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A major goal in the theory of Toeplitz operators on the Bergman space over
the unit disk D in the complex plane C is to competely describe the com-
mutant of a given Toeplitz operator, that is, the set of all Toeplitz operators
that commute with it. In [2007], the first author characterized the commu-
tant of a Toeplitz operator T that has a quasihomogeneous symbol ¢ (r)e'??
with p > 0, in case it has a Toeplitz p-th root S with symbol ¥ (r)e’?: The
commutant of T is the closure of the linear space generated by powers S”
that are Toeplitz. But the existence of a p-th root was known until now only
when ¢ (r) = r™ with m > 0. Here we will show the existence of p-th roots
for a much larger class of symbols, for example, those symbols for which

k
¢(r)= Zr“i (In r)bi, where 0 <a;,b; foralll <i <k.

i=1

1. Introduction

Let D be the unit disk in the complex plane C, and let dA = rdrdf/m be the
Lebesgue area measure normalized so that D has unit measure. Let L2 be the
Bergman space, the Hilbert space of functions that are analytic on D and square
integrable with respect to d A. We denote the inner product in L>(ID, dA) by (-, -).
It is well known that L2 is a closed subspace of the Hilbert space L?(D, dA), and
the set {~/n+ 1z" | n > 0} of functions is an orthonormal basis. Let P be the
orthogonal projection from L?(D, dA) onto L2. For a bounded function f on D,
the Toeplitz operator Ty with symbol f is defined by

Tr(h)=P(fh) forheL2.

A symbol f is said to be quasihomogeneous of order p an integer if it can be
written as f(re'?) = ¢P?¢(r), where ¢ is a radial function on . In this case,
the associated Toeplitz operator T is also called quasihomogeneous Toeplitz of
order p. Quasihomogeneous Toeplitz operators were first introduced in [Louhichi
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and Zakariasy 2005] while generalizing the results of [Cu¢kovi¢ and Rao 1998].
We assume p > O from now on.

For a given a quasihomogeneous operator T of degree p, we seek a quasi-
homogeneous operator S of degree 1 such that S = 7. Louhichi [2007] proved
that if any such root exists, it is unique up to a multiplicative constant. Using the
results in [Cuckovié¢ and Rao 1998], Louchichi also proved the existence of p-th
roots for the case ¢ (r) = r™ for any arbitrary m > 0 and p > 0. Here we plan to
deal with more general ¢ (r).

2. The Mellin transform and two lemmas

For any two functions f(r) and g(r) defined on I = [0, 1], we define the Mellin
convolution by

1
(o= [ 1(5)s0 .

Often we are interested in knowing when the Mellin convolution is a bounded
function in the interval /. We say a function f is of type (a, b) with a > 0 and
b>0if

IfM)l=Cri—=n’"" onl,

where C is a constant depending on f. Also we express the same thing as
fy <@ ="
omitting the constants and the absolute value signs.
Lemma A. Suppose f(r) is of type (a, b) and g(r) is of type (c, d). Then
(f=*pmg) isoftype (min{a,c},b+d) ifa #c, and
(f *m )(r) L rMed(q —r)P+d=n(e/r)  ifa=c.

This can be generalized to any finite product as follows: Suppose for 1 <i <n,
fi(r) is of type (a;, b;). Then their Mellin convolution product 4 (r) satisfies

(1) h(r) < ro(1 —r)P~! (m(f))"_l

where ¢ = min{q;} and B = )_ b;. Further, if we know that the number of a; that
are equal to min{a; } is (say) /, the estimate (1) can be improved to

-1
hir) <r*(l —r)ﬂ_1<ln(§>) ) ()
Thus the log term will disappear if [ = 1.

Remark 2.1. Most of the time our aim is to prove 4 is bounded; the presence of
log does not interfere with that aim since o > 0, which bounds /A (r) near zero,
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and if we assume further that 8 > 1, it would be bounded near 1 also. But log
cannot be avoided. Take for example f;(r) =r for every i and compute the Mellin
convolution product. It turn out to be r(Inr)"~!/(n — 1)!, by a simple integration.

Lemma B. Let f;(r) =r% (1 — P~ where a; and b; are positive for 1 <i <n.
Let a and B be as defined in Lemma A. Let h be the Mellin covolution product of
the f;. For any integer k > 0, the k-th derivative of h satisfies

WOy < re k(1 = pyf Rt (m(f))"_l.

Here the implied constant depends on k and h.

3. Applications of Lemmas A and B
The Mellin transform (,zAS of a radial function ¢ in L' ([0, 1], rdr) is defined by

1
$(z) = /O ¢ (r)ritdr = M) (2).

It is well known that for these functions the Mellin transform is well-defined on the
right half-plane {z : Re z > 2} and analytic on {z : Re z > 2}. The Mellin transform
b is uniquely determined by its values on any arithmetic sequence of integers. In
fact we have the following classical theorem [Remmert 1998, page 102].

Theorem 3.1. Suppose f is a bounded analytic function on {z : Rez > 0} that
vanishes at the pairwise distinct points z1, 22, . . . , where

(1) inf{|z,|} > 0 and
() Y21 Re(1/2,) = o0,
Then f vanishes identically on {z : Re z > 0}.

Remark 3.2. One can apply this theorem to prove that if ¢ € L' ([0, 1], rdr) and
if there exist ng, p € N such that

(pk+ng) =0 forall ke N,
then ¢(z) =0 forall z € {z: Rez > 2} and so ¢ = 0.

Itis easy to see that the Mellin transform converts the Mellin convolution product
into a pointwise product, that is,

(@ m V) () = ()P (r).

A direct calculation shows that a quasihomogeneous Toeplitz operator acts on the
elements of the orthogonal basis of L2 as a shift operator with a holomorphic
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weight. In fact, for p > 0 and for all £ > 0, we have

Timg(2*) = P(e7¢2") = "(n+ (et  2")2"

n>0

1 p2m ) 40
= Z(n + 1)/ / & (ryrktntlgittp—me @Y 4o n
0 Jo T

n>0

=2+ p+ DGk + p+2)75t7.

Now we are ready to start with a relatively easy example.

3.1. Assuming ¢(r) = r + r% find the p-th roots of Tipog. If there exists a
bounded radial function v such that (T, )? = T,ipsg, then

(Tyio )P () = T,ipo (%) forall k > 0.
Since

p—1
(Tyioy)P () = (H(Zk +2j+ DYk +2j+ 3))z"“’,
j=0

we obtain for all integers k > 0

p—1
Qk+2p+2)¢Qk+p+2) = <l_[(2k+2j +4)1ﬁ(2k+2j+3)),
j=0

which is equivalent to

A

P2k + p+2) P ,
- =| |1[/(2k+2j+3).
[0 @k+2j+4) g

Note that p is a positive integer and that our discussion is trivial for p = 1. So
p = 2. By setting z = 2k 4 3, we notice that the function

de+p—1) o .
(@)= —= || ¥@+2))
MG +2j+1) ,11

is holomorphic and bounded in the right half-plane and vanishes for z = 2k + 3,
for k any nonnegative integer. Now by Theorem 3.1, we get f(z) = 0. Therefore

p—1
2 (z+2p—1)<13(z+p—1)=<1_[(z+2j+1)1ﬁ(z+2j)>-

Jj=0
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If we divide the (2) by the equation obtained by replacing z by z + 2 in (2), we
obtain after cancelation that in the right half-plane

P(z+2p) @+ Do+p+1)

= _ for Rez > 0.
¥ (2) (z+2p—Dp(z+p—1)

3)

Since

A 1 1 2z+3
P(z) = + = ,
z+1  z4+2  (z+D(Ez+2)

it follows that, for Re z > 0,

V(z+2p) (z+]) 2z+2p+5) z+p+p+1)
7)) @+2p-DG@+p+2E+p+3) Qz+2p+1)
Letting A(¢) = ¥ (2p¢), this equation becomes, for Re ¢ > 0,
AE+1) (2ps+D@ps+2p+5Q2pt+p)2pl+p+1)

MO @pe+2p—1DQRpt+p+2)R2pr+p+3)épr+2p+ 1)
Using the well-known identity I"(z 4+ 1) = zI"(z), where I is the Gamma function,
we can write
AE+1)  FE+1)

4 =
@ A(¢) F(¢)

for Re¢ > 0,

where
L(¢+a)l(¢ +a)T (¢ +a3)l' (¢ +ag)

L@ +a)r ¢ +a)T' (& +ay)T (¢ +a))’

and the a; are in increasing order

F(¢) =

2 2p  2p+2 2p+5
4p’ 4p’ 4p 4p

respectively and the a; are in almost increasing order
2p+1 2p+4 4p—-2 2p+6
4p 4p 4p 4p
respectively for i =1, ..., 4. We shall show in a moment that F(¢) is a bounded

holomorphic function in the right half-plane. Granting that, Equation (4) combined
with [Louhichi 2007, Lemma 6, page 1468] implies exists a constant C such that

(5) AM¢)=CF(¢) for Re¢ > 0.

A basic observation is that the quotient of two Gamma functions

(¢ +a;)
L +a)’

where 0 < a; < a,
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18 a constant times the Beta function
1 !
B +ara—ap= [ 2771 -t dx,
0

According to our definition of the Mellin transform, B(¢ +a;, a; —a;) is the Mellin
transform of x% (1 — x)% %=1 which is of type (a;, a; — a;). Since a; < a; for
i =1,...,4 (in fact, af > a3 if and only if 2p > 4, which is always true), each
of the Beta functions is a bounded holomorphic function in the right half-plane
and F'(¢), which is a constant times the product of these four Beta functions, is a
bounded holomorphic function in the right half-plane. Equation (5) implies that

4
M =CY B +ai,a] —a),
i=1

where C is a constant. Since the product of Mellin transforms equals the Mellin
transform of the Mellin convolution product, we have

A(&) = Ch(0),

where 4 is the convolution product of four functions of type (a;, a; — a;) for i =
1,...,4. Now Lemma A tells us that

h(r) < rmintad () — py2@=ad=tpce/r).
Because ) ; a; —a; = 1, we have
h(r) < r™™ed In(e/r),

and hence £ is a bounded function. Therefore the function v, if it exists, satisfies
the equation

P (2p¢) = Ch(¢)

for some constant C, which is equivalent to

1 1
/w(r)rlpf—ldrzc/ h(t)t*~dt.
0 0

Now, by a change of variables ¢ = 72”7, we obtain
1 1
/ Y ()rPtldr = / h(r?P)r?P$ =12 pdr.
0 0

Thus ¥ (r) =2 ph(rzl’7 ), and so v is bounded. Hence the operator 7ie,, is a genuine
Toeplitz operator and a p-th root of T,ips .
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3.2. p-throots of T,ipe 4, where (/;(z) is a proper rational fraction. Such functions
are plenty. For example, take ® (r) = r¢ In(r)”, where a > 0 and b is a nonnegative
integer. By integration by parts we see that d(z) = (—=1)’b!/(a + )Pt

Assume we are given a radial function ¢ (r) such that qAb(r) is a proper rational
function. Recall that if there is a radial function ¥ such that (T,ie,, )" = T,ie ¢, then
we have Equation (3), which is

(z+ Do +p+1)
+2p) = ~ for R 0.
V(z+2p) lp(Z)(Z+2p—1)¢(z+p—l) or Rez >

Here we are assuming ¢A>(z) = P(z)/Q(z), where

P@=][]G+a) and Q0@ =][]G+bo

j=1 k=1
with 1 <m < n. So,

(z+1) PGE+p+DQGE+p-—1)
z4+2p—1)P@z+p—1D)Q0z+p+1)

m n

z+1) 1—[Z+aj+p+11—[z+bk+p—l

V(z+2p)=V(2)

T GH2p-D it p— L i bikpt]
Let A(¢) = ¥ (2p¢). Then the equality above becomes
Me+D  @pr+1) m2p§+aj+p+1ﬁ2p§+bk+p—l
A(E) _(2p§+2p—1)j:12p§+aj+p—lk:12p§+bk+p+1
_FE+1DG©)
FO)GE+1)
where
T+ Ao) 14 T'(¢ + Bp) 2T +A)
F¢) = ~11 ~ and GO =[]+
L +Ay 1 TE+ By i TE+a)
1 2p—1
A():_, A6: p )
2p 2p
a2t _atpol
2p J 2p
b -1 b 1
Bo=2tPZ L g PR i cmandl <k <n.
2p 2p



134 ISSAM LOUHICHI AND N. V. RAO

Note that any quotient of two Gamma functions, say,

I'e+aw
I'¢+y)

is abounded holomorphic function in the right half-plane if o and y —« are positive.
Hence both F(¢) and G(¢) are bounded holomorphic functions in the right half-
plane if we assume all Aj, A/j, By, By, are positive. We will assume that.

Therefore, by [Louhichi 2007, Lemma 6, page 1468], A is a constant times the
quotient of m 4+ n + 1 Gamma functions in the numerator and about the same in
the denominator, as follows:

=Bl +a,y—a)'(y —a)

m n

I'(£ 4+ Ao) 1—[ FC+A) l—[ I'(C+ B

6 rAi)=C .
© ©) I'(¢+ Ap) I'c +A’j) I'(¢ + By)

j=1 k=1

Based on the argument of the previous subsection, we would like to write each
quotient of two Gamma functions as a constant times a Beta function. In order to
do that, we must assume that all A; and By are positive for every 0 < j < m and
1 <k < n. Moreover, we observe that

p—1 1 1
Ay—Ag=——, A —Aj=——, B,—Bi=—.
‘ p T p

So each quotient of two Gamma functions in Equation (6) can be written as a
constant times a Beta function except those involving A; for 1 < j < m. We
fix this matter by noting that I'(¢ + A’j +1)=(+ A’].)F(;“ + A’j), and so here
A/j +1—A; =(p—1)/p. Hence, Equation (6) becomes

M) TG +A0 1—[ T +A4)) 1—[ F¢+B))

[Ti=i¢c+A) CE+AY S TE+A+1D) 1 AT+ B)

j=1 j=1

As in the previous subsection, this quotient of m 4+ n + 1 Gamma functions on
the numerator and the same in the denominator, respectively would be the Mellin
transform of the convolution product of m + n + 1 functions of type (a;, b;). Let
us call it 2. By Lemma A, we have

h(r) < ri(1 — r)B—1<1n(§)>m+",

where A = min{A;}, which is definitely positive, and B is given by

m n
-1 n n—m-—1
A’o—Ao+ZA;.+1—A.,-+ZB,L—Bk=(m+1>”7+;:m+1+—.
j=1 k=1
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Therefore we obtain

hr) <Ay (n(€)) " = A=y (n(€))

r r

where v = (n —m — 1)/ p is a nonnegative number. Using Lemma B, we see that
h has all derivatives of order not exceeding m and they satisfy the inequality

L , m+n
P D) < ri 1 — r)m—f+”<1n<§>) .

Further the function 1, were it to exist, would satisfy the equation
m

(7 ¥ 2p¢) =C<1_[(¢+A;))h<;).
j=1

Now it is easy to check by integration by parts the identity
~ dh
ch@) =—u(r 50 @)

provided & vanishes at 1 and rh’ is bounded in (0, 1). Thus in the current case,
letting A" = Dh, where D = d/dr, we can see

(¢ + ADAE) = M((A} — rDIR)(Q)

and
(1‘[(; +A;))iz<<> =M<]‘[(A;- —rD)h)(;).
Jj=1 j=1
Let us set

H(r) = (l_[(A’j - rD)h)(r),
j=1

which allows us to rewrite Equation (7) as
1 1
/ Y (rr*ttldr = Cf H ()t dt.
0 0
Now, by a change of variables ¢ = r*”, we obtain
1 1
/ Y (rrPtldr = C/ HE*P)yr?Ps =12 pdr.
0 0

Thus ¥ (r)=2pCH (rzP ), and hence is bounded and the operator T, is a genuine
Toeplitz operator and a p-th root of T,ips .
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4. Proof of Lemma A for two functions

We start by proving Lemma A for functions f and g of type (a, b) and (c, d)
respectively, where a, b, ¢ and d are all positive. A similar thing was discussed in
[Cugkovié and Rao 1998, pages 210-212] but with less generality since the goal
was different.

Let A(r) = (f *p g)(r). By definition of the Mellin convolution, it is easy to

see that
h(r) <<f1(;)a(1 _ ;)b’l,c(l it %

which after changing variables as I=r —uand using the consequent identities

t=r4+u—ru, t—r=ull—r), 1l—t=0—-u)(l—r), dt={(—-r)du

while keeping r fixed, leads to

h(r) < /1@)(1 - ;)b*‘tc(l oy e

1 a _ b—1
SNGICO R
.\t t t
1
— f ratfaubfl(l _r)bflt*b+1tC(1 . M)d71(1 _r)dfl(l _ r)dTu
0
1
— r(l(l _ r)b+d—] f tC—a—bub—] (1 _ M)d_]dl/t.
0
We have the following cases.
ec—a—b=>0.Since 0 <t <1, we have
h(r) < ré(1—r)Ptet,
and hence 4 is of type (a, b +d).
e c—a—b < 0. Assuming ¢ —a > 0 and noting that > u, we obtain

1
h(}’) < ra(l _r)b+d*l f Mcfafbubfl(l _ u)d*l du
0

1
< ra(l _ r)b-i-d—] / uc—a—] (1 _ M)d_] du
0
=r'(1-r)"*""'B(c—a, d),

and therefore 4 is of type (a, b +d).
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Now in case ¢ =a, consider any number € in 0 < € < b. Noticing that r > r
and u > 0, we have

1
h(r) < r“(l—r)b+d_1/ ~PuP N1 = w)? " du
0
1
< ra(l _r)b+d—l / t—été—bub—l(l _ M)d_l du
0
1
< ru(l _ ’,.)b—i-d—] f r—éue—bub—l(l _ M)d—l du
0

1
< I’a(l . r)b+dflrfe / M€71(1 . u)dfl du
0
<r‘(1—r)"*"'B(e, d)yr .

Now since € B(e,d) = I'(e + 1)I"(d)/T" (e + d) is holomorphic as a function
of € in a neighborhood of the interval (0, b), there exists a constant C such
that e B(¢, d) < C on that interval, and therefore

h(r) < Cro(1 —r)P*=1r=¢e™1 forevery 0 < € < b.

Here we emphasize the fact that C does not depend on r and € as long as
0<r <1land0 < e <b. For a fixed but arbitrary r, let E(¢) = r~€e~! and
m(r) =ming ) E(¢). Then

(8) h(r) < Cri( — )P ="lmr).

Moreover the function E decreases in the interval (0, —1/Inr) and increases
in the interval (—1/Inr, 400). Further —1/Inr < b if and only if r < e /b,
Thus Equation (8) implies that

h(r) < r*(L=r)"" " m@r) <r‘(1 =)+ Teln(1/r) if r <e 1%,
h(r) < r*(1 =)t =p™ <t (1= 1)t e /b if r > e /b,
Combining these two results, we obtain
h(r) < r*(1—r)b*Yeln(1/r) +¢/b)
< r*(1=r)b**Inte/r) forall0<r <1.
5. Lemma A for the Mellin convolution product of more than two functions

In this context we can assume that the function f;, of type (a;, b;), is given by

fir)=x%1—x)%1 forl<i<n.



138 ISSAM LOUHICHI AND N. V. RAO

The Mellin convolution product of these n functions is defined by a repeated inte-
gral

1 1 1 1
o[ [ [ ]
r r/xy Jr/xixy r/X1X2Xp_2

0 fate2) - S G (-

r ) dx,_1 dxs dxy dx1
Xn—1

Xn—1 X3 X2 X1

As in the case of two functions where we changed variables as u = (t —r) /(1 —r),
we change variables so that the new integral is over the unit cube /"~!, where
limits of integration do not depend on other variables. Let yo = 1 and inductively
define y; = ]_[ 1 X; for i > 1. Now we change variables as

m:-l—+(1——L)g fori > 1,
Yi—1 Yi—1

so that the limits for each &; are 0 and 1. Further we note
Yi—r=xiyi-1—r=(yi-1—r)§ fori>0.
Setno=1and n; = ]_[3-:1 & for i > 1. It is easy to show, by induction on 7, that
yvi—r={—-r)y; foralli>1.

Further

r ) _ (A=8)d —rmi-

10 (-xp=0-&)(1- o -~

foralli > 1.

Thus

(1—&)(1=r)mi-y
Yi—1

bi—1
) forl<i<n—1.

filw) =i (1 =x)" ' = <yy,1)<

But for i = n, we have

an N
Jnln) = ( n71> (1 B yn71>
()T G ()
Yn—1 Yn—1 Yn—1 Yn—1
Writing the product of functions in (9) in terms of &;, n;, r and y; for 1 <i <n—1
yields

n—1

n—1 n
(11) l_[ nb,+1 1 1_[ a,—a;+1—bi+1+1 1_[(1 _gi)b;—l 1_[(1 _ I”)bi_l.

i=1 i=1 i=1
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Using equalities of (10), we calculate the differential form

n—1 n—1 n—1 n—1
dx; (I =r)n;i_1dé&; ne Ni—
(12) 7:/\—1=(1_r) 11_[71/\d§,~.
j ! i=1 i=1 7t =

X;Vi—
i=1 iYi-1

From (9), (10), and (11) we derive
n—2
(13) h(r) = ro (1= pyPrtoth] / et [T
1 .
i=1
n—1

n—1 n—1
i —@i+1—b; i—
[T TTa-g0" " A as
i=1 i=1

i=1
Let us assume that the a; are arranged in decreasing order. Then

biy1 _ai—aj+1—bit1 <1

77, yl

since n; < y; < 1. Therefore

h(r)§r“"(1—r)bl+---+bn—1/ nﬁn_ll anl —an— 1_[(1 El)b —1/\d‘§l
=1

Here four cases have to be discussed.

Case 1: a,_; —a,, — b, > 0. In this case

n—1 n—1
h(r) < ro (1 — )bt /1 o U(l —g) ! /_\1 dt;

T(b,)T(bi)

a, bi+---+b,—1
<r%(1—r) H—F(bn-i-bi)

Case2: a,_1—a, — b, <0and a,_ # a,. Then

n—1 n—1
n b1+---+b,—1 n—1—an—by _b,—1 bi—1
h(r) <ré (1= /,n_. Yo T U(l—si) Adgi
n bi+--+b,—1 n n— bi—1
<rin(l—r)Prtet /,n_. UM ]_[(1—5,) /\ds,

< p0n 1— b|+---+bn—1/ an 1 —a—1 1— : bi—1 S
<r“(l—r) e 1_[( &) /\dé

b — I'(ap—1 —a,)T'(b;)
< 40n 1— bi+-+b,—1 .
=rod=n) H (an_1 —an + br)
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Case 3: a,_1 = a,. Choose an arbitrary 0 < ¢ < b,. Note that y,_; > r and
Nn—1 > 0. Then

h(r) < ro (1 — )bttt f Vi 1_[(1 —&)"! /\ d;
IV!

J..
J

-1

< Va”(l _ r)b1+"-+bn 1

AU ML f]‘[(l—&)”—l/\da

< ra,,(l _ r)b1+"-+b,, 1

rm H(l —&)n! /\ d;
= i=1

n—1

<ottt [ Ta-er /\ds,
Jn-1

= r@ (1 —p)rtothn=l,—e 1:[ —F(e)F(b,-)'

i1 F(é + b,)
Similarly to Section 2, this product of quotients of Gamma functions is meromor-
phic on the interval [0, b, ] except at zero, where it has a pole of order n — 1, and
so there exists a constant C such that

1

n

I'(e)I'(b;)

NN C l—n'
Tet+b) — ¢

i=1

Hence
h(l") < I"a"(l . I")bl+m+bn_ll"_€€1_n.

Now there are two subcases: If r < e~ /b then (ln(l/r))_1 < b,. In this case, we
choose € = (In(1/r))~! and obtain

(14) h(r) < r (1 —r)? T tn=le(n(1/r))" 1.
On the other hand, if r > e~ /%n we choose € = b,, and obtain

s h(r) K ron (1 —p)Prttbn=lp=bnplon
< (] — r)b1+--~+bn—1ebi—n‘
Combining (14) and (15) yields
h() < r (1= )P ein (1/r))" ™ 4+ b))
L r (1 =)t to=laqna/r)"=! forall 0 <r < 1.

This is enough for our purposes but we can get a more refined estimate as men-
tioned in the second case of Lemma A. Thus we reach the final case:



ROOTS OF TOEPLITZ OPERATORS ON THE BERGMAN SPACE 141

Case 4: there exists k such that a; > ay11 = --- = a, = a. Let F(r) be the
Mellin convolution product of fi, fa, ..., fr+1 and G(r) be the Mellin convolution
product of the rest, namely fiy2..., f,. From the previous discussion it is clear
that

F(r) << ra(l _ r)b1+"'+bk+1—1

and
G(r) < r*(1 — )Pt +hn=ln(e/ry)—*-2,

Letb=by+---+bgs+1, d=bgyo+---+b,andn—k—1=1. The case [ =1 has
been treated previously. So assume [ > 1. We see that

h(r) = (F 31 G)(r)
! a _1l.a _ e\\!~ldt
<</r (/0= /P =0t (1n(€)) T4

t
< /l(t — Pl —t)d—l(ln(f»l_l%.

Now the change of variables t = u +r —ur leadstot —r =u(l —r), 1 —t =
(1 —u)(1—r), dt = —r)du and

1 p—
h(r) < r“/o (1—r)b—lub—lf%l—r)d—l(l—u)d—l(ln(f))' "=y du

1 -1
§r“(1—r)b+d_1/ W11 —u)d_l(ln<§)> du.
0

Noting that > u and r > 0, and choosing an arbitrary 0 < € < b implies

1 I- 1
h(r) <<ra(1_r)b+d—1/ Wb (1 — )i 1(ln(g )
0 1t

< ro(1 — p)brd=1 /Ol W= b (1 — uyd- 1<ln<§>)
)

1 I-1
<re(1 _r)b+dlref Wby b (1 — u)d71(1n<§ ) du
0

< r9(1 = pyPrdlpe /01 w1 — ) (1n(§))H du.

Let Hj(e) = /01 u "1 —w)?~'(nu)/du. This is the j-th derivative of the beta
function B(e, d) as a function of €, and B(e, d) is holomorphic on (—1, 00) except
at zero where it has a simple pole with residue 1. This is easy to verify. So
e/ T'H () will be holomorphic on the interval (—1, 0o). Observing that

[t (n())
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is a linear sum of the derivatives of order less than or equal to / — 1 of the Beta

function, we find
1 -1
el/ w11 — )t (ln (f)) du
0 u

is bounded by a constant C in the interval [0, b]. Thus

h(r) < r*(1 =)t

1/b

Now arguing as in Case 3, if r < e~ /”, we choose € = 1/In(1/r) and get

h(r) < ri(1 —r)P*=te(n(1/r))’

1/b

and if r > e '/?, we let € = b, and have

h(r) < r*(1—r)"""le/b.
Combining these two cases, we obtain
h(r) < r*(1 —r)"*=n(e/r)).

This fully proves Lemma A. ([

6. Proof of Lemma B
We recall (13):

n—2

b,—1 bit1
=1 1_[ ;i

i=1

h(r)=r*(1— r)b1+'"+b"_1 /

"=

n—1

n—1 n—1
i—ai+1—b; i —
< [Ty [Ta—&)"" )\ d&.
i=1 i=1

i=1
To make the differentiation easier, we introduce some notation. Let

A=a,, B=bi+---+b,,

n=m,....0n-1), E=GE,....5-1, y=01 ..\ Yn-1)s
o =a; —ajy1 —biy1 forl<i<n-—1,

Bi = bi+1 forl<i<n-2, Byi1=0b,—1,

n—1

n—1
B=(i,....B1), GEO=[]a-8)"", dt=N\da&, J=1""
i=1

i=1
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With this notation and the multiindex notation as for example y* = y'f“ ‘e y:”_’l' ,
(13) can be written as

(16) hr) = rA(1 = )P / VP G&) de.
J

Clearly the function n?G(&;) is summable d&, and each y; = n; + r(1 — n;)
satisfies 0 <r < y; < 1for 0 <r < 1. So one can differentiate under the integral
sign with respect to . But before we do that let us introduce the notation

ar)=rt, @r)=010-r)8", up=y;" forl<i<n-—1.

Rewrite (16) as
(17) h(r)zfglgzul.--un_mﬁG@)ds.
J

Now differentiating under the integral sign, we obtain

(18) h(k)(r)ZZ/ (ll)ggz)u(]l) . M,(lji]l)nﬁG(g) dg’
J

where the sum is over all (n+ 1)-tuples of nonnegative integers (I1, l2, ji, ... ju—1)
such that k =1y 4+ 1, + j; + - - - + ju.—1. Further it easy to check that

ui (1) = e = 1) -+ (e — ji + Dy (L =),
g1’ (N =AA=1--- (A=l +Drih,
&) =(B-1)(B=2)---(B—L) (=11 —r)b",
Since y; > r and 0 < n; < 1, the equalities above imply
u (r) < yir
gV < gi(ryr
g« =r)P =g -7k,

where the last inequality is obtained because 0 < [, < k. From these three, we
deduce that

gy (g M () - umY () < g2 (A =) Fg (ur (r) -
Uy (PP hi—j1=—jn-1
<r (=)o) g1 (uy(r) -+ - 1 (r).
Multiplying both sides by n? G (£)d& and integrating over J yield

KO <r ™ (1 =r)Fn@r)
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and by Lemma A,
h(r) < r2(1=r21ne/r)* .

Hence we have
Oy < rA=* 1 = r) B nee/r))" .

This proves Lemma B. U
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