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A major goal in the theory of Toeplitz operators on the Bergman space over
the unit disk D in the complex plane C is to competely describe the com-
mutant of a given Toeplitz operator, that is, the set of all Toeplitz operators
that commute with it. In [2007], the first author characterized the commu-
tant of a Toeplitz operator T that has a quasihomogeneous symbol φ(r)ei pθ

with p > 0, in case it has a Toeplitz p-th root S with symbol ψ(r)eiθ : The
commutant of T is the closure of the linear space generated by powers Sn

that are Toeplitz. But the existence of a p-th root was known until now only
when φ(r) = rm with m ≥ 0. Here we will show the existence of p-th roots
for a much larger class of symbols, for example, those symbols for which

φ(r)=
k∑

i=1

rai (ln r)bi , where 0≤ ai, bi for all 1≤ i ≤ k.

1. Introduction

Let D be the unit disk in the complex plane C, and let d A = rdrdθ/π be the
Lebesgue area measure normalized so that D has unit measure. Let L2

a be the
Bergman space, the Hilbert space of functions that are analytic on D and square
integrable with respect to d A. We denote the inner product in L2(D, d A) by 〈 · , · 〉.
It is well known that L2

a is a closed subspace of the Hilbert space L2(D, d A), and
the set {

√
n+ 1zn

| n ≥ 0} of functions is an orthonormal basis. Let P be the
orthogonal projection from L2(D, d A) onto L2

a . For a bounded function f on D,
the Toeplitz operator T f with symbol f is defined by

T f (h)= P( f h) for h ∈ L2
a.

A symbol f is said to be quasihomogeneous of order p an integer if it can be
written as f (reiθ ) = ei pθφ(r), where φ is a radial function on D. In this case,
the associated Toeplitz operator T f is also called quasihomogeneous Toeplitz of
order p. Quasihomogeneous Toeplitz operators were first introduced in [Louhichi
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and Zakariasy 2005] while generalizing the results of [C̆uc̆ković and Rao 1998].
We assume p > 0 from now on.

For a given a quasihomogeneous operator T of degree p, we seek a quasi-
homogeneous operator S of degree 1 such that S p

= T . Louhichi [2007] proved
that if any such root exists, it is unique up to a multiplicative constant. Using the
results in [C̆uc̆ković and Rao 1998], Louchichi also proved the existence of p-th
roots for the case φ(r) = rm for any arbitrary m ≥ 0 and p > 0. Here we plan to
deal with more general φ(r).

2. The Mellin transform and two lemmas

For any two functions f (r) and g(r) defined on I = [0, 1], we define the Mellin
convolution by

( f ∗M g)(r)=
∫ 1

r
f
(r

t

)
g(t)dt

t
.

Often we are interested in knowing when the Mellin convolution is a bounded
function in the interval I . We say a function f is of type (a, b) with a ≥ 0 and
b > 0 if

| f (r)| ≤ Cra(1− r)b−1 on I ,

where C is a constant depending on f . Also we express the same thing as

f (r)� ra(1− r)b−1,

omitting the constants and the absolute value signs.

Lemma A. Suppose f (r) is of type (a, b) and g(r) is of type (c, d). Then{
( f ∗M g) is of type (min{a, c}, b+ d) if a 6= c, and

( f ∗M g)(r)� rmin{a,c}(1− r)b+d−1 ln(e/r) if a = c.

This can be generalized to any finite product as follows: Suppose for 1≤ i ≤ n,
fi (r) is of type (ai , bi ). Then their Mellin convolution product h(r) satisfies

(1) h(r)� rα(1− r)β−1
(

ln
(e

r

))n−1

where α = min{ai } and β =
∑

bi . Further, if we know that the number of ai that
are equal to min{ai } is (say) l, the estimate (1) can be improved to

h(r)� rα(1− r)β−1
(

ln
(e

r

))l−1
. (2)

Thus the log term will disappear if l = 1.

Remark 2.1. Most of the time our aim is to prove h is bounded; the presence of
log does not interfere with that aim since α > 0, which bounds h(r) near zero,
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and if we assume further that β ≥ 1, it would be bounded near 1 also. But log
cannot be avoided. Take for example fi (r)= r for every i and compute the Mellin
convolution product. It turn out to be r(ln r)n−1/(n− 1)!, by a simple integration.

Lemma B. Let fi (r)= rai (1− r)bi−1, where ai and bi are positive for 1 ≤ i ≤ n.
Let α and β be as defined in Lemma A. Let h be the Mellin covolution product of
the fi . For any integer k ≥ 0, the k-th derivative of h satisfies

h(k)(r)� rα−k(1− r)β−k−1
(

ln
(e

r

))n−1
.

Here the implied constant depends on k and h.

3. Applications of Lemmas A and B

The Mellin transform φ̂ of a radial function φ in L1([0, 1], rdr) is defined by

φ̂(z)=
∫ 1

0
φ(r)r z−1 dr =M(φ)(z).

It is well known that for these functions the Mellin transform is well-defined on the
right half-plane {z : Re z ≥ 2} and analytic on {z : Re z > 2}. The Mellin transform
φ̂ is uniquely determined by its values on any arithmetic sequence of integers. In
fact we have the following classical theorem [Remmert 1998, page 102].

Theorem 3.1. Suppose f is a bounded analytic function on {z : Re z > 0} that
vanishes at the pairwise distinct points z1, z2, . . . , where

(1) inf{|zn|}> 0 and

(2)
∑

n≥1 Re(1/zn)=∞.

Then f vanishes identically on {z : Re z > 0}.

Remark 3.2. One can apply this theorem to prove that if φ ∈ L1([0, 1], rdr) and
if there exist n0, p ∈ N such that

φ̂(pk+ n0)= 0 for all k ∈ N,

then φ̂(z)= 0 for all z ∈ {z : Re z > 2} and so φ = 0.

It is easy to see that the Mellin transform converts the Mellin convolution product
into a pointwise product, that is,

̂(φ ∗M ψ)(r)= φ̂(r)ψ̂(r).

A direct calculation shows that a quasihomogeneous Toeplitz operator acts on the
elements of the orthogonal basis of L2

a as a shift operator with a holomorphic
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weight. In fact, for p ≥ 0 and for all k ≥ 0, we have

Tei pθφ(z
k)= P(ei pθφzk)=

∑
n≥0

(n+ 1)〈ei pθφzk, zn
〉zn

=

∑
n≥0

(n+ 1)
∫ 1

0

∫ 2π

0
φ(r)r k+n+1ei(k+p−n)θ dθ

π
drzn

= 2(k+ p+ 1)φ̂(2k+ p+ 2)zk+p.

Now we are ready to start with a relatively easy example.

3.1. Assuming φ(r) = r + r2, find the p-th roots of Tei pθφ . If there exists a
bounded radial function ψ such that (Teiθψ)

p
= Tei pθφ , then

(Teiθψ)
p(zk)= Tei pθφ(z

k) for all k ≥ 0.

Since

(Teiθψ)
p(zk)=

(p−1∏
j=0

(2k+ 2 j + 4)ψ̂(2k+ 2 j + 3)
)

zk+p,

we obtain for all integers k ≥ 0

(2k+ 2p+ 2)φ̂(2k+ p+ 2)=
(p−1∏

j=0

(2k+ 2 j + 4)ψ̂(2k+ 2 j + 3)
)
,

which is equivalent to

φ̂(2k+ p+ 2)∏p−2
j=0 (2k+ 2 j + 4)

=

p−1∏
j=0

ψ̂(2k+ 2 j + 3).

Note that p is a positive integer and that our discussion is trivial for p = 1. So
p ≥ 2. By setting z = 2k+ 3, we notice that the function

f (z)=
φ̂(z+ p− 1)∏p−2
j=0 (z+ 2 j + 1)

−

p−1∏
j=0

ψ̂(z+ 2 j)

is holomorphic and bounded in the right half-plane and vanishes for z = 2k + 3,
for k any nonnegative integer. Now by Theorem 3.1, we get f (z)≡ 0. Therefore

(2) (z+ 2p− 1)φ̂(z+ p− 1)=
(p−1∏

j=0

(z+ 2 j + 1)ψ̂(z+ 2 j)
)
.
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If we divide the (2) by the equation obtained by replacing z by z+ 2 in (2), we
obtain after cancelation that in the right half-plane

(3)
ψ̂(z+ 2p)
ψ̂(z)

=
(z+ 1)φ̂(z+ p+ 1)

(z+ 2p− 1)φ̂(z+ p− 1)
for Re z > 0.

Since

φ̂(z)= 1
z+1
+

1
z+2
=

2z+ 3
(z+ 1)(z+ 2)

,

it follows that, for Re z > 0,

ψ̂(z+ 2p)
ψ̂(z)

=
(z+ 1)

(z+ 2p− 1)
(2z+ 2p+ 5)

(z+ p+ 2)(z+ p+ 3)
(z+ p)(z+ p+ 1)
(2z+ 2p+ 1)

.

Letting λ(ζ )= ψ̂(2pζ ), this equation becomes, for Re ζ > 0,

λ(ζ + 1)
λ(ζ )

=
(2pζ + 1)(4pζ + 2p+ 5)(2pζ + p)(2pζ + p+ 1)

(2pζ + 2p− 1)(2pζ + p+ 2)(2pζ + p+ 3)(4pζ + 2p+ 1)
.

Using the well-known identity 0(z+1)= z0(z), where 0 is the Gamma function,
we can write

(4)
λ(ζ + 1)
λ(ζ )

=
F(ζ + 1)

F(ζ )
for Re ζ > 0,

where

F(ζ )=
0(ζ + a1)0(ζ + a2)0(ζ + a3)0(ζ + a4)

0(ζ + a′1)0(ζ + a′2)0(ζ + a′3)0(ζ + a′4)
,

and the ai are in increasing order

2
4p
,

2p
4p
,

2p+ 2
4p

,
2p+ 5

4p

respectively and the a′i are in almost increasing order

2p+ 1
4p

,
2p+ 4

4p
,

4p− 2
4p

,
2p+ 6

4p

respectively for i = 1, . . . , 4. We shall show in a moment that F(ζ ) is a bounded
holomorphic function in the right half-plane. Granting that, Equation (4) combined
with [Louhichi 2007, Lemma 6, page 1468] implies exists a constant C such that

(5) λ(ζ )= C F(ζ ) for Re ζ > 0.

A basic observation is that the quotient of two Gamma functions

0(ζ + ai )

0(ζ + a′i )
, where 0< ai < a′i ,
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is a constant times the Beta function

B(ζ + ai , a′i − ai )=

∫ 1

0
xζ+ai−1(1− x)a

′

i−ai−1 dx .

According to our definition of the Mellin transform, B(ζ+ai , a′i−ai ) is the Mellin
transform of xai (1− x)a

′

i−ai−1, which is of type (ai , a′i − ai ). Since ai < a′i for
i = 1, . . . , 4 (in fact, a′3 ≥ a3 if and only if 2p ≥ 4, which is always true), each
of the Beta functions is a bounded holomorphic function in the right half-plane
and F(ζ ), which is a constant times the product of these four Beta functions, is a
bounded holomorphic function in the right half-plane. Equation (5) implies that

λ(ζ )= C
4∑

i=1

B(ζ + ai , a′i − ai ),

where C is a constant. Since the product of Mellin transforms equals the Mellin
transform of the Mellin convolution product, we have

λ(ζ )= Ch(ζ ),

where h is the convolution product of four functions of type (ai , a′i − ai ) for i =
1, . . . , 4. Now Lemma A tells us that

h(r)� rmin{ai }(1− r)
∑

i (a
′

i−ai )−1 ln(e/r).

Because
∑

i a′i − ai = 1, we have

h(r)� rmin{ai } ln(e/r),

and hence h is a bounded function. Therefore the function ψ , if it exists, satisfies
the equation

ψ̂(2pζ )= Cĥ(ζ )

for some constant C , which is equivalent to∫ 1

0
ψ(r)r2pζ−1dr = C

∫ 1

0
h(t)tζ−1dt.

Now, by a change of variables t = r2p, we obtain∫ 1

0
ψ(r)r2pζ−1dr =

∫ 1

0
h(r2p)r2pζ−12pdr.

Thusψ(r)=2ph(r2p), and soψ is bounded. Hence the operator Teiθψ is a genuine
Toeplitz operator and a p-th root of Tei pθφ .
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3.2. p-th roots of Tei pθφ , where φ̂(z) is a proper rational fraction. Such functions
are plenty. For example, take8(r)= ra ln(r)b, where a> 0 and b is a nonnegative
integer. By integration by parts we see that 8̂(z)= (−1)bb!/(a+ z)b+1.

Assume we are given a radial function φ(r) such that φ̂(r) is a proper rational
function. Recall that if there is a radial function ψ such that (Teiθψ)

p
= Tei pθφ , then

we have Equation (3), which is

ψ̂(z+ 2p)= ψ̂(z)
(z+ 1)φ̂(z+ p+ 1)

(z+ 2p− 1)φ̂(z+ p− 1)
for Re z > 0.

Here we are assuming φ̂(z)= P(z)/Q(z), where

P(z)=
m∏

j=1

(z+ a j ) and Q(z)=
n∏

k=1

(z+ bk)

with 1≤ m < n. So,

ψ̂(z+ 2p)= ψ̂(z)
(z+ 1)

(z+ 2p− 1)
P(z+ p+ 1)Q(z+ p− 1)
P(z+ p− 1)Q(z+ p+ 1)

=
(z+ 1)

(z+ 2p− 1)

m∏
j=1

z+ a j + p+ 1
z+ a j + p− 1

n∏
k=1

z+ bk + p− 1
z+ bk + p+ 1

Let λ(ζ )= ψ̂(2pζ ). Then the equality above becomes

λ(ζ + 1)
λ(ζ )

=
(2pζ + 1)

(2pζ + 2p− 1)

m∏
j=1

2pζ + a j + p+ 1
2pζ + a j + p− 1

n∏
k=1

2pζ + bk + p− 1
2pζ + bk + p+ 1

=
F(ζ + 1)G(ζ )
F(ζ )G(ζ + 1)

,

where

F(ζ )=
0(ζ + A0)

0(ζ + A′0)

n∏
k=1

0(ζ + Bk)

0(ζ + B ′k)
and G(ζ )=

m∏
j=1

0(ζ + A′j )

0(ζ + A j )
,

A0 =
1

2p
, A′0 =

2p− 1
2p

,

A j =
a j + p+ 1

2p
, A′j =

a j + p− 1
2p

,

Bk =
bk + p− 1

2p
, B ′k =

bk + p+ 1
2p

for 1≤ j ≤ m and 1≤ k ≤ n.
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Note that any quotient of two Gamma functions, say,

0(ζ +α)

0(ζ + γ )
= β(ζ +α, γ −α)0(γ −α)

is a bounded holomorphic function in the right half-plane if α and γ−α are positive.
Hence both F(ζ ) and G(ζ ) are bounded holomorphic functions in the right half-
plane if we assume all A j , A′j , Bk, B ′k are positive. We will assume that.

Therefore, by [Louhichi 2007, Lemma 6, page 1468], λ is a constant times the
quotient of m + n + 1 Gamma functions in the numerator and about the same in
the denominator, as follows:

(6) λ(ζ )= C
0(ζ + A0)

0(ζ + A′0)

m∏
j=1

0(ζ + A j )

0(ζ + A′j )

n∏
k=1

0(ζ + Bk)

0(ζ + B ′k)
.

Based on the argument of the previous subsection, we would like to write each
quotient of two Gamma functions as a constant times a Beta function. In order to
do that, we must assume that all A j and Bk are positive for every 0 ≤ j ≤ m and
1≤ k ≤ n. Moreover, we observe that

A′0− A0 =
p− 1

p
, A′j − A j =−

1
p
, B ′k − Bk =

1
p
.

So each quotient of two Gamma functions in Equation (6) can be written as a
constant times a Beta function except those involving A j for 1 ≤ j ≤ m. We
fix this matter by noting that 0(ζ + A′j + 1) = (ζ + A′j )0(ζ + A′j ), and so here
A′j + 1− A j = (p− 1)/p. Hence, Equation (6) becomes

λ(ζ )∏m
j=1(ζ + A′j )

= C
0(ζ + A0)

0(ζ + A′0)

m∏
j=1

0(ζ + A j )

0(ζ + A′j + 1)

n∏
j=1

0(ζ + B j )

0(ζ + B ′j )
.

As in the previous subsection, this quotient of m + n + 1 Gamma functions on
the numerator and the same in the denominator, respectively would be the Mellin
transform of the convolution product of m + n + 1 functions of type (ai , bi ). Let
us call it h. By Lemma A, we have

h(r)� r A(1− r)B−1
(

ln
(e

r

))m+n
,

where A =min{A j }, which is definitely positive, and B is given by

A′0−A0+

m∑
j=1

A′j+1−A j+

n∑
k=1

B ′k−Bk = (m+1)
p− 1

p
+

n
p
=m+1+

n−m− 1
p

.
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Therefore we obtain

h(r)� r A(1− r)m+(n−m−1)/p
(

ln
(e

r

))m+n
= r A(1− r)m+υ

(
ln
(e

r

))m+n
,

where υ = (n−m− 1)/p is a nonnegative number. Using Lemma B, we see that
h has all derivatives of order not exceeding m and they satisfy the inequality

r j h( j)(r)� r A(1− r)m− j+υ
(

ln
(e

r

))m+n
.

Further the function ψ , were it to exist, would satisfy the equation

(7) ψ̂(2pζ )= C
( m∏

j=1

(ζ + A′j )
)

ĥ(ζ ).

Now it is easy to check by integration by parts the identity

ζ ĥ(ζ )=−M
(

r dh
dr

)
(ζ )

provided h vanishes at 1 and rh′ is bounded in (0, 1). Thus in the current case,
letting h′ = Dh, where D = d/dr , we can see

(ζ + A′j )ĥ(ζ )=M((A′j − r D)h)(ζ )

and ( m∏
j=1

(ζ + A′j )
)

ĥ(ζ )=M

( m∏
j=1

(A′j − r D)h
)
(ζ ).

Let us set

H(r)=
( m∏

j=1

(A′j − r D)h
)
(r),

which allows us to rewrite Equation (7) as∫ 1

0
ψ(r)r2pζ−1dr = C

∫ 1

0
H(t)tζ−1 dt.

Now, by a change of variables t = r2p, we obtain∫ 1

0
ψ(r)r2pζ−1dr = C

∫ 1

0
H(r2p)r2pζ−12pdr.

Thusψ(r)=2pC H(r2p), and hence is bounded and the operator Teiθψ is a genuine
Toeplitz operator and a p-th root of Tei pθφ .
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4. Proof of Lemma A for two functions

We start by proving Lemma A for functions f and g of type (a, b) and (c, d)
respectively, where a, b, c and d are all positive. A similar thing was discussed in
[C̆uc̆ković and Rao 1998, pages 210-212] but with less generality since the goal
was different.

Let h(r) = ( f ∗M g)(r). By definition of the Mellin convolution, it is easy to
see that

h(r)�
∫ 1

r

(r
t

)a(
1− r

t

)b−1
tc(1− t)d−1 dt

t
,

which after changing variables as t−r
1−r
= u and using the consequent identities

t = r + u− ru, t − r = u(1− r), 1− t = (1− u)(1− r), dt = (1− r)du

while keeping r fixed, leads to

h(r)�
∫ 1

r

(r
t

)a(
1− r

t

)b−1
tc(1− t)d−1 dt

t

=

∫ 1

r

(r
t

)a( t−r
t

)b−1
tc(1− t)d−1 dt

t

=

∫ 1

0
rat−aub−1(1− r)b−1t−b+1tc(1− u)d−1(1− r)d−1(1− r)du

t

= ra(1− r)b+d−1
∫ 1

0
tc−a−bub−1(1− u)d−1du.

We have the following cases.

• c− a− b ≥ 0. Since 0≤ t ≤ 1, we have

h(r)� ra(1− r)b+d−1,

and hence h is of type (a, b+ d).

• c− a− b < 0. Assuming c− a > 0 and noting that t ≥ u, we obtain

h(r)� ra(1− r)b+d−1
∫ 1

0
uc−a−bub−1(1− u)d−1 du

≤ ra(1− r)b+d−1
∫ 1

0
uc−a−1(1− u)d−1 du

= ra(1− r)b+d−1 B(c− a, d),

and therefore h is of type (a, b+ d).
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Now in case c= a, consider any number ε in 0<ε ≤ b. Noticing that t ≥ r
and u > 0, we have

h(r)� ra(1− r)b+d−1
∫ 1

0
t−bub−1(1− u)d−1 du

� ra(1− r)b+d−1
∫ 1

0
t−ε tε−bub−1(1− u)d−1 du

≤ ra(1− r)b+d−1
∫ 1

0
r−εuε−bub−1(1− u)d−1 du

≤ ra(1− r)b+d−1r−ε
∫ 1

0
uε−1(1− u)d−1 du

≤ ra(1− r)b+d−1 B(ε, d)r−ε .

Now since εB(ε, d) = 0(ε + 1)0(d)/0(ε+ d) is holomorphic as a function
of ε in a neighborhood of the interval (0, b), there exists a constant C such
that εB(ε, d)≤ C on that interval, and therefore

h(r)≤ Cra(1− r)b+d−1r−εε−1 for every 0< ε ≤ b.

Here we emphasize the fact that C does not depend on r and ε as long as
0 < r < 1 and 0 < ε ≤ b. For a fixed but arbitrary r , let E(ε) = r−εε−1 and
m(r)=min(0,b] E(ε). Then

(8) h(r)≤ Cra(1− r)b+d−1m(r).

Moreover the function E decreases in the interval (0,−1/ln r) and increases
in the interval (−1/ln r ,+∞). Further −1/ln r ≤ b if and only if r ≤ e−1/b.
Thus Equation (8) implies that

h(r)� ra(1− r)b+d−1m(r)≤ ra(1− r)b+d−1e ln(1/r) if r ≤ e−1/b,

h(r)� ra(1− r)b+d−1r−bb−1
≤ ra(1− r)b+d−1e/b if r > e−1/b,

Combining these two results, we obtain

h(r)� ra(1− r)b+d−1(e ln(1/r)+ e/b)

� ra(1− r)b+d−1 ln(e/r) for all 0< r < 1.

5. Lemma A for the Mellin convolution product of more than two functions

In this context we can assume that the function fi , of type (ai , bi ), is given by

fi (x)= xai (1− x)bi−1 for 1≤ i ≤ n.
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The Mellin convolution product of these n functions is defined by a repeated inte-
gral

(9) h(r)=
∫ 1

r

∫ 1

r/x1

∫ 1

r/x1x2

· · ·

∫ 1

r/x1x2···xn−2

f1(x1) f2(x2) · · · fn−1(xn−1) fn

( r
x1 · · · xn−1

)dxn−1

xn−1
· · ·

dx3

x3

dx2

x2

dx1

x1

As in the case of two functions where we changed variables as u= (t−r)/(1−r),
we change variables so that the new integral is over the unit cube I n−1, where
limits of integration do not depend on other variables. Let y0 = 1 and inductively
define yi =

∏i
j=1 xi for i ≥ 1. Now we change variables as

xi =
r

yi−1
+

(
1− r

yi−1

)
ξi for i ≥ 1,

so that the limits for each ξi are 0 and 1. Further we note

yi − r = xi yi−1− r = (yi−1− r)ξi for i ≥ 0.

Set η0 = 1 and ηi =
∏i

j=1 ξi for i ≥ 1. It is easy to show, by induction on i , that

yi − r = (1− r)ηi for all i ≥ 1.

Further

(10) (1− xi )= (1− ξi )
(

1− r
yi−1

)
=
(1− ξi )(1− r)ηi−1

yi−1
for all i ≥ 1.

Thus

fi (xi )= xai
i (1− xi )

bi−1
=

( yi

yi−1

)ai
((1− ξi )(1− r)ηi−1

yi−1

)bi−1
for 1≤ i ≤ n−1.

But for i = n, we have

fn(xn)=
( r

yn−1

)an
(

1− r
yn−1

)bn−1

=

( r
yn−1

)an
( yn−1− r

yn−1

)bn−1
=

( r
yn−1

)an
(
(1− r)ηn−1

yn−1

)bn−1
.

Writing the product of functions in (9) in terms of ξi , ηi , r and yi for 1≤ i ≤ n−1
yields

(11) ran

n−1∏
i=1

η
bi+1−1
i

n−1∏
i=1

yai−ai+1−bi+1+1
i

n−1∏
i=1

(1− ξi )
bi−1

n∏
i=1

(1− r)bi−1.
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Using equalities of (10), we calculate the differential form

(12)
n−1∧
i=1

dxi

xi
=

n−1∧
i=1

(1− r)ηi−1dξi

xi yi−1
= (1− r)n−1

n−1∏
i=1

ηi−1

yi

n−1∧
i=1

dξi .

From (9), (10), and (11) we derive

(13) h(r)= ran (1− r)b1+···+bn−1
∫

I n−1
η

bn−1
n−1

n−2∏
i=1

η
bi+1
i

×

n−1∏
i=1

yai−ai+1−bi+1
i

n−1∏
i=1

(1− ξi )
bi−1

n−1∧
i=1

dξi .

Let us assume that the ai are arranged in decreasing order. Then

η
bi+1
i yai−ai+1−bi+1

i ≤ 1

since ηi ≤ yi ≤ 1. Therefore

h(r)≤ ran (1− r)b1+···+bn−1
∫

I n−1
η

bn−1
n−1 yan−1−an−bn

n−1

n−1∏
i=1

(1− ξi )
bi−1

n−1∧
i=1

dξi .

Here four cases have to be discussed.

Case 1: an−1− an − bn ≥ 0. In this case

h(r)≤ ran (1− r)b1+···+bn−1
∫

I n−1
η

bn−1
n−1

n−1∏
i=1

(1− ξi )
bi−1

n−1∧
i=1

dξi

≤ ran (1− r)b1+···+bn−1
n−1∏
i=1

0(bn)0(bi )

0(bn + bi )
.

Case 2: an−1− an − bn < 0 and an−1 6= an . Then

h(r)≤ ran (1− r)b1+···+bn−1
∫

I n−1
yan−1−an−bn

n−1 η
bn−1
n−1

n−1∏
i=1

(1− ξi )
bi−1

n−1∧
i=1

dξi

≤ ran (1− r)b1+···+bn−1
∫

I n−1
η

an−1−an−bn
n−1 η

bn−1
n−1

n−1∏
i=1

(1− ξi )
bi−1

n−1∧
i=1

dξi

≤ ran (1− r)b1+···+bn−1
∫

I n−1
η

an−1−an−1
n−1

n−1∏
i=1

(1− ξi )
bi−1

n−1∧
i=1

dξi

≤ ran (1− r)b1+···+bn−1
n−1∏
i=1

0(an−1− an)0(bi )

0(an−1− an + bi )
.
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Case 3: an−1 = an . Choose an arbitrary 0 < ε ≤ bn . Note that yn−1 ≥ r and
ηn−1 > 0. Then

h(r)≤ ran (1− r)b1+···+bn−1
∫

I n−1
y−bn

n−1η
bn−1
n−1

n−1∏
i=1

(1− ξi )
bi−1

n−1∧
i=1

dξi

≤ ran (1− r)b1+···+bn−1
∫

I n−1
y−εn−1 yε−bn

n−1 η
bn−1
n−1

n−1∏
i=1

(1− ξi )
bi−1

n−1∧
i=1

dξi

≤ ran (1− r)b1+···+bn−1
∫

I n−1
r−εηε−bn

n−1 η
bn−1
n−1

n−1∏
i=1

(1− ξi )
bi−1

n−1∧
i=1

dξi

≤ ran (1− r)b1+···+bn−1
∫

I n−1
r−εηε−1

n−1

n−1∏
i=1

(1− ξi )
bi−1

n−1∧
i=1

dξi

= ran (1− r)b1+···+bn−1r−ε
n−1∏
i=1

0(ε)0(bi )

0(ε+ bi )
.

Similarly to Section 2, this product of quotients of Gamma functions is meromor-
phic on the interval [0, bn] except at zero, where it has a pole of order n− 1, and
so there exists a constant C such that

n−1∏
i=1

0(ε)0(bi )

0(ε+ bi )
≤ Cε1−n.

Hence
h(r)� ran (1− r)b1+···+bn−1r−εε1−n.

Now there are two subcases: If r ≤ e−1/bn , then (ln(1/r))−1
≤ bn . In this case, we

choose ε = (ln(1/r))−1 and obtain

(14) h(r)� ran (1− r)b1+···+bn−1e(ln(1/r))n−1.

On the other hand, if r ≥ e−1/bn , we choose ε = bn and obtain

(15)
h(r)� ran (1− r)b1+···+bn−1r−bn b1−n

n

≤ ran (1− r)b1+···+bn−1eb1−n
n .

Combining (14) and (15) yields

h(r)� ran (1− r)b1+···+bn−1(e(ln
(

1/r
)
)n−1
+ eb1−n

n )

� ran (1− r)b1+···+bn−1(ln(1/r))n−1 for all 0< r < 1.

This is enough for our purposes but we can get a more refined estimate as men-
tioned in the second case of Lemma A. Thus we reach the final case:
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Case 4: there exists k such that ak > ak+1 = · · · = an = a. Let F(r) be the
Mellin convolution product of f1, f2, . . . , fk+1 and G(r) be the Mellin convolution
product of the rest, namely fk+2 . . . , fn . From the previous discussion it is clear
that

F(r)� ra(1− r)b1+···+bk+1−1

and
G(r)� ra(1− r)bk+2+···+bn−1(ln(e/r))n−k−2.

Let b= b1+· · ·+bk+1, d = bk+2+· · ·+bn and n−k−1= l. The case l = 1 has
been treated previously. So assume l > 1. We see that

h(r)= (F ∗M G)(r)

�

∫ 1

r
(r/t)a(1− r/t)b−1ta(1− t)d−1

(
ln
(e

t

))l−1 dt
t

≤ ra
∫ 1

r
(t − r)b−1t−b(1− t)d−1

(
ln
(e

t

))l−1 dt
t
.

Now the change of variables t = u + r − ur leads to t − r = u(1− r), 1− t =
(1− u)(1− r), dt = (1− r)du and

h(r)� ra
∫ 1

0
(1− r)b−1ub−1t−b(1− r)d−1(1− u)d−1

(
ln
(e

t

))l−1
(1− r) du

≤ ra(1− r)b+d−1
∫ 1

0
ub−1t−b(1− u)d−1

(
ln
(e

t

))l−1
du.

Noting that t ≥ u and r > 0, and choosing an arbitrary 0< ε ≤ b implies

h(r)� ra(1− r)b+d−1
∫ 1

0
ub−1t−ε tε−b(1− u)d−1

(
ln
(e

t

))l−1
du

≤ ra(1− r)b+d−1
∫ 1

0
ub−1r−εuε−b(1− u)d−1

(
ln
(e

t

))l−1
du

≤ ra(1− r)b+d−1r−ε
∫ 1

0
ub−1uε−b(1− u)d−1

(
ln
( e

u

))l−1
du

≤ ra(1− r)b+d−1r−ε
∫ 1

0
uε−1(1− u)d−1

(
ln
( e

u

))l−1
du.

Let H j (ε) =
∫ 1

0 uε−1(1− u)d−1(ln u) j du. This is the j-th derivative of the beta
function B(ε, d) as a function of ε, and B(ε, d) is holomorphic on (−1,∞) except
at zero where it has a simple pole with residue 1. This is easy to verify. So
ε j+1 H j (ε) will be holomorphic on the interval (−1,∞). Observing that∫ 1

0
uε−1(1− u)d−1

(
ln
( e

u

))l−1
du
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is a linear sum of the derivatives of order less than or equal to l − 1 of the Beta
function, we find

εl
∫ 1

0
uε−1(1− u)d−1

(
ln
( e

u

))l−1
du

is bounded by a constant C in the interval [0, b]. Thus

h(r)� ra(1− r)b+d−1r−εε−l .

Now arguing as in Case 3, if r ≤ e−1/b, we choose ε = 1/ln(1/r) and get

h(r)� ra(1− r)b+d−1e(ln(1/r))l

and if r > e−1/b, we let ε = b, and have

h(r)� ra(1− r)b+d−1e/bl .

Combining these two cases, we obtain

h(r)� ra(1− r)b+d−1(ln(e/r))l .

This fully proves Lemma A. �

6. Proof of Lemma B

We recall (13):

h(r)= ran (1− r)b1+···+bn−1
∫

I n−1
η

bn−1
n−1

n−2∏
i=1

η
bi+1
i

×

n−1∏
i=1

yai−ai+1−bi+1
i

n−1∏
i=1

(1− ξi )
bi−1

n−1∧
i=1

dξi .

To make the differentiation easier, we introduce some notation. Let

A = an, B = b1+ · · ·+ bn,

η = (η1, . . . , ηn−1), ξ = (ξ1, . . . , ξn−1), y = (y1, . . . , yn−1),

αi = ai − ai+1− bi+1 for 1≤ i ≤ n− 1,

βi = bi+1 for 1≤ i ≤ n− 2, βn−1 = bn − 1,

β = (β1, . . . , βn−1), G(ξ)=
n−1∏
i=1

(1− ξi )
bi−1, dξ =

n−1∧
i=1

dξi , J = I n−1.
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With this notation and the multiindex notation as for example yα = yα1
1 · · · y

αn−1
n−1 ,

(13) can be written as

(16) h(r)= r A(1− r)B−1
∫

J
yαηβG(ξ) dξ.

Clearly the function ηβG(ξi ) is summable dξ , and each yi = ηi + r(1 − ηi )

satisfies 0 < r ≤ yi < 1 for 0 < r < 1. So one can differentiate under the integral
sign with respect to r . But before we do that let us introduce the notation

g1(r)= r A, g2(r)= (1− r)B−1, ui = yαi
i for 1≤ i ≤ n− 1.

Rewrite (16) as

(17) h(r)=
∫

J
g1g2u1 · · · un−1η

βG(ξ) dξ.

Now differentiating under the integral sign, we obtain

(18) h(k)(r)=
∑∫

J
g(l1)

1 g(l2)
2 u( j1)

1 · · · u
( jn−1)

n−1 ηβG(ξ) dξ,

where the sum is over all (n+1)-tuples of nonnegative integers (l1, l2, j1, . . . jn−1)

such that k = l1+ l2+ j1+ · · ·+ jn−1. Further it easy to check that

u( ji )
i (r)= αi (αi − 1) · · · (αi − ji + 1)yαi− ji

i (1− ηi )
ji ,

g(l1)
1 (r)= A(A− 1) · · · (A− l1+ 1)r A−l1,

g(l2)
2 (r)= (B− 1)(B− 2) · · · (B− l2)(−1)l2(1− r)B−l2−1.

Since yi ≥ r and 0≤ ηi ≤ 1, the equalities above imply

u( ji )
i (r)� yαi

i r− ji

g(l1)
1 (r)� g1(r)r−l1

g(l2)
2 (r)� (1− r)B−k−1

= g2(r)(1− r)−k,

where the last inequality is obtained because 0 ≤ l2 ≤ k. From these three, we
deduce that

g(l2)
2 (r)g(l1)

1 (r)u( j1)
1 (r) · · · u( jn−1)

n−1 (r)� g2(r)(1− r)−k g1(r)u1(r) · · ·

· · · un−1(r)r−l1− j1−···− jn−1

� r−k(1− r)−k g2(r)g1(r)u1(r) · · · un−1(r).

Multiplying both sides by ηβG(ξ)dξ and integrating over J yield

h(k)(r)� r−k(1− r)−kh(r)
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and by Lemma A,
h(r)� r A(1− r)B−1(ln(e/r))n−1.

Hence we have

h(k)(r)� r A−k(1− r)B−k−1(ln(e/r))n−1.

This proves Lemma B. �
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