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KNOT 4-GENUS AND THE RANK OF CLASSES IN W(Q(t))

CHARLES LIVINGSTON

The Witt rank ρ(w) of a class w in the Witt group W(F) of a field with
involution F is the minimal rank of a representative of the class. In the case
of the Witt group of hermitian forms over the rational function field Q(t),
we define an easily computed invariant r(w) and prove that, modulo torsion
in the Witt group, r determines ρ; more specifically, ρ(4w) = r(4w) for all
w ∈ W(Q(t)). The need to determine the Witt rank arises naturally in the
study of the 4-genus of knots; we illustrate the application of our algebraic
results to knot theoretic problems, providing examples for which r provides
stronger bounds on the 4-genus of a knot than do classical signature bounds
or Ozsváth–Szabó and Rasmussen–Khovanov bounds.

1. Introduction.

For a knot K ⊂ S3, the 4-genus g4(K ) of K is the minimum genus of a smoothly
embedded surface in B4 bounded by K . Although the study of this invariant has
been a focus of knot theoretic research for over 50 years, it remains an intractable
invariant to compute; for instance, the determination of the 4-genus for knots with
10 or fewer crossings has just been recently completed, with even the computation
for individual knots being the subject of papers, for instance [Kawamura 1998].

The depth of continuing interest in the 4-genus is indicated by the application
of the deepest tools now available in low-dimensional topology: Kronheimer and
Mrowka’s study [1993] of 4-dimensional gauge theory, Ozsváth and Szabó’s de-
velopment [2003] of Heegaard–Floer theory, and Rasmussen’s work [2010] on
Khovanov homology have each been used to establish Milnor’s conjecture that
g4(Tp,q)= (|p| − 1)(|q| − 1)/2 for torus knots Tp,q .

Work in the 1960s identified the central role of algebraically defined Witt groups
to understanding the 4-genus. As we will review in a brief appendix, to each
knot K there is naturally associated a Witt class wK ∈ W (Q(t)), the Witt group
of hermitian forms over the rational function field, having involution induced by
t→ t−1. (Here wK is represented by the matrix (1− t)VK + (1− t−1)V t

K , where
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VK is an integer matrix associated to K , the Seifert matrix.) A fundamental result
states g4(K )≥ 1

2ρ(wK ), where ρ is defined as follows:

Definition 1. For a classw∈W (F), the rank ρ(w) ofw is the minimum dimension
of a square hermitian matrix representing w.

For a given class w, determining ρ(w) can be very difficult; the most effective
tools for bounding ρ(w) are based on bounds on signature functions associated
to w. A few of the early papers that applied signatures to the 4-genus are [Levine
1969; Milnor 1968; Murasugi 1965; Taylor 1979; Tristram 1969; Trotter 1962].

The goal of this paper is to more closely examine the function ρ(w). We define
an easily computed invariant r(w), which provides stronger bounds on ρ(w) than
were previously known. We then prove that r(w) completely determines ρ(w),
modulo torsion in the Witt group. More precisely, our main result states this:

Theorem. For all w ∈W (Q(t)), we have ρ(w)≥ r(w) and ρ(4w)= r(4w).

Outline. Let W (F) denote the Witt group of nonsingular hermitian bilinear forms
over a field F with (possibly trivial) involution. In the case of F = R or F = C

(with involution given by conjugation), a relatively simple exercise shows that
ρ(w) = σ(w), where σ is the signature. For F = Q the situation is more com-
plicated. The diagonal form w with diagonal [1,−2] is not Witt trivial, and thus
ρ(w)=2, but σ(w)=0; note however that since σ(w)=0, w represents an element
of order four in W (Q), and thus ρ(4w)= 0. More generally, ρ(4w)= σ(4w) for
w ∈W (Q). Details are presented in Section 2.

The arguments in Section 2 are fairly basic, but they illustrate the structure of
the proof of our main theorem regarding W (Q(t)). In Section 3 we will set the
notation to be used throughout the paper and define the function r . We will also
discuss explicit means for computing r . In Section 4 we will prove the first part
of the main theorem: ρ(w) ≥ r(w) for w ∈ W (Q(t)). Following this we have
a realization result, showing in Section 5 that for any form w, there is a form
w′ having an identical signature function and for which ρ(w′)= r(w′). Finally, in
Section 6 it is shown that a class with trivial signature function represents 4-torsion
in W (Q(t)). The main theorem is an immediate consequence of this result.

The paper concludes with Section 7, which describes how ρ leads naturally to a
norm on W (Q(t))⊗Q and then Section 8 presenting examples of the computation
of this norm, with specific applications to determining the 4-genus of low-crossing
number knots.

2. The proof that ρ(4w)= σ(4w) for w ∈W(Q).

The proof that ρ(4w) = r(4w) for w ∈ W (Q(t)) is in structure the same as the
proof that ρ(4w) = 4σ(w) for w ∈ W (Q). The proof we give here is broken up
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into three mains steps corresponding to Sections 4, 5 and 6. A fourth concluding
step is identical in both settings.

Theorem 2. If w ∈W (Q), then ρ(4w)= 4σ(w).

Proof. The proof requires three facts.
First, ρ(w)≥ σ(w). For w ∈W (Q) this is immediate from the definition of the

signature. In the case of W (Q(t)) the corresponding proof will reduce to a careful
algebraic calculation, based on the details of the definition of r(w) given in the
next section. The argument occupies Section 4.

Second, if w ∈ W (Q), there is a class w′ ∈ W (Q) with σ(w) = σ(w′) and
ρ(w′)= σ(w′). The form w′ is simply the form represented by the identity matrix
of dimension σ(w). In the case of W (Q(t)), the construction of the appropriate
form w′ for which r(w)= r(w′) and ρ(w′)= r(w′) is more delicate.

Third, if σ(w) = 0 then 4w = 0. This depends on the structure of W (Q). As
described for instance in [Milnor and Husemoller 1973], there is a split short exact
sequence

0→W (Z)→W (Q)→
⊕

p

W (Fp),

where Fp is the finite field with p elements, p a prime integer. The groups W (Fp)

are all 4-torsion, and W (Z)∼= Z, with the isomorphism given by the signature. In
the case of W (Q(t)), the exact sequence is replaced with the sequence

0→W (Z[t, t−1
])→W (Q(t))→

⊕
α

W (Q(α)),

where the α are all unit complex roots of symmetric irreducible rational polynomi-
als. For the analysis of these Witt groups, we turn to the references [Conner 1979;
Litherland 1984; Ranicki 1998].

Conclusion: Since the signatures are the same, we have 4w = 4w′ ∈ W (Q).
Certainly ρ(4w′) ≥ 4σ(w′), but by construction, 4w′ has a representative of rank
exactly 4σ(w′). The desired equality follows. The argument in the case of W (Q(t))
is identical. �

3. Definition of r(w).

Definition 3. For a nonsingular matrix A with entries in Q(t) that is hermitian
with respect to the involution induced by t → t−1, the signature function σ ′A(t)
is defined by σ ′A(t) = signature(A(e2π i t)). This is well-defined function on [0, 1

2)

except at the finite set of points that correspond to poles among the entries A.

Since A is hermitian, σ ′ is symmetric about 1
2 ; this justifies the restriction to

the interval [0, 1
2). As given in the next definition, taking averages and differences

gives the Levine [1969] and Milnor [1968] signature functions. (According to
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Figure 1. Example of a signature function.

Matumoto [1977] the jumps in the Levine signature function are determined by
the Milnor signatures. Notice that the factor of 1

2 in the definition of Jω implies
that Jω(t) represents half the jump in the signature function at t .)

Definition 4. If w ∈W (Q(t)), and A is a matrix representing the class w, then we
let

(1) σw(t)= 1
2(limτ↓t σ

′

A(τ )+ limτ↑t σ
′

A(τ )) and

(2) Jw(t)= 1
2(limτ↓t σ

′

A(τ )− limτ↑t σ
′

A(τ )).

(3) For t = 0 we define σw(0)= limτ↓0 σ
′

A(τ ) and Jw(0)= 0.

An elementary argument shows that these functions are well defined; that is,
σw(t) and Jw(t) depend only on the class in W (Q(t)) represented by the matrix A.

Example. Figure 1 illustrates a possible signature function on the interval [0, 1
2).

We will construct a class with signature function having such a graph later, being
more specific about the points αi . For the specific matrix used, the values of the
signatures at the discontinuities will not be known, but upon averaging, the values
will be as shown in the figure. In particular, the values of the jumps at the five
discontinuities are [1, 1, 1,−3, 1].

To define the function r : W (Q(t)) → Z≥0 we need to focus on the set of
discontinuities of the signature function and include in that set the value t = 0
for technical reasons. That set has a natural decomposition, indexed by symmetric
irreducible rational polynomials. Throughout this paper polynomials will be Lau-
rent polynomials p(t) ∈ Q[t, t−1

], and symmetric means p(t) = p(t−1). We will
view these polynomials as defined on the unit complex circle.

Definition 5. For w ∈ W (Q(t)), let Tw denote the (finite) set of discontinuities
of σw(t). For each t ∈ Tw, e2π i t is an algebraic number with rational irreducible
polynomial. For each symmetric irreducible polynomial δ, let

Tw,δ = {t ∈ Tw | δ(e2π i t)= 0}.

Given this we can define r .
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Definition 6. Let w ∈W (Q(t)).

(1) For each δ, set rδ(w)=maxt∈Tw,δ {|σw(t)|} +maxt∈Tw,δ {|Jw(t)|}.

(2) r(w)=maxδ{rδ(w), σω(0)}.

Example. Consider the graph of the signature function illustrated in Figure 1. We
assume that the five jumps occur at the roots of the same irreducible symmetric
polynomial. (We will see that as part of a general realization result, Theorem 12,
such an example does occur. For example, the α can be primitive 22-roots of units,
the zeros of the cyclotomic polynomial φ22(t). This is the Alexander polynomial of
the torus knot T2,11, although this torus knot does not have this signature function.)
In this example, the values of the signatures (at the αi along with the value at 0)
are [0, 1, 3, 5, 3, 1] and the values of the jumps are [1, 1, 1,−3, 1].

The value of r for this example will be

max {1, 3, 5, 3, 1}+max{1, 1, 1, 3, 1})= 5+ 3= 8.

Notice that this is greater than the maximum absolute value of the signature func-
tion, which is 6.

Computations. For any hermitian matrix A representing a class in W (Q(t)), stan-
dard mathematical computer packages can be used to diagonalize A and to arrange
that the diagonal entries are Laurent polynomials. Factoring these diagonal entries
and removing factors of the form f (t) f (t−1) ensures that these diagonal entries
have factorizations as δ1(t) · · · δn(t), so that the δi are distinct symmetric polyno-
mials (δi (t−1) = δi (t)) with exponent one. By symmetry, the values of the δi at
points on the unit circle are real, and thus the signs can be determined (that is, the
numerical approximation of δi (eiθ ) will be given as a+εi for some small ε, which
can be ignored in the determination of the sign.) With this, the signature function
can be approximated with necessary accuracy. At this same time, the roots of the δi

on the unit circle will be identified. These computation are sufficient to completely
determine the value of r([A]).

4. Proof that r(w) bounds ρ(w) for w ∈W(Q(t)).

Theorem 7. For any matrix representative A of a class w ∈ W (Q(t)), we have
dim(A)≥ r(w).

Proof. To simplify notation, we will let σt = σw(t), σ+t = limτ↓t σw(τ ), and
σ−t = limτ↑t σw(τ ). (For instance, for the signature function in Figure 1, we have
σ−α2
= 2 and σ+α2

= 4.)
Since A is a hermitian matrix with entries in Q(t), we can diagonalize A, clear

denominators, and remove square factors and factors of the form f (t) f (t−1) in the
diagonal entries. Thus, there is a diagonalization where each diagonal entry factors
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as the product of distinct symmetric irreducible rational polynomials. Let D be
one such diagonalization. Note that the discontinuities of the signature function
can occur only at roots of the diagonal factors.

Let Tw={α1, . . . , αk} be the set of discontinuity points for the signature function
on [0, 1

2).
Let δ be an irreducible symmetric polynomial such that σw(t) has a discontinuity

at t0 and δ(e2π i t0)= 0. By reordering, we can assume that D has diagonal

[ f1δ, f2δ, . . . , fmδ, g1, . . . , gn],

where each fi and gi is a product of distinct irreducible symmetric polynomials,
none of which are δ.

Let α ∈ Tw,δ. Evaluating the diagonal at e2π iα− , where α− is a number close to
but smaller than α, we denote the count of positive entries in [ f1δ, f2δ, . . . , fmδ]

by m+ and the number of negative entries by m−. Similarly, we denote the number
of positive entries in [g1, . . . , gn] by n+ and the number of negative entries by n−.

Here are some elementary calculations:

m++m− = m, n++ n− = n, σ−α = m++ n+−m−− n−.

If we switch from α−α to α+α , the only change in signs occurs because of the
change in the sign of δ at e2π iα, and thus the signs of all the diagonal entries with
δ factors change, so that we have m− positive entries and m+ negative entries. It
follows, using a little arithmetic for the second calculation, that

σ+α = m−+ n+−m+− n− and Ja= (m−−m+).

Note that Ja =m mod 2. Then by simply substituting for m, Ja, n, and σ−a in each
we verify that

m± = 1
2 m∓ 1

2 Ja and n± = 1
2 n± (1

2σ
−

a +
1
2 Ja).

Given that m± and n± are nonnegative, we have

1
2 m ≥ | 12 Ja| and 1

2 n ≥ | 12σ
−
a +

1
2 Ja| =

1
2 |σa|.

These equations hold at each α ∈ Tw,δ, so, multiplying by 2 and taking the
maximums we find

m ≥ max
α∈Tw,δ

|Jα| and n ≥ max
α∈Tw,δ

|σα|

This proves the theorem, except we have not dealt yet with the signature at 0.
But clearly ρ(w) ≥ σw(0), the signature of A evaluated near 1 (that is, (σ(0)), so
the proof is complete. �
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5. Realization result

We now want to show that every step function s(t) satisfying certain criteria occurs
as the signature function for some class w ∈ W (Q(t)) and that ρ(w) = r(w) for
that class.

Definition 8. For a step function s(t), let Js(t)= 1
2(limτ↓t s(τ )− limτ↑t s(τ )).

Definition 9. We defined S to be the set of integer-valued step functions defined
on [0, 1

2) such that if s ∈ S, then

(1) the set of discontinuities of s is finite and s is continuous at t = 0;

(2) s(t)= 1
2(limτ↓t s(τ )+ limτ↑t s(τ )) for all t ;

(3) Js(t) ∈ Z for all t ;

(4) if Js(t) 6= 0, then e2π i t is the root of an irreducible symmetric rational poly-
nomial; and

(5) if α1 and α2 satisfy δ(e2π iαi ) = 0 for some symmetric irreducible rational
polynomial δ, then Js(α1)≡ Js(α2) mod 2.

The definitions in the previous section were given purely in terms of the sig-
nature function of a class w ∈ W (Q(t), so the definition extends to S as now
described.

Definition 10. Let s ∈ S.

• Define Ts = {t | Js(t) 6= 0}.

• For an irreducible symmetric polynomial δ, define Ts,δ={t ∈Ts | δ(e2π i t)=0}.

• For each δ, define rδ(s)=maxt∈Ts,δ {|s(t)|} +maxt∈Ts,δ {|Js(t)|}.

• Define r(s)=maxδ{rδ(s), s(0)}.

Lemma 11. For all s ∈ S, we have r(s)≡ s(0) mod 2.

Proof. Since Js(t) ∈ Z and 2Js(α) is the jump in the signature function at each
discontinuity α, s(t) ≡ s(0) mod 2 if t is not a point of discontinuity. Thus, at
each discontinuity α, s(α) + Js(α) = s(α)+ ≡ s(0) mod 2. For each δ and all
α1, α2 ∈ Ts,δ we have Js(α1)≡ Js(α2) mod 2. It follows that s(α1)≡ s(α2) mod 2.

For a fixed δ, we have rδ(s) = maxt∈Ts,δ {|σs(t)|} +maxt∈Ts,δ {|Jw(t)|}, and we
have now seen that mod 2, all the terms in the set of values over which the maxima
are being taken are equal. Thus, if α ∈ Ts,δ, then rδ(s)≡ σs(α)+ Js(α) mod 2. We
have already seen that this sum equals s(0), modulo 2.

Finally, since r(s) = maxδ{rδ(s), s(0)} and each of these elements equal s(0)
modulo 2, the maximum also equals s(0) modulo 2. �

Theorem 12. Suppose that s ∈ S. There exists a hermitian matrix A of rank r(s)
having signature function s.
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Proof. To construct A we begin with the diagonal matrix D0 of rank r(s) in which
δi appears as a factor of exponent one of the first maxα∈Ts,δi

|Js(α)| entries. If
this condition taken over all i does not specify all the entries of D0, we make the
remaining entries all 1.

Next, we change the sign of some of the diagonal entries to form D1 so that the
signature near 1 is s(0). This is possible, since by the previous lemma, r(s)= s(0)
mod 2.

To continue the modification, we must introduce a family of polynomials by

qθ (t)= t−1
− 2 cos(2πθ)+ t for 0< θ < 1

2 .

For a dense set of θ , qθ (t) is a rational polynomial having its only root on the
upper half circle at e2πθ i . For t close to 0, qθ (e2π ti ) is positive and for t close to 1

2 ,
it is negative.

If some of the diagonal entries of D1 are multiplied by qθ (t), the value of the
signature is unchanged for t < θ . The signature can change for values of t > θ .
However, jumps can continue to appear only at the roots of the δi , as well as θ ,
possibly. Constructing the desired form consists of making such modifications to
create a form with signature function s(t).

Suppose that e2παi is a root of δ, one of the δi , corresponding to a nontrivial
jump. Suppose also that the form Di has been constructed so that its signature
function agrees with s for all t <α. We want to alter Di , building Di+1, so that its
signature function is unchanged for t < α and has the same jump at α as s(t); that
is, Jα. Pick a θ < α with α− θ small.

Suppose that the first m entries of Di are the ones divisible by δ, and that the
number of remaining entries is n. If the desired form Di+1 is to have a jump of
2Jα at α, then (when evaluated at a point α− close to but less than α) the number
of positive and negative entries in Di+1 among the first m diagonal entries must be
m+ = 1

2 m− 1
2 Jα and m− = 1

2 m+ 1
2 Jα. Similarly, if the signature to the left of α is

to be s−α , we must have the number of positive and negative entries among the last
n diagonal entries of Di+1 be n+ = 1

2 n + 1
2 s−α +

1
2 Jα and n− = 1

2 n − 1
2 s−α −

1
2 Jα.

(Recall that the jump is determined by the first m entries, since only those change
sign as t increases near α.)

The desired sign distribution of the diagonal can be achieved by multiplying
some of the diagonal entries by qθ (t). The only concern is that each of the numbers

m+ = 1
2 m− 1

2 Jα, n+ = 1
2 n+ 1

2 s−α +
1
2 Jα,

m− = 1
2 m+ 1

2 Jα, n− = 1
2 n− 1

2 s−α −
1
2 Jα

must be nonnegative. This will be the case as long as m≥| 12 Jα| and n≥|s−α +
1
2 Jα|,

which is ensured by our initial choice of the dimension of D0 to be r(s). (Note
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that in the definition of r(s) one of the two maximum is over the numbers s(α),
and s(α)= s−α + Jα.) Since s−α is unchanged, no jump has been introduced at θ . �

6. The proof that ρ(4w)= r(4w).

Theorem 13. For w ∈W (Q(t)), we have ρ(4w)= r(4w).

Proof. For the given form w, we apply Theorem 12 to the function s = σw(t) to
find a hermitian matrix A of dimension r(w). If we denote the class represented
by A in W (Q(t)) by w′, then σw′(t)= σw(t).

It follows that σw⊕−w′(t)= 0. Lemma 14 below then shows that w⊕w′ repre-
sents an element of order 1, 2, or 4 in W (Q(t)). Thus, 4w= 4w′ ∈W (Q(t)). Since
w′ is constructed to have a representative of rank r(w′), clearly ρ(4w′) ≤ 4r(w′).
On the other hand, if follows immediately from the definition of r that r(nw) =
nr(w) for any w ∈W (Q(t)). Thus we have ρ(4w′)≥ r(4w′)= 4r(w′). The proof
of the theorem is complete, given the next lemma. �

Lemma 14. For a class w ∈W (Q(t)), if σw(t)= 0, then 4w = 0 ∈W (Q(t)).

Proof. Background for the structure of Witt groups is contained in [Milnor and
Husemoller 1973] for symmetric bilinear forms. The specifics in the case of her-
mitian forms are contained in [Litherland 1984]. A more complete description is
in Ranicki’s book [1998], with the details of the structure of hermitian forms over
number rings presented in [Conner 1979].

For each symmetric irreducible δ ∈Q[t, t−1
], there is a homomorphism

∂δ :W (Q(t))→W (Q[t, t−1
]/〈δ(t)〉),

defined as follows. If w ∈ W (Q(t)) is represented by a diagonal matrix A with
diagonal entries [δ f1, . . . , δ fm, g1, . . . , gn], where each fi and gi is a symmetric
irreducible polynomial prime to δ, then ∂(w)= [ f1, . . . , fm]. This induces a split
exact sequence

0→W (Q[t, t−1
])→W (Q(t))→

⊕
δ

W (Q[t, t−1
]/〈δ(t)〉).

According to [Ranicki 1998] (see also [Litherland 1984] for an elementary ar-
gument) the inclusion W (Q)→ W (Q[t, t−1

]) is an isomorphism, so the previous
sequence can be rewritten as

0→W (Q)→W (Q(t))→
⊕
δ

W (Q[t, t−1
]/〈δ(t)〉).

The field Q[t, t−1
]/δ(t) is an algebraic extension Q(α) of Q, a field with in-

volution given by α→ α−1. If we denote by F the fixed field of the involution,
an element in the Witt group of hermitian forms over this Q(α) is of finite order
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(actually 4-torsion) if and only for all complex embeddings of Q(α) that restrict
to a real embedding of F , the signature of the corresponding complex hermitian
form is 0. This condition on the embedding implies that α maps to a unit complex
root of δ.

Since the jump function for w is 0 at all unit roots of δ, it is then clear that
the signature of ∂δ(w) is also 0. It follows that w maps to an element of finite
order in

⊕
δ W (Q[t, t−1

]/〈δ(t)〉). In particular, w ∈ W (Q[t, t−1
]) ∼= W (Q). But

any element in the image of W (Q) has constant signature function, and in our
case this implies that 4w is represented by a class in W (Q) with 0 signature. But
W (Q)∼= Z⊕T , where T is the torsion subgroup of W (Q) and satisfies 4T = 0. It
now follows that as desired 4w = 0 ∈ W (Q(t)), using the fact the exact sequence
is split exact. �

7. ρ as a norm on W(Q(t)).

In order to compare r as a bound on ρ with bounds based on the maximum of the
signature function, we want to view these functions as norms on a vector space.

The function r on W (Q(t)) is multiplicative: r(nw) = nr(w) for n ∈ Z. Thus
r induces a well-defined rational-valued function on WQ(Q(t)) = W (Q(t))⊗Q.
The same is not true for ρ since it can be nonzero on torsion elements in W (Q(t)),
but we can define a stable version of ρ by ρs(w) =

1
4ρ(4w). It follows then by

Theorem 2 that ρs(w)= r(w), so ρs also determines a well-defined rational-valued
function on WQ(Q(t)).

If we define s(w)=max(|σw(t)|), then s also defines a function on WQ(Q(t)).

Theorem 15. For all w ∈WQ(Q(t)), we have ρs(w)≥ s(w).

Proof. Suppose the maximum value of |σw(t))| occurs at t0 and α0 is the largest
value of a discontinuity that is less than t0. Then σw(t0) ≤ σw(α0)+ Jw(α0). The
conclusion now follows from the definition of r(w) (which equals ρs(w)). �

Recall that a norm on a vector space V is a function ν satisfying ν(v) ≥ 0 for
all v ∈ V , ν(v) = 0 if and only if v = 0, and ν(v +w) ≤ ν(v)+ ν(w) for all v
and w. An immediate consequence of Lemma 14 is the following.

Theorem 16. Both ρs and s are norms on WQ(Q(t)).

Definition 17. If ν is a norm on a vector space V , the unit ball of ν is defined by
Bν = {v ∈ V | ν(v)≤ 1}.

8. Knot theoretic application; an example contrasting ρs and s.

Here we illustrate the strength of r over basic signature bounds in determining the
rank of a Witt class. We begin with a specific class w1⊕w2, defined below. We
then expand on this to consider all linear combinations xw1⊕ yw2.
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8.1. Construction and results for w1⊕w2. Let δ6(t)= t−1
− 1+ t and let δ10 =

t−2
−t−1

+1−t+t2. These are the sixth and tenth cyclotomic polynomials, having
roots at e2π i t for t = 1

6 and t = 1
10 ,

3
10 , respectively, on [0, 1

2).
Let w1 be the class in W (Q(t)) with diagonal representative [−δ10δ6,−δ6, 1, 1]

and let w2 be the class with diagonal [−δ10, 1]. The graphs of the signature func-
tions of w1, w2, and w1 ⊕w2 are illustrated in below. These signature functions
occur for the knots −51, 10132, and −51⊕ 10132. (The choice of signs simplifies
some of the calculations that follow.)

2

4

1/10 3/10

2

4

1/10 3/10

2

4

1/10 3/10

The maximum absolute values of the signature for these three forms are seen
to be s(w1) = 4, s(w2) = 2, and s(w1⊕w2) = 4. In the first two cases we have
the same result for r : r(w1) = 4 and r(w2) = 2. However, for w1⊕w2 the set of
jumps at the tenth roots of unity are {2, 0} and the signatures at the tenth roots of
unity are {2, 4}. Thus, the sum of the two maximum is r(w1⊕w2)= 6.

These calculations lead to the following theorem, where the knots 51 and 10132

are as found in the tables at [Cha and Livingston 2009].

Theorem 18. The Witt rank of w1⊕w2 is ρ(w1⊕w2)= 6. In particular, the knot
−51#10132 has 4-genus 3.

Proof. The algebraic statements are demonstrated in the discussion preceding the
statement of the theorem. For the geometric result it follows from the algebra that
g4(−51#10132)≥ 3. But it is known (for example, see [Cha and Livingston 2009])
that g4(51)= 2 and g4(10132)= 1, so g4(−51#10132)≤ 3. �

Comment. This topological result can be obtained by using Ozsváth–Szabó in-
variants [2003] or Khovanov–Rasmussen invariants [2010], which apply only in
the smooth category. In the topological category, neither the Murasugi nor the
Tristram–Levine signatures [Levine 1969; Murasugi 1965; Tristram 1969] can give
this genus bound.

8.2. The values of ρs and s on the span of w1 and w2 in WQ(Q(t)). We now
compute and compare the values of ρs = r and s on the span of w1 and w2 in
WQ(Q(t)). Both are determined by their unit balls.

The value of s(xw1+ yw2) for x, y ∈Q is given by

s(xw1+ yw2)=max{|2x + 2y|, |4x |}.
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For the value of r we sum the maximum absolute value of the signature at the
points t = 1

10 and t = 3
10 , and the maximum absolute value for the jump func-

tion at those two points. The result is r(xw1 + yw2) = max{|x + y|, |3x + y|} +
max{|x + y|, |x − y|}. The unit balls for these norms are drawn below; the larger
region represents the s ball, and the smaller hatched region is the ρs ball.

(1/2 , 0)

(-1/2 , 0)

(0 , 1/2)

(0 , -1/2)

(-1/4 , 1/2)

(-1/4 , 3/4)

(1/6 , 1/6)

In this figure, we see that the point (1
4 ,

1
4) is in the unit s ball; as seen earlier,

the s(w1 ⊕w2) = 4. Also, as we computed, (1
4 ,

1
4) is not in the unit ρs ball, but

( 1
6 ,

1
6) is, since ρs(w1⊕w2)= 6.

Another interesting point in the diagram is (− 1
4 ,

3
4). The graph of the signature

function of −w1⊕ 3w2 is illustrated in Figure 2. The maximum absolute value of
the signature is 4, but the value of ρs is max{2, 0}+max{2, | − 4|} = 6.

2

4

1/10 3/10

-4

Figure 2. Signature function for −w1⊕ 3w2.

Knot theoretic comment. This calculation implies that g4(51 + 3(10132)) ≥ 3.
A straightforward knot theoretic exercise then shows that g4(51 ⊕ 3(10132)) ≤ 3.
This presents another example for which r detects the 4-genus of a knot, but signa-
tures do not. More interestingly, in this case the Ozsváth–Szabó and Rasmussen–
Khovanov invariants are both insufficient to determine the 4-genus; both turn out
to give a lower bound of 1.
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Appendix: Witt class invariants of knots

Here we summarize the geometric background related to W (Q(t)) invariants of
knots. Details can be found in such references as [Rolfsen 1990].

Every smooth oriented knot K ⊂ S3 bounds a smoothly embedded oriented
surface F ⊂ S3. There is a Seifert pairing V : H1(F) × H1(F) → Z given by
V (x, y) = lk(x, i+(y)), where i+ is the map F → S3

− F given by pushing off
in the positive direction and lk is the linking number. A simple observation is that
the intersection number of classes x, y ∈ H1(F) is given by V (x, y)−V (y, x). In
particular, any matrix representation of V has determinant ±1.

Suppose the genus of F is n1, and K = ∂G, where G is properly embedded in
B4 and is of genus n2. Then F ∪ G is a closed surface in B4, and it bounds an
embedded 3-manifold M⊂ B4. An argument using Poincaré duality shows that the
kernel K of the inclusion H1(F ∪G,Q)→ H1(M,Q) is of dimension (n1+ n2).
Since H1(F) is a 2n1-dimensional subspace of H1(F ∪G), which is of dimension
2(n1+ n2), a simple linear algebra argument shows that K′ = K∩ H1(F,Q) is of
dimension at least n1− n2.

Another simple geometric argument implies that V vanishes on the subspace
of K′ ⊂ H1(F,Q). If we now write V for a matrix representation of the Seifert
pairing, the form (1− t)V +(1− t−1)V defines a Hermitian pairing on the rational
function field. As above, if K bounds a surface of genus n2 in B4, then this forms
vanishes on a subspace in H1(F,Q) of dimension (n1− n2). Thus the form splits
as a direct sum of forms, one of which is metabolic and of dimension 2(n1− n2);
the other summand is of dimension 2n1− 2(n1− n2)= 2n2.

In summary, we see that if a knot K bounds a surface of genus g in B4, then the
Witt class of its hermitianized Seifert form has a representative of dimension 2g.
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