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A Dehn surgery on a knot K in S3 is exceptional if it produces a reducible,
toroidal or Seifert fibered manifold. It is known that a large arborescent
knot admits no such surgery unless it is a type II arborescent knot. The
main theorem of this paper shows that up to isotopy there are exactly three
large arborescent knots admitting exceptional surgery, each of which ad-
mits exactly one exceptional surgery, producing a toroidal manifold.

1. Introduction

A Conway sphere for a knot K in S3 is a sphere S that intersects K at 4 points in
such a way that the punctured sphere S− K is incompressible in S3

− K . In this
case the sphere S cuts (S3, K ) into two nonsplittable tangles (B1, τ1) and (B2, τ2),
where Bi is a 3-ball, and the τi are pairs of properly embedded arcs in Bi . An
arborescent knot is obtained by gluing rational tangles together in various ways.
(See, for example, [Wu 1996b] or [Gabai 1986]). An arborescent knot K is large
if it has a Conway sphere. It is known [Hatcher and Thurston 1985; Oertel 1984;
Wu 1996b] that K is large if and only if its complement is large in the sense that
it contains an embedded closed essential surface.

A nontrivial Dehn surgery on a hyperbolic knot K in S3 is exceptional if the
resulting manifold is either reducible, toroidal, or a small Seifert fiber space. By
the Geometrization Conjecture proved by Perelman, nonexceptional surgeries yield
hyperbolic manifolds. Thurston [1979] showed that a hyperbolic knot admits only
finitely many exceptional surgeries.

All large arborescent knots are hyperbolic. It is known that most large arbores-
cent knots admit no exceptional surgery. Define T (r, s) to be a Montesinos tangle
that is the sum of two rational tangles associated to rational numbers r and s.
(See Section 2 for more details.) A knot K is an arborescent knot of type II if
it has a Conway sphere cutting it into two Montesinos tangles of type T (ri ,

1
2).

It was shown in [Wu 1996b, Theorem 3.6] that if a large arborescent knot K is
not of type II, then all nontrivial surgeries on K are Haken and hyperbolic, so
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there is no exceptional surgery on K . When K is an arborescent knot of type
II, all nonintegral surgeries are Haken and hyperbolic, and all integral surgeries
are laminar in the sense that the resulting manifolds contain essential laminations;
in particular, it is irreducible. It remains to determine which type II knots admit
integer surgeries producing toroidal or Seifert fibered manifolds. The following is
our main theorem, which determines all such knots and the exceptional surgeries
on them. The knot K1 in the theorem is given in Figure 2(b) on page 224. K3

is actually the mirror image of K1, so there are essentially only two knots up to
homeomorphism of (S3, K ). K2 is obtained from K1 by changing crossings on the
right half of the diagram of K1 in Figure 2(b).

Theorem 1.1. Let K1, K2, K3 be the three knots just described (see Definition 2.3
for details). Let K be a large arborescent knot in S3, and let δ be a nonmeridional
slope on ∂N (K ). Then K (δ) is an exceptional surgery if and only if (K , δ) is
isotopic to (K1, 3), (K2, 0) or (K3,−3), in which case K (δ) is toroidal.

The essential punctured torus F constructed in the exterior of the knots K has
four boundary components, and that is minimal; see Lemma 6.2 and Proposition 5.8
below. The referee pointed out that this is an interesting fact, since there are few
examples of classes of knots with such a property. Some examples were given by
Eudave-Muñoz [1997] and others, more recently, by Teragaito [2008]. Those were
constructed via double branched covers and the punctured torus was not explicitly
described in the knot exterior. The examples constructed in this paper are perhaps
the simplest known knots whose exterior contains such a punctured torus F , and
F is explicitly constructed. We would like to thank the referee for this as well as
some other helpful comments.

The paper is organized as follows. In Section 2 we define some special disks in
rational tangle spaces. These are the pieces that will be used to build the toroidal
surfaces in the exteriors of the knots in Theorem 1.1. Section 3 defines an index
i(G, Q) for a surface G relative to Q, and proves its additivity and some other
properties. Now let K be a type II knot, which is the union of two Montesinos
tangles Ti = T (ri ,

1
2). Let F be a punctured essential torus in the exterior of K

with integer boundary slope, and let Fi be the intersection of F with the tangle
space of Ti . The important fact is that F can be chosen so that each component G
of Fi must have zero index relative to the tube around the unknotted string of Ti .
It is then shown in Section 4 that G must be a special surface in the sense that it is
the union of special disks in the two rational tangle spaces. This quickly leads to a
proof that ri ≡±

1
3 mod 1. In Section 5 we define the relative framing for a surface

in a tangle space. This can be used to calculate the boundary slope of the surface
F = F1∪ F2, and to show that if F has integer boundary slope then its intersection
with the punctured Conway sphere must have a very special configuration, which
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completely determines the gluing map between the two tangles. It follows that
if K (δ) is toroidal, then K must be one of the three knots in the theorem, and
there is only one possible choice of F . In Section 6 it is shown that the surface
F constructed is incompressible and ∂-incompressible, and that it gives rise to an
essential torus in the surgered manifold. This, together with some known results
about surgery on type II knots, will complete the proof of Theorem 1.1.

Unless otherwise stated, a surface in a 3-manifold M is assumed to be either
on the boundary of M or properly embedded in M . Given a set X in a surface or
3-manifold, denote by N (X) a regular neighborhood of X , and by |X | the number
of components in X . If P is a surface in a 3-manifold M , denote by M |P the
manifold obtained by cutting M along P .

2. Special disks in tangle spaces

A tangle T is a pair (B, τ ), where B is a 3-ball with four specified points on ∂B,
and τ = τ1 ∪ τ2 is a pair of arcs in B connecting these points. We identify B with
either a pillowcase with ∂τ the four corners, or the one point compactification of the
lower half-space, that is, B = R̂3

−
= {(x, y, z) | z ≤ 0}∪ {∞}, with ∂τ identified to

the four points (±1,±1) and the front side of the pillowcase identified to the square
[−1, 1]×[−1, 1] in R̂2

= R2
∪{∞}, which is identified to (R2

×{0})∪{∞}= ∂ R̂3
−

.
Given a tangle T = (B, τ ), let E(T ) be the closure of B − N (τ ), called the

tangle space of T . Let S(T ) = ∂B = R̂2, and let P(T ) be the 4-punctured sphere
∂B∩E(T ). Let S+(T ) and S−(T ) be the closures of the right and left half-planes of
R̂2
=∂B, respectively. Similarly, define P±(T )= S±(T )∩E(T ), a twice-punctured

disk. Denote by U (T )=U+(T )∪U−(T ) the two annuli ∂E(T )− Int P(T ), with
U+(T ) the one containing the upper right component of ∂P on R̂2. We now have
a decomposition of the boundary of E(T ):

∂E(T )= P−(T )∪ P+(T )∪U−(T )∪U+(T ).

We refer the reader to [Conway 1970] or [Wu 1996a] for the definition of rational
tangles. Roughly speaking, the strings τ of a rational tangle of slope r = p/q are
obtained by pushing into the interior of B the interior of two arcs of slope r on the
boundary of the pillowcase B connecting the four corners of B. Throughout this
paper we assume that q ≥ 2.

Given two tangles Ti = (Bi , τi ), we may construct a new tangle T1 + T2 by
identifying the disk S+(T1) ⊂ R̂2 with S−(T2) ⊂ R̂2, using the map (x, y) →
(−x, y), and then identifying B1∪ B2 to B = R̂3

−
so that a boundary point of B1 or

B2 on ∂(B1 ∪ B2) is mapped to the point with the same coordinates on ∂B = R̂2.
Denote by T (r1, r2) the Montesinos tangle T (r1)+ T (r2).
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Two tangles T1, T2 are weakly equivalent if T1 can be deformed to T2 by an
isotopy ϕt of B. They are P-equivalent if the isotopy ϕt is rel ∂P+(T1), and equiv-
alent if ϕt is rel S(T ). Thus, for example, T (r) is P-equivalent to T (r+k) for any
integer k, and T (1

3 ,−
1
2) is P-equivalent to T ( 1

3 ,
1
2). Two tangles are considered

the same if they are equivalent.
A surface F in E(T ) is tight if ∂F 6= ∅, and it intersects each of P± and U±

in essential arcs or essential circles. In this case, ∂F is a set of essential loops on
∂E(T ). Thus a tight disk is an essential disk in E(T ) (that is, a compressing disk
of ∂E(T )), and any essential disk in E(T ) is isotopic to a tight disk.

The strings τ in a rational tangle T (p/q)= (B, τ ) are rel ∂τ isotopic to a pair of
arcs τ ′=τ ′1∪τ

′

2 on ∂B. Specifically, let τ ′2 be the one with an endpoint at (1, 1)∈ R̂2.
Let τ ′0 be a pair of horizontal arcs on R2 connecting ∂τ . Let ci = τ

′

i ∩ P(T ) for
i = 0, 1, 2, and let c3 be the curve on P that separates c1 and c2, which is unique
up to isotopy. Thus, for example, for T (1

3) the curves c0, c1, c2 are shown in parts
(1)–(3) of Figure 1, and for T (−1

2) the curves c1, c2, c3 are shown in parts (4)–
(6). A disk D in E(T ) is a special disk if its intersection with P(T ) is one of
these curves. It is further required that q ≤ 3 if D ∩ P(T ) = c1, c2, and q = 2 if
D ∩ P(T ) = c3. More explicitly, we have Definition 2.1, illustrated by Figure 1;

(5) (6)




(4)

(2) (3)(1)




Figure 1
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part (k) of the figure (with k = 1, 2, . . . 6) depicts the boundary curve of a type (k)
special disk.

Definition 2.1. Let T = T (±1/q). A disk D in E(T ) is a special disk if it is of
one of the following types.

• Type (1): T = T (±1/q), q odd, and D ∩ P(T )= c0.

• Type (2): T = T (±1
3), and D ∩ P(T )= c1.

• Type (3): T = T (±1
3), and D ∩ P(T )= c2.

• Type (4): T = T (±1
2), and D ∩ P(T )= c1.

• Type (5): T = T (±1
2), and D ∩ P(T )= c2.

• Type (6): T = T (±1
2), and D ∩ P(T )= c3.

Lemma 2.2. Let T = T (p/q) with q = 2 or odd. Let Q = P+(T ) if q ≥ 3, and
Q = P−(T ) ∪ U+(T ) if q = 2. Suppose D is a tight disk in T (p/q) such that
|D ∩ Q| ≤ 2. Then T is P-equivalent to T (±1/q), and D is a special disk. In
particular, Q and Q′ = ∂E(T )− Int Q are incompressible, and there is no disk in
E(T ) intersecting each of Q and Q′ at a single essential arc.

Proof. This is essentially [Wu 1996a, Lemmas 2.1 and 2.2]. Let P = P+(T ) if
q ≥ 3, and P = P−(T ) if q = 2. Clearly D must intersect P in a nonempty set
of arcs, since otherwise we would have T = T (1

0). Since |D ∩ P| ≤ 2, D is a
monogon or bigon as classified in [Wu 1996a, Lemmas 2.1 and 2.2]. When it is a
monogon, D is a special disk of type (5). Bigons appear when T is a torus tangle
or wrapping tangle (see [Wu 1996a] for definition), or a twist tangle; but since T
is rational and q equals 2 or is odd, the first two cases do not happen. Thus, from
the proof of [Wu 1996a, Lemma 2.2], we see that if D is a bigon, then it is one of
the types (1), (2), (3), (4) or (6) in Definition 2.1, or T is P-equivalent to T ( 1

4) and
D intersects P in two arcs with boundary on the outer component of ∂P , but since
we have assumed that q equals two or is odd, the latter case is impossible. �

Denote by T (r1, r2; n) the tangle obtained from T (r1, r2)= (B3, τ ) by twisting
the two lower endpoints of τ by n left-hand half-twists. See Figure 2(a) for the
tangle T ( 1

3 ,−
1
2 ; 4).

Definition 2.3. Let η : R̂2
→ R̂2 be the map that is a π/2 counterclockwise rotation

about the origin followed by a reflection along the y-axis. Define three knots
K1, K2, K3 by

(S3, K1)= T (1
3 ,−

1
2 ; 4)∪η T (1

3 ,−
1
2 ; 4),

(S3, K2)= T (1
3 ,−

1
2 ; 4)∪η T (−1

3 ,
1
2 ;−4),

(S3, K3)= T (−1
3 ,

1
2 ;−4)∪η T (−1

3 ,
1
2 ;−4).
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(a) (b)

Figure 2

Alternatively, Ki can be obtained by shifting the first tangle to the left, the second
tangle to the right, rotating the second tangle counterclockwise by an angle of π/2,
and then connecting the endpoints of the tangles by arcs on R2 that are horizontal
except near the endpoints of the strings of the tangles, as shown in Figure 2(b)
for K1. Note that K3 is the mirror image of K1, and K2 is obtained from K1 by
changing the right half of K1 to its mirror image. Theorem 1.1 shows that these are
the only large arborescent knots that admit exceptional surgery, and each of them
admits exactly one such surgery.

3. Index of essential surfaces

Let Q and F be surfaces in M , intersecting in general position. Denote by a(F, Q)
the number of arc components of F ∩ Q. The index of F in M relative to Q is
defined as

i(F, Q)= χ(F)− 1
2a(F, Q),

where χ(F) is the Euler characteristic of F . This is the same as the cusped Euler
characteristic defined in [Wu 1998] for sutured manifolds, except that now Q is
not required to be “cusps”, which by definition is a set of annuli and tori on the
boundary of a 3-manifold.

Lemma 3.1. Let Q be a surface on ∂M , and Q′ an essential surface properly
embedded in M and disjoint from Q. Let M ′ = M |Q′, and let Q′1, Q′2 be the
two copies of Q′ on ∂M ′. Let F be a surface in M , and let F ′ = F |Q′ be the
corresponding surface in M ′. Then

i(F ′, Q′1 ∪ Q′2 ∪ Q)= i(F, Q).

Proof. Put k = a(F, Q′). Note that Q′1, Q′2, Q are mutually disjoint compact
surfaces on ∂M ′, and hence a(F ′,Q′1∪Q′2∪Q)=2k+a(F, Q). Since Q′ intersects
F in k arcs and possibly some circle components, after cutting F along F ∩Q′ we
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have χ(F ′)= χ(F)+ k. It follows that

i(F, Q)= χ(F)− 1
2a(F, Q)= χ(F ′)− k− 1

2a(F, Q)

= χ(F ′)− 1
2a(F ′, Q′1 ∪ Q′2 ∪ Q)

= i(F ′, Q′1 ∪ Q′2 ∪ Q). �

The lemma shows that index is invariant when cutting along a surface disjoint
from Q. It is important to assume that Q is a compact surface and is disjoint from
Q′, otherwise the lemma may not be true.

The most useful case is when Q′ is a separating surface, cutting M into M1 and
M2. The following additivity lemma follows immediately from Lemma 3.1.

Lemma 3.2 (Additivity of index). Suppose Q is a compact subsurface of ∂M , and
Q′ is a separating surface in M disjoint from Q, cutting M into M1 and M2. Let
Q′i be the copy of Q′ on ∂Mi , let Qi = (Q ∩Mi )∪ Q′i , and let Fi = F ∩Mi . Then

i(F, Q)= i(F1, Q1)+ i(F2, Q2). �

Lemma 3.3. Let T = T (p/q) with q = 2 or odd. Let Q = P+(T ) for q > 2, and
Q = P−(T )∪U+(T ) for q = 2. Let F be a tight disk in E(T ). Then i(F, Q) ≤ 0,
and equality holds if and only if T is P-equivalent to T (±1/q) and F is a special
disk.

Proof. It is easy to check that each special disk in Definition 2.1 intersects Q in
two arcs and hence has i(F, Q)= 0. Conversely, if i(F, Q)≥ 0 then |F ∩Q| ≤ 2,
so by Lemma 2.2 it is a special disk and hence i(F, Q)= 0. �

Lemma 3.4. Suppose T = T (p/q, 1
2) and F is a tight surface in E(T ). Let U =

U+(T ). Then i(F,U )≤0. In particular, P(T ) and ∂E(T )−U are incompressible,
and there is no disk in E(T ) intersecting U+(T ) at a single essential arc.

Proof. If i(F,U ) > 0, then F is a disk and F ∩U has at most one arc component.
Isotope the decomposition surface P in E(T ) = E(T (p/q))∪P E(T (1

2)) so that
F ∩ P is minimal. Then an innermost circle/outermost arc argument would lead
to a contradiction of Lemma 3.3 because one of the (at least two) disks cut off by
outermost arcs will be disjoint from U and hence is isotopic to a tight disk with
positive index. �

4. Special surfaces in knot exterior

Throughout this section we assume that K is a type II knot that is the union of
two length 2 Montesinos tangles Ti = (Bi , τi ) = T (pi/qi ,

1
2) = Ti1 + Ti2, where

Ti1 = T (pi/qi ) and Ti2 = T ( 1
2).

Let S = ∂Bi , and let P = P(T1) = P(T2) = S ∩ E(K ), which cuts E(K ) into
E(T1) and E(T2). Let Pi = E(Ti1) ∩ E(Ti2) be the twice-punctured disk cutting
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E(Ti ) into E(Ti1) and E(Ti2). Write Ti j = (Bi j , τi j ). Thus E(K ) is the union
of four rational tangle spaces E(Ti j ), i, j = 1, 2. Let Ui = U+(Ti ), which is the
component of U (Ti ) lying in E(Ti2).

Definition 4.1. A surface F in E(K ) or E(Ti ) is a special surface if it intersects
each E(Ti j ) in special disks.

The purpose of this section is to show that if F is an essential punctured torus
in E(K ) with integer slope, then it is a special surface up to isotopy. We use this
result to show that qi = 3 for i = 1, 2.

If F is a compact surface in E(T ) intersecting U (T ) in arcs on ∂F , then F −
U (T ) is F with the arcs F ∩U (T ) ⊂ ∂F removed, so it is noncompact. An arc
β in F −U (T ) is considered essential if it does not cut off a compact disk from
F−U (T ). Thus, for example, if F is a disk intersecting U (T ) in two arcs on ∂F ,
then there is exactly one essential arc on F −U (T ) up to isotopy.

A P-compressing disk of a surface F in E(T ) is a disk D in E(T ) such that
∂D=α∪β, where α is an arc on P and β= D∩(F−U (T )) is an arc on F−U (T )
that is essential. If such a disk exists, then F is P-compressible; otherwise it is
P-incompressible.

Lemma 4.2. Let F be a punctured essential torus in E(K ) such that ∂F has
integer slope on ∂E(K ), and the complexity (|F ∩ ∂P|, |F ∩ P|) is minimal in
lexicographic order. Let F j be a component of F ∩ E(Ti ). Then

(i) F j is tight,

(ii) i(F j ,Ui )= 0, and

(iii) F j is incompressible and P-incompressible.

Proof. (i) Since |F∩∂P| is minimal, F intersects each of the four annuli ∂N (K )|∂P
in essential arcs. By [Wu 1996a, Lemma 3.3], each E(Ti ) is a handlebody and
hence irreducible, so if F ∩ P contains a trivial loop on P , then an innermost
circle argument would show that one could isotope F to reduce |F ∩ P| without
increasing |F ∩∂P|, which is a contradiction. If F ∩ P has a trivial arc on P , then
an outermost one would cut off a ∂-compressing disk for F , which is impossible
because F is essential.

(ii) Since P is incompressible [Wu 1996a, Lemma 3.3], each circle component of
F∩P is also essential on F . It follows that each boundary component of F∩E(Ti )

is a nontrivial loop on ∂E(Ti ), so each disk component of F∩E(Ti ) is an essential
disk in E(Ti ).

Let F̂ be the torus obtained from F by capping off each boundary component
of F with a disk. Define a graph 0 on F̂ with the attached disks as fat vertices and
P ∩ F as edges. A component of P ∩ F is either a circle edge or an arc edge of



EXCEPTIONAL DEHN SURGERY ON LARGE ARBORESCENT KNOTS 227

0, depending on whether it is a circle or arc. A circle edge is not incident to any
vertex, so 0 is actually a graph in which some edges are loops without vertices.

Since ∂F has integer boundary slope and P has 4 boundary components, each
vertex v of 0 has valence 4. Denote by C the number of corners at all vertices
of 0 that lie in either U1 or U2, where Ui = U+(Ti ), which is the component of
∂N (K ) ∩ E(Ti ) lying in the E(Ti2) = E(T ( 1

2)) part. Denote by V and E the
numbers of vertices and arc edges of 0. Since the boundary of each vertex of 0
travels through each of U1 and U2 once, we have C = 2V . Since each vertex is
incident to 4 arc edge endpoints, we also have E = 2V . Let F j be the faces of 0,
and assume it lies in E(Ti ). The Euler characteristic formula, whose validity for
graphs with circle edges one can verify, gives

0= χ(F̂)= V − E +
∑

χ(F j )=−V +
∑

χ(F j )=−
1
2C +

∑
χ(F j )

=

∑(
χ(F j )−

1
2 |F j ∩Ui |

)
=

∑
i(F j ,Ui ).

By (i) and Lemma 3.4, we have i(F j ,Ui )≤ 0 for each component F j of F∩E(Ti ).
Since these are exactly the faces of 0, it follows that i(F j ,Ui )= 0 for all F j .

(iii) Since F is incompressible and |F ∩ P| is minimal, it is easy to see that F j is
also incompressible. By (ii), F j is either a disk intersecting Ui twice or an annulus
disjoint from Ui . Suppose D is a P-compressing disk for F j as in the definition,
and let α = D ∩ P . Since β = |D ∩ F j | is essential on F j −Ui , the two points
∂α = ∂β lie on distinct components of F j ∩ P , and hence an isotopy of F via D
would create a surface F ′ that has the same or smaller complexity than F , and yet
one of the faces F ′j deformed from F j has i(F ′j ,Ui ) > 0, which is a contradiction
of (ii). �

Lemma 4.3. If F is a special surface in E(K ) then it is not a punctured sphere.

Proof. This follows from the proof of Lemma 4.2(ii). If F̂ is a sphere, then 2 =
χ(F̂)=

∑
i(F j ,Ui ), which is a contradiction since i(F j ,Ui )≤ 0 for all i, j . �

Lemma 4.4. Let F be an essential punctured torus in E(K ) with integer boundary
slope. Then F, P1, P2 can be isotoped so that F is a special surface.

Proof. We may assume that (|F ∩ ∂P|, |F ∩ P|) is minimal up to isotopy, so
Lemma 4.2 applies, and we have i(Fk,Ui )= 0 for any component Fk of F∩E(Ti ).
We show below that Pi can be isotoped so that each component D of F ∩ E(Ti j )

is a tight disk. In that case, by Lemma 3.3, we will have i(D,Ui )≤ 0; since Fk is
a union of such disks, by the Additivity Lemma 3.2 we will have i(D,Ui )= 0 for
all D, and hence by Lemma 3.3 D is a special disk in E(Ti j ), which will complete
the proof.

Let Qi = F ∩ E(Ti ). Isotope Pi so that (|Qi ∩ ∂Pi |, |Qi ∩ Pi |) is minimal.
This implies that for R = P−(Ti1), P+(Ti2) or a component of U (Ti j ), each arc
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component of Qi ∩ R is essential on R. By Lemma 4.2, Qi is incompressible
and P-incompressible, so the above minimality and the ∂-incompressibility of F
imply that each component of Qi ∩ Pi is also essential on Pi = P+(Ti1)= P−(Ti2).
Therefore all components of F ∩ E(Ti j ) are tight. It remains to show that each
component of F ∩ E(Ti j ) is a disk.

By Lemma 2.2, Pi is incompressible and ∂-incompressible in E(Ti )−Ui , so no
component of Pi ∩ Qi is a trivial loop on Qi , or an arc that is trivial on Qi −Ui

in the sense that it cuts off a disk on Qi disjoint from Ui . Thus if a component
Fk of Qi is a disk, then Pi cuts Fk into disks. Similarly, if Fk is an annulus, then
no component of Fk ∩ Pi is an inessential arc or inessential circle on Fk . It now
suffices to show that ∂Fk ∩ Pi 6= ∅, because then Fk ∩ Pi is a nonempty set of
essential arcs on Fk , cutting it into disks.

Let Fk be an annulus component of Qi , with ∂Fk disjoint from Pi . This implies
that Fk ∩U−(T )=∅, because each component of Fk ∩U−(Ti ) is a component of
F ∩U−(Ti ), which intersects Pi at two points. Since i(Fk,Ui ) = 0, we also have
Fk ∩U+(Ti ) = ∅. Therefore ∂Fk ⊂ P . No component C ′ of ∂Fk is parallel to a
component C of ∂P , since otherwise the arc components of F∩P with endpoints on
C would lie in the annulus between C and C ′, and hence would be trivial arcs, and
there are |∂F |/2>0 of them, which can be used to ∂-compress F , a contradiction to
the fact that F is essential. Therefore the two components of ∂Fk are both parallel
to the circle Pi ∩P , and hence bound an annulus A on P . By Lemma 4.2(iii), Fk is
incompressible, and by [Wu 1996a, Lemma 3.3] E(Ti ) is a handlebody, so Fk ∪ A
must bound a solid torus V in E(Ti ). Now A cannot be meridional on V because P
is incompressible, and A cannot run more than once along the longitude of V , since
otherwise the union of V and a regular neighborhood of a disk on ∂Bi bounded
by a component of ∂Fk would be a punctured lens space in the 3-ball Bi , which is
absurd. It follows that A is longitudinal on ∂V and hence Fk is P-compressible,
which contradicts Lemma 4.2 (iii). �

Proposition 4.5. Suppose K is an arborescent knot of type II, and suppose E(K )
contains an essential punctured torus with integer boundary slope. Then K is the
union of T1, T2, each of which is weakly equivalent to T ( 1

3 ,
1
2) or T (−1

3 ,
1
2).

Proof. By definition, K is the union of T1, T2 with Ti = T (pi/qi ,
1
2) = Ti1+ Ti2.

By Lemma 4.4, we may assume that F intersects each E(Ti j ) in special disks. If
some qi > 3, then the only special disk in E(Ti1) is of type (1), and hence each
component of F ∩ Pi is an arc with only one endpoint on the circle Pi ∩ P , where
Pi is the twice-punctured disk E(Ti1) ∩ E(Ti2). From the definition, we see that
the only special disks in E(Ti2) = E(T (1

2)) intersecting Pi in such arcs are those
of type (4), which are disjoint from U+(T2). Therefore F ∩U+(Ti )=∅, which is
a contradiction, since F must intersect each U±(Ti ) in exactly |∂F |> 0 arcs. �
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(1) (2)

α

α

α α

Figure 3

5. Boundary slopes of special surfaces

Let T = (B3, τ ) be a tangle, with B3 identified to R̂3
−

. We assume that τ is oriented.
Let α be a pair of arcs on R2

− Int I 2, shown in Figure 3(1) when the orientations
of τ are opposite near the two upper endpoints, or in Figure 3(2) otherwise. Then
τ̂ = τ ∪α is a link in R3 with orientation induced from that of τ .

Let γ be a set of essential arcs on U (T ), and assume that n = |γ ∩U−(T )| =
|γ ∩U+(T )|. Each component of γ is isotopic in N (τ ) to a component of τ , so
the orientation of τ induces an orientation on γ . Let p : R3

−
→ R2

= ∂R3 be the
standard projection. We always assume that τ and γ are in regular position in the
sense that

• p(τ )⊂ I 2, where I = [−1, 1];

• p : τ ∪ γ → R2 is an immersion with only double crossings; and

• p(γ )∩α =∅.

The third condition is to guarantee that all crossings between p(γ ) and p(τ ∪α)
appear inside of the square I 2, so if we close up γ by arcs parallel to α to obtain γ̂ ,
then the linking number between γ̂ and τ̂ = τ∪α can be calculated using crossings
between τ and γ .

Since τ and γ are oriented, each crossing is assigned a sign according to the
right hand rule, as given in [Rolfsen 1990, p. 132].

Definition 5.1. (i) The relative linking number between τ and γ , denoted by
lk(τ, γ ), is the sum of the signs of crossings at which γ passes below τ .

(ii) Let F be a surface in E(T ) such that F ∩U (T ) is in regular position. Then
the relative framing of F in E(T ) is defined as θ(F)= lk(τ, F ∩U (T )).
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An isotopy of τ ∪ γ is a regular isotopy if τ ∪ γ is in regular position at any
time during the isotopy. Similarly, an isotopy of a surface F in E(T ) is a regular
isotopy if its restriction to F ∩U (T ) is a regular isotopy.

Consider the four disks ∪Di = R2
− Int P(T ). Since γ has n endpoints on each

∂Di , we can connect ∂γ by 2n arcs γ ′ on ∂N (τ̂ ) lying in the upper half-space R3
+

.
Define γ̂ = γ ∪γ ′, with orientation induced by that of γ . Since τ̂ ∪ γ̂ is an oriented
link, the linking number lk(τ̂ , γ̂ ) is well defined.

Lemma 5.2. (i) lk(τ, γ )= lk(τ̂ , γ̂ ).

(ii) lk(τ, γ ) and θ(F) are regular isotopy invariants .

(iii) Let ψ be a rotation of R3
−

along the z-axis by an angle of π/2, deforming τ to
τ ′ and a surface F to F ′. Then θ(F)= θ(F ′).

(iv) Suppose F j are the components of F in E(T ). Then θ(F)=
∑
θ(F j ).

Proof. (i) It is well known that lk(τ̂ , γ̂ ) can be calculated as the sum of the signs
of crossings at which γ̂ passes below τ̂ . By definition, γ does not pass below α,
and γ ′ does not pass below γ̂ because it lies in R3

+
while γ̂ lies in R3

−
. Therefore

the crossings at which γ̂ passes below τ̂ are exactly where γ passes below τ , and
the result follows.

(ii) A regular isotopy does not change the relative position of ∂τ to α, and hence it
extends to an isotopy of τ̂ ∪ γ̂ , and the result follows from (i) because the linking
number of a link is an isotopy invariant.

(iii) This follows from the definition, because ψ gives a sign preserving one-to-one
correspondence between the crossings.

(iv) This follows from the definition. �

Let T = T1+T2, where T1 = T ( 1
3) and T2 = T (− 1

2). Let F be a special surface
in E(T ) intersecting each U±(T ) in n arcs. By definition, each component of
F ∩ E(Ti ) is a special disk. We may assume that F is a union of ai copies of Ai

for i = 1, . . . , 6. From Figure 1 we see that F ∩ P(Ti ) is as shown in Figure 4(i),
i = 1, 2, where an arc with label a j indicates a j parallel copies of that arc.

Lemma 5.3. Let r = n/2, and s = a6. Then there is a special surface F in E(T )
consisting of ak copies of disks of type (k) and intersecting each Ui (T ) at n arcs, if
and only if the nonnegative integers ak satisfy the following equations.

(i) n = 2r is even.

(ii) a1 = r − s.

(iii) a2 = a3 = r + s.

(iv) a4 = a5 = a1+ a2 = a1+ a3 = n.

(v) a6 = s.
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Proof. Suppose F is such a surface. Then (v) is from definition, and (iv) follows
from the fact that F intersects each boundary component of P at n points. By (iv)
we have a2 = a3. Let P ′ = P+(T1) = P−(T2) be the twice-punctured disk cutting
E(T ) into E(T1) and E(T2). Then on ∂E(T1), there are a2 + a3 arcs of F ∩ P ′

with both endpoints on the circle P ′∩ P(T ), while there are a5+2a6 such arcs on
∂E(T2). Hence 2a2= a2+a3= a5+2a6= n+2s, which shows that n= 2r is even,
and a2 = a3 = r+ s. Item (ii) follows from this and the equation a1+a2 = n = 2r ,
as shown in Figure 4(a).

Conversely, given a set of nonnegative numbers ak satisfying the above equa-
tions, let Ek be ak copies of disks of type (k). Then one can check that the arcs
(E1∪ E2∪ E3)∩ P ′ are isotopic to the arcs (E4∪ E5∪ E6)∩ P ′ on P ′, and hence
one can glue these together to form a surface F in E(T ). �

The curves in parts (a) and (b) of Figure 4 can be represented by the weighted
train tracks shown in parts (c) and (d), where an arc of the train track with weight
x represents x parallel copies of that arc. The weights on the train tracks are
calculated using the above lemma.

(a) (b)

(c) (d)

a1

a1

a3

a2

a6

a4 


a5

s

s

r-s

r-s

r+s

r+s
2(r+s) 2(r+s)

r+s

r+s

2r

2r

2r

2r
2r

2r

2r

Figure 4
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Figure 5

Recall that T ( 1
3 ,−

1
2) = T1 + T2 is formed by gluing P+(T1) to P−(T2) using

a reflection map along the y-axis on R2. Since the train tracks on these two half-
planes match each other under this reflection, after gluing we obtain a special
surface F in E(T ) with F ∩ P represented by the train track γ in Figure 5(a).

To simplify the diagram, we perform a counterclockwise full twist on both the
top two tangle endpoints and the bottom two tangle endpoints. This is equivalent
to twisting the two lower endpoints by four left-hand half-twists, so by definition it
deforms the tangle T (1

3 ,−
1
2) to the tangle T (1

3 ,−
1
2 ; 4) defined in Section 2. The

train track, after splitting along two edges, becomes that in Figure 5(b).
After a further splitting and isotopy, we obtain the train track γ in Figure 6(a).

Up to isotopy we can move the end points of γ around ∂P , but so far we have not
done that. By moving some endpoints of train track around ∂P , we obtain the one
in Figure 6(b).

The two strings of T = T (±1/q) are said to be consistently oriented if they
both run from the upper endpoints to the lower endpoints or both from the lower
endpoints to the upper endpoints. For T ( 1

3) we will always assume that its two
strings are consistently oriented. For T (− 1

2), we introduce a new variable ε and set
ε = 1 if the two strings of T (− 1

2) are oriented consistently, and ε =−1 otherwise.
Recall that a surface F in E(T ) is regular if F ∩U (T ) is a set of regular curves
on U (T ).

Lemma 5.4. Let Ak be a regular special disk such that Ak ∩ P(T ) is the curve in
part (k) of Figure 1.

(i) θ(A1)= 6, θ(A2 ∪ A3)= 4, θ(A4 ∪ A5)=−2ε, and θ(A6)= 0.
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Figure 6

(ii) A special surface F in T (1
3 ,−

1
2) is isotopic to a regular surface F ′ such that

∂F ′∩P is represented by the weighted train track in Figure 5(a), and θ(F ′)=
(5− 2ε)n− 2s, where s = a6 is the number of type (6) special disks in F.

(iii) A special surface F in T ( 1
3 ,−

1
2 ; 4) is isotopic to a regular surface F ′ such

that F ′ ∩ P is carried by the weighted train track in Figure 6(b), and θ(F)=
(6− 4ε)n− 2s.

Proof. (i) follows by drawing the curves γ of ∂Ai on U (T ) and counting the signed
crossings where γ passes below τ . We omit the details.

(ii) By definition, F is the union of ak copies of Ak , which can be put in regular
position. We leave it to the reader to check that the regular surfaces in E(T ( 1

3))

and E(T (− 1
2)) can be combined together to create the surface F in E(T ( 1

3 ,−
1
2))

without creating new crossings between F∩U (T ) and τ . Since a2=a3 and a4=a5,
we have θ(F)= a1 θ(A1)+ a2 θ(A2 ∪ A3)+ a4 θ(A4 ∪ A5)+ a6 θ(A6). It follows
from (i) and Lemma 5.3 that

θ(F)= 6 a1+ 4 a2− 2 ε a4 = 6(r − s)+ 4(r + s)− 2 ε n = (5− 2ε)n− 2s.

(iii) By definition, T = T (1
3 ,−

1
2 ; 4) is obtained from T ( 1

3 ,−
1
2) by two counter-

clockwise full twists of the two lower endpoints of the tangle, which deforms the
surface F ′′ in (ii) to a new surface F ′ in E(T ) with boundary curve represented
by the train track shown in Figure 6(a). After the twists, each arc component of
α′ = F ′∩∂N (τ ) passes below τ four more times than α′′ = F ′′∩∂N (τ ) does, two
of those times in the positive direction, and the other two in the positive direction
if and only if ε = −1. (The two strings twisted have the same orientation if and
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only if the two strings in the tangle T (− 1
2) have opposite orientation.) Hence

θ(F ′)= θ(F ′′)+ (2− 2ε)n, so by (ii) we have θ(F ′)= (7− 4ε)n− 2s.
We now perform an isotopy of F ′ to obtain the surface F whose boundary curve

on P is carried by the train track in Figure 6(b). To do this one needs to turn 2r = n
endpoints of F ∩ P on ∂P clockwise for an angle of almost 2π . The isotopy on
each endpoint creates one more crossing at which α′ passes below τ , and it is in
the negative direction. Therefore we have θ(F)= θ(F ′)− n = (6− 4ε)n− 2s. �

Lemma 5.5 can be used to calculate the boundary slope of a surface in E(K ).

Lemma 5.5. Suppose Fi is a regular surface in E(Ti ). Let η : ∂B1 = R̂2
→ R̂2

=

∂B2 be the reflection along the y-axis, such that η(F1 ∩ P(T1))= F2 ∩ P(T2). Let
(S3, K ) = (B1, τ1)∪η (B2, τ2) with orientation of τi induced by that of K , and let
F = F1∪η F2. Suppose F has m boundary components with slope p/q, where p, q
are coprime and q > 0. Then mp= θ(F1)+θ(F2). In particular, q = 1 if and only
if θ(F1)+ θ(F2) ≡ 0 mod n, where n = mq is the number of times ∂F intersects
each meridian of K .

Proof. We can shift T1 = (B3, τ1) to the left and T2 = (B3, τ2) to the right so that
τ1, τ2 are separated by the yz-half-plane in B3

= R3
−

. Now K ⊂ R3 is isotopic
to the knot K ′ obtained by adding four arcs on R2, each connecting an endpoint
pi of τ1 to η(pi ) on τ2, with two below the line y = −1 and the other two above
the line y = 1. We may also assume that near ∂τi these arcs match the arcs α
in Figure 3, so they are disjoint from the projection of Fi ∩U (Ti ) because Fi are
regular. The isotopy from K to K ′ extends to an isotopy which deforms F in E(K )
to the surface F ′ in E(K ′) obtained from F1∪ F2 by connecting their boundary on
R2 by bands in the upper half-space. More explicitly, let C = F1 ∩ R2 and embed
C× I in R3

+
∩ E(K ′) so that C×{−1} = F1∩ R2, C×{1} = F2∩ R2, and ∂C× I

lies on ∂N (K ′). Then F ′ = F1 ∪ (C × I )∪ F2. Note that (∂C)× I does not pass
below K ′, so lk(K ′, ∂F ′) is the sum of the signs of crossings where ∂Fi passes
below τi , and hence mp = lk(K , ∂F)= lk(K ′, ∂F ′)= θ(F1)+ θ(F2).

If q = 1 then mp≡ 0 mod n=mq. Conversely, if mp≡ 0 mod n=mq then p is
a multiple of q. Since p, q are coprime and q > 0, this is possible only if q = 1. �

We now assume that K is a type II knot and F is an essential punctured torus in
E(K ) with integer boundary slope. By Proposition 4.5, K is the union of two tan-
gles T1, T2, each weakly equivalent to T ( 1

3 ,−
1
2) or T (− 1

3 ,
1
2). Hence, up to weak

isotopy, we may assume that Ti = T ( 1
3 ,−

1
2 ; 4) or its mirror image T (−1

3 ,
1
2 ;−4).

By Lemma 4.4, we may assume that Fi = F ∩ E(Ti ) is a special surface, so by
Lemma 5.4(iii) we may assume that Fi is regular, and Fi ∩ P(Ti ) is represented
by the train track γi in Figure 6(b) if Ti = T ( 1

3 ,−
1
2 ; 4), and by its reflection along

the y-axis if Ti = T (− 1
3 ,

1
2 ;−4). The gluing map η : ∂B2 → ∂B1 could be any

orientation-reversing map that maps P(T2) to P(T1) and F1∩P(T1) to F2∩P(T2).
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As in Lemma 5.3, let n be the number of times F intersects a meridian of K on
N (K ), r = n/2, and let si be the number of type (6) special disks in Fi . There are
five possible ways to split γi , according to the values of si :

(1) r − si > si > 0 (2) si > r − si > 0 (3) si = 0

(4) r − si = 0 (5) r − si = si

One can check that for Ti = T (1
3 ,−

1
2 ; 4) the train track in Figure 6(b) splits to

γi in the corresponding parts of Figure 7, where s = si . When Ti = T (−1
3 ,

1
2 ;−4),

γi is the reflection of those in the figure along the y-axis. We say that γi is of type
(k) if it is the one shown in part (k) of Figure 7.

Lemma 5.6. For each i , si ∈ {0, r, r/2}. Hence γi is not of type (1) or (2).

Proof. We need to show that γi cannot be of type (1) or (2). Because of symmetry
we may assume without loss of generality that T1 = T ( 1

3 ,−
1
2 ; 4), and γ1 is of type

(1). By Lemma 5.4(iii) we have θ(F1)= (6− 4ε)n− 2s1.
The graph in part (1) is not homeomorphic to those in (3)–(5), so γ2 must be

of type (1) or (2). Let η : ∂B2 → ∂B1 be the gluing map, which is orientation-
reversing. Since the two horizontal edges of γi have higher weights than the other
edges, η must map horizontal edges to horizontal edges. Without loss of generality
we may assume that η maps the upper horizontal line of γ2 to the upper horizontal
line of γ1 by a reflection along the vertical axis. This fully determines η on γ2.
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First assume that T2 = T ( 1
3 ,−

1
2 ; 4). If γ2 is the one in Figure 7(2), then η is

simply a reflection along the vertical line, and hence it maps the two right vertices
of γ2 to the two left vertices of γ1, but since the two left (right) vertices of γi belong
to the same component of τi , K would be a link of two components, which is a
contradiction. Therefore γ2 must be the graph in Figure 7(1), which is redrawn
in Figure 8(1). One can modify the graph by turning the lower horizontal edge
clockwise by a half-twist to obtain the one in Figure 8(2), then isotope some of the
edge endpoints at the two lower boundary components of P around to obtain the
graph in Figure 8(3). The map η is the composition of this isotopy followed by a
reflection along a vertical line.

The isotopies above are not regular isotopies. They have changed the relative
framing of the surface F2. By Lemma 5.4(iii), the framing of F2 with boundary
graph in Figure 8(1) is given by (6−4ε)n−2s2. After twisting the two lower ver-
tices of the graph by a half-twist, each boundary arc of F2 on the tubes ∂E(T2)− P
passes below the part of τ near the vertex 3 in the figure once in the negative
direction, but does not pass below the other string of τ , and hence the new framing
is (4− 4ε)n− 2s2. The isotopy from Figure 8(2) to 8(3) moves r edge endpoints
clockwise and another r edge endpoints counterclockwise around vertex 3 and 4
respectively, and hence will not change the relative framing. Therefore we have
θ(F2)= (4− 4ε)n− 2s2 for the surface F2 corresponding to Figure 8(3).

In order to glue F2 to F1 by η, the weight of the left vertical edge in Figure 8(3)
must match the weight of the right vertical edge of Figure 7(1), and hence we have
r − 2s2 = 2s1. Thus θ(F1)= (6− 4ε)n− (r − 2s2), so

θ(F1)+ θ(F2)=
(
(6− 4ε)n− (r − 2s2)

)
+
(
(4− 4ε)n− 2s2

)
= (10− 8ε)n− r ≡ r mod n.

Since r = n/2, this is a contradiction to Lemma 5.5 and the assumption that F
has integer boundary slope. �

Lemma 5.7. s1 = s2 = r/2, so both γi are of type (5).
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Proof. If γi is of type (3) or (4), then the endpoints of a string of τi are separated by
those of the other string on γi , which is a circle. Hence if both γi are of type (3) or
(4) then K = τ1∪ τ2 would be a link of two components, which is a contradiction.
Therefore at least one γi , say γ1, is of type (5). If the result is not true then γ2 must
be of type (3) or (4). We assume it is of type (3). The other case is similar.

By the same proof as in that of Lemma 5.6, we can isotope γ2 by twisting the
lower level edge of γ2 by a half-twist, followed by an isotopy that moves some
endpoints of γ2 around ∂P , to change γ2 to a graph of type (5). As in the proof
of Lemma 5.6, this will not change θ(F2) mod n. By Lemma 5.4(iii), we have
θ(F1)+ θ(F2) ≡ −2s1− 2s2 mod n. Since γ2 is of type (3), we have s2 = 0, and
since γ1 is of type (5), we have 2s1 = r = n/2. Hence θ(F1)+ θ(F2) ≡ r mod n,
which by Lemma 5.5 implies that the boundary slope of the punctured torus F is
not an integer slope, a contradiction. �

Proposition 5.8. Let K be a type II knot, and let F be an essential punctured torus
in E(K ) with integer boundary slope δ. Then |∂F | is a multiple of 4, and (K , δ)=
(K1, 3), (K2, 0) or (K3,−3), where Ki are the knots defined in Definition 2.3.

Proof. By Proposition 4.5, we have (S3, K ) = T1 ∪ T2, where each T1 is weakly
equivalent to T (1

3 ,
1
2) or T (−1

3 ,
1
2). Up to weak equivalence we may assume that

each Ti is either T ( 1
3 ,−

1
2 ; 4) or T (−1

3 ,
1
2 ;−4).

Denote by u1, . . . , u4 the four disks ∂Bi − Int P(Ti ), which we consider as fat
vertices. By Lemma 5.7, the train track γ1 is of type (5), so it is a cycle containing
those four vertices, labeled in cyclic order, as shown in Figure 7(5). Similarly,
γ2 contains the vertices v1, . . . , v4 in the same order. Orient γi clockwise. Let
η : ∂B1 → ∂B2 be the gluing map. Then up to isotopy η is determined by its
restriction on γ1, which is then determined by the image of u1 and whether η|γ1 is
orientation-preserving or not. Although η must be orientation-reversing on ∂B1, it
may map the disk inside of γ1 to the disk outside of γ2, so η|γ1 could be orientation-
preserving.

Since K is a knot, the endpoints of a string of τ2 must be mapped to endpoints
of different strings of τ2, which excludes four possible η. Also, if τi is considered
as lying in a pillowcase Bi , then from Figure 2(a) one can see that a π -rotation
along a horizontal axis will preserve the tangle. One can now easily check that all
the four possible choices of η give rise to the same knot, so we may assume that η
is obtained by rotating γ2 counterclockwise by an angle of π/2 and then reflecting
along a vertical line, as described in Definition 2.3. Therefore K is one of the three
knots in the statement.

The surface F is cut into Fi in E(Ti ). By Lemma 5.2(iii), the (π/2)-rotation
above will not change θ(F1), so by Lemma 5.5 the boundary slope of F is given
by (θ(F1)+ θ(F2))/n. Examining the orientation of the strings in τi we see that
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they are consistently oriented in the tangle T (± 1
2), and hence ε = 1 for both Ti .

Since γi are of type (5), by definition we have 2si = r , so by Lemma 5.4(iii) we
have θ(Fi )= (6− 4ε)n− 2si = 2n− r if Ti = T (1

3 ,−
1
2 ; 4), and θ(Fi )=−2n+ r

if Ti = T (− 1
3 ,

1
2 ; −4). Hence if K = K1 = T (1

3 ,−
1
2 ; 4)∪η T (1

3 ,−
1
2 ; 4), then by

Lemma 5.5 the boundary slope of T is [(2n− r)+ (2n− r)]/n = 3. Similarly for
the other two cases.

By Lemma 5.3, we have |∂F | = n = 2r , and by Lemma 5.7 we have r = 2si ,
and hence |∂F | is a multiple of 4. �

6. Toroidal surgery

Let (K , δ) be one of the three pairs described in Theorem 1.1. In this section we
show that there is a punctured torus F in E(K ) with boundary slope δ, and that
the torus F̂ obtained by capping off the boundary components of F with merid-
ional disks in the Dehn filling solid is indeed an essential torus in the surgered
manifold K (δ).

Let T = T (1
3 ,

1
2)= T1 ∪ T2, where T1 = T ( 1

3) and T2 = T (1
2).

Lemma 6.1. A special surface Q in E(T ) is incompressible and P-incompressible.

Proof. By considering a component if necessary, we may assume that Q is con-
nected. By Lemma 3.3, each special disk has zero index, so by the Additivity
Lemma 3.2 Q also has zero index and hence is either an annulus disjoint from
U+(T ) or a disk intersecting U+(T ) in two arcs. If Q is a disk then it is auto-
matically incompressible, and a P-compression will produce two disks Di , each
intersecting U+(T ) at a single arc, which contradicts Lemma 3.4.

Now assume Q is an annulus. Let P ′= P+(T1)= P−(T2) be the twice-punctured
disk cutting E(T ) into E(T1) and E(T2). By definition, P ′ cuts Q into a set of
special disks, each of which is an essential bigon in the sense that it intersects P ′

in two arcs, and an arc on the bigon with one endpoint on each of these arcs is not
rel ∂ homotopic to an arc on P ′. Using this and the fact that P ′ is incompressible,
one can easily show, by an innermost circle/outermost arc argument, that Q is
incompressible in E(T ). To show it is P-incompressible, one need only show that
there is no ∂-compressing disk D of Q in E(T ) disjoint from U+(T ). Suppose
∂D = α∪β, where α is an essential arc on Q and β ⊂ ∂E(T )−U+(T ). Since P ′

is incompressible, we may assume D∩ P ′ has no circle components; since P ′∩Q
is a set of essential arcs on Q, α is isotopic to a component of P ′ ∩ Q, so by an
isotopy of D we may also assume that α ∩ P ′ = ∅. Hence D ∩ P ′ is a set of
arcs with endpoints on β. Choose D so that |D ∩ P ′| is minimal. If D ∩ P ′ = ∅,
then one can use D to ∂-compress a special disk to produce a pair of disks D j

in some E(Ti ) with ∂D j the union of an essential arc on P ′ and another arc on
∂E(Ti )− P ′ ∪U+(T ), which will lead to a contradiction to Lemma 3.3. Now an
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outermost arc γ cuts off a disk D′ from D which lies in one of the E(Ti ). Using
Lemma 3.3, one can show that ∂D′ is trivial on ∂E(Ti ), so it cuts off a 3-ball which
can be used to reduce |D ∩ P ′|, contradicting its minimality. �

By definition, the knot K is the union of two tangles T1, T2, each of which is
either T ( 1

3 ,−
1
2 ; 4) or its mirror image T (− 1

3 ,
1
2 ; −4). Let n= 4, s= 1, and define

ak by a1= a6= 1, a2= a3= 3, and a4= a5= 4. One can check that these numbers
satisfy the equations in Lemma 5.3. Since T ( 1

3 ,−
1
2 ; 4) is weakly equivalent to

T ( 1
3 ,

1
2), by Lemma 5.3 there is a special surface Fi in E(Ti ) that is the union of ak

copies of special disks of type (k) for k = 1, . . . , 6. By Lemma 5.4(iii), the curves
Fi ∩ P(T ) are represented by the train track in Figure 6(b), which splits to the one
in Figure 7(5) because r = 2 = 2s. Similarly for Ti = T (− 1

3 ,
1
2 ;−4). The graph

in Figure 7(5) is preserved by the gluing map η : ∂B1→ ∂B2, which by definition
is a (π/2)-rotation followed by a reflection along the vertical line. It follows that
F1 ∪η F2 form a surface F in E(K ).

Lemma 6.2. F is a connected essential punctured torus in E(K ), with ∂F con-
sisting of 4 circles of slope δ.

Proof. The boundary slope δ of F is calculated in the proof of Proposition 5.8. In
particular, δ is an integer in all three cases of K . Since n = 4 in the construction,
we see that |∂F | = 4.

Each Fi consists of
∑

ai = 16 disks, glued along 4r + 2(r + s) = 14 edges
as shown in Figure 4(c)–(d), and hence χ(Fi ) = 16− 14 = 2. By Lemma 5.7,
Fi∩P(Ti ) is as shown in Figure 7(5), and hence it consists of 4r=8 arcs. Therefore
χ(F) = χ(F1)+ χ(F2)− 8 = −4. Denote by F̂ the surface obtained from F by
capping off each boundary component of F with a disk. Since |∂F | = 4, we have
χ(F̂) = 0. By Lemma 4.3, no component of F̂ is a sphere. It follows that each
component of F̂ is a torus. In particular, no component of F is an annulus.

By Lemma 6.1, each Fi is incompressible and P-incompressible, and by Lemma
3.4, P = P(T1)= P(T2) is also incompressible. By an innermost circle/outermost
arc argument, one can thus show that F= F1∪F2 is incompressible in E(K ). Since
no component of F is an annulus, this implies that F is also ∂-incompressible, since
otherwise two copies of a boundary compression disk and the annulus on ∂N (K )
bounded by two components of ∂F would contain a compressing disk of F .

By Proposition 5.8, any essential punctured torus has at least 4 boundary com-
ponents. Since F has no closed component and |∂F | = 4, it follows that F is
connected. �

Lemma 6.3. Let M be a handlebody of genus 3, let c1, c2 be a pair of curves on
∂M , and let M ′ be the manifold obtained by attaching two 2-handles along c1 and
c2. If ∂M − ci is compressible for i = 1, 2, and ∂M − c1 ∪ c2 is incompressible,
then ∂M ′ is incompressible.
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Proof. This is a standard application of the handle addition lemma [Jaco 1984].
Denote by M1 the manifold obtained from M by attaching a 2-handle along c1. By
assumption, there is a compressing disk D of ∂M that is disjoint from c1. If D is
separating, then one component H of M |D is a handlebody disjoint from c1, so we
may rechoose D to be a nonseparating disk in H . Thus, after attaching a 2-handle to
M along c1, D is still a compressing disk of ∂M1, so ∂M1 is compressible. On the
other hand, since ∂M−c2 is compressible while (∂M−c2)−c1 is incompressible,
by the handle addition lemma applied to the pair (M−c2, c1)we see that the surface
∂M1−c2 is incompressible in M1. Now since ∂M1 is compressible while ∂M1−c2

is incompressible, we may apply the handle addition lemma again to conclude that
after attaching a 2-handle to M1 along c2, the boundary of the resulting manifold
M ′ is incompressible. �

Let F0 be a separating surface in a 3-manifold M with

∂F0 = c1 ∪ · · · ∪ cn ∪ c′n ∪ · · · ∪ c′1,

lying successively on a torus component R of ∂M . Let A1 be the component of
R|∂F0 bounded by c1 ∪ c′1, and let Ak be the annulus on R that is bounded by
ck∪c′k and contains A1. Starting with F0, one can construct a sequence of surfaces
F ′k and Fk by adding the annulus Ak to Fk−1 to obtain F ′k and then pushing the Ak

part of F ′k off R to obtain Fk . The surfaces Fk are said to be obtained from F by
successively tubing through A1. The following lemma is probably due to Gordon.

Lemma 6.4. Suppose F0 is a connected separating incompressible surface in a 3-
manifold M with ∂F0 on a torus component R of ∂M. Let M ′0,M ′′0 be the compo-
nents of M |F0, and let A1 be an annulus component of ∂M ′0−Int F0. If F ′1= F0∪A1

is incompressible in M ′0, then the surfaces Fk obtained by successively tubing F
through A1 are all incompressible in M.

Proof. We use the above notation, and let M ′k,M ′′k be the components of M |Fk .
Note that Fk are all connected and separating, and Ak+1 is a component of ∂M ′k−
Int Fk or ∂M ′′k − Int Fk . Hence, by induction, we need only show that F1 is incom-
pressible, and that if n > 1 then F ′2 is also incompressible in M ′′1 .

Since F1 is obtained by pushing the A1 part of F ′1 = F0 ∪ A1 into the interior
of M , the component M ′1 of M |F1 contained in M ′0 is homeomorphic to M ′0, with
F1⊂ ∂M ′1 identified to F0∪ A1⊂ ∂M ′0, and so by assumption F1 is incompressible
in M ′1. When n=1, the other component M ′′1 is obtained by attaching a collar R× I
to M ′′0 along the annulus A′1 = R− Int A1. It is clear that A′1 is incompressible in
M ′′1 . If it is also ∂-incompressible, then an innermost circle/outermost arc argument
shows that F1 is incompressible in M ′′1 , and if it is ∂-compressible then F0 must
be an annulus that is parallel to A′1 after cutting off some possible summands, so
M ′′1 is essentially a product R × I and hence F1 is also incompressible. When
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n > 1, M ′′1 is obtained by attaching A2× I to M ′′0 along the two annuli P and P ′

bounded by c1 ∪ c2 and c′1 ∪ c′2. The incompressibility of F0 implies that these
annuli are incompressible. Also, there is no disk D in M ′′1 intersecting P ∪ P ′ at a
single essential arc, since otherwise the frontier of N (D ∪ P ∪ P ′) would contain
a compressing disk of F0. One can now apply an innermost circle/outermost arc
argument to show that both F1 and F ′2 are incompressible in M ′′1 . �

Proof of Theorem 1.1. If K is not a type II knot or if δ is not an integer slope,
then by [Wu 1996b, Theorems 3.6 and 4.4], K (δ) is Haken and hyperbolic, so we
assume that K is a type II knot and δ is an integer slope. Write

(S3, K )= T1 ∪ T2,

with Ti = T (pi/qi ,
1
2). By [Wu 1996b, Theorem 2.3], E(K ) contains an essential

branched surface B that remains essential in K (δ), and hence by [Gabai and Oertel
1989] K (δ) is irreducible. Also, by the construction in the proof of [Wu 1996b,
Theorem 2.3], the exterior of the B is the disjoint union of E(T1) and E(T2), with
vertical surface U+(Ti ) on ∂E(Ti ).

We claim that E(Ti ) is not an I -bundle with U+(Ti ) as a vertical annulus. If this
were false, then after attaching a 2-handle to U+(Ti ), the resulting manifold Mi

would be an I -bundle over a closed surface, which must be a Klein bottle because
∂Mi is a torus. Since Mi is the exterior of a trefoil knot in S3, this would imply
that there is a Klein bottle embedded in S3, which is absurd.

By [Brittenham 1998], if a small Seifert fiber space contains an essential lam-
ination, then its exterior is an I -bundle; hence this implies that K (δ) cannot be a
small Seifert fiber space. Therefore K (δ) is exceptional if and only if it is toroidal.
By Proposition 5.8, K (δ) is toroidal only if (K , δ) is one of the three pairs listed, so
we need only show that K (δ) is indeed a toroidal manifold for each of those pairs.

Let F be the surface constructed before Lemma 6.2. By that lemma, F is an
essential punctured torus with ∂F consisting of four circles of slope δ given in
Theorem 1.1.

Let
Fi = F ∩ E(Ti ), P = P(Ti ), Pi = E(Tiq)∩ E(Ti2).

The special disks F ∩ E(Ti j ) in E(Ti j ) cut E(Ti j ) into a set of 3-balls Bk . The
arcs Pi ∩ Fi cut Pi into a set of disks Dr , so the manifold E(Ti )|Fi is obtained by
gluing the Bk along the Dr , and hence is a set of handlebodies Hk . Also, F ∩ P
cuts P into a set of disks D′r , so E(K ) is obtained from the Hk by gluing along the
D′r , and hence is also a set of handlebodies. Since F is a punctured torus with four
boundary components, it is separating in E(K ), so E(K )|F has two components
M1 and M2; and ∂Mi is the union of F with two annuli on ∂N (K ) and hence is a
surface of genus 3. It follows that each Mi is a handlebody of genus 3.
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Let A1, A2 be the two annuli ∂Mi − Int(F), and let c j be the core of A j . Then
by Lemma 6.2, the surface ∂Mi − c1 ∪ c2, which is homotopic to F on ∂Mi , is
incompressible. Note that ∂Mi − c1 is homotopic to the surface F ∪ A2 obtained
from F by tubing along A2. If this is incompressible, then by Lemma 6.4 the closed
surface F ′ obtained from F by successively tubing through A2 is incompressible.
From the construction, one can see that F ′ has coannular slope δ on ∂N (K ) in the
sense that there is an incompressible annulus A′ that has interior disjoint from F ′,
with one boundary component on F ′ and the other on ∂N (K ) with slope δ. It is
easy to see that any embedded essential surface in an irreducible 3-manifold has at
most one coannular slope on a torus boundary component, and hence there is no
disk in S3 with boundary on F ′ that intersects K exactly once, so F ′ is K -essential
in the sense of [Wu 1996b]. By Lemma 4.7 of that reference, there is no such
closed surface in the exterior of a type II knot, which is a contradiction.

Let M̂1, M̂2 be the two components of K (δ)|F̂ . Then M̂i is obtained from Mi

by attaching two 2-handles along the curves c1, c2 ⊂ ∂Mi . We have shown above
that Mi is a handlebody of genus 3, ∂Mi−c j is compressible, and ∂Mi−c1∪c2 is
incompressible. Therefore by Lemma 6.3, the surface F̂ = ∂ M̂i is incompressible
in M̂i . Since this is true for i = 1, 2, it follows that F̂ is an incompressible torus
in K (δ). �
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