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We consider the linear heat equation on a manifold that evolves under the
Ricci flow. The gradient estimates for positive solutions as well as Li–Yau
type inequalities are given in this paper. Both the case where M is a com-
plete manifold without boundary and the case where M is compact are
considered. We have also obtained the Harnack inequalities for the heat
equation on M by previous results.

1. Introduction

The heat equation is a classical subject that has been extensively studied and has
lead to many important results, especially in studies of differential geometry. One
of the important techniques used in studying the heat equation is the differential
Harnack inequality developed by Li and Yau [1986]. This is also applied to Ricci
flow by Hamilton [1993], and plays an important role in solving the Poincaré con-
jecture.

We consider the positive solutions of the linear heat equation on a manifold
M that evolves under the Ricci flow. A series of gradient estimates are obtained
for such solutions, including several Li–Yau-type inequalities. The manifold M
considered here is a complete manifold without boundary.

Let M be a manifold without boundary, and (M, g(x, t))t∈[0,T ] be a complete
solution to the Ricci flow

(1) ∂

∂t
g(x, t)=−2 Ric(x, t), x ∈ M, t ∈ [0, T ].

We assume that its curvature remains uniformly bounded for all t ∈[0, T ]. Consider
a positive function u(x, t) defined on M ×[0, T ] solving the equation

(2) ∂u
∂t
=1u− q(x, t)u, x ∈ M, t ∈ [0, T ],

where 1 stands for the Laplacian given by g(x, t) and q(x, t) is a C2 function
defined on M × [0, T ]. Noticing that 1 depends on the parameter t , we study the
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linear heat equation (2) along with the Ricci flow (1). Equation (1) provides us
with additional information about the coefficients of the operator 1 appearing in
(2), but is itself fully independent of (2).

2. Gradient estimates

Firstly, we introduce a cutoff function on Bρ,T . the notation Bρ,T stands for the
set {(χ, t) ∈ M × [0, T ] | dist(χ, x0, t) < ρ}, which satisfies the basic analytical
results stated in the following lemma.

Lemma 2.1. Given τ ∈ (0, T ], there exists a smooth function

9 : [0,∞)×[0, T ] → R

satisfying the following requirements:
1. The support of 9(r, t) is a subset of [0, ρ] × [0, T ], and 0 ≤ 9(r, t) ≤ 1 in
[0, ρ]× [0, T ].

2. The equalities

9(r, t)= 1 and ∂9

∂r
(r, t)= 0

hold on [0, ρ/2]× [τ, T ] and [0, ρ/2]× [0, T ], respectively.
3. The estimate ∣∣∣∣∂9∂t

∣∣∣∣≤ C 91/2

τ

is satisfied on [0,∞)×[0, T ] for some C > 0, and 9(r, 0)= 0 for all τ ∈ [0,∞).
4. The inequalities

−
Cα9α

ρ
≤
∂9

∂r
≤ 0 and

∣∣∣∂29

∂r2

∣∣∣≤ Cα9α

ρ2

hold on [0,∞)×[0, T ] for every a ∈ (0, 1), with a constant Cα dependent on a.

This lemma was first introduced in [Bailesteanu et al. 2010]. In the following
part of this section, we establish Li–Yau-type inequalities for system (1)–(2) and
obtain a local and a global estimate. To this end, we must introduce an auxiliary
function to apply the maximum principle on it. The following lemma deals with
the evolution equation of the auxiliary function.

Lemma 2.2. Suppose (M, g(x, t))t∈[0,T ] is a complete solution to the Ricci flow
(1). Assume that −k1g(x, t) ≤ Ric(x, t) ≤ k2g(x, t) for some k1, k2 > 0 and all
(x, t) ∈ Bρ,T . Suppose u : M×[0, T ]→R is a smooth positive function satisfying
the heat equation (2), and q(x, t) is a C2 function defined on M × [0, T ]. Given
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α ≥ 1, define f = log u and F = t (|∇ f |2−α ft −αq). The estimate

(3)
(
1−

∂

∂t

)
F ≥−2 〈∇ f,∇F〉− Ft−1

− 2k1αt |∇ f |2

+
2aαt

n
(|∇ f |2− ft − q)2− αtn

2b
max{k2

1, k2
2}− tα1q − 2t (α− 1)∇ f∇q

holds for any a, b > 0, such that a+ b = 1/α.

Proof. We begin with finding a convenient bound on 1F. Notice that

1F = t (2 f 2
j i + 2 f j f j i i −α1( ft)− a1q), x ∈ M, t ∈ [0, T ].

By the assumption on the Ricci curvature of M , it follows that

f j f j i i = f j fi i j + Ri j fi f j ≥ 〈∇ f,∇1 f 〉− k1 |∇ f |2

at an arbitrary point (x, t) ∈ Bρ,T . Using (1), we get that

1( ft)= (1 f )t − 2
n∑

i, j=1

Ri j fi j .

Thus, the estimate

1F ≥ t[2 f 2
j i + 2 〈∇ f,∇1 f 〉− 2k1 |∇ f |2−α(1 f )t + 2αRi j fi j −α1q]

holds at (x, t) ∈ Bρ,T . The next step is to find a suitable bound on those terms in
the right side involving fi j by completing the square. Specifically, we find that

n∑
i, j=1

(
f 2
i j +αRi j fi j

)
=

n∑
i, j=1

[(aα+ bα) f 2
i j +αRi j fi j )]

=

n∑
i, j=1

(
aα f 2

i j +α
(√

b fi j +
Ri j

2
√

b

)2
−
α

4b
R2

i j

)

≥

n∑
i, j=1

(
aα f 2

i j −
α

4b
R2

i j

)
at (x, t) ∈ Bρ,T for any a, b> 0, such that a+ b= 1/α. Using the assumptions in
the lemma and the standard inequality

n∑
i, j=1

f 2
i j ≥

(1 f )2

n
,

we obtain the estimate
n∑

i, j=1

( f 2
i j +αRi j fi j )≥

aα
n
(1 f )2− α

4b
max{k2

1, k2
2}, (x, t) ∈ Bρ,T .
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Obviously, we conclude that

(4) 1F ≥ t
[2aα

n
(1 f )2+ 2 〈∇ f,∇1 f 〉− 2k1 |∇ f |2−α(1 f )t

−α1q − αn
2b

max{k2
1, k2

2}

]
=

2aαt
n
(|∇ f |2− ft − q)2− 2t∇ f∇(|∇ f |2− ft − q)

−2k1t |∇ f |2− tα1q +αt (|∇ f |2− ft − q)t −
αnt
2b

max{k2
1, k2

2}

in the set Bρ,T .
This gives a convenient bound for 1F . Now we consider the derivative of F in

t ∈ [0, T ]. It is not hard to compute that

∂F
∂t
=

F
t
+ t (|∇ f |2−α ft −αq)t .

Subtracting this from (4), we see that the inequality(
1−

∂

∂t

)
F ≥ 2aαt

n
(|∇ f |2− ft − q)2− 2t∇ f∇(|∇ f |2− ft − q)− 2k1t |∇ f |2

− tα1q − αnt
2b

max{k2
1, k2

2}−
F
t
+ (α− 1)t (|∇ f |2)t

holds in the set Bρ,T , with t > 0. We need the estimate on |∇ f |2t in order to obtain
(3) from this inequality. The Ricci flow equation (1) and the assumptions of the
lemma imply

|∇ f |2t = 2∇ f∇( ft)+ 2 Ric(∇ f,∇ f )≥ 2∇ f∇( ft)− 2k1 |∇ f |2

at (x, t) ∈ Bρ,T . As a consequence,(
1−

∂

∂t

)
F ≥ 2aαt

n
(|∇ f |2− ft − q)2− 2k1α |∇ f |2− tα1q

−
αnt
2b

max{k2
1, k2

2}−
F
t
− 2∇ f∇F − 2(α− 1)t∇ f∇q

in Bρ,T . The desired assertion follows. �

Now we can consider the local space-time gradient estimate with Lemma 2.2.
In the following part, n is the dimension of M .

Theorem 2.3. Let (M, g(x, t))t∈[0,T ] be a complete solution to the Ricci flow (1).
Suppose −k1g(x, t) ≤ Ric(x, t) ≤ k2g(x, t) for some k1, k2 > 0 and all (x, t) ∈
Bρ,T . Suppose u : M × [0, T ] → R is a smooth positive function solving the
heat equation (2), and q(x, t) is a C2 function defined on M × [0, T ], |∇q| ≤ γ ,
|1q| ≤ θ . There exists a constant C

′

that depends only on the dimension of M and



THE LINEAR HEAT EQUATION UNDER THE RICCI FLOW 249

satisfies the estimate

(5) |∇u|2

u2 −α
ut

u
−αq

≤C
′

α2
(

α2

ρ2(α−1)
+

1
t
+max{k1, k2}

)
+

nk1α
3

α− 1
+
γ (α− 1)

α

√
2αk1

n
+2α
√
αnθ

for all α > 1 and all (x, t) ∈ Bρ/2,T with t 6= 0.

Proof. We will use the same notation, f = log u and F = t (|∇ f |2−α ft −αq), as
in Lemma 2.2 and denote max{k1, k2} as k. For a fixed τ ∈ (0, T ] and fixed 9(r, t)
satisfying the conditions in Lemma 2.2, define 9 : M ×[0, T ] → R by setting

9(x, t)=9(dist(x, x0, t), t).

We will establish the inequality in Theorem 2.3 at (x, τ ) for x ∈ M , such that
dist(x, x0, τ ) < ρ/2. This will complete the proof.

From Lemma 2.2, some straightforward computations lead to

(6)
(
1−

∂

∂t

)
(9F)

≥−2∇ f∇(9F)+2F∇ f∇9+
(2aαt

n
(|∇ f |2− ft−q)2−2k1αt |∇ f |2

−
αnt
2b

k
2
− tα1q − F

t
− 2(α−1)t∇ f∇q

)
9

+ (19)F + 2∇9
9
∇(9F)− 2 |∇9|

2

9
F − ∂9

∂t
F.

This inequality holds in the part of Bρ,T where 9(x, t) is smooth and strictly
positive. Let (x1, t1) be a maximum point for the function 9F in the set

{(x, t) | 0≤ t ≤ τ, d(x, x0, t)≤ ρ}.

Then we have

(7) 0≥ 2F∇ f∇9 +
(2aαt1

n
(|∇ f |2− ft − q)2− 2k1αt1 |∇ f |2

−
αnt1
2b

k
2
− t1α1q − F

t1
− 2(α− 1)t1∇ f∇q

)
9

+ (19)F − 2 |∇9|
2

9
F − ∂9

∂t
F

at (x1, t1). We will now use (7) to show that a certain quadratic expression in 9F
is nonpositive. The desired result will then follow.
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We recall Lemma 2.1 and apply the Laplacian comparison theorem to obtain

|∇9|2

9
≤

C2
1/2

ρ2 ,

19 ≥−
C1/29

1/2

ρ2 −
C1/29

1/2

ρ
(n− 1)

√
k1 coth

(√
k1ρ

)
≥−

d1

ρ2 −
d19

1/2

ρ

√
k1

at the point (x1, t1), where d1 is a positive constant depending on n. There exists
C > 0 such that

−
∂9

∂t
≥−

C91/2

τ
−C1/2k91/2.

Using these observations along with (6), we get the estimate

0≥−2F |∇ f | |∇9| +
(2aαt1

n
(|∇ f |2− ft − q)2− 2k1αt1 |∇ f |2

− t1α1q −
αnt1
2b

k
2
−

F
t1
− 2(α− 1)t1∇ f∇q

)
9

+ d2

(
−

1
ρ2 −

91/2

ρ

√
k1−

91/2

τ
− k91/2

)
F

at (x1, t1), where

d2 = {3d1,C1/2, 3C2
1/2,C}.

Multiplying by t9 and making a few elementary manipulations, we obtain

(8) 0≥−2t1 F
C1/29

3/2

ρ
|∇ f |

+
2t2

1

n

(
aα92(|∇ f |2− ft − q)2− nk1α9

2
|∇ f |2

−
n2α

4b
k

2
92
−

n
2
α921q − n(α− 1)∇ f∇q92

)
+ d2

(
−

1
ρ2 −

1
ρ

√
k1−

1
τ
− k

)
t1(9F)−9F

at (x1, t1). Our next step is to estimate the first two terms on the right side. In order
to finish, we introduce the following notations.

Define

y =9 |∇ f |2 and z =9( ft + q).

It is clear that

y1/2(y−αz)= 9
3/2 F |∇ f |

t
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when t 6= 0, which yields

(9) −2t1 F
C1/29

3/2

ρ
|∇ f | +

2t2
1

n

(
aα92(|∇ f |2− ft − q)2

− nk1α9
2
|∇ f |2 − n2α

4b
k

2
92
−

n
2
α921q − n(α− 1)∇ f∇q92

)
≥

2t2

n

(
aα(y− z)2− nk1αy− n2α

4b
k

2
92

−
nC1/2

ρ
y1/2(y−αz)− n

2
α921q − n(α− 1)∇ f∇q92

)
.

Let us observe that

(y− z)2 = 1
α2 (y−αz)2+ (α−1)2

α2 y2
+

2(α−1)
α2 y(y−αz)

and substitute this into the previous estimate. Regrouping the terms and applying
the inequality mv2

−nv ≥−n2/4m, which is valid for m, n > 0 and v ∈R, we get

−2t1 F
C1/29

3/2

ρ
|∇ f | +

2t2
1

n

(
aα92(|∇ f |2− ft − q)2− nk1α9

2
|∇ f |2

−
n2α

4b
k

2
92
−

n
2
α921q − n(α− 1)∇ f∇q92

)
≥

2t2
1

n

(a
α
(y−αz)2− 2nk1αy+ nk1αy− n2α

4b
k

2
92
−

nC1/2

ρ
y1/2(y−αz)

−
n
2
α92θ − n(α− 1)γ91/2 y1/2

+
a
α
(α− 1)2 y2

+
2a(α−1)

α
y(y−αz)

)
≥

2t2
1

n

(a
α
(y−αz)2− n2α

4b
k

2
92

−
n
2
α92θ −

n2d2α

8aρ2(α− 1)
(y−αz)−

n2k2
1α

3

a(α− 1)2
−
γ 2n(α−1)29

4k1α

)
.

Because t (y−αz)=9F by definition, (8) now implies that

0≥ 2a
nα
(9F)2+

(
−

nd2t1
ρ2

(
α

a(α−1)
+ 1+ ρ

√
k1+

ρ2

τ
+ ρ2k

)
(9F)

−9F −
2nk2

1α
3

a(α− 1)2
t2
1 −

αn
2b

t2
1 k

2
92
−
γ 2(α− 1)2t2

19

2k1α
−αt2

19
2θ

≥
2a
nα
(9F)2+

(
−

d3t1
ρ2

(
α

a(α−1)
+
ρ2

τ
+ ρ2k

)
− 1

)
(9F)−

2nk2
1α

3

a(α− 1)2
t2
1

−
αn
2b

t2
1 k

2
92
−
γ 2(α− 1)2t2

19

2k1α
−αt2

19
2θ
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at (x1, t1) with d3 = 4nd2. The expression in the last two lines is a polynomial in
9F of degree 2. Consequently, in accordance with the quadratic formula,

9F ≤ nα
2a

[
d3t1
ρ2

(
α

a(α−1)
+
ρ2

τ
+ ρ2k

)
+ 1+

2k1α

α− 1
t1

+

√
a
b

t1k9 +
γ (α− 1)t1

α

√
a

k1n
+ t1

√
2aθ

n
9

]
at (x1, t1). We will now use this conclusion to obtain a bound on F(x, τ ) for an
appropriate range of x ∈ M.

Recall that 9(x, τ )= 1 whenever dist(x, x0, t) < ρ/2. Also, (x1, t1) is a maxi-
mum point for 9F in the set {(x, t) ∈ M ×[0, τ ] | dist(x, x0, τ ) < ρ}. Hence,

F(x, τ )= (9F)(x, τ )≤ (9F)(x1, t1)

≤
nαd3τ

2aρ2

(
α

a(α−1)
+
ρ2

τ
+ ρ2k

)
+

nα
2a
+

nk1α
2

a(α−1)
τ

+
ατnk

2

√
1

ab
+
γ (α−1)τ

α

√
k1

an
+ατ

√
2nθ

a

for all x ∈ M , such that dist(x, x0, τ ) < ρ/2. Since τ ∈ (0, T ] is chosen arbitrarily,
this formula implies that

(|∇ f |2−α ft −αq)(x, t)

≤
αd4

aρ2

(
α

a(α−1)
+
ρ2

t
+ρ2k

)
+

nk1α
2

a(α− 1)
+
αnk

2

√
1

ab
+
γ (α−1)
α

√
k1
an
+α

√
2nθ

a
,

(x, t) ∈ Bρ/2,T , with d4 = max{nd3, n}, as long as t 6= 0. If we set a = 1/(2α),
note that b = 1/α− a, and define the constant C ′ appropriately, estimate (5) will
follow by a straightforward computation. �

Now we consider the case where the manifold M is compact. Assume M has
nonnegtive Ricci curvature, we will deduce a global estimate on u(x, t). A related
inequality for (1)–(2) can be found in [Hamilton 1993].

Theorem 2.4. Suppose the manifold M is a solution to the Ricci flow (1). Assume
that 0 ≤ Ric(x, t) ≤ kg(x, t) for some k > 0 and all (x, t) ∈ M × [0, T ]. Suppose
u : M × [0, T ] → R is a smooth positive function satisfying the heat equation (2),
and q(x, t) is a C2 function defined on M × (0, T ) and |1q| ≤ θ . The estimate

(10) |∇u|2

u2 −
ut

u
− q ≤ kn+ n

2t
+ 2
√

nθ

holds for all (x, t) ∈ M ×[0, T ].
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Proof. As before, we write f instead of log u. It will be convenient for us to denote
F1 = t (|∇ f |2 − ft − q). Fix τ ∈ (0, T ], and choose a point (x0, t0) ∈ M × [0, τ ]
where F1 attains its maximum on M ×[0, τ ]. Our first step is to show that

F1(x0, t0)≤ t0kn+ n
2
+ 2
√

nθ t0.

Then the theorem will follow.
If t0= 0, then F1(x, t0) is equal to 0 for every x ∈M , and estimate (10) becomes

evident. Therefore, we can assume t0>0 without loss of generality. By Lemma 2.2
and assumptions on the Ricci curvature of M , we can deduce that(

1−
∂

∂t

)
F1 ≥

2a
n

F2

t0
−

F
t0
− 2∇ f∇F −

nt0k2

2(1− a)
− t01q

for all a ∈ (0, 1) at the point (x0, t0). Recall that F1 attains its maximum at (x0, t0).
This tells us that

1F1(x0, t0)≤ 0, ∂

∂t
F1(x0, t0)≥ 0, and ∇F1(x0, t0)= 0.

In consequence, the estimate

0≥ 2a
n

F2

t0
−

F
t0
−

nt0k2

2(1− a)
− t0θ

holds at (x0, t0), and the quadratic formula yields

F1 ≤
n
4a

(
1+

√
1+

4at2
0

1−a
k2+

8aθ
n

t2
0

)
.

Letting a= (1+kt0)/(1+2kt0), and substituting this into the above inequality, we
arrive at (10).

We now need only a simple argument to complete the proof. Since (x0, t0) is
the maximum point for F1 on M ×[0, τ ], we are then able to conclude that

F1(x, τ )≤ F1(x0, t0)≤ t0kn+ n
2
+ 2
√

nθ t0 ≤ τkn+ n
2
+ 2
√

nθτ

for all x ∈ M . Therefore, the estimate

|∇u|2

u2 −
ut

u
− q ≤ kn+ n

2τ
+ 2
√

nθ

holds at (x, τ ). Because τ ∈ (0, T ] can be chosen arbitrarily, the assertion of the
theorem follows. �
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3. Harnack Inequalities

The last goal is to get two Harnack inequalities. These may be viewed as applica-
tions of Theorems 2.3 and 2.4.

Lemma 3.1. Let (M, g(x, t))t∈[0,T ] be a complete solution to the Ricci flow (1).
Suppose u : M × [0, T ] → R is a smooth positive function satisfying the heat
equation (2), and q(x, t) is a C2 function defined on M×[0, T ]. Define f = log u,
and assume that

∂ f
∂t
≥

1
A1

(
|∇ f |2− A2−

A3

t

)
− q, x ∈ M, t ∈ (0, T ]

for some A1, A2, A3 > 0. Then the inequality

u(x2, t2)≥ u(x1, t1)
( t2

t1

)−A3/A1
exp

(
−

A1

4
0(x1, t1,x2, t2)−

A2

A1
(t2− t1)

)
holds for all (x1, t1) ∈ M × (0, T ), and (x2, t2) ∈ M × (0, T ) such that t1 < t2,
where

0(x1, t1,x2, t2)= inf
∫ t2

t1

[∣∣ d
dt
γ (t)

∣∣2+ 4
A1

q
]

dt,

and the infimum is taken over the set 2(x1, t1,x2, t2) of all the smooth paths γ :
[t1, t2]→ M that connect x1 to x2. We remind the reader that the norm |·| depends
on t.

Proof. Consider a path γ ∈2(x1, t1,x2, t2). We begin by computing

d
dt

f (γ (t), t)=∇ f (γ (t), t) d
dt
γ (t)+ ∂

∂s
f ((γ (t), s)

∣∣
s=t

≥−|∇ f (γ (t), t)|
∣∣∣ d
dt
γ (t)

∣∣∣+ 1
A1

(
|∇ f |2− A2−

A3

t

)
− q

≥−
A1

4

∣∣∣ d
dt
γ (t)

∣∣∣2+ 1
A1

(
−A2−

A3

t

)
− q,

t ∈ [t1, t2].
By the inequality mv2

− nv ≥−n2/(4m), valid for m, n > 0 and v ∈ R, we get
the last step. It then follows that

f (x2, t2)− f (x1, t1)=
∫ t2

t1

d
dt

f (γ (t), t)dt

≥−
A1

4

∫ t2

t1

∣∣∣ d
dt
γ (t)

∣∣∣2− A2

A1
(t2− t1)−

A3

A1
ln

t2
t1
−

∫ t2

t1
q dt.

The assertion of the lemma follows by exponentiating. �
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We are ready to formulate our Harnack inequalities for (1)–(2).The first one
applies on noncompact manifolds. The second one does not, but provides a more
explicit estimate.

Theorem 3.2. Let (M, g(x, t))t∈[0,T ] be a complete solution to the Ricci flow (1).
Assume that−k1g(x, t)≤Ric(x, t)≤ k2g(x, t) for some k1, k2 > 0 and all (x, t)∈
M ×[0, T ]. Suppose u : M ×[0, T ] → R is a smooth positive function solving the
heat equation (2), and q(x, t) is a C2 function defined on M × [0, T ], |∇q| ≤ γ ,
and |1q| ≤ θ . Given α > 1, the estimate

(11) u(x2, t2)≥ u(x1, t1)
( t2

t1

)−C ′α
exp

(
−
α

4
0(x1, t1,x2, t2)

−
1
α

(
C
′

α2k+
nk1α

3

α− 1
+
γ (α−1)
α

√
2αk1

n
+ 2α
√
αnθ

)
(t2− t1)

)
holds for all (x1, t1) ∈ M×[0, T ], and (x2, t2) ∈ M×[0, T ], such that t1 < t2. The
constant C ′ comes from Theorem 2.3, where

0(x1, t1,x2, t2)= inf
∫ t2

t1

[∣∣ d
dt
γ (t)

∣∣2+ 4
A1

q
]

dt,

and the infimum is taken over the set 2(x1, t1,x2, t2) of all the smooth paths γ :
[t1, t2] → M that connect x1 to x2.

Proof. Letting ρ go to infinity in (5), we conclude that

ut

u
≥

1
α

(
|∇u|2

u2 −C
′

α2
(1

t
+ k

)
−

nk1α
3

α− 1
−
γ (α−1)
α

√
2αk1

n
− 2α
√
αnθ

)
− q

on M × (0, T ]. The desired assertion is now a consequence of Lemma 3.1. �

Theorem 3.3. Suppose the manifold M is a solution to the Ricci flow (1). Assume
that 0 ≤ Ric(x, t) ≤ kg(x, t) for some k > 0 and all (x, t) ∈ M × [0, T ]. Suppose
u : M × [0, T ] → R is a smooth positive function satisfying the heat equation (2),
and q(x, t) is a C2 function defined on M ×[0, T ], |1q| ≤ θ . The estimate

u(x2, t2)≥ u(x1, t1)
( t2

t1

)−n/2
exp

(
−
α

4
0(x1, t1,x2, t2)−

(
kn+ 2

√
nθ
)
(t2− t1)

)
holds for all (x1, t1) ∈ M ×[0, T ] and (x2, t2) ∈ M × (0, T ) as long as t1 < t2.

Proof. Theorem 2.4 implies that

|∇u|2

u2 − q −
(

kn+ n
2t
+ 2
√

nθ
)
≤

ut

u
, x ∈ M, t ∈ (0, T ].

We now use Lemma 3.1 to complete the proof. �
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