an element

ψ ∈
∧a−bW ∗,

which gives two maps as follows. To construct the first map, note that ψ induces a
map ϕ−b :

∧a−b W → K , which gives an E-module homomorphism of degree 0,

ϕ : Ê(a)−→ Ê(b).

Applying (1-1), we obtain a graded A`-module homomorphism

W`(ϕ) :W`(Ê(a))−→W`(Ê(b)).

This is the first map. For the second map, we recall the standard exact sequence

(1-5) 0−→�1
P(W )(1)−→W ⊗OP(W ) −→ OP(W )(1)−→ 0.

From contraction with ψ , we get a sheaf morphism

ψ̃ :�a
P(W )(a)−→�b

P(W )(b).

This gives a graded A`-module homomorphism

ψ̂ : H 0(Z`, p∗2�
a
P(W )(a))−→ H 0(Z`, p∗2�

b
P(W )(b)),

which is the second map. These maps are related as follows.

Proposition 1.7. The maps above fit into a commutative diagram:

H 0(Z`, p∗2�
a
P(W )(a))

ψ̂ // H 0(Z`, p∗2�
b
P(W )(b))

W`(Ê(a))

γ a

OO

W`(ϕ) // W`(Ê(b)).

γ b

OO

Proving this will require an intrinsic description of the graded structure of

H 0(Z`, p∗2�
a
P(W )(a))

in terms of Schur functors.
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1.7. Graded structures and Schur functors. For simplicity, we write the exact
sequence (1-5) as

0−→ R−→W ⊗OP(W ) −→ Q−→ 0.

For simplicity, we will use ⊗ to denote both ⊗OP(W )
(for sheaves) and ⊗K (for

vector spaces) in the remainder of the paper. The meaning of ⊗ should be clear
from the context.

One easily sees that Z` ⊆ W `
× P(W ) is the total space of the vector bundle

R`
= K `

⊗ R, and the direct image p2∗(OZ`) can be identified with the sheaves of
algebras Sym((R`)∗)∼=Sym(K `

⊗R∗) (see [Weyman 2003, Proposition 5.1.1(b)]).
Then the projection formula yields

H 0(Z`, p∗2�
a
P(W )(a))' H 0(P(W ), p2∗(p∗2�

a
P(W )(a))

)
= H 0(P(W ),Sym(K `

⊗ R∗)⊗�a
P(W )(a))

=

⊕
k≥0

H 0(P(W ),Symk(K `
⊗ R∗)⊗�a

P(W )(a)).

We identify K ` with its dual using the standard basis. Hence H 0(Z`, p∗2�
a
P(W )(a))

is the graded A`-module whose graded piece in degree k is

(1-6) H 0(Z`, p∗2�
a
P(W )(a))k = H 0(P(W ),Symk(K `

⊗ R∗)⊗�a
P(W )(a)).

Note that R= �1
P(W )(1) has rank N since dim(W ) = N + 1. Combining this

with Q= OP(W )(1), we obtain

�a
P(W )(a)=

∧a R'
∧N−a R∗⊗

∧N R'
∧N−a R∗⊗ Q∗,

where the second equality is standard duality and the third follows from∧N R=�N
P(W )(N )= OP(W )(−N − 1+ N )= OP(W )(−1)= Q∗.

Hence the graded piece (1-6) is

(1-7) H 0(Z`, p∗2�
a
P(W )(a))k = H 0(P(W ),Symk(K `

⊗R∗)⊗
∧N−a R∗⊗Q∗).

We use Schur functors to decompose (1-7), based on [Weyman 2003, Chapter 2].
In Weyman’s [2003] notation, the Schur functor of a partition λ is denoted Lλ. This
is not consistent with [Fulton and Harris 1991], which parametrizes Schur functors
using conjugate partitions. Weyman’s treatment also uses Weyl functors, which
he denotes Kλ. Fortunately, since we are in characteristic 0, there is a canonical
isomorphism Kλ ' Lλ′ , where λ′ is the conjugate partition of λ.

We will also need this consequence of Weyman’s version [2003, Chapter 4] of
the Bott theorem:
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Lemma 1.8. Given a partition π , we have

Hq(P(W ), Lπ (R∗)⊗ Q∗)= 0, q > 0

and

H 0(P(W ), Lπ (R∗)⊗ Q∗)=

{
Lµ(W ∗) if π = (N , µ), µ= (a2, . . . , as),

0 otherwise.

Proof. Write π = (a1, . . . , as). If a1 > N = rank(R∗), then Lπ (R∗) = 0 and we
are done. Hence we may assume a1 ≤ N . This allows us to write the conjugate
partition as

π ′ = (b1, . . . , bN ), b1 ≥ · · · ≥ bN ≥ 0.

If we set α = (b1, . . . , bN , 1), then Weyman [2003, p. 115] defines the vector
bundle

V(α)= Kπ ′(R
∗)⊗ Q∗.

Using the relation between Weyl and Schur functors noted above, we write this as

V(α)= Lπ (R∗)⊗ Q∗.

There are now two cases to consider.

Case 1: If a1 < N , then bN = 0, so that α = (b1, . . . , bN−1, 0, 1). Then part (1) of
[Weyman 2003, (4.1.8)] implies that Hq(P(W ), Lπ (R∗)⊗ Q∗)= 0 for all q ≥ 0.
See also the discussion of item (1) of [Weyman 2003, (4.1.5)].

Case 2: If a1 = N , then bN ≥ 1, so that α is nonincreasing. Here, part (2) of
[Weyman 2003, (4.1.8) and (4.1.4)] imply that Hq(P(W ), Lπ (R∗)⊗ Q∗) = 0 for
q > 0 and that

H 0(P(W ), Lπ (R∗)⊗ Q∗)= K(b1−1,...,bN−1)(W ∗)⊗
(∧N+1W

)⊗(−1)
.

One easily sees that (b1− 1, . . . , bN − 1)′ = (a2, . . . , as)= µ. Hence

K(b1−1,...,bN−1) = L(b1−1,...,bN−1)′ = Lµ,

and the lemma follows since
∧N+1 W ' K . �

We now decompose (1-7) by writing Symk(K `
⊗ R∗)⊗

∧N−a R∗ in terms of
Schur functors and then apply Lemma 1.8. We begin with the Cauchy formula

Symk(K `
⊗ R∗)=

⊕
|λ|=k

Lλ(K `)⊗ Lλ(R∗),

where the direct sum is over all partitions λ of k [Weyman 2003, (2.3.3)]. Then
the Pieri formula gives

Lλ(R∗)⊗
∧N−a R∗ =

⊕
π∈Y (λ,N−a)

Lπ (R∗),
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where the direct sum is over all partitions π ∈ Y (λ, N −a) whose Young diagram
is obtained by adding N − a boxes to the Young diagram of λ, with no two boxes
in the same column [Weyman 2003, (2.3.5)]. Combining these, we have

(1-8) Symk(K `
⊗ R∗)⊗

∧N−a R∗⊗ Q∗

=

⊕
|λ|=k

( ⊕
π∈Y (λ,N−a)

Lλ(K `)⊗ Lπ (R∗)⊗ Q∗
)
.

Taking global sections and applying Lemma 1.8, we get a Schur functor decom-
position of the graded piece (1-7).

When we do this, Lemma 1.8 tells us that we need only consider partitions λ
of k such that adding N − a boxes to a partition λ gives a partition π of the form
π = (N , a2, . . . , as). This has some nice consequences for the graded pieces (1-7):

• If k< a, then adding N−a boxes to λ gives a partition π of k+N−a< N , so
that π is never of the form π = (N , a2, . . . , as). Then (1-8) and Lemma 1.8
easily imply that the graded piece (1-7) in degree k < a vanishes, that is,

H 0(Z`, p∗2�
a
P(W )(a))k = 0.

• If k= a, then adding N−a boxes to λ gives a partition π of a+N−a= N , so
that π is of the form π = (N , a2, . . . , as) if and only if λ= (a) and π = (N ).
Then (1-8) and Lemma 1.8 imply that the graded piece in degree a is

H 0(Z`, p∗2�
a
P(W )(a))a = H 0(P(W ), L(a)(K `)⊗ L(N )(R∗)⊗ Q∗)

= L(a)(K `)⊗ H 0(P(W ), L(N )(R∗)⊗ Q∗)

=
∧a K `

⊗ L(0)(W ∗)=
∧a K `,

since L(a)(K `)=
∧a K ` and L(0)(W ∗)=

∧0 W ∗ = K .

These bullets explain the shift by a in the isomorphism

H 0(Z`, p∗2�
a
P(W )(a))'

⊕
k≥0

H 0(P(W ),Symk(K `
⊗ R∗)⊗

∧N−a R∗⊗ Q∗)

'
∧a K `

⊗ A`(−a)=W`(Ê(a))

from Proposition 1.5.

1.8. We turn to the proof of Proposition 1.7 For

γ a
:W`(Ê(a))' H 0(Z`, p∗2�

a
P(W )(a)),

the analysis above shows that the degree k component of γ a is an isomorphism

γ a
k :
∧a K `

⊗ (A`)k−a ' H 0(P(W ),Symk(K `
⊗ R∗)⊗

∧N−a R∗⊗ Q∗
)
.
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Furthermore, Lemma 1.8 and (1-8) give a Schur functor decomposition of the right-
hand side, and the Cauchy and Pieri formulas also give a Schur functor decomposi-
tion of the left-hand side, since (A`)k−a = Symk−a(K `

⊗W ∗). The isomorphisms
γ a

k are clearly compatible with these decompositions.

Proof of Proposition 1.7. Since W`(Ê(a)) is generated in degree a, it suffices to
show that the diagram commutes in degree a. Using (1-7), the map

ϕ̃−b : K →
∧a−b W ∗

induced by ψ , and the maps 8 and 9 from diagram (1-2), we can write this as

H 0(Syma(K `
⊗R∗)⊗

∧N−a R∗⊗Q∗)
ψ̂ // H 0(Syma(K `

⊗R∗)⊗
∧N−b R∗⊗Q∗)

∧b K `
⊗Syma−b(K `

⊗W ∗)

γ b
a

OO

∧a K `

8⊗ϕ̃−b

//

γ a
a

OO

W`(ϕ)
33

∧b K `
⊗
∧a−b K `

⊗
∧a−bW ∗.

1⊗9

OO

We have simplified notation by omitting P(W ) when we write sheaf cohomology.
To prove commutativity, first recall that in the Schur functor decomposition of

the cohomology group on the top left, the only partition λ that appears is λ = (a)
and that the top left cohomology group can be replaced with

H 0(Syma(K `
⊗ R∗)⊗

∧N−a R∗⊗ Q∗)=
∧a K `.

This maps to the λ= (a) part of the cohomology group on the top right, where the
only element π ∈ Y (λ, N −b) of the form π = (N , a2, . . . , as) is π = (N , a−b).
Hence the top right cohomology can be replaced with

H 0(∧a K `
⊗ L(N ,a−b)(R

∗)⊗Q∗
)
=
∧a K `

⊗ L(a−b)(W ∗)=
∧a K `

⊗
∧a−bW ∗.

The map between these cohomology groups is clearly 1⊗ ϕ̃−b. Furthermore, one
sees that the only way the partition λ= (a) occurs in the Schur decomposition of∧b K `

⊗Syma−b(K `
⊗W ∗)

is via the map ∧b K `
⊗Syma−b(K `

⊗W ∗)

∧a K `
⊗
∧a−bW ∗

8⊗1 // ∧b K `
⊗
∧a−b K `

⊗
∧a−bW ∗.

1⊗9

OO

From here, the desired commutativity follows easily. �
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1.9. Proof of the main theorem. We now have all of the tools needed for our main
result.

Proof of Theorem 1.4. The key idea of the proof (taken from [Eisenbud et al. 2003b,
Theorem 1.2]) is to replace a coherent sheaf F on P(W ) with its Beilinson monad,
which is the complex of sheaves B•(F) on P(W ) with

B p(F)=
⊕

i

H i (F(p− i))⊗�i−p
P(W )(i − p),

and differentials coming from the corresponding differentials in the Tate resolution
via the correspondence

ϕ : Ê(a)⊗ H → Ê(b)⊗ H ′ 7−→ ψ̃ :�a
P(W )(a)⊗ H →�b

P(W )(b)⊗ H ′

defined as follows: ϕ : Ê(a)⊗ H→ Ê(b)⊗ H ′ induces ψ : H→
∧a−b W ∗⊗ H ′,

and contraction with ψ gives ψ̃ :�a
P(W )(a)⊗ H →�b

P(W )(b)⊗ H ′. Theorem 6.1
of [Eisenbud et al. 2003a] is Beilinson’s result that B•(F) is exact except at p= 0,
where the homology is F. It follows that

Rp1∗(p∗2F)= Rp1∗(p∗2 B•(F))

in the derived category. Since B•(F) consists of direct sums of sheaves �a
P(W )(a),

Corollary 1.6 implies that

Rp1∗(p∗2 B•(F))= p1∗(p∗2 B•(F)),

where p1∗(p∗2 B p(F)) is the sheaf associated to the graded A`-module⊕
i

H i (F(p− i))⊗W`(Ê(i − p))=W`(T p(F)).

Furthermore, Proposition 1.7 easily implies that the differentials in this complex
come from the Tate resolution via the W` functor. This completes the proof of the
theorem. �

This theorem implies the following uniqueness result for our generalized Wey-
man complexes.

Corollary 1.9. The complex W•`(F) is the unique minimal free complex quasi-
isomorphic to Rp1∗(p∗2 B•(F)).

Proof. The proof is similar to the proof of [Weyman 2003, (5.2.5)]. �

2. Properties of generalized Weyman complexes

In Section 1, we worked with coherent sheaves on projective space, yet Weyman
complexes were originally defined for vector bundles on projective varieties. For-
tunately, the theory of Section 1 adapts easily to projective varieties.



TATE RESOLUTIONS AND WEYMAN COMPLEXES 65

2.1. Generalized Weyman complexes for irreducible projective varieties. Let X
be an irreducible projective variety with a very ample line bundle OX (1). Let W =
H 0(X,OX (1)) and fix an integer 1≤ `≤ dim(W )− 1. The incidence variety

Z` = {( f1, . . . , f`, x) ∈W `
× X | f1(x)= · · · = f`(x)= 0}

gives the commutative diagram of projections

Z`

##

p2

&&
p1

��

W `
× X π2

//

π1

��

X

W `.

Also let A` = Sym((W `)∗) be the coordinate ring of the affine space W `.

Theorem 2.1. For every coherent sheaf G on X , there is a complex W•`(G) with
the following properties:

(1) W•`(G) is functorial in G.

(2) W•`(G) is a minimal complex of free graded A`-modules.

(3) Wp
` (G)=

⊕
i
∧i−p K `

⊗ H i (X,G(p− i))⊗ A`(p− i).

(4) When we regard W•`(G) as a complex of sheaves on W `, we have

W•`(G)' Rp1∗(p∗2G).

(5) W•(G) is the unique minimal free graded complex of A`-modules quasi-iso-
morphic to Rp1∗(p∗2 B•(G)).

(6) If ` > dim(supp(G)), then G is determined up to isomorphism by W•`(G).

(7) Let i : X ↪→ P(W ) be the projective embedding induced by OX (1), and write
the Tate resolution of i∗G on P(W ) as

T p(i∗G)=
⊕

i

Ê(i − p)⊗ H i (X,G(p− i)).

Then W•`(G) = W`(T •(i∗G)). In particular, the differentials in W•`(G) are
completely determined by the corresponding differentials in the Tate resolu-
tion.

(8) When G is a vector bundle, W•`(G) is isomorphic to the complex constructed
by Weyman [1989; 1994; 2003].

Proof. This follows from Proposition 1.3, Theorem 1.4, and Corollary 1.9. �
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Definition 2.2. W•`(G) is the `-th generalized Weyman complex of G.

2.2. The excluded case. All of our results assume ` ≤ dim(W ) − 1. Here we
discuss the complications that arise when `= dim(W )= N + 1.

First observe that Proposition 1.5 fails when ` = dim(W ). To see why, set
`= dim(W )= N + 1 in (1-4) to obtain

· · · −→ 0−→
∧N+1K N+1

⊗ H N (P(W ),�a
P(W )(a− N − 1))⊗ AN+1(−N − 1)

−→
∧a K N+1

⊗ Ha(P(W ),�a
P(W ))⊗ AN+1(−a)−→ 0−→ · · · ,

where the displayed terms are in degrees q =−1, 0. Note also that

H N (P(W ),�a
P(W )(a− N − 1))'

∧aW and Ha(P(W ),�a
P(W ))' K .

Since Hq(Z N+1, p∗2�
a
P(W )(a)) is the q-th cohomology of this complex, it follows

that the isomorphism of Proposition 1.5 is replaced with an exact sequence

0→
∧N+1K N+1

⊗
∧aW ⊗ AN+1(−N − 1)→

WN+1(Ê(a))→ H 0(Z N+1, p∗2�
a
P(W )(a))→ 0.

It follows that Corollary 1.6 needs to be replaced with a similar exact sequence.
We suspect that the proof of Theorem 1.4 could be adapted to this situation, though
the proof would be considerably more complicated.

From the point of view of resultants, however, the assumption `≤ dim(W )− 1
is not overly restrictive. When one has a vector bundle on P(W ) and `= dim(W ),
our theory does not apply, but one still has the classical Weyman complex [1989;
1994; 2003]. Since the resultant is just a power of the determinant in this case, we
do not lose much by excluding `= dim(W ).

2.3. Weyman complexes and the Fourier–Mukai transform. Here we observe
that the Weyman complex W•`(V) can be regarded as a Fourier–Mukai transform
when V is a vector bundle on an irreducible projective variety X .

We begin with the definition of a Fourier–Mukai transform [Huybrechts 2006,
Section 5]. Denote by Db(A) a bounded derived category of coherent sheaves of a
scheme A.

Definition 2.3. Let M and N be projective varieties. Given the two projections

p : M × N → M, q : M × N → N ,

and an object P ∈ Db(M × N ), the Fourier–Mukai transform is the functor

8P : Db(M)→ Db(N ), E• 7→ Rq∗(p∗E•⊗L P).

The object P is called a Fourier–Mukai kernel of the Fourier–Mukai transform.
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Notice that if P is a complex of locally free sheaves, then⊗L is the usual tensor
product. Also, p∗ is the usual pull-back as the projection map p is flat.

Denote by W the set of global sections of the very ample line bundle OX (1) on
X and recall the basic diagram of projections

Z`

##

p2

&&

p1

��

W `
× X π2

//

π1

��

X

W `,

for the incidence variety

Z` = {( f1, . . . , f`, x) ∈W `
× X | f1(x)= · · · = f`(x)= 0}.

Theorem 2.4. Let X , W and Z` be as above and assume 1 ≤ ` ≤ dim(W )− 1. If
V is a vector bundle on X , then the complex W•`(V) represents the Fourier–Mukai
transform

8OZ`
(V)= Rπ1∗(π

∗

2 V⊗L OZ`)

with respect to the kernel OZ` .

Proof. We have seen that W•`(V), when regarded as a complex in Db(W `), repre-
sents

Rp1∗(p∗2V)' Rπ1∗(π
∗

2 V⊗ OZ`).

However, V is locally free, which implies that the same is true for π∗2 V. Hence
F 7→ π∗2 V⊗ F is an exact functor, so that π∗2 V⊗− = π∗2 V⊗L

−. The theorem
follows immediately. �

This theorem implies that we can compute the Fourier–Mukai transform of V

for the kernel OZ` using the Tate resolution of i∗V on P(W ).
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