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A CLASS OF IRREDUCIBLE INTEGRABLE MODULES FOR
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The baby TKK algebra is a core of the extended affine Lie algebra of type A1

over a semilattice in R2. In this paper, we classify the irreducible integrable
weight modules for the extended baby TKK algebra under the assumption
that its center acts nontrivially.

1. Introduction

Extended affine Lie algebras (EALAs) were first introduced in [Høegh-Krohn and
Torrésani 1990] and studied systematically in [Allison et al. 1997; Berman et al.
1996]. They are natural generalizations of finite-dimensional simple Lie algebras
and affine Kac–Moody algebras. There are many examples of EALAs, such as
toroidal algebras and TKK algebras [Moody et al. 1990; Mao and Tan 2007a;
2007b; Eswara Rao 2004; Tan 1999]. In [Eswara Rao 2004], the author studied
the irreducible integrable weight modules of toroidal algebras.

The baby TKK algebra Ĝ(J(S)) is the universal central extension of G(J(S))
obtained by the Tits–Kantor–Koecher construction. Its vertex operator representa-
tion and quantum analogue were studied in [Tan 1999; Gao and Jing 2010].

We recall this construction [Allison et al. 1997; Tan 1999]: Let e1 = (1, 0) and
e2 = (0, 1) be the unit elements in the lattice Z2. Let Si for 0≤ i ≤ 3 be the cosets
of 2Z2 in Z2 defined by

(1-1) S0 = 2Z2, S1 = e1+ 2Z2, S2 = e2+ 2Z2, S3 = e1+ e2+ 2Z2.

Let S = S0 ∪ S1 ∪ S2. For σ ∈ S, let xσ be a symbol. Then we obtain a Jordan
algebra J(S)=

⊕
σ∈S Cxσ with multiplication

(1-2) xr x s
=

{
xr+s if r, s ∈ S0 ∪ Si and 0≤ i ≤ 2,
0 otherwise.

Let LJ(S) be the set of multiplication operators of J(S) and

Inder(J(S))= [LJ(S), LJ(S)] = spanC

{
[La, Lb] : a, b ∈ J(S)

}
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where [La, Lb] is an inner derivation of the Jordan algebra J(S). Let sl2(C) be the
3-dimensional simple Lie algebra. We use x+, x− and α∨ to denote the Chevalley
basis of sl2(C) with relations

(1-3) [x+, x−] = α∨ and [α∨, x±] = ±2x±.

Define a Lie algebra G(J(S))=
(
sl2(C)⊗J(S)

)
⊕ Inder(J(S)) with multiplication

[A⊗ xr , B⊗ x s
] = [A, B]⊗ xr x s

+ 2 tr(AB)[L xr , L x s ],

[D, A⊗ xr
] = A⊗ Dxr ,[

D, [L xr , L x s ]
]
= [L Dxr , L x s ] + [L xr , L Dx s ],

for A, B ∈ sl2(C), xr, x s
∈ J(S), and D ∈ Inder(J(S)). The Lie algebra G(J(S))

is a perfect Lie algebra. Its universal central extension Ĝ(J(S)) is called the baby
TKK algebra.

Let 〈J(S),J(S)〉 be the quotient space (J(S)⊗J(S))/I , where I is the subspace
of J(S)⊗J(S) spanned by all vectors of the form

a⊗ b+ b⊗ a or ab⊗ c+ bc⊗ a+ ca⊗ b

for a, b, c ∈ J(S). We will use 〈a, b〉 to denote the element a⊗ b+ I in (J(S)⊗
J(S))/I . In [Tan 1999], the baby TKK algebra Ĝ(J(S)) is realized as the vector
space

(1-4) Ĝ(J(S))=
(
sl2(C)⊗J(S)

)
⊕〈J(S),J(S)〉,

with the Lie bracket given by

[A⊗ a, B⊗ b] = [A, B]⊗ ab+ 2 tr(AB)〈a, b〉,

[〈a, b〉, A⊗ c] = A⊗[La, Lb]c,

[〈a, b〉, 〈c, d〉] =
〈
[La, Lb]c, d

〉
+
〈
c, [La, Lb]d

〉
,

(1-5)

for a, b, c, d ∈J(S) and A, B∈sl2(C). A vertex operator representation of Ĝ(J(S))
was given in [Tan 1999] on a mixed bosonic-fermionic Fock space.

Let d1, d2 be the derivations on the baby TKK algebra Ĝ(J(S)) given by

[di , A⊗ xσ ] = (σ · ei )A⊗ xσ ,

[di , 〈xσ , xτ 〉] = ((σ + τ) · ei )〈xσ , xτ 〉,
(1-6)

for σ, τ ∈ S, A ∈ sl2(C), i, j = 1, 2, where a · b denotes the inner product of
a, b ∈ R2.

The extended baby TKK algebra L is defined to be

(1-7) L= Ĝ(J(S))⊕Cd1⊕Cd2.
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The center of L is two-dimensional, denoted by CC1⊕CC2, where C1=〈xe1, x−e1〉

and C2 = 〈xe2, x−e2〉.
In this paper, we study the irreducible integrable weight modules of the extended

baby TKK algebra L such that C1 acts nonzero while C2 acts as zero. We identify
sl2(C) with the subalgebra sl2(C)⊗1 of L. Then, L has a five-dimensional Cartan
subalgebra Cα∨⊕CC1⊕CC2⊕Cd1⊕Cd2. Let 1 be the root system of L with
respect to this Cartan subalgebra. In Section 2, we will decompose 1 into 1 =
1− ∪ 10 ∪ 1+ and, correspondingly, have a “triangular decomposition” of the
extended baby TKK algebra L,

(1-8) L= L(1−)⊕L(10)⊕L(1+),

where L(1±)=
⊕

β∈1±
Lβ and L(10)=

⊕
β∈10

Lβ , where Lβ denotes the root
space for β ∈1. By a highest-weight module we mean a weight module generated
by a weight vector that is annihilated by L(1+). We show that any irreducible
integrable module V for L with the actions of C1 > 0 and C2 = 0 is a highest-
weight module, and we also determine the conditions for a highest weight module
to be integrable.

The paper is organized as follows: In Section 2, we recall some results on the
structure of the extended baby TKK algebra L, and give the definition of inte-
grable modules of L. We close the section with a lemma about the properties of
irreducible integrable modules of L. In Section 3, we study the highest-weight
modules of L. Let K= Ĝ(J(S))⊕Cd1 be a subalgebra of L. We define irreducible
highest-weight modules, denoted by V (ψ̄) and L(ψ), for the Lie algebras L and
K, respectively. We show that the integrability of the L-module V (ψ̄) is equivalent
to the integrability of the K-module L(ψ). Then, we investigate the conditions for
the K-module L(ψ) to be integrable. In Section 4, we prove that every irreducible
integrable module of L with the actions of C1 > 0 and C2 = 0 is isomorphic to a
highest-weight module V (ψ̄) constructed in Section 3.

We denote by Z, N, Z+, R, C the sets of integers, nonnegative integers, positive
integers, real numbers, and complex numbers, respectively. U (g) stands for the
universal enveloping algebra of a Lie algebra g. All algebras are over C.

2. Basic concepts

We recall the structure of L and its root system. Following [Tan 1999], we define

x±(σ )= x±(m, n) :=
{

x±⊗ xσ if σ ∈ S,
0 if σ ∈ S3,

α∨(σ )= α∨(m, n) :=
{
α∨⊗ xσ if σ ∈ S,
2〈xe1, xσ−e1〉 if σ ∈ S3,
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and

Ci (σ )= Ci (m, n) :=
{
〈xei , xσ−ei 〉 if σ ∈ S0,

0 if σ 6∈ S0,

where i = 1, 2, m, n ∈ Z and σ = (m, n). We also define

�(τ) :=


0 if τ ∈ S0,

−1 if τ ∈ S1,

1 if τ ∈ S2,

for τ ∈ S. The sets S0, S1, S2, S3 and S were defined in (1-1).

Proposition 2.1 [Tan 1999]. The universal central extension Ĝ(J(S)) of G(J(S))
is spanned by the elements {x±(σ ), α∨(τ ),Ci (ρ)}, for i = 1, 2, σ ∈ S, τ ∈ Z2

=

Ze1+Ze2, and ρ ∈ S0, and satisfies the following relations:

(R1) For σ, τ ∈ S,

[x±(σ ), x±(τ )] = 0,

[x+(σ ), x−(τ )] =

{
�(τ) α∨(σ + τ) if σ + τ 6∈ S,

α∨(σ + τ)+ 2
∑

i=1,2
(σ · ei )Ci (σ + τ) if σ + τ ∈ S.

(R2) For σ ∈ Z2, τ ∈ S,

[α∨(σ ), x±(τ )] =

{
±2x±(σ + τ) if σ ∈ S,

2�(τ) x±(σ + τ) if σ 6∈ S.

(R3) For σ, τ ∈ Z2,

[α∨(σ ), α∨(τ )] =



2�(τ) α∨(σ + τ) if σ 6∈ S, τ ∈ S,

−4
∑

i=1,2
(σ · ei )Ci (σ + τ) if σ, τ 6∈ S,

4
∑

i=1,2
(σ · ei )Ci (σ + τ) if σ, τ ∈ S and σ + τ ∈ S,

2�(τ) α∨(σ + τ) if σ, τ ∈ S and σ + τ 6∈ S.

(R4) Ci (σ ) are central for σ ∈ S0 and i = 1, 2, and satisfy

(σ · e1)C1(σ )+ (σ · e2)C2(σ )= 0. �

Remark 2.2. We set h0 = Cα∨(0, 0)= Cα∨ and the Cartan subalgebra

h= h0⊕CC1⊕CC2⊕Cd1⊕Cd2

of the baby TKK algebra L = Ĝ(J(S))⊕ Cd1 ⊕ Cd2. The center Z(L) of L is
CC1⊕CC2.
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Remark 2.3. L contains as a subalgebra the affine Kac–Moody algebra

s̃l2(C)=
(
sl2(C)⊗

(∑
n∈Z

Cxne1
))
⊕CC1⊕Cd1.

Definition 2.4. A module M over L is called a weight module if

M =
⊕
λ∈h∗

Mλ,

where Mλ = {v ∈ M : h . v = λ(h)v for all h ∈ h}. The set P(M) = {λ ∈ h∗ :

Mλ 6= 0} is called the weight set of M . For λ∈ P(M), Mλ is called a weight space
associated to λ.

Lemma 2.5. If M is any irreducible weight module over L, then the actions of C1

and C2 are constant. �

From this lemma, we see that, for any irreducible weight module M over L, the
actions of C1 and C2 are always linearly dependent. Due to this, in this paper we
will consider modules with the actions of C1 nonzero and C2 = 0.

Define the elements α, δi and wi in h∗ (i = 1, 2) by

α(α∨)= 2, α(d j )= α(C j )= 0,

δi (α
∨)= 0, δi (d j )= δi j , δi (C j )= 0,

wi (α
∨)= 0, wi (d j )= 0, wi (C j )= δi j ,

for j = 1, 2. Define also

1Re
= {±α+ n1δ1+ n2δ2 : (n1, n2) ∈ S},

1Im
= {n1δ1+ n2δ2 : (n1, n2) ∈ Z2

},

1=1Re
∪1Im.

The elements in 1Re and 1Im are called real and imaginary (or isotropic) roots,
respectively. Then, L has a root space decomposition

L=
⊕
β∈1

Lβ,

where Lβ = {x ∈ L : [h, x] = β(h)x for all h ∈ h} and L0 = h.
Define the coroot γ ∨ =±α∨+2n1C1+2n2C2 for γ =±α+n1δ1+n2δ2 ∈1

Re,
and define the reflection rγ on h∗ by setting

rγ (λ)= λ− λ(γ ∨)γ.

Let W be the subgroup of GL(h∗) generated by {rγ : γ ∈1Re
}. We call W the Weyl

group of L. One can read more about the structure of W in [Azam 1999].
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Set

1+ =
(
(α+Nδ1+Zδ2)∪ (−α+Z+δ1+Zδ2)∪ (Z+δ1+Zδ2)

)
∩1,

1− =
(
(α−Z+δ1+Zδ2)∪ (−α−Nδ1+Zδ2)∪ (−Z+δ1+Zδ2)

)
∩1,

10 = Zδ2.

Correspondingly, set

L(1+)=
⊕
β∈1+

Lβ, L(1−)=
⊕
β∈1−

Lβ, L(10)=
⊕
β∈10

Lβ .

Then, one has 1=1− ∪10 ∪1+ and L= L(1−)⊕L(10)⊕L(1+).

Remark 2.6. The three subspaces L(1±) and L(10) are all Lie subalgebras of L.

Definition 2.7. A module M for L is said to be integrable if

(1) M is a weight module,

(2) each weight space of M is finite-dimensional,

(3) for any β ∈ 1Re, x ∈ Lβ and v ∈ M , there exists some k ∈ Z+ such that
xk . v = 0; that is, x acts locally nilpotent on M .

Lemma 2.8. If M is an irreducible integrable module for L, then

(1) the weight set P(M) is W-invariant;

(2) dim Mλ = dim Mωλ, for all λ ∈ P(M) and ω ∈W;

(3) for any real root γ and weight λ ∈ P(M), λ(γ ∨) ∈ Z;

(4) if γ is real, λ ∈ P(M) and λ(γ ∨) > 0, then λ− γ ∈ P(M);

(5) for i = 1, 2, the action of 2Ci on M is a constant integer.

Proof. Without loss of generality, we take a real root γ = α+ n1δ1+ n2δ2 and set
σ = n1e1+n2e2. Let sl2(γ )= spanC{x+(σ ), x−(−σ), γ ∨=α∨+2n1C1+2n2C2},
which is isomorphic to sl2(C). Set sγ =exp(x−(−σ))·exp(−x+(σ ))·exp(x−(−σ)).
Then, sγ is well-defined on M . It is easy to check that sγ Mλ ⊂ Mrγ λ and, hence,
sγ Mλ = Mrγ λ. Statements (1) and (2) follow from these observations.

Statement (3): Since x+(σ ) and x−(−σ) are nilpotent on any nonzero vector
v ∈ Mλ, by the representation theory of sl2(C) one sees that λ(γ ∨) is an integer.

Statement (4): For any vλ ∈ Mλ, W = U (sl2(γ ))vλ is finite dimensional. As
a (sl2(γ )+ h)-module, the weights of W are λ− pγ, . . . , λ+ qγ , where p, q are
nonnegative integers, and p − q = λ(γ ∨). Now, if λ(γ ∨) > 0, then p > 0 and,
hence, λ− γ ∈ P(M).

Statement (5) follows from (3) and Lemma 2.5. �
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3. The highest- and lowest-weight modules

We define highest-weight and lowest-weight modules over L, and construct a class
of irreducible highest-weight modules V (ψ̄) for L so that 2C1 acts as a positive
integer and C2 acts as zero. Then, we investigate sufficient conditions for V (ψ̄) to
be integrable.

Definition 3.1. A module M over L is called a highest- (respectively, lowest-)
weight module, if there exists some 0 6= v ∈ M such that

(1) v is a weight vector; that is, for all h ∈ h, we have h . v = λ(h)v for some
λ ∈ h∗;

(2) L(1+) . v = 0 (respectively, L(1−) . v = 0);

(3) U (L) . v = M .

Let H = spanC{α
∨(σ ),C1(2σ),C2, d1 : σ ∈ Ze2} and ψ be a linear functional

on H satisfying ψ(C1) 6= 0 and ψ(C2) = 0. Note that L(10) = H ⊕ Cd2 and
that H/CC2 is abelian. Let C[t, t−1

] be the Laurent polynomial ring. Define an
associative algebra homomorphism ψ̄ by

ψ̄ : U (H)→ C[t, t−1
],

X1 . . . Xk 7→ ψ(X1) . . . ψ(Xk)tm1+···+mk ,
(3-1)

where X i is homogeneous in H and [d2, X i ] = mi X i for 1≤ i ≤ k.
Denote by Aψ̄ the image of ψ̄ in C[t, t−1

]. Since L(10) is Z-graded with respect
to d2, we have a L(10)-module structure on Aψ̄ defined, for X ∈ H , by

X . tn
= ψ̄(X)tn and d2 . tn

= ntn.

Lemma 3.2 [Rao 1995]. The L(10)-module Aψ̄ defined by (3-1) is irreducible if
and only if each homogeneous element of Aψ̄ is invertible in Aψ̄ . �

Let ψ̄ be given by (3-1) such that Aψ̄ is irreducible as an L(10)-module, and
let L(1+) act trivially on Aψ̄ . Consider the following induced module for L:

M(ψ̄)=U (L)⊗U (L(10)⊕L(1+))
Aψ̄ .

Let ψ0 be the restriction of ψ on h1 = h0⊕CC1⊕CC2⊕Cd1. We extend ψ0 to a
linear functional (still denoted by ψ0) on h by setting ψ0(d2)= 0.

Proposition 3.3. (1) M(ψ̄) is a highest-weight module over L.

(2) The weight set P(M(ψ̄)) is a subset of ψ0 + Zδ2 − spanN1−. Moreover,
x ∈ M(ψ̄) has a weight of form ψ0+ nδ2 if and only if x ∈ Aψ̄ .

(3) M(ψ̄) has a unique irreducible quotient V (ψ̄).
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Proof. (1) Applying the Poincaré–Birkhoff–Witt (PBW) theorem, we have M(ψ̄)=
U (L(1−))Aψ̄ . Noting that 1= t0

∈ Aψ̄ and Aψ̄ is irreducible as L(10)-module,
we see that Aψ̄ =U (L(10))t0. Hence, M(ψ̄)=U (L(1−))U (L(10))(1⊗ t0)=

U (L)(1⊗ t0). It follows that M(ψ̄) is a highest-weight module over L.

(2) This is clear.

(3) Let W1 and W2 be two nonzero proper submodules of M(ψ̄). Since Aψ̄ is
irreducible as L(10)-module, it follows that Aψ̄ ∩Wi = 0 for i = 1, 2. Now, we
check that (W1 +W2) ∩ Aψ̄ = {0}, that is, W1 +W2 is still a proper submodule
of M(ψ̄). If (W1 + W2) ∩ Aψ̄ 6= {0}, we may write a weight vector x ∈ Aψ̄ as
x = y1+ y2 for some yi ∈ Wi for i = 1, 2. By (2), we can assume that the weight
of x is ψ0+ nδ2 for some n ∈ Z. Then, in at least one of W1 and W2, there exists
a weight vector of weight ψ0 + nδ2, which is again impossible by (2). If M is
the sum of all proper submodules of M(ψ̄), then V (ψ̄)= M(ψ̄)/M is the unique
irreducible quotient. �

In the rest of this section, we investigate the conditions for V (ψ̄) to be integrable.
We will show in next section that any irreducible integrable module of L with the
actions C1 > 0 and C2 = 0 is isomorphic to V (ψ̄) for some ψ̄ .

Let K= Ĝ(J(S))⊕Cd1 be a subalgebra of L. Then, K=L(1−)⊕H⊕L(1+).

Definition 3.4. A K-module W is called a highest-weight module if there exists a
nonzero vector v ∈W such that

(1) L(1+) . v = 0,

(2) U (K) . v =W ,

(3) there exists someψ ∈H∗ withψ(C2)=0 such that h.v=ψ(h)v for all h in H .

Let ψ be in H∗ with ψ(C2)= 0. We view C as a one-dimensional H⊕L(1+)-
module, on which h acts as the scalar ψ(h) for h ∈ H , and L(1+) acts trivially.
Consider the induced module for K,

W (ψ)=U (K)⊗U (H⊕L(1+))
C.

Clearly, W (ψ) has a unique irreducible quotient denoted by L(ψ), with the highest
weight vector v = 1⊗ 1.

Consider any ψ̄ defined by (3-1) such that Aψ̄ is an irreducible L(10)-module.
Define a linear map X : Aψ̄ → C by evaluating the polynomials at 1. In other
words, X( f (t))= f (1) for all f (t)∈ Aψ̄ . If ψ =X◦ (ψ̄ |H ), then we get the L(ψ)
defined above. One can easily check that the following action gives an L-module
structure on the vector space L(ψ)⊗C[t, t−1

]:

(3-2) X . (a⊗ tm)= (X . a)⊗ tm+n and d2 . (a⊗ tm)= ma⊗ tm

for X ∈ K satisfying [d2, X ] = nX , a ∈ L(ψ), and m ∈ Z.



IRREDUCIBLE INTEGRABLE MODULES FOR EXTENDED BABY TKK ALGEBRA 301

Theorem 3.5. If Aψ̄ is irreducible as an L(10)-module, then L(ψ)⊗ C[t, t−1
]

is completely reducible as an L-module, and the component containing v ⊗ 1 is
isomorphic to V (ψ̄) as an L-module.

Proof. First, note that Aψ̄ = C[t N , t−N
] for some nonnegative integer N . Take

G = {0, 1, . . . , N − 1} if N ≥ 1, or G = Z if N = 0. We will show that

L(ψ)⊗C[t, t−1
] =

⊕
n∈G

U (L)(v⊗ tn),

and that each U (L)(v⊗ tn) is irreducible as an L-module.
Ifw⊗tm

∈ L(ψ)⊗C[t, t−1
], then there exists some X ∈U (K) such that Xv=w

in L(ψ). Write X =
∑

n Xn , where [d2, Xn]= nXn . We have
∑

n Xn .(v⊗tm−n)=

w⊗ tm , which implies that L(ψ)⊗C[t, t−1
] =

∑
n∈Z U (L)(v⊗ tn).

For tr
∈ Aψ̄ , we have ψ̄(X ′)= tr for some X ′ ∈U (H), and then X ′ . (v⊗ tm)=

v⊗ tm+r . Hence, U (L)(v⊗ tm)=U (L)(v⊗ tm+r ) and

(3-3) L(ψ)⊗C[t, t−1
] =

∑
n∈G

U (L)(v⊗ tn).

Next, we prove that U (L)(v⊗ tm) is irreducible as an L-module when m ∈ G.
Let W be a nonzero L-submodule of U (L)(v⊗ tm). Consider the linear map

π :W → L(ψ), w⊗ tm
7→ w.

It is clear that π is a homomorphism of K-modules. Since L(ψ) is irreducible
as a K-module, π has to be surjective. Using the fact that W is Z-graded with
respect to d2, it follows that W contains v⊗ tn for some integer n. Clearly, v⊗ tn

∈

U (L)(v⊗ tm) implies that v⊗ tn
∈ U (L(10))(v⊗ tm). Then, there exists some

Y ∈ U (H) such that Y (v⊗ tm) = v⊗ tn , which means that ψ̄(Y ) = tn−m
∈ Aψ̄ .

Choose Z ∈U (H) such that ψ̄(Z)= tm−n . Then, v⊗tm
= Z(v⊗tn)∈W and hence

W =U (L)(v⊗tm), as required. From the above, we see that v⊗tm
∈U (L)(v⊗tn)

if and only if m− n ∈ G (mod N ). Therefore,

(3-4) L(ψ)⊗C[t, t−1
] =

⊕
n∈G

U (L)(v⊗ tn).

Finally, the assertion that “the component containing v ⊗ 1 is isomorphic to
V (ψ̄) as an L-module” is clear. �

Proposition 3.6. If ψ̄ is defined by (3-1) and such that dim Aψ̄ = 1, then at least
one of the weight spaces of V (ψ̄) is infinite-dimensional.

Proof. Since dim Aψ̄ = 1, we have that C1v 6= 0 and C1(0, 2m)v= 0 for all m 6= 0.
First, we show that α∨(−2, 2m)v 6= 0 in L(ψ) for all m ∈Z. Otherwise, we assume
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that α∨(−2, 2m)v = 0 for some n ∈ Z. Then,

0= α∨(2,−2m) α∨(−2, 2m)v = [α∨(2,−2m), α∨(−2, 2m)]v = 8C1v,

which is a contradiction.
We complete the proof by showing that the set

{α∨(−2, 2m) α∨(−2,−2m)(v⊗ 1) : m > 0}

is linearly independent in V (ψ̄). Otherwise, we may assume that we have a relation∑
m

bm α
∨(−2, 2m) α∨(−2,−2m)(v⊗ 1)= 0

with some bm 6= 0. Under the action of α∨(2, 2s), we obtain∑
m

bm
(
α∨(−2,−2m)C1(0, 2(m+s))+α∨(−2, 2m)C1(0, 2(−m+s))

)
(v⊗1)= 0.

For any element s ∈ {m : bm 6= 0}, we deduce that bs = 0 — a contradiction. �

Proposition 3.7. Let ψ̄ be defined by (3-1) and such that Aψ̄ is an irreducible
L(10)-module with dim Aψ̄ >1. Then, V (ψ̄) has finite-dimensional weight spaces
with respect to h if and only if L(ψ) has finite-dimensional weight spaces with
respect to h1.

Proof. Suppose that V (ψ) has finite-dimensional weight spaces with respect to h1.
Then, L(ψ)⊗C[t, t−1

] has finite-dimensional weight spaces with respect to h. By
Theorem 3.5, we see that V (ψ̄) has finite-dimensional weight spaces with respect
to h.

Suppose now that V (ψ̄) has finite-dimensional weight spaces with respect to h,
and consider the K-module homomorphism

ζ : L(ψ)⊗C[t, t−1
] → L(ψ),

w⊗ tn
7→ w,

(3-5)

where w ∈ L(ψ) and n ∈ Z. For k ∈ Z, let ζk be the restriction of ζ to L(ψ)⊗ tk .
Then, ζk is a K-module isomorphism. If L(ψ) has a weight space L(ψ)ν satisfying
dim L(ψ)ν =∞, then ζ−1

k (L(ψ)ν) = (L(ψ)⊗ tk)ν is infinite-dimensional. Note
that G is a finite set. Therefore, there is at least one n ∈ G such that the weight
space (U (L)(v⊗ tn))ν′ of U (L)(v⊗ tn) is infinite dimensional, where ν ′|h1 = ν

and ν ′(d2)= k. This is a contradiction. �

Now, we investigate the conditions for L(ψ) to be integrable.

Theorem 3.8. Let λ1, . . . , λk;−µ1, . . . ,−µl be nonnegative integers, and take
two sets of nonzero distinct complex numbers, {a1, . . . , ak} and {b1, . . . , bl}.
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If ψ : H → C is a linear map such that

ψ(α∨(0,m))=
k∑

i=1
λi am

i ,(3-6)

ψ
(
α∨(0, 2m)− 2C1(0, 2m)

)
=

l∑
i=1
µi bm

i ,(3-7)

ψ(C2)= 0,(3-8)

then L(ψ) is an integrable module for K.
Conversely, if L(ψ) is integrable (with ψ(C2) = 0) for K, then ψ has to be

defined as above.

Before proving Theorem 3.8, we present several results which we will use later.

Lemma 3.9. The Lie subalgebra L(1+) is generated by the set

(3-9) {x+(0, n), x−(1, 2n), x−(2, 2n+ 1) : n ∈ Z}.

Proof. It is straightforward to check. �

For n ∈ Z, we define

(3-10) X1,n = x+(0, n), X2,n = x−(1, 2n), X3,n = x−(2, 2n+ 1).

Recall that an element X ∈K is said to be locally nilpotent on L(ψ) if, for any
element w ∈ L(ψ), one has Xmw= 0 when m� 0. For an arbitrary Lie algebra g,
we have the following results:

Proposition 3.10 [Kac 1990]. Let v1, v2, . . . be a system of generators of a g-
module V , and let x ∈ g be such that ad x is locally nilpotent on g and x Ni (vi )= 0
for some positive integers Ni , i = 1, 2, . . . . Then x is locally nilpotent on V . �

Proposition 3.11 [Moody and Pianzola 1995]. Let π : g→ gl(V ) be a representa-
tion of g on a vector space V . If x ∈ g is such that both ad x and π(x) are locally
nilpotent, then, for all y ∈ g,

π((exp ad x)(y))= (expπ(x))π(y)(expπ(x))−1. �

Let α0 = −α + δ1. Then, {α, α0} is a set of simple roots of the affine Kac–
Moody algebra s̃l2(C)=

(
sl2(C)⊗ (

∑
k∈Z Cxke1)

)
⊕CC1⊕Cd1 (see Remark 2.3).

Let Waff be the subgroup of W generated by the reflections associated to α and α0.
Then, Waff is the Weyl group of s̃l2(C).

Lemma 3.12. If γ =±α+n1δ1+n2δ2 ∈1
Re is a real root, then there exists some

ω ∈Waff such that ω(γ )= α+n2δ2 or ω(γ )= α0+n2δ2. In any case, ω(γ ) is still
a root in 1Re.
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Proof. Denote γ ′ = γ − n2δ2. Since γ ′ is a real root of the affine Kac–Moody
algebra s̃l2(C), there exists ω∈Waff such that ω(γ ′)=α or ω(γ ′)=α0. We see that
ω(γ ′)=α (respectively, α0) if n1 is even (respectively, odd). Thus, ω(γ )=α+n2δ2

or ω(γ )= α0+ n2δ2. In either case, ω(γ ) is a root in 1Re. �

Lemma 3.13. Suppose that, for all m ∈ Z, both x+(σm) and x−(τm) are nilpotent
on the highest-weight vector v in L(ψ), where σm = −e1 + 2me2 and τm = me2.
Then, x±(σ ) are locally nilpotent on L(ψ) for all σ = k1e1+ k2e2 ∈ S.

Proof. Since x+(σm) and x−(τm) are nilpotent on v and locally nilpotent on L under
the adjoint action, they are locally nilpotent on L(ψ) by Proposition 3.10. Thus,
L(ψ) is an integrable module (without the finite-dimensional weight-spaces con-
dition) for the sl2(C)-copies {x+(−τm), x−(τm), α

∨
} and {x+(σm), x−(−σm), α

∨
−

2C1} (we are assuming C2 = 0).
Let γ = ±α + k1δ1 + k2δ2 be the root of x±(σ ) for σ = k1e1 + k2e2. By

Lemma 3.12, there exists some ω ∈Waff such that ω(γ )= β+k2δ2 for β ∈ {α, α0}.
Let sω be the inner automorphism of L associated to ω, and take Y ∈Lβ+k2δ2 to be
a nonzero root vector. Up to a nonzero constant multiple, we have sω(x±(σ ))= Y .
By Proposition 3.11, we know that x±(σ ) are locally nilpotent on L(ψ). �

Consider the loop algebra ŝl2(C)=sl2(C)⊗C[t, t−1
]. Let u1, . . . , un be nonzero

complex numbers and ξ1, . . . , ξn (with n > 0) be nonnegative integers. Let B be
the ŝl2(C)-module generated by an element w subject to the relations

(x+⊗C[t, t−1
]) .w = 0, (α∨⊗ tm) .w =

n∑
j=1
ξ j um

j w, (x−⊗ 1)
∑

j ξ j+1 . w = 0,

with m ∈ Z. We have:

Theorem 3.14 [Chari and Pressley 2001]. (1) The ŝl2(C)-module B (associated
with u1, . . . , un and ξ1, . . . , ξn with n > 0) is finite-dimensional.

(2) If B ′ is any finite-dimensional ŝl2(C)-module generated by an elementw′ such
that dim U (α∨ ⊗ C[t, t−1

])w′ = 1, then B ′ is a quotient of some module B
constructed as above. �

Lemma 3.15. If ψ is as in Theorem 3.8, then, for all m ∈ Z, both x+(σm) and
x−(τm) are nilpotent on the generator v of L(ψ), where σm = −e1 + 2me2 and
τm = me2.

Proof. As L(ψ) is irreducible, it is enough to show that

(3-11) L(1+) . (x+(σm))
Nv = 0 and L(1+) . (x−(τm))

Nv = 0
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for some N � 0. By Lemma 3.9, L(1+) . (x+(σm))
Nv = 0 is equivalent to

X1,n(x+(σm))
Nv = 0,(3-12)

X2,n(x+(σm))
Nv = 0,(3-13)

X3,n(x+(σm))
Nv = 0.(3-14)

It is easy to see that (3-12) and (3-14) hold for N ≥ 0. To show (3-13), we set

(3-15) xn = x+(σn), yn = x−(−σ−n), hn = α
∨(0, 2n)− 2C1(0, 2n),

for n ∈ Z. Noting that C2 = 0 on L(ψ), these vectors satisfy

[xa, yb] = ha+b, [hc, xa] = 2xc+a, [hc, yb] = −2yb+c.

Hence, they form a basis for a loop algebra of type A1. Denote this subalgebra by
S. In W (ψ), we consider the S-submodule generated by v. From Theorem 3.14,
we know that (x+(σm))

Nv belongs to a proper submodule of U (S)v for some
N � 0. Applying the PBW Theorem to W (ψ), we see that (3-13) holds. The
proof that L(1+) . (x−(τm))

Nv = 0 is similar and is omitted. �

The following proposition gives the first part of Theorem 3.8.

Proposition 3.16. For ψ as in Theorem 3.8, L(ψ) is integrable as a K-module.

Proof. By applying Lemmas 3.13 and 3.15, we show that, with respect to h1, the
weight spaces of L(ψ) are finite-dimensional.

Let ψ1 be the restriction of ψ on h1. Then, the weight set P(L(ψ)) is a subset
of ψ1−(Z+α0+Z+α). Consider any weight space L(ψ)ψ1−η with η∈Z+α0+Z+α.
From applying the PBW Theorem to L(ψ), the vector space L(ψ)ψ1−η is spanned
by some vectors of the form

(3-16) X (β1, n1)X (β2, n2) . . . X (βk, nk)v,

where X (βi , ni ) is a root vector of L(1−) with root βi + niδ2, and the βi are
negative affine roots satisfying

∑
βi = −η. For a fixed η, only finitely many βi

will appear. It suffices to show that, for fixed β1, . . . , βk , the vectors of the form
(3-16) span a finite-dimensional vector space.

As a subalgebra of J(S), the subspace T =
⊕

s∈Z Cx se2 is isomorphic to the
Laurent polynomial ring C[t, t−1

]. Define

p =
k∑

i=0
εi x ie2 =

k∏
j=1
(xe2 − a j ) and q =

l∑
i=0
ε′i x

2ie2 =

l∏
j=1
(x2e2 − b j ).

Let s = pq. We use P , Q and S to denote the ideals pT, qT and sT of T,
respectively. Write s=

∑
i ε
′′

i x ie2 . By using the definition ofψ , it is straightforward
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to check the following two identities:

ψ(α∨⊗ S)= 0.(3-17)

ψ
( l∑

m=0
ε′mhm+n

)
= 0 for all n ∈ Z (see (3-15)).(3-18)

First, we show that, for any negative affine root β and all m ∈ Z, we have∑
i
ε′′i X (β,m + i)v = 0, where X (β,m + i) is a root vector of L(1−) with root

β + (m + i)δ2. We prove this by induction on the height of −β. When the height
of −β is 1, we need ∑

i
ε′′i
(
x−⊗ x (m+i)e2

)
. v = 0.(3-19) ∑

i
ε′′i
(
x+⊗ x−e1+(m+i)e2

)
. v = 0.(3-20)

Since L(ψ) is irreducible, this is equivalent to both
∑

i ε
′′

i (x−⊗ x (m+i)e2) . v and∑
i ε
′′

i (x+ ⊗ x−e1+(m+i)e2) . v being annihilated by L(1+). By Lemma 3.9, it is
enough to check that they are annihilated by X1,n , X2,n and X3,n for n ∈ Z. Now,
it is clear that

X2,n
∑

i
ε′′i
(
x−⊗ x (m+i)e2

)
. v = 0 and X3,n

∑
i
ε′′i
(
x−⊗ x (m+i)e2

)
. v = 0.

But, by (3-17) and using that C2 = 0 on L(ψ),

X1,n
∑

i
ε′′i
(
x−⊗ x (m+i)e2

)
. v = α∨⊗ (xne2s) . v = 0.

Similarly, we can prove (3-20). If the height of −β is 2, then
∑

i ε
′′

i X (β,m+ i)v
is 0, as it is annihilated by X i,n for i = 1, 2, 3. Now, we assume that the height
of −β is 3. Then, β = −α− δ1 or α− 2δ1. In case β = −α− δ1, one can easily
see that

X j,n
∑

i
ε′′i X (β,m+ i)v = 0 for j = 1, 2, 3.

So,
∑

i ε
′′

i X (β,m+ i)v = 0. In case β = α− 2δ1,

X j,n
∑

i
ε′′i X (β,m+ i)v = 0 for j = 1, 2.

Thus, X3,n
∑

i ε
′′

i X (β,m+ i)v = 0 by (3-17) and (3-18). When the height of −β
is greater than 3, consider

X j,n
∑

i
ε′′i X (β,m+ i)v =

∑
i
ε′′i [X j,n, X (β,m+ i)] . v.

Clearly, the negative of the height decreases and hence it is zero by induction, as
required.



IRREDUCIBLE INTEGRABLE MODULES FOR EXTENDED BABY TKK ALGEBRA 307

For the fixed negative affine roots γ1, . . . , γl (1≤ j ≤ l), we show that∑
i
ε′′i X (γ1, n1) . . . X (γ j , n+ i)X (γ j+1, n j+1) . . . X (γl, nl) . v = 0,

for all integers n, n1, . . . , nl , using induction on the height of −(γ j+1+ · · · + γl).
It is clear when β j+1, . . . , βl are 0. Now, since∑

i
ε′′i X (γ1, n1) . . . X (γ j , n+ i)X (γ j+1, n j+1) . . . X (γl, nl) . v

=
∑

i
ε′′i X (γ1, n1) . . . [X (γ j , n+ i), X (γ j+1, n j+1)] . . . X (γl, nl) . v

+
∑

i
ε′′i X (γ1, n1) . . . X (γ j+1, n j+1)X (γ j , n+ i) . . . X (γl, nl) . v,

the terms on the right hand side are zero by induction.
Since dim(T/S) <∞, for fixed β1, . . . , βk , the vectors of the form (3-16) span

a finite-dimensional vector space. Therefore, we know that the weight spaces of
L(ψ) are finite-dimensional. This completes the proof of this proposition. �

The second part of Theorem 3.8 follows from the next proposition.

Proposition 3.17. If L(ψ) is integrable as a K-module, with the action C2 = 0,
then ψ satisfies the conditions of Theorem 3.8.

Proof. We consider the affine algebra T = sl2(C) ⊗ T ⊕ CC2. Denote by V
the irreducible quotient of U (T)v of T. We claim that dim V < ∞. From the
integrability of L(ψ), the set

{x−(0, n) . v : n ∈ Z}

is linearly dependent. So, there exists some nonzero polynomial f =
∑

i fi x ie2

such that (x−⊗ f )v=0. Set F = f T. We have (x−⊗F).v=0 and (α∨⊗F).v=0.
The first identity follows since

0= α∨(0,m)(x−⊗ f )v = (x−⊗ f )α∨(0,m)v− 2(x−⊗ xme2 f )v

and α∨(0,m) acts on v as a constant. The second identity follows from the first.
It follows that (sl2(C)⊗F⊕CC2).v= 0, and we show that (sl2(C)⊗F⊕CC2).

V = 0. In fact, if we define W = {w ∈ V : (sl2(C)⊗ F ⊕CC2) . w = 0}, then W
is a nonzero submodule. Hence V =W , since V is irreducible. We deduce that V
is an irreducible integrable module for (sl2(C)⊗T⊕CC2)/(sl2(C)⊗ F ⊕CC2).
This implies that dim V <∞. Using Theorem 3.14, we can see that ψ satisfies the
condition (3-6) of Theorem 3.8. Similarly, we can prove that ψ satisfies (3-7). �

4. The classification theorem

We classify the irreducible integrable modules for the extended baby TKK algebra
L with actions C1 6= 0 and C2 = 0.
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Proposition 4.1. If V is an irreducible integrable module for the extended baby
TKK algebra L such that C1 acts as a positive number and C2 acts as zero, then V
is a highest-weight module.

Proof. By Lemma 2.8, we may assume that 2C1 acts on V as a positive integer,
say 2c1.

First, we show that, for any fixed λ ∈ P(V ), there exists some λ′ ∈ P(V ) such
that λ′+ nα is not a weight for any positive integer n, and that λ′(di ) = λ(di ) for
i = 1, 2.

Let W = {w ∈ V : diw = λ(di )w, i = 1, 2}. Write P1 = {µ ∈ P(V ) : Vµ ⊂W }.
Then, for any µ ∈ P1, we can write µ in the form

µ= µ̄+ λ(d1)δ1+ λ(d2)δ2+ c1w1,

where µ̄ = µ|h0 . Set P̄1 = {µ̄ : µ ∈ P1}. Since W is an integrable module for the
Lie subalgebra spanC{x±, α

∨
}, with finite-dimensional weight spaces with respect

to h0 = Cα∨, it follows from Weyl’s theorem that W can be decomposed as

W =
⊕
µ̄∈h∗0

V (µ̄),

where each V (µ̄) is an irreducible finite-dimensional module for spanC{x±, α
∨
}

with highest weight µ̄. Since V is irreducible, for any two weights µ, ν in P1, we
have µ−ν= nα for some integer n. Thus, P̄1 belongs to either Zα or 1

2α+Zα. Set

µ= λ(d1)δ1+ λ(d2)δ2+ c1w1 if P̄1 ⊂ Zα, or

µ= 1
2α+ λ(d1)δ1+ λ(d2)δ2+ c1w1 if P̄1 ⊂ (1/2)α+Zα.

By sl2(C)-theory, we know that µ̄ is a common weight of the V (ν̄)-terms that
occur in W =

⊕
ν̄∈h∗0

V (ν̄). Since Vµ is finite-dimensional, P1 is a finite set. Take

λ′ ∈ P1 so that λ̄′(α∨) is maximal. Then, λ′ is the required weight.
Recall that {α0 =−α+ δ1, α} is a set of simple roots of the affine Kac–Moody

Lie algebra

s̃l2(C)=

(
sl2(C)⊗

(∑
j∈Z

Cx je1
))
⊕CC1⊕Cd1.

Define a partial order � on h∗ by setting

λ� µ if and only if λ−µ= n1α0+ n2α for some n1, n2 ∈ −N.

If λ′ is as above and such that λ′ + nα is not a weight for any positive integer n,
then λ′(α∨)≥ 0 by Lemma 2.8. Let 5= {α+mδ1 : m ≥ 0} ∪ {−α+mδ1 : m > 0}
be the set of positive real roots of s̃l2(C), and 5λ′ = {γ ∈5 : λ

′(γ ∨) ≤ 0}. Since
λ′(C1) > 0, it follows that 5λ′ is a finite set. Using a similar technique as in the
proof of [Chari 1986, Thm 2.4], we get a nonzero weight vector v ∈ Vλ′+pδ1, p≥ 0,
such that Lrδ1v= 0 for all r > 0, and Lβv= 0 for all but finitely many roots β ∈5.
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Using an argument similar to the first paragraph of the proof of [Eswara Rao
2004, Prop 2.8], we obtain a weight µ ∈ P(V ) such that

(4-1) µ+ η 6∈ P(V ) for all η 6� 0.

In particular, µ+β 6∈ P(V ) for all β ∈5.
By Lemma 2.8, we have µ(β∨) ≥ 0 for all β ∈5. In particular, µ(α) ≥ 0. To

prove that the module V has a highest-weight vector, we divide the argument into
two cases: case 1, for µ(α) > 0, and case 2, for µ(α)= 0.

Case 1: Suppose that µ(α) > 0. If µ+ β +mδ2 6∈ P(V ) for all integers m such
that β+mδ2 ∈1+, then it is clear that L(1+) . v = 0 for any 0 6= v ∈ Vµ, and we
are done. On the other hand, assume that there exist some β ∈5 and m0 ∈ Z such
that β +m0δ2 ∈ 1+ and Vµ+β+m0δ2 6= 0. Let ν = µ+ β +m0δ2. We show that ν
is a highest weight. That is, Vν+γ+kδ2 = 0 for all γ ∈ 5 and all k ∈ Z such that
γ + kδ2 ∈ 1+. Suppose this is false. Then, Vν+γ+k0δ2 6= 0 for some γ ∈ 5 and
k0 ∈Z such that γ +k0δ2 ∈1+. Let γ1= β+(m0+k0)δ2. We divide the argument
into three subcases. In each subcase, we will get a contradiction with (4-1).

Subcase 1.1: Suppose β, γ ∈ {α +mδ1 : m ≥ 0} or β, γ ∈ {−α +mδ1 : m > 0}.
We have (β + γ )(β∨) > 0 and (β + γ )(γ ∨) > 0. If γ1 is a root in 1+, then
(ν+ γ + k0δ2)(γ

∨

1 )= (µ+β + γ )(β
∨) > 0, which implies that

µ+ γ = (ν+ γ + k0δ2)− γ1 ∈ P(V ),

which contradicts (4-1). If γ1 is not a root, then we take γ1−δ1, which is obviously
a root in 1. Similar arguments show that µ+ γ + δ1 ∈ P(V ), contradicting (4-1)
again.

Subcase 1.2: Suppose β = α+mδ1 and γ =−α+nδ1 for some m ≥ 0 and n > 0.
If γ1 ∈ 1+, then we have (µ+ β + γ + (m0 + k0)δ2)(γ

∨

1 ) = µ(β
∨) > 0, which

implies that

µ+ γ = (µ+β + γ + (m0+ k0)δ2)− (β + (m0+ k0)δ2) ∈ P(V ).

This contradicts (4-1). If γ1 6∈1+, then (µ+β+γ +(m0+k0)δ2)((γ1−δ1)
∨) > 0,

which gives

µ+ γ + δ1 = (µ+β + γ + (m0+ k0)δ2)− (β − δ1+ (m0+ k0)δ2) ∈ P(V ).

This contradicts (4-1) again.

Subcase 1.3: Suppose β =−α+mδ1 and γ = α+nδ1 for some m > 0 and n ≥ 0.
This can be dealt with similarly to Subcase 1.2. This completes the proof of Case 1.

Case 2: Suppose now that µ(α∨) = 0. We assume that there exist some β0 ∈ 5

and t ∈ Z such that β0 + tδ2 ∈ 1+ and Vµ+β0+tδ2 6= 0. Let µ1 = µ+ β0 + tδ2.
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If µ1 + β + mδ2 6∈ P(V ) for all integers m such that β + mδ2 ∈ 1+, then, for
any 0 6= v ∈ Vµ1 , we have L(1+) . v = 0 and we are done. On the other hand,
we assume that there exist some β ′ ∈ 5 and m1 ∈ Z such that β ′ + m1δ2 ∈ 1+

and Vµ1+β ′+m1δ2 6= 0. Let ν1 = µ1 + β
′
+ m1δ2. We prove that ν1 is a highest

weight. That is, Vν1+γ+kδ2 = 0 for all γ ∈5 and all k ∈ Z such that γ + kδ2 ∈1+.
Suppose this is false. Then, Vν1+γ ′+k1δ2 6= 0 for some γ ′ ∈5 and k1 ∈ Z such that
γ ′+ k1δ2 ∈1+. Let γ2 = β

′
+ (t +m1+ k1)δ2. We divide the arguments into four

subcases. In each subcase, we will get a contradiction with (4-1).

Subcase 2.1: Suppose β ′, γ ′ ∈ {α+mδ1 :m ≥ 0}. In this case, (β ′+ γ ′)(β ′∨) > 0
and (β ′+ γ ′)(γ ′∨) > 0. If γ2 is a root in 1+, then

(ν1+ γ
′
+ k1δ2)(γ

∨

2 )= (µ+β0+β
′
+ γ ′)(β ′∨) > 0,

which implies that

µ+β0+ γ
′
= (ν1+ γ

′
+ k1δ2)− γ2 ∈ P(V ).

If β0 ∈ {−α+mδ1 : m > 0}, then we arrive at a contradiction with (4-1). If β0 ∈

{α+mδ1 :m≥ 0}, then (µ+β0+γ
′)(γ ′∨)> 0, which means that µ+β0 ∈ P(V )—

a contradiction again. If γ2 is not a root, then we take γ2−δ1, which is a root in 1.
Similar arguments give a contradiction with (4-1).

Subcase 2.2: Suppose β ′, γ ′ ∈ {−α + mδ1 : m〉0}. This is very similar to the
arguments for Subcase 2.1.

Subcase 2.3: Suppose β ′ = α + m′δ1 and γ ′ = −α + n′δ1 for some m′ ≥ 0 and
n′ > 0. We have these two subcases:

Subcase 2.3.1: Suppose β0 ∈ {α+mδ1 : m ≥ 0}. If γ2 ∈1+, then

(µ+β0+β
′
+ γ ′+ (t +m1+ k1)δ2)(γ

∨

2 )= (µ+β0+β
′
+ γ ′)(β ′∨) > 0.

This implies that µ+ β0+ γ
′
∈ P(V ), which is impossible by (4-1). If γ2 6∈ 1+,

we consider γ2− δ1 ∈1+. Then,

(µ+β0+β
′
+ γ ′+ (t +m1+ k1)δ2)((γ2− δ1)

∨)

= (µ+β0+β
′
+ γ ′)((β ′− δ1)

∨) > 0.

This implies that µ+β0+ γ
′
+ δ1 ∈ P(V ), which is also impossible.

Subcase 2.3.2: Suppose β0 ∈ {−α+mδ1 :m > 0}. We denote γ3 = γ
′
+ (t+m1+

k1)δ2. If γ3 ∈1+, then

(µ+β0+β
′
+ γ ′+ (t +m1+ k1)δ2)(γ

∨

3 )= (µ+β0+β
′
+ γ ′)(γ ′∨) > 0.
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So we have µ+β0+β
′
∈ P(V ), which is impossible. If γ3 6∈1+, then

(µ+β0+β
′
+ γ ′+ (t +m1+ k1)δ2)((γ3− δ1)

∨)

= (µ+β0+β
′
+ γ ′)((−α+ (n′− 1)δ1)

∨) > 0.

We get µ+β0+β
′
+ δ1 ∈ P(V ), which is a contradiction.

Subcase 2.4: Finally, suppose β ′ =−α+m′δ1 and γ ′ = α+n′δ1 for some m′ > 0
and n′ ≥ 0. This can be discussed similarly to Subcase 2.3, and thus completes the
proof of Case 2.

In every case, there exists some weight vector, say v∈V , such that L(1+).v=0.
Therefore, V is a highest-weight module for L. �

Lemma 4.2 [Eswara Rao 2001]. Any Z-graded simple commutative and associa-
tive algebra, with all its homogeneous subspaces finite-dimensional, is isomorphic
to a subalgebra Aψ̄ of C[t, t−1

] for some ψ̄ (as defined by (3-1)). Furthermore,
every nonzero homogeneous element in Aψ̄ is invertible in Aψ̄ . �

Theorem 4.3. Let V be an irreducible integrable module for the extended baby
TKK algebra L such that C1 acts as a positive number and C2 acts as zero. Then,
V is isomorphic to V (ψ̄), for some ψ̄ given in Section 3, such that Aψ̄ is an irre-
ducible L(10)-module.

Proof. By Proposition 4.1, there exists some nonzero weight vector v ∈ V such
that L(1+) . v = 0. Let M be the L(10)-module generated by v. In fact,

M = {w ∈ V : L(1+) . w = 0}

and M is irreducible as an L(10)-module by the irreducibility of V . Let I =
{X ∈ U (H) : X . v = 0}. It is clear that M ∼= U (H)/I as L(10)-modules. Since
U (H)/(U (H)C2) is commutative and I is an ideal of U (H), we see that U (H)/I
is a Z-graded simple commutative and associative algebra. By Lemma 4.2, M is
isomorphic to some Aψ̄ . It is now clear that V is isomorphic to V (ψ̄). �

In view of Proposition 4.1, we have:

Corollary 4.4. If V is an irreducible integrable module for the extended baby TKK
algebra L with C1 < 0 and C2 = 0, then V is a lowest-weight module. �
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