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We introduce an iteration theory for periodic billiard trajectories in a com-
pact and convex domain of the Euclidean space, and we apply it to establish
a multiplicity result for non-iterated trajectories.
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1. Introduction

Billiard dynamics describes the motion of a particle moving without friction in a
compact domain of RN+1, for N ≥ 1, while being subject to a singular potential
which is identically zero in the interior of the domain and +∞ on the boundary.
This implies that the particle moves on straight lines with constant speed until it
reaches the boundary of the domain, where it bounces with specular reflection and
with no loss of energy. In this paper, we investigate the multiplicity of certain peri-
odic billiard trajectories in strictly convex domains of RN+1 enclosed by a smooth
hypersurface, which is therefore diffeomorphic to the unit sphere SN . Throughout
the paper, by strict convexity we will always mean that the second fundamental
form of the boundary is everywhere positive definite.

Historically, the first multiplicity result for periodic billiard trajectories was
proved by Birkhoff [1927] for convex plane billiards (N = 1). The result asserts
that, for each pair of coprime positive integers n ≥ 2 and r ≤ n/2, there are at
least two distinct periodic billiard trajectories with n bounce points and rotation
number r . The plane case is special, since the billiard dynamics can be described
by means of an area-preserving twist map on the annulus, and nowadays Birkhoff’s
Theorem can be proved by means of Aubry–Mather theory; see [Bangert 1988]
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and references therein. For higher-dimensional billiards the problem is essentially
harder; estimates for the number of bounce trajectories with prescribed number of
bounce points have been proved by Farber and Tabachnikov [2002a; 2002b], who
corrected and extended an earlier proof by Babenko [1990]. Further extensions,
together with more sophisticated multiplicity results, have been proved in [Farber
2002; Karasev 2009]. Roughly, these results can be summarized by saying that, for
each n odd, the number of periodic billiard trajectories whose number of bounce
points divides n grows at least linearly in n.

The arguments in these papers are based on critical point theory. In fact, billiard
trajectories can be characterized by a variational principle, which in the periodic
case goes as follows. If S is the smooth boundary of our convex billiard table
and n ∈ N, the length functional L×n , defined on the n-fold cross product of S,
computes the perimeter of the n-gon inscribed by a given sequence of points q =
(q0, . . . , qn−1) ∈ S×n . This functional is clearly continuous, and actually smooth
when restricted to the so-called cyclic configuration space G×n(S), the space of
those q’s such that q j 6= q j+1 for all j ∈ Zn . The critical points q ∈ G×n(S) of
L×n are precisely the n-periodic sequences of bounce points of billiard trajectories.
Notice that the dihedral group Dn acts by permutations on the cyclic configuration
space G×n(S), and all the points that belong to a same orbit of its action refer to
the same geometric closed curve.

Now, the lack of compactness of G×n(S) does not represent a real obstacle for
applying the machinery of critical point theory with the length functional L×n or,
more precisely, with the functional −L×n — see [Farber and Tabachnikov 2002b,
Section 4] or the paragraph after Proposition 2.1 below. In particular, each Dn-
equivariant homology or cohomology class of G×n(S) gives rise to a periodic
billiard trajectory (as critical point of L×n) and, at least in the nondegenerate
case, linearly independent classes produce different critical points. In [Farber and
Tabachnikov 2002b], the equivariant cohomology algebra H∗Dn

(G×n(S);Z2) has
been computed for each n odd. Its rank gives, in the nondegenerate case, a lower
bound for the number of periodic billiard trajectories whose number of bounce
points divides n. In the degenerate case, by Lyusternik–Schnirelmann theory, such
a lower bound is given by the cup-length of H∗Dn

(G×n(S);Z2) plus one.
In this paper, we proceed along a different line: the result we prove concerns

the multiplicity of periodic orbits whose number of bounce points lies in the set
of powers of a given prime number p. Our proof uses a minimum amount of
information on the homology of the configuration space: we will only need that,
for each n ∈N, the homology group H∗(G×n(S);Z2) is nontrivial in degree N−1,
where N = dim(S). Via Morse theory, for each n ∈ N, a nonzero homology class
in HN−1(G×n(S);Z2) generates a periodic billiard trajectory γn whose number of
bounce points divides n. More precisely, if the number of its bounce points is n/m,
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the generated critical point qn = (qn,0, . . . , qn,n) ∈G×n(S) of L×n is the sequence
of bounce points of the m-fold iteration of γn . Since we only make use of the
homology of G×n(S) in degree N − 1, all the γn’s (i.e., all the associated critical
points of the length functionals L×n) have Morse coindex less or equal than N −1
and are not local maxima for L×n .

The main issue here is to prove that, varying n, we obtain infinitely many distinct
trajectories γpn . In order to prove this, we develop an iteration theory for periodic
billiard trajectories, a discrete version of the one for closed geodesics (see [Bott
1956; Gromoll and Meyer 1969b; Bangert and Klingenberg 1983], for example),
that may also have independent interest. More specifically, we investigate the be-
havior of the Morse indices and of the local homology of billiard periodic trajecto-
ries under iteration, and we prove a discrete version of Bangert and Klingenberg’s
homological vanishing under iteration, a tool that can be used in certain situations
to assert the existence of infinitely many closed geodesics.

The main result of the paper is the following.

Theorem 1.1. Consider the billiard dynamics in a strictly convex subset enclosed
by a smooth hypersurface of RN+1, where N ≥ 2. For each prime number p at
least one of the following two statements is satisfied:

• There is some n ∈ N such that infinitely many periodic billiard trajectories
bounce pn times.

• There is a sequence {γα |α ∈ N} of geometrically distinct periodic billiard
trajectories such that

(i) each γα bounces pnα times for some nα ∈ N, and
(ii) each γα has Morse coindex at most N and is not a local maximum for the

length functional L×pnα .

We stress that Theorem 1.1 does not follow from the mere knowledge of the
cohomology of the cyclic configuration space (and thus, it does not follow from
[Farber and Tabachnikov 2002b, Theorem 1]). In fact, the Poincaré polynomial
associated to H∗Dn

(G×n(S);Z2) is given by

PN ,n(t)=
(t (n−1)(N−1)

−1)(t N
−1)(t N

+1)
(t2(N−1)− 1)(t − 1)

=

( (n−3)/2∑
j=0

t2(N−1) j
)( N−1∑

k=0

tk
)
(t N
+1)

provided N = dim(S) ≥ 3 and n is odd; see Theorem 7 and proof of Proposi-
tion 4.5 in [Farber and Tabachnikov 2002b].1 Even in the nondegenerate case, by
Dn-equivariant Morse theory, a lower bound for the number of periodic billiard

1In the theorem cited, the formula of the Poincaré polynomial contains a typo.
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trajectories having Morse coindex less or equal than N and number of bounce
points that divides n is only given by

N∑
j=0

dim H j
Dn
(G×n(S);Z2)= PN ,n(0)+ P ′N ,n(0)+

1
2

P ′′N ,n(0)+ · · ·+
1
N !

P (N )N ,n (0)

= N + 1.

The iteration theory developed in the current paper is thus needed to conclude that,
by varying n in the set of powers of any given prime number, the n-periodic billiard
trajectories that are found by Morse theory are not all iterations of a finite numbers
of lower periodic ones.

Beside the considerations on the Morse coindex, by choosing p = 2 in Theo-
rem 1.1 we obtain that every convex billiard table admits infinitely many (geomet-
rically distinct) periodic billiard trajectories whose numbers of bounce points are
powers of 2. To the best of the author’s knowledge, this assertion does not follows
from any known multiplicity result in the literature.

Organization of the paper. In Section 2 we recall the basic definitions concerning
billiards and the variational principle for periodic billiard trajectories. In Section 3
we introduce the iteration theory for periodic billiard trajectories, discussing in the
first subsection the behavior of the Morse indices under iteration, and in subsequent
ones the behavior of the local homology groups of periodic billiard trajectories
under iteration. Section 4 is devoted to the proof of Theorem 1.1.

2. Preliminaries

Throughout this paper, S will be a smooth hypersurface in RN+1, where N ∈N=

{1, 2, 3, . . . }, enclosing a compact and strictly convex domain US . Hereafter, strict
convexity must be intended in the differentiable sense: the second fundamental
form of S is everywhere positive definite. In particular, S is diffeomorphic to the
unit N -sphere SN

⊂ RN+1. We are interested in the billiard dynamics in US . A
curve γ inside US is a billiard trajectory if it is a piecewise straight curve with
constant speed |γ̇ |, except at the instants t in which it hits the hypersurface S,
where it bounces according to the usual law of reflection: the component of the
velocity that is normal to the boundary instantaneously changes sign, whereas the
tangential component is preserved. A billiard trajectory γ is periodic with period
T > 0 if it is a curve of the form γ : R/T Z→US .

Billiard periodic orbits are characterized by a well-known variational principle
which we are going to recall. For each n ∈ N, denote by S×n the n-fold product
S× · · ·× S. We consider the open subset G×n(S)⊂ S×n given by

G×n(S)= {q = (q0, . . . , qn−1) ∈ S×n
| q j 6= q j+1 for all j ∈ Zn},
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Figure 1. Closed curve γq and corresponding sequence of bounce
points q = (q0, . . . , q3).

which we will refer to as the cyclic configuration space (or simply the configuration
space). The dihedral group Dn , seen as a group of permutations of Zn , acts on
G×n(S) by

σ · (q0, . . . , qn−1)= (qσ(0), . . . , qσ(n−1)) for all q ∈ G×n(S) and σ ∈ Dn.

For each q ∈ G×n(S), we denote by γq the unique curve in US with prescribed
speed (say, parametrized by arc-length) that is piecewise straight and bounces pe-
riodically in the points q0, . . . , qn−1 (see Figure 1). Notice that each point in the
Dn-orbit of q is associated to the same geometric curve γq .

We denote by L×n
: S×n

→ R the length functional defined by

L×n(q)=
∑
j∈Zn

|q j+1− q j | for all q = (q0, . . . , qn−1) ∈ S×n,

namely, L×n(q) is the length of the closed curve γq . This functional is continuous,
and it is smooth on the configuration space G×n(S), whereas is not even differ-
entiable in the complement of G×n(S) (since norms are not differentiable at the
origin). A straightforward computation shows that

dL×n(q) v=
∑
j∈Zn

〈
q j−q j−1

|q j−q j−1|
−

q j+1−q j

|q j+1−q j |︸ ︷︷ ︸
q ′j

, v j

〉
for all q∈G×n(S), v∈Tq S×n.

A point q ∈G×n(S) is then a critical point of the length functional L×n if and only
if, for each j ∈ Zn , the associated point q ′j ∈ RN+1 is orthogonal to the tangent
space Tq j S. This amounts to requiring that the curve γq satisfies the reflection law
at the bounce points, and therefore q is a critical point of L×n if and only γq is a
periodic billiard trajectory.

Having this variational principle, one is tempted to study the multiplicity of
periodic billiard trajectories with a prescribed number n of bounce points by means
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of critical point theory, more specifically by means of Morse theory or Lyusternik–
Schnirelmann theory for the length functional L×n

: G×n(S) → R. However,
one immediately faces the problem of the lack of compactness of the configu-
ration space G×n(S). A possible solution was suggested by Farber and Tabach-
nikov [2002b], who extended earlier work for the two-dimensional case [Croft and
Swinnerton-Dyer 1963; Babenko 1990; Kozlov and Treshchëv 1991]. The idea is
to restrict L×n to the compact subspace G×n

ε (S)⊂ G×n(S), where ε > 0 and

(2-1) G×n
ε (S)=

{
q ∈ G×n(S)

∣∣∣∣ ∏
j∈Zn

|q j − q j−1| ≥ ε
n
}
,

by virtue of the following statement.

Proposition 2.1 [Farber and Tabachnikov 2002b, Proposition 4.1]. For each suffi-
ciently small ε > 0 the following claims hold:

(i) G×n
ε (S) is a smooth manifold with boundary.

(ii) The inclusion G×n
ε (S)⊂ G×n(S) is a homotopy equivalence.

(iii) All the critical points of L×n
: G×n(S)→ R are contained in G×n

ε (S).

(iv) At every point of ∂G×n
ε (S), the gradient of L×n points inward. �

This proposition guarantees that, for any ε > 0 sufficiently small, the functional
L×n
:G×n

ε (S)→R satisfies the so-called “general boundary conditions” for Morse
theory, see [Chang 1993, Section 6.1]. Moreover, if we perform Morse theory
using the gradient flow of L×n (instead of its antigradient flow, as it would be
more common), point (iv) of the proposition implies that the boundary of G×n

ε (S)
does not enter into play while applying the principles of Morse theory.

The homology and cohomology of cyclic configuration spaces have been studied
by many authors; see [Arnold 1969; Cohen 1988; Cohen 1995; Farber and Tabach-
nikov 2002b], for example. In particular, in [Farber and Tabachnikov 2002b] the
cohomology and the Dn-equivariant cohomology rings of G×n(S) with Z2 coeffi-
cients have been completely determined. For our purposes, we only need to recall
that the Poincaré polynomial of H∗(G×n(S);Z2), defined by

BN ,n(t)=
nN∑
j=0

dim H j (G×n(S);Z2) t j ,

is equal to

(2-2) BN ,n(t)=
(t N
+ 1)(t (n−1)(N−1)

− 1)
t N−1− 1

= (t N
+ 1)

( n−2∑
j=0

t (N−1) j
)
;

see [Farber and Tabachnikov 2002b, Theorem 4 and Remarks 3.2 and 3.3].



MULTIPLICITY OF NON-ITERATED PERIODIC BILLIARD TRAJECTORIES 187

3. Iteration theory for periodic billiard trajectories

Morse indices of iterated periodic billiard trajectories. For each n,m ∈ N, con-
sider the embedding ψ×m

: S×n ↪→ S×nm given by

ψ×m(q)= q×m
:= (q, . . . , q︸ ︷︷ ︸

×m

) for all q ∈ S×n.

This map is clearly smooth (being the restriction of the linear “diagonal” embed-
ding RnN ↪→Rnm N ), and it restricts as a map G×n(S) ↪→G×nm(S) that we will still
denote by ψ×m . This latter map has a clear interpretation in terms of piecewise
straight closed curves associated to the points of the configuration spaces: if γq
and γq×m are the closed curves associated to q and q×m respectively, then γq×m is
the m-fold iterate of γq . For this reason we call ψ×m the (m-fold) iteration map.

By the characterization of the critical points of the length functional as bounce
points of periodic billiard trajectories, it is clear that q ∈G×n(S) is a critical point
of L×n if an only if, for some (and thus for all) m ∈N, its iteration q×m is a critical
point of L×nm . We denote by ind(q), coind(q) and nul(q) the Morse index, the
Morse coindex and the nullity of the length functional L×n at q. We recall that
these are nonnegative integers defined respectively as the dimension of the negative
eigenspace, of the positive eigenspace and of the kernel of the Hessian of L×n at q.
In this section we investigate the properties of the sequences {ind(q×m) |m ∈ N},
{coind(q×m) |m ∈N} and {nul(q×m) |m ∈N}. This of course is reminiscent of the
iteration theory for the Morse indices of closed geodesics, which was essentially
pioneered by Bott in his celebrated paper [1956], and further extended by many
authors also to more general Maslov-type indices; see [Long 2002, Part IV] and
the bibliography therein for a detailed account. The results that we are going to
present can be considered as discrete-time versions of those contained in [Bott
1956, Section 1]. In view of the application to the multiplicity of periodic billiard
trajectories in Section 4 we draw, as a consequence of this iteration theory, the
following iteration inequalities analogous to the one established by Liu and Long
[1998; 2000] (see also [Long 2002, page 213]) for a Maslov-type index.

Proposition 3.1 (iteration inequalities). Let q be a critical point of L×n .

(i) The nullity of the iterations of q is uniformly bounded by 2N , i.e.,

nul(q×m)≤ 2N .

(ii) There is a nonnegative real number ind(q), the mean Morse index of L×n at
q, defined by

ind(q)= lim
m→∞

1
m

ind(q×m),
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such that

m ind(q)− 2N ≤ ind(q×m)≤ m ind(q)+ 2N − nul(q×m).

Analogously, there is a nonnegative real number coind(q), the mean Morse
coindex of L×n at q, defined by

coind(q)= lim
m→∞

1
m

coind(q×m),

such that

m coind(q)− 2N ≤ coind(q×m)≤ m coind(q)+ 2N − nul(q×m).

The proof of this proposition will be carried out at the end of this subsection.
The reader might skip the following paragraphs and go directly to the middle of
page 193 on a first reading.

To begin with, let us write down an expression for the Hessian of L×n at the
critical point q. For each v,w ∈ Tq S×n we have

hess L×n(q)[v,w] =
∑
j∈Zn

1
|q j+1− q j |

(〈
v j+1− v j , w j+1−w j

〉
−

〈
q j+1− q j

|q j+1− q j |
, v j+1− v j

〉 〈
q j+1− q j

|q j+1− q j |
, w j+1−w j

〉)
.

Denote by H = Hq the self-adjoint endomorphism of Tq S×n associated to the
Hessian of L×n at q, i.e., hess L×n(q)[v,w] = 〈Hv,w〉. If we write

Hv = ((Hv)1, . . . , (Hv)n),

then for each j ∈ Zn we have

(3-1) (Hv) j =−
1

|q j+1−q j |
π j ◦π̃ j (v j+1−v j )+

1
|q j−q j−1|

π j ◦π̃ j−1(v j−v j−1),

where π j :R
N+1
→Tq j S and π̃ j :R

N+1
→〈q j+1−q j 〉

⊥ are orthogonal projectors.
This expression shows that H is a second order difference operator. Now, for each
m ∈ N and z ∈ S1

⊂ C, we consider the vector space of sequences Vm,z given by

Vm,z = {ν = {ν j | j ∈ Z} | ν j ∈ Tq j S⊗C, ν j+nm = z ν j for all j ∈ Z},

and, for each λ ∈ R, the eigenvalue problem

(3-2) Hν = λν, ν ∈ Vm,z.

We denote by indz,λ(q×m) the number of complex-linearly independent solutions
of this eigenvalue problem. Notice that, since H is a real operator with real eigen-
values, the sequence ν ∈Vm,z is a solution of Hν = λν if and only of the complex
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conjugate sequence ν̄ ∈ Vm,z̄ is a solution of H ν̄ = λν̄, and therefore

indz,λ(q×m)= indz̄,λ(q×m).

Now set

indz(q×m) :=
∑
λ<0

indz,λ(q×m),

coindz(q×m) :=
∑
λ>0

indz,λ(q×m),

nulz(q×m) := indz,0(q×m)

These sums are finite, for indz,λ(q×m) is different from zero only if λ belongs to the
(finite) spectrum of H . These integer indices that we have just defined generalize
the Morse index, the Morse coindex and the nullity for, as it readily follows from
their definition, we have

ind(q×m)= ind1(q×m),

coind(q×m)= coind1(q×m),

nul(q×m)= nul1(q×m).

The reason for considering the eigenvalue problem for the operator H in the
complexified setting is that there is a nice way to compute the index indz,λ(q×m)

from the indices indw,λ(q), for every w ∈ S1, of the non-iterated critical point.
The recipe is given by the following statement which is analogous to [Bott 1956,
Theorem I]. Its proof is a simple application of the Fourier expansion of “periodic”
sequences, and we include it here for the reader’s convenience.

Proposition 3.2 [Bott 1956, Theorem I]. For each z ∈ S1, λ ∈ R and m ∈ N, the
index indz,λ(q×m) satisfies

indz,λ(q×m)=
∑
w∈ m√z

indw,λ(q).

Proof. The operator H maps each vector space Vm,z to itself. In fact, consider the
shift operator S : Vm,z→ Vm,z given by

(Sν) j = ν j+n for all ν = {ν j | j ∈ Z} ∈ Vm,z.

By the definition of H (in particular, notice that the index j in (3-1) is defined
modulo n) we have that SH = H S. Moreover, since H is a real operator, we have
that

zHν = H zν = H Smν = Sm Hν for all ν ∈ Vm,z,

which proves the claim.
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Now, every ν = {ν j | j ∈ Z} ∈ Vm,z admits a unique Fourier expansion

ν =
∑
w∈ m√z

νw

where, for each w ∈ m
√

z, the sequence νw = {νw, j | j ∈ Z} belongs to the vector
space V1,w. One can explicitly compute νw as

νw, j =
1
m

m−1∑
h=0

w1−hν j+h for all j ∈ Z.

By the first part of the proof we have that Hν ∈Vm,z and Hνw ∈V1,w. Hence, the
unique Fourier expansion of Hν ∈ Vm,z is given by

Hν =
∑
w∈ m√z

Hνw.

From this, we conclude that ν satisfies the eigenvalue problem Hν = λν if and
only if all the νw’s satisfy the same eigenvalue problem Hνw = λνw. �

This proposition tells us that it is enough to study the indices of q×m with a
fixed m ∈ N, say m = 1. To start with, let us investigate the properties of nulz(q).
We call z ∈ S1 a Poincaré point of q when nulz(q) 6= 0.

Proposition 3.3. There are only finitely many Poincaré points z1, . . . , zr ∈ S1 and
we have

r∑
α=1

nulzα (q)≤ 2N .

Proof. Let v={v j } be a sequence such that, for each j ∈Z, the element v j belongs
to the tangent space Tq j S. By (3-1), v satisfies Hv = 0 if and only if

(3-3)
1

|q j+1− q j |
π j ◦ π̃ j (v j+1− v j )=

1
|q j − q j−1|

π j ◦ π̃ j−1(v j − v j−1)

for all z ∈ Z,

where π j :R
N+1
→Tq j S and π̃ j :R

N+1
→〈q j+1−q j 〉

⊥ are orthogonal projectors
as above. For our convenience, let us rewrite (3-3) as

(3-4) π j ◦ π̃ j (v j+1)= π j ◦ π̃ j (v j )+
|q j+1− q j |

|q j − q j−1|
π j ◦ π̃ j−1(v j − v j−1).

Now, since the vector q j+1−q j ∈RN+1 is transverse to Tq j+1 S (as well as to Tq j S),
the composition π j ◦ π̃ j restricts to an isomorphism

Tq j+1 S
∼=
−→Tq j S.
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This shows that we can rewrite (3-4) as

(3-5) v j+1 = A jv j + B jv j−1,

where A j :Tq j S→Tq j+1 S and B j :Tq j−1 S→Tq j+1 S are linear maps. Analogously,
we can rewrite (3-4) as

v j−1 = C jv j+1+ D jv j ,(3-6)

where C j : Tq j+1 S → Tq j−1 S and D j : Tq j S → Tq j−1 S are linear maps. Equa-
tions (3-5) and (3-6) show that every solution v={v j } of Hv= 0 is completely de-
termined by two of its subsequent points, say (v0, v1), and conversely any choice of
(v0, v1) uniquely determine a solution v. Moreover, v depends linearly on (v0, v1).
Denote by 8 the linear endomorphism of Tq0 S ⊕ Tq1 S given by 8(v0, v1) =

(vn, vn+1), and let us extend it as a complex linear endomorphism of (Tq0 S ⊕
Tq1 S)⊗C.

Now, let us take z ∈ S1. By its definition, the integer nulz(q) is equal to the
complex dimension of the kernel of (8−zId). This establishes the proposition. �

Remark. If z1, . . . , zr are the Poincaré points of q, their m-th powers zm
1 , . . . , zm

r
are the Poincaré points of q×m , for each m ∈ N. �

The next statement summarizes the properties of indz(q) and coindz(q).

Proposition 3.4. The functions z 7→ indz(q) and z 7→ coindz(q) are locally con-
stant on S1

\ {z1, . . . , zr }, where z1, . . . , zr are the Poincaré points, and lower
semicontinuous on S1. Moreover, the jump of these functions at any Poincaré
point zα is bounded in absolute value by nulzα (q), i.e.,

indzα (q)≤ lim
z→z±α

indz(q)≤ indzα (q)+ nulzα (q),

coindzα (q)≤ lim
z→z±α

coindz(q)≤ coindzα (q)+ nulzα (q).

Proof. For each z ∈ S1, let us denote by σz ⊂ R the spectrum of the operator
H : V1,z → V1,z . This spectrum satisfies the following continuity property: for
each interval (a, b) ⊂ R∪ {±∞} such that a and b do not belong to σz , there is a
neighborhood of z in S1 such that, for each z′ in this neighborhood, a and b do not
belong to σz′ and moreover∑

λ∈(a,b)

indz,λ(q)=
∑
λ∈(a,b)

indz′,λ(q).

Now, assume that z ∈ S1 is not a Poincaré point, so 0 does not belong to σz .
Then, by the continuity property above, 0 does not belong to σz′ for each z′ in some
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neighborhood of z, and moreover

indz(q)=
∑
λ<0

indz,λ(q)=
∑
λ<0

indz′,λ(q)= indz′(q).

Finally, assume that z ∈ S1 is a Poincaré point, and let us fix a sufficiently small
ε > 0 so that [−ε, ε] ∩ σz = {0}. Then, by the above continuity property, −ε and
ε do not belong to σz′ for each z′ in some neighborhood of z, and we have

indz′(q)=
∑
λ<−ε

indz′,λ(q)+
∑

λ∈(−ε,0)

indz′,λ(q)

=

∑
λ<−ε

indz,λ(q)+
∑

λ∈(−ε,0)

indz′,λ(q)

= indz(q)+
∑

λ∈(−ε,0)

indz′,λ(q).

This proves that indz(q)≤ indz′(q). Moreover

indz′(q)= indz(q)+
∑

λ∈(−ε,0)

indz′,λ(q)

≤ indz(q)+
∑

λ∈(−ε,ε)

indz′,λ(q)

= indz(q)+
∑

λ∈(−ε,ε)

indz,λ(q)

= indz(q)+ nulz(q).

The statement regarding coindz(q) is established in the same way. �

Proof of Proposition 3.1. Point (i) follows from Propositions 3.2 and 3.3. As for
point (ii), let us fix m ∈N and denote by z1, . . . , zr ∈ S1 the Poincaré points of q,
so that zm

1 , . . . , zm
r are the Poincaré points of q×m . By Proposition 3.4, for each

w, z ∈ S1 we have

(3-7) indw(q×m)+ nulw(q×m)≤ indz(q×m)+

r∑
α=1

nulzm
α
(q×m)

By Propositions 3.2 and 3.3 we have
r∑
α=1

nulzm
α
(q×m)=

r∑
α=1

nulzα (q)≤ 2N ,

and, together with (3-7), we obtain

(3-8) indw(q×m)+ nulw(q×m)≤ indz(q×m)+ 2N .
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Now, by Propositions 3.2 and 3.4, we have

ind(q)= lim
m→∞

ind(q×m)

m
= lim

m→∞

1
m

∑
wm=1

indw(q)=
1

2π

∫ 2π

0
indeiθ (q) dθ.

Notice that
1

2π

∫ 2π

0
indeiθ (q×m) dθ = ind(q×m)= m ind(q),

and moreover, since nulz(q×m)= 0 for every z ∈ S1
\ {zm

1 , . . . , zm
r }, we have

1
2π

∫ 2π

0
nuleiθ (q×m) dθ = 0.

Now, by setting z = 1 and integrating w on S1 in (3-8), we get

m ind(q)≤ ind(q×m)+ 2N .

Then, by setting w = 1 and integrating z on S1 in (3-8), we get

ind(q×m)+ nul(q×m)≤ m ind(q)+ 2N .

This proves point (ii) for the Morse index. The proof for the Morse coindex is
analogous. �

Local homology of iterated periodic billiard trajectories. This section is devoted
to prove that, if the Morse indices of an isolated critical point of the length func-
tional are preserved by iteration, then the same is true for its local homology. As for
the previous subsection, there is a clear parallel with the theory of closed geodesics:
in fact, this result has been established for closed geodesics by Gromoll and Meyer
[1969b], and further extended to more general Lagrangian systems by Long [2000],
Lu [2009] and the author [Mazzucchelli 2011]. In the following, we prove the result
after recalling the notion of local homology.

From now on, all the homology groups are assumed to have coefficients in Z2.
For technical reasons (see the discussion after Proposition 2.1) we will work with
minus the length functional, that is, with superlevels of the length functional. The
local homology of−L×n at an isolated critical point q is the homology group C∗(q)
defined by

C∗(q) := H∗(G×n(S)>c ∪ {q},G×n(S)>c),

where c= L×n(q) and G×n(S)>c={q ′ ∈G×n(S) | L×n(q ′)> c}. Recall that the di-
hedral group Dn acts by coordinates-permutations on the cyclic configuration space
G×n(S) and L×n is invariant under its action, see Section 2. The local homology
of −L×n at the Dn-orbit of q is defined by

C∗(Dn · {q}) := H∗(G×n(S)>c ∪Dn · {q},G×n(S)>c).
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By excision, it is straightforward to verify that the local homology of Dn · {q} is
the direct sum of the local homology of each element in the Dn-orbit of q, and in
particular the inclusion induces a homology monomorphism

C∗(q) ↪→ C∗(Dn · {q}).

We also recall that the local homology Ck(q), and therefore Ck(Dn ·{q}) as well, is
possibly nontrivial only if coind(q)≤ k ≤ coind(q)+ nul(q), and that q is a local
maximum of L×n if and only if

Ck(q)=
{

Z2 if k = 0,
0 if k 6= 0.

For a proof of these results as well as for more details on the local homology
groups, see [Gromoll and Meyer 1969a] or [Chang 1993, Chapter I]. The reader
should keep in mind that the Morse coindex of L×n is the Morse index of −L×n

and vice versa.
The main result of this subsection is the following.

Proposition 3.5. Let q ∈ G×n(S) be an isolated critical point of L×n with critical
value L×n(q)= c, and assume that, for some m ∈ N, we have

coind(q)= coind(q×m), nul(q)= nul(q×m).

Then, the iteration map ψ×m induces the homology isomorphism

ψ×m
∗
: C∗(q)

∼=
−→C∗(q×m).

We will prove this proposition by means of the following abstract principle of
Morse theory. Here we only quote the statement for a finite-dimensional setting,
as needed for our purposes.

Proposition 3.6 [Mazzucchelli 2011, Theorem 4.1]. Let U ⊆Rk be an open neigh-
borhood of the origin, F :U→R a smooth functional having the origin as isolated
critical point, and V ⊂ Rk a vector subspace. Assume that ∇F(x) ∈ V for each
x ∈ U ∩V, and that the Morse index and the nullity of F at the origin are equal
to the Morse index and the nullity of the restricted functional F |U∩V at the origin.
Then the inclusion U∩V⊂U induces an isomorphism between the local homology
of F |U∩V at the origin and the local homology of F at the origin. �

Proof of Proposition 3.5. All we need to do is to reduce our setting in such a way
that we satisfy the assumptions of Proposition 3.6. For each j ∈ Zn let us consider
a chart φ j : V j→RN for S, where V j is an open neighborhood of q j . Up to shrink
the V j ’s, we can assume that V j ∩ V j+1 = ∅. We further define smooth functions
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` j : V j × V j+1→ R by

` j (x j , x j+1)=
∣∣φ−1

j (x j )−φ
−1
j+1(x j+1)

∣∣ for all (x j , x j+1) ∈ V j × V j+1.

Then, the product V := V0× · · ·× Vn−1 is an open set of G×n(S), and the map

φ := (φ0, . . . , φn−1) : V → RnN

is a chart for G×n(S) centered at q. In this local coordinates the length functional
L×n can be written as

`×n(x) := L×n
◦φ−1(x)=

∑
j∈Zn

` j (x j , x j+1) for all x = (x0, . . . , xn−1) ∈ φ(V ).

A straightforward computation shows that the gradient of `×n at x, with respect to
the flat metric of RnN , is given by g = (g0, . . . , gn−1), where

(3-9) g j = ∂1` j (x j , x j+1)+ ∂2` j−1(x j−1, x j ) for all j ∈ Zn.

Now, consider the map

φ×m
= (φ, . . . ,φ︸ ︷︷ ︸

×m

) : V×m
→ (RnN )×m .

This map is a chart for G×nm(S) centered at q×m , and in this local coordinates we
denote the length functional L×nm by `×nm

:= L×nm
◦ (φ×m)−1. Now, if we put

on (RnN )×m the flat metric rescaled by the factor m−1, the gradient of `×nm at y
is given by g̃ = (g̃0, . . . , g̃nm−1), where

(3-10) g̃ j = ∂1` j mod n(y j , y j+1)+ ∂2` j−1 mod n(y j−1, y j ) for all j ∈ Znm .

Denote by 9×m
:= φ×m

◦ ψ×m
◦ φ−1 the iteration map in local coordinates,

which turns out to be the restriction of the (linear) diagonal embedding of RnN

into (RnN )×m . Notice that `×nm
◦9×m

= m `×n . From this, together with (3-9)
and (3-10), we infer

(∇`×nm) ◦9×m
= m ∇`×n.

Therefore, the claim of the proposition follows by applying Proposition 3.6 with
U = φ×m(V×m), F = −m−1`×nm and the inclusion U ∩ V ⊂ U given by the
iteration map 9×m . �

Homological vanishing by iteration. In this section we show how to recover, in
the “discrete” setting of billiards, the homological vanishing under iteration. This
is a remarkable phenomenon, discovered by Bangert [1980, Section 3] in the study
of closed geodesics and further investigated in [Bangert and Klingenberg 1983;
Long 2000; Lu 2009; Mazzucchelli 2011].
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Let q be a critical point of the length functional L×n with critical value c =
L×n(q). For each ε > 0 sufficiently small, the subset G×n

ε (S) ⊂ G×n(S) defined
in (2-1) contains q, and therefore for each m ∈ N the subset G×nm

ε (S)⊂ G×nm(S)
contains q×m . Now notice that, by excision, the local homology of L×n at q can
be equivalently defined as

C∗(q)= H∗(G×n
ε (S)>c ∪ {q},G×n

ε (S)>c).

Then, let us fix an arbitrary b < c and consider the iteration map restricted as a
map of pairs of the form

ψ×m
: (G×n

ε (S)>c ∪ {q},G×n
ε (S)>c) ↪→ (G×nm

ε (S)>mb,G×nm
ε (S)>mc).

In homology, this map induces the homomorphism

(3-11) ψ×m
∗
: C∗(q)→ H∗(G×nm

ε (S)>mb,G×nm
ε (S)>mc).

Proposition 3.7 (homological vanishing by iteration). Assume that q is not a local
maximum for L×n . Then, for each integer p≥ 2, there exists m̄ = m̄(q, p)∈N that
is a nonnegative power of p such that the homomorphism ψ×m̄

∗
as in (3-11) is the

zero one.

The proof is based on a homotopical result that we discuss now. Consider a point
q = (q0, . . . , qn−1) in the space G×n

ε (S) and, for each j ∈ Zn , a sufficiently small
neighborhood U j ⊂ S of q j , so that U :=U0×· · ·×Un−1 is an open neighborhood
of q in G×n

ε (S). For each c ∈ R, we denote by U>c the set of points q ′ in U such
that L×n(q ′) > c. Analogously, for each m ∈ N, we denote by U×m

>c the set of
points q ′′ in U×m such that L×nm(q ′′) > c. Notice that the iteration map ψ×m send
U>c into U×m

>mc. Then, for each j ∈N, we denote by 1 j the standard j-simplex in
R j .

Lemma 3.8 (homotopical vanishing by iteration). Let b < c such that U>c 6=

∅, and consider the singular simplex σ : (1 j , ∂1 j ) → (U>b,U>c), i.e., [σ ] ∈
π j (U>b,U>c). Then, there exists m̄ = m̄(σ ) ∈ N and, for each integer m ≥ m̄, a
homotopy

σ�m
: [0, 1]× (1 j , ∂1 j )→ (U×m

>mb,U
×m
>mc)(3-12)

such that

(i) σ�m(0, · )= σ×m
:= ψ×m

◦ σ ,

(ii) σ�m(t, x)= σ�m(0, x) for each x ∈ ∂1 j ,

(iii) σ�m(1,1 j )⊂U×m
>mc.

In particular, [σ×m
] = 0 in π j (U×m

>mb,U
×m
>mc).



MULTIPLICITY OF NON-ITERATED PERIODIC BILLIARD TRAJECTORIES 197

Proof. We begin by explaining the basic construction that will be employed in the
proof. Consider a map γ : [x0, x1] → U , where [x0, x1] ⊂ R. For each m ∈ N we
define a map

γ�m
: [x0, x1] →U×m

in the following way: for each k ∈ {0, . . . ,m − 1} and y ∈ [x0, x1], denoting
q0 = γ (x0), q1 = γ (x1) and x = x0+ (x1− x0)

k
m +

y−x0
m , we set

γ�m(x) := (q1, . . . , q1︸ ︷︷ ︸
×k

, γ (y), q0, . . . , q0︸ ︷︷ ︸
×m−k−1

).

The length of γ�m(x) is bounded from below as

(3-13) L×nm(γ�m(x))≥ (k− 1)L×n(q1)+ (m− k− 2)L×n(q0)

≥ (m− 3)min{L×n(γ (x0)), L×n(γ (x1))}.

Now, consider the singular simplex σ of the statement. We want to decom-
pose its domain 1 j as a “continuous” family of paths, and then apply the above
construction to each path separately. Let L ⊆ R j be the axis passing through the
origin and the barycenter of 1 j

⊂ R j . For each s ∈ [0, 1] we denote by s1 j

the rescaled j-simplex given by {sz | z ∈ 1 j
}. For each z ∈ s1 j , we denote by

[x0(s, z), x1(s, z)] ⊂ s1 j the maximum segment that contains z and is parallel to
L. This notation is summarized, for j = 2, as follows:

L

x0(s, z)

︸ ︷︷ ︸
s

z
x1(s, z)

We define the homotopy σ�m
: [0, 1]×1 j

→U by

σ�m(s, z)=
{
(σ |[x0(s,z),x1(s,z)])

�m(z) if z ∈ s1 j ,

σ×m(z) if z 6∈ s1 j .

This homotopy clearly satisfies properties (i)–(ii) in the statement. Then, for each
s ∈ [0, 1] and z ∈ s1 j , by the estimate in (3-13) we have

L×nm(σ�m(s, z))≥ (m− 3)min{L×n(σ (x0(s, z))), L×n(σ (x1(s, z)))},
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while for each z ∈1 j
\ s1 j we have

L×nm(σ�m(s, z))= L×nm(σ×m(z))= m L×n(σ (z)).

Choose δ > 0 sufficiently small so that σ(1 j )⊂U>b+δ and σ(∂1 j )⊂U>c+δ. For
each (s, z) ∈ [0, 1]×1 j we obtain

L×nm(σ�m(s, z))≥ (m− 3)(b+ δ),

L×nm(σ�m(1, z))≥ (m− 3)(c+ δ).

This implies that, for m ∈N sufficiently big, the homotopy σ�m has the form (3-12)
and satisfies (iii). �

Proof of Proposition 3.7. The proof is based on the homotopical vanishing prin-
ciple of Lemma 3.8, together with the homotopical invariance property of singular
homology as stated in [Bangert and Klingenberg 1983, Lemma 1].

Fix the integer p ≥ 2 of the statement and set

Kp = {pn
| n ∈ N∪ {0}}.

Since the local homology group C∗(q) is finitely generated (see [Gromoll and
Meyer 1969a, Lemma 2]), all we need to prove is that, for each homology class
[µ] ∈ C∗(q) and for some m̄ = m̄([µ]) ∈ Kp, we have

ψ×m̄
∗
[µ] = 0 in H∗(G×nm̄

ε (S)>m̄b,G×nm̄
ε (S)>m̄c).

Let U be the open neighborhood of q introduced in the paragraph preceding
Lemma 3.8. By excision, we can assume that the relative cycle µ representing [µ]
has support contained in U . We denote by6(µ) the collection of singular simplices
in µ and all their lower-dimensional faces. For each σ :1 j

→U contained in6(µ)
we will define m̄ = m̄(σ ) ∈ Kp and a homotopy

σ •m̄ : [0, 1]×1 j
→U×m̄

>m̄b

such that

(i) σ •m̄(0, · )= σ×m̄ ,

(ii) σ •m̄(1,1 j )⊂U×m̄
>m̄c,

(iii) if σ(1 j )⊂U>c, then σ •m̄(s, · )= σ×m̄ for each s ∈ [0, 1],

(iv) (σ ◦ Fi )
•m̄
= σ •m̄( · , Fi ( · )) for each i ∈ {0, . . . , j}, where Fi : 1

j−1
→ 1 j

is the standard affine map onto the i-th face of 1 j .

For each m ∈Kp greater than m̄, define a homotopy σ •m : [0, 1]×1 j
→U×m

>mb by

σ •m := ψ×m/m̄
◦ σ •m̄ .
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This homotopy satisfies the analogous properties (i)–(iv) in period m. Notice that
property (iv) implicitly requires that m̄(σ ◦ Fi )≤ m̄(σ ) for each i ∈ {0, . . . , j}.

Now, take a sufficiently big m ∈ Kp so that σ •m is defined for all σ ∈ 6(µ).
Then, by means of the above homotopies, the relative cycle µ×m

= ψ×m
◦ µ is

homologous to a relative cycle whose support is contained in U×m
>mc ⊂G×m

ε (S)>mc.
In fact, this latter relative cycle is obtain from µ×m by homotoping each singular
simplex σ×m

∈ 6(µ×m) to σ •m(1, · ) via the homotopy σ •m . This implies that
ψ×m
∗
[µ] = [µ×m

] = 0 in H∗(G×nm
ε (S)>mb,G×nm

ε (S)>mc). In order to finish the
proof, we only need to build the above homotopies satisfying (i)–(iv). The idea
is to apply Lemma 3.8 subsequently to all the faces of the singular simplices in
6(µ), starting from 0-dimensional faces and then going up to higher-dimensional
ones.

We proceed by induction, starting by assuming thatµ is a 0-relative cycle. Then,
6(µ) is simply a finite set of points in U>b. Let w be one of these points. If
w ∈ U>c we are already done: we simply set m̄ = m̄(w)= 1 and w•m̄(s)= w for
each s ∈ [0, 1]. In the other case, w ∈U>b \U>c, we take an arbitrary continuous
path γ : [0, 1]→U such that γ (0)=w and γ (1) ∈U>c. Such a path exists, since
the critical point q of the statement is not a local minimum and therefore, since
L×n(q) = c, the subset U>c is not empty. Then, consider m̄ = m̄(γ ) ∈ N and the
associated homotopy

γ�m̄
: [0, 1]× [0, 1] →U×m̄

given by Lemma 3.8, such that

γ�m̄(s, 0)= w×m̄, γ�m̄(s, 1)= γ (1)×m̄, γ�m̄(1, s) ∈U×m̄
>m̄b

for each s ∈ [0, 1]. Without loss of generality we can assume that m̄ ∈Kp, and we
set

w•m̄ = γ�m̄(1, · ).

When µ is a j-relative cycle, with j ≥ 1, we can apply the inductive hypothesis:
for every nonnegative integer j ′≤ j−1 and for each j ′-singular simplex σ ∈6(µ)
we obtain m̄= m̄(σ )∈Kp and a homotopy σ •m̄ satisfying the above properties (i)–
(iv). Now, consider a j-singular simplex σ ∈6(µ). If σ(1 j )⊂U>c we simply set
m̄ = m̄(σ ) := 1 and σ •m̄(s, · ) := σ for each s ∈ [0, 1]. Otherwise, if σ(1 j ) 6⊂U>c,
we denote by m̄′ = m̄′(σ ) the maximum of the m̄(ν)’s for all the proper faces ν
of σ . For each m ∈ Kp greater or equal than m̄′, every such ν has an associated
homotopy ν•m satisfying the above condition (i)–(iv). For technical reasons, let
us assume that ν•m(s, · ) = ν•m(1

2 , · ) for each s ∈ [12 , 1]. Patching together the
homotopies of the proper faces of σ , we obtain

σ •m : ([0, 1
2 ]× ∂1

j )∪ ({0}×1 j )→U×m
>mb,
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such that σ •m(0, · )= σ×m and σ •m( · , Fi ( · ))= (σ ◦ Fi )
•m for each i = 0, . . . , j .

By retracting [0, 1
2 ] × 1

j onto ([0, 1
2 ] × ∂1

j ) ∪ ({0} × 1 j ) we can extend the
homotopy σ •m , obtaining

(3-14) σ •m : [0, 1
2 ]×1

j
→U×m

>mb.

Notice that σ •m̄
′

( 1
2 , · ) is a singular simplex of the form

σ •m̄
′

(1
2 , · ) : (1

j , ∂1 j )→ (U×m̄′
>m̄′b,U

×m̄′
>m̄′c).

We briefly denote this singular simplex by σ̃ , and consider m̄′′ = m̄(σ̃ ) and the
homotopy σ̃�m̄′′ given by Lemma 3.8, so that

σ̃�m̄′′(0, · )= σ̃×m̄′′
= σ •m̄

′′m̄′( 1
2 , · ),

σ̃�m̄′′(1,1 j )⊂U×m̄′m̄′′
>m̄′m̄′′c.

Then, we set m̄ = m̄(σ ) := m̄′m̄′′ and we extend the homotopy in (3-14) to [0, 1]×
1 j by

σ •m̄(s, · ) := σ̃�m̄′′(2s− 1, · ) for all s ∈ [ 12 , 1]. �

4. Proof of the main result

In this section we carry out the proof of Theorem 1.1, stated in the introduction.
We adopt the notation of Section 2, so that our billiard table is the strictly convex
compact subset US enclosed by a smooth hypersurface S ⊂ RN+1, with N ≥ 2.
The proof of Theorem 1.1 will be by contradiction: let us fix, once for all, a prime
number p ∈ N and let us assume that the following two conditions hold:

(F1) For each n ∈ N, there are only finitely many periodic billiard trajectories
bouncing pn times.

(F2) There are only finitely many periodic billiard trajectories γ1, . . . , γr satisfying
properties (i) and (ii) in the statement.

Define Kp := {pn
| n ∈ N ∪ {0}}. For each α ∈ {1, . . . , r}, let us denote by

q̃α = (q̃α,1, . . . , q̃α,nα ) ∈G×nα (S) the sequence of bounce points of γα. Let n ∈Kp

be the maximum of the nα’s, and let us set

qα := q̃×n/nα
α ∈ G×n(S) for all α ∈ {1, . . . , r}.

Remark 4.1. For each critical point q of the length functional L×n , the function
m 7→ coind(q×m), where m ∈ Kp, is monotone increasing (although not strictly).
In fact, the differential of the iteration map ψ×m at q maps (injectively) any posi-
tive eigenspace of hess L×n(q) to a positive eigenspace of hess L×nm(q×m). This
implies that, by Assumption (F2), for all m ∈Kp the set of critical points of L×nm
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with Morse coindex less or equal than N is given by the Dnm-orbits of those q×m
α ’s

such that coind(q×m
α )≤ N . �

As a first step in our proof, let us establish the following claim. We refer the
reader to pages 193–194 for the definition and properties of local homology groups.
From now on, all the homology groups are assumed to have coefficients in Z2.

Claim. There exists q ∈ {q1, . . . , qr } with coind(q) = 0 and an infinite subset
K′p ⊂ Kp such that, for each m ∈ K′p, the local homology group CN−1(q×m) is
nontrivial.

Proof. For each m ∈ Kp, fix a sufficiently small ε = ε(m) > 0 and consider
the space G×nm

ε (S) introduced in Section 2. By Proposition 2.1(iii), this space
contains all the critical points of L×nm . Proposition 2.1(ii) implies that the inclusion
G×nm
ε (S) ↪→G×nm(S) induces an isomorphism in homology, and therefore by (2-2)

we infer that

(4-1) HN−1(G×nm
ε (S)) 6= 0.

By Proposition 2.1(i,iv), the functional −L×nm
:G×nm

ε (S)→ R satisfies the “gen-
eral boundary conditions” for Morse theory (see [Chang 1993, Section 6.1]), and
we have the Morse inequality

(4-2) dim Hk(G×nm
ε (S))≤

∑
q ′

dim Ck(q ′),

where the sum in the right hand side runs over all the critical points q ′ of L×nm .
Notice that only those q ′ such that

(4-3) coind(q ′)≤ k ≤ coind(q ′)+ nul(q ′)

may possibly give a nonzero contribution. Now, choosing k=N−1, by Remark 4.1
the elements in the Dnm-orbit of the q×m

α ’s are the only critical points q ′ of L×nm

that may satisfy (4-3). Hence, by (4-1) and by the Morse inequality (4-2) we infer

(4-4) 0 6=
r∑
α=1

dim CN−1(Dnm · {q×m
α }).

Now, if all the qα’s had nonzero mean Morse coindex coind(qα), by the iteration
inequality in Proposition 3.1(ii) we would have coind(q×m

α ) > N − 1, providing
m ∈Kp is big enough. However, this would imply that CN−1(Dnm · {q×m

α })= 0 for
each α ∈ {1, . . . , r}, contradicting (4-4). Hence, some of the qα’s, say q1, . . . , qs

where s ≤ r , satisfy coind(qα) = 0. Up to choosing m big enough the inequality
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in (4-4) reduces to

0 6=
s∑

α=1

dim CN−1(Dnm · {q×m
α }).

This implies that at least one q among q1, . . . , qs satisfies CN−1(Dnm · {q×m
}) 6= 0,

and thus CN−1(q×m) 6= 0 as well, for infinitely many m ∈ Kp. �

Now, by Proposition 3.1, the indices coind(q×m) and nul(q×m) are uniformly
bounded for all m ∈K′p, and hence we can choose an infinite subset K′′p ⊂K′p such
that coind(q×m) and nul(q×m) are constant in m ∈K′′p. Without loss of generality,
let us assume that 1 belongs to K′′p (equivalently, set m := min K′′p and rename q
to be q×m and K′′p to be m−1K′′p).

We set c := L×n(q) and we fix an arbitrary real number b< c such that none of
the qα’s has critical value in the open interval (b, c), i.e., L×n(qα) 6∈ (b, c) for all
α ∈ {1, . . . , r}. Now, for each m ∈ K′′p, let us choose ε = ε(m) > 0 small enough
so that G×n

ε (S) and G×nm
ε (S) satisfy assertions (i)–(iv) of Proposition 2.1. Then,

let us consider the iteration map restricted as a map of pairs of the form

(4-5) ψ×m
: (G×n

ε (S)>c ∪ {q},G×n
ε (S)>c) ↪→ (G×nm

ε (S)>mb,G×nm
ε (S)>mc).

Claim. For each m ∈ K′′p, the iteration map in (4-5) is injective in degree (N − 1)
homology, i.e.,

ψ×m
∗
: CN−1(q) ↪→ HN−1(G×nm

ε (S)>mb,G×nm
ε (S)>mc) for all m ∈ K′′p

Proof. Consider an arbitrary m ∈ K′′p. By Assumption (F1), we can choose b′ ∈
(mb,mc) sufficiently close to mc such that the only critical value of L×nm in the
interval (b′,mc] is mc. By Morse theory (see [Chang 1993, Theorem 4.2], for
example), the inclusion

(G×nm
ε (S)>c ∪ {q×m

},G×nm
ε (S)>c) ↪→ (G×nm

ε (S)>b′,G×nm
ε (S)>mc)

is injective in homology, namely it induces the monomorphism

(4-6) C∗(q×m) ↪→ H∗(G×nm
ε (S)>b′,G×nm

ε (S)>mc).

Now, let us examine the long exact sequence of the triple

(G×nm
ε (S)>mb,G×nm

ε (S)>b′,G×nm
ε (S)>mc),
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which we can write as the following exact triangle:

H∗(G×nm
ε (S)>b′,G×nm

ε (S)>mc)

))
H∗(G×nm

ε (S)>mb,G×nm
ε (S)>b′)

∂∗

OO

H∗(G×nm
ε (S)>mb,G×nm

ε (S)>mc)oo

Here, ∂∗ is the boundary homomorphism which lower the grade ∗ by one, and
the other homomorphisms are simply induced by inclusions. Now, by our choice
of b and b′, none of the q×m

α ’s has critical value inside the interval (mb, b′] and,
by Assumption (F2), all the critical values of L×nm inside (mb, b′] correspond to
critical points that either are local maxima or have Morse coindex greater than N .
This, together with the Morse inequalities, implies that the group

H j (G×nm
ε (S)>mb,G×nm

ε (S)>b′)

is trivial in degree j=N−1 and j=N . Hence, the above exact triangle implies that
the diagonal homomorphism is an isomorphism in degree N−1, i.e., the inclusion
induces the homology isomorphism

HN−1(G×nm
ε (S)>b′,G×nm

ε (S)>mc)
∼=
−→HN−1(G×nm

ε (S)>mb,G×nm
ε (S)>mc).

This isomorphism and the monomorphism in (4-6) fit in the following commutative
diagram, where all the homomorphisms are induced by inclusions:

HN−1(G×nm
ε (S)>b′,G×nm

ε (S)>mc)

∼=

��

CN−1(q×m)

' �

44

ι

**
HN−1(G×nm

ε (S)>mb,G×nm
ε (S)>mc)

This forces the inclusion-induced homomorphism ι to be injective:

ι : CN−1(q×m) ↪→ HN−1(G×nm
ε (S)>b′,G×nm

ε (S)>mc).

Now, by Proposition 3.5, the iteration map induces the homology isomorphism

ψ×m
∗
: C∗(q)

∼=
−→C∗(q×m).

By composing the monomorphism ι with the isomorphism ψ×m
∗

we obtain the
claim. �
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For each m ∈ K′′p, the critical point q×m of L×nm is not a local maximum.
In fact, CN−1(q×m) is nontrivial whereas the local homology groups of a local
maximum are nontrivial only in degree zero (we recall that N ≥ 2). Therefore, by
the homological vanishing principle in Proposition 3.7, the homomorphism

ψ×m
∗
: C∗(q)→ H∗(G×nm

ε (S)>mb,G×nm
ε (S)>mc)

is zero provided m ∈ K′′p is sufficiently big. This contradicts the claim, and con-
cludes the proof of Theorem 1.1.
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