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We study the local reducibility at p of the p-adic Galois representation at-
tached to a cuspidal automorphic representation of GLn(A Q). In the case
that the underlying Weil–Deligne representation is Frobenius semisimple
and indecomposable, we analyze the reducibility completely. We use meth-
ods from p-adic Hodge theory, and work under a transversality assumption
on the Hodge and Newton filtrations in the corresponding filtered module.

1. Introduction

Let f =
∑
∞

n=1 an( f )qn be a primitive elliptic modular cusp form of weight k ≥ 2,
level N ≥ 1, and nebentypus χ : (Z/NZ)×→C×. Let K f denote the number field
generated by the Fourier coefficients of f . Fix an embedding of Q̄ into Q̄p, and let
℘ be the prime of Q̄ determined by this embedding. Let ℘ also denote the induced
prime of K f , and let K f,℘ be the completion of K f at ℘. For a global or local
field F of characteristic 0, let G F denote the absolute Galois group of F . There is
a global Galois representation

ρ f,℘ : GQ→ GL2(K f,℘)

associated to f (and ℘) by Deligne which has the property that for all primes
` - N p,

trace( ρ f,℘(Frob`))= a`( f ) and det( ρ f,℘(Frob`))= χ(`)`k−1.

Thus det( ρ f,℘)= χχ
k−1
cyc,p, where χ cyc,p is the p-adic cyclotomic character.

It is a well-known result of Ribet that the global representation ρ f,℘ is irre-
ducible. However, if f is ordinary at ℘, that is, if ap( f ) is a ℘-adic unit, then an
important theorem of Wiles, valid more generally for Hilbert modular forms, says
that the corresponding local representation is reducible.
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Theorem 1.1 [Wiles 1988]. Let f be a ℘-ordinary primitive form as above. Then
the restriction of ρ f,℘ to the decomposition subgroup GQp is reducible. More pre-
cisely, there exists a basis in which

ρ f,℘ |GQp
∼

(
χp · λ( β/p k−1) ·χ k−1

cyc,p u

0 λ(α)

)
,

where χ = χpχ
′ is the decomposition of χ into its p and prime-to-p parts,

λ(x) : GQp → K×f,℘

is the unramified character taking arithmetic Frobenius to x , and u : GQp→ K f,℘

is a continuous function; moreover, α is

(i) the unit root of X2
− ap( f )X + p k−1χ(p) if p - N ,

(ii) the unit ap( f ) if p ‖ N , p - condχ , and k = 2,

(iii) the unit ap( f ) if p | N and vp(N )= vp(condχ),

and β is given by αβ = χ ′(p)p k−1.

Moreover, in case (ii), ap( f ) is a unit if and only if k = 2, and one can show
that ρ f,℘ |GQp

is irreducible when k > 2.
Urban has generalized Theorem 1.1 to the case of primitive Siegel modular cusp

forms of genus 2. We briefly recall this result here. Let π be a cuspidal automorphic
representation of GSp4(A Q) whose Archimedean component π∞ belongs to the
discrete series, with cohomological weights (a, b; a+b) with a ≥ b≥ 0. For each
prime p, Laumon, Taylor and Weissauer have defined a four-dimensional Galois
representation

ρπ,p : GQ→ GL4(Q̄p)

with standard properties. Let p be an unramified prime for π . Tilouine and Urban
have generalized the notion of ordinariness for such primes p in three ways to what
they call Borel ordinary, Siegel ordinary, and Klingen ordinary (these terms come
from the underlying parabolic subgroups of GSp4(A Q)). In the Borel case, the
p-ordinariness of π implies that the Hecke polynomial of πp, namely

(X −α)(X −β)(X − γ )(X − δ),

has the property that the p-adic valuations of α, β, γ , and δ are 0, b+ 1, a + 2,
and a+ b+ 3, respectively.

Theorem 1.2 [Urban 2005; Tilouine and Urban 1999]. Say π is a Borel p-ordinary
cuspidal automorphic representation of GSp4(A Q) that is stable at∞ with coho-
mological weights (a, b; a+b). Then the restriction of ρπ,p to the decomposition
subgroup GQp is upper-triangular. More precisely, there is a basis in which
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ρπ,p|GQp
∼
λ(δ/pa+b+3) ·χa+b+3

cyc,p ∗ ∗ ∗

0 λ(γ /pa+2) ·χa+2
cyc,p ∗ ∗

0 0 λ( β/pb+1) ·χb+1
cyc,p ∗

0 0 0 λ(α)

 ,
where λ(x) is the unramified character that takes arithmetic Frobenius to x.

We remark that ρπ,p above is the contragredient of the one used in [Urban 2005]
(we also use the arithmetic Frobenius in defining our unramified characters), so the
theorem matches exactly with Corollary 1(iii) of that work. Similar results in the
Siegel and Klingen cases can be found in [Urban 2005].

The local Galois representations appearing in Theorems 1.1 and 1.2 are some-
times referred to as (p, p)-Galois representations. The goal of this paper is to
prove structure theorems for the local (p, p)-Galois representations attached to
automorphic representations of GLn(A Q) for any n ≥ 1.

Let now π be a cuspidal automorphic representation of GLn(A Q). We assume
that the global p-adic Galois representation ρπ,p attached to π exists, and that
it satisfies several natural properties; for example, it lives in a strictly compatible
system of Galois representations, and satisfies local-global compatibility. Recently,
much progress has been made on this front: such Galois representations have
been attached to what are referred to as RAESDC (regular, algebraic, essentially
self-dual, cuspidal) automorphic representations of GLn(A Q) by Clozel, Harris,
Kottwitz and Taylor, and for conjugate self-dual automorphic representations over
CM fields these representations were shown by Taylor and Yoshida to satisfy local-
global compatibility away from p.

The assumptions above allow us to specify the Weil–Deligne parameter at p. We
study the (p, p)-Galois representation ρπ,p|GQp

attached to π , given this parameter.
In fact, as the expert reader will note, since our methods are local, our results could
equally well have been phrased purely in terms of this parameter.

A key tool in our analysis is the celebrated result of Colmez and Fontaine estab-
lishing an equivalence of categories between potentially semistable representations
and filtered (ϕ, N )-modules with coefficients and descent data. Under some stan-
dard hypotheses, such as Assumption 3.6 that the Hodge and Newton filtrations are
in general position in the corresponding crystal, we show that in several cases the
corresponding local (p, p)-representation ρπ,p|GQp

has an upper-triangular form,
and completely determines the diagonal characters. In other cases, and perhaps
more interestingly, we give conditions under which this local representation is ir-
reducible. For instance, we directly generalize the comment about irreducibility
made just after Theorem 1.1. As a sample of our results, we state the following
theorem, which is a collation of Theorems 5.7, 5.8, and 6.10.
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Theorem 1.3 (indecomposable case). Say π is a cuspidal automorphic representa-
tion of GLmn(AQ)with infinitesimal character given by integers−β1> · · ·>−βmn .
Suppose the Weil–Deligne representation attached to πp is Frobenius semisimple
and indecomposable, that is,

WD(ρπ,p|GQp
)∼ τm ⊗Sp(n),

where τm is an irreducible representation of WQp of dimension m ≥ 1, and Sp(n)
is the special representation for n ≥ 1. Let Assumption 3.6 hold.

(i) Suppose m = 1 and τ1 = χ0 ·χ
′ is a character, where χ0 is the ramified part,

and χ ′ is an unramified character mapping arithmetic Frobenius to α.
(a) If π is ordinary at p (i.e., vp(α) = −β1), then the βi are necessarily

consecutive integers, and

ρπ,p|GQp
∼

χ0 ·λ
(

α

pvp(α)

)
·χ
−β1
cyc,p ∗ ∗

0 χ0 ·λ
(

α

pvp(α)

)
·χ
−β1−1
cyc,p ∗

. . .

0 0 χ0 ·λ
(

α

pvp(α)

)
·χ
−β1−(n−1)
cyc,p

,

where λ(x) is the unramified character taking arithmetic Frobenius to x.

(b) If π is not p-ordinary, ρπ,p|GQp
is irreducible.

(ii) Suppose m ≥ 2. Then ρπ,p|GQp
is irreducible.

The theorem gives complete information about the reducibility of the (p, p)-
Galois representation in the indecomposable case (under Assumption 3.6). In
particular, the image of the (p, p)-representation tends to be either in a minimal
parabolic subgroup or a maximal parabolic subgroup of GLn . While this is forced
in the GL2 setting, it is somewhat surprising that the image does not lie in any
“intermediate” parabolic subgroups even in the GLn setting. We also point out
that parts (i)(b) and (ii) of the theorem imply that the global representation ρπ,p
is irreducible (see also [Taylor and Yoshida 2007, Corollary B] for the case of
conjugate self-dual representations over CM fields).

The theorem is proved in Sections 5 and 6 using methods from p-adic Hodge
theory. Recall that the category of Weil–Deligne representations is equivalent to the
category of (ϕ, N )-modules. In Section 6, we classify the (ϕ, N )-submodules of
the (ϕ, N )-module associated with the indecomposable Weil–Deligne representa-
tion in the theorem. This classification plays a key role in analyzing the (p, p)-rep-
resentation once the Hodge filtration is introduced. Along the way, we take a slight
detour to write down explicitly the filtered (ϕ, N )-module attached to an m-dimen-
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sional “unramified supercuspidal” representation, since this might be a useful addi-
tion to the literature (see [Ghate and Mézard 2009] for the two-dimensional case).

The term “indecomposable case” in the discussion above refers to the standard
fact that every Frobenius semisimple indecomposable Weil–Deligne representation
has the form stated in the theorem. Some partial results in the decomposable case,
where the Weil–Deligne representation is a direct sum of indecomposables, can
be found in Section 8 of [Ghate and Kumar 2010]. The principal series case is
treated completely in Section 4 of the present paper. In the spherical case our
results overlap with those in D. Geraghty’s thesis [2010], and we thank T. Gee for
pointing this out to us.

We also refer to [Ghate and Kumar 2010, §3] for another proof of Theorem 1.1
along the lines of this paper. The original proof used Dieudonné theory only in
weight 2 and then Hida theory [1986] (see also [Banerjee et al. 2010]) to extend
to higher weights. Of the remaining sections, Section 2 recalls some useful facts
from p-adic Hodge theory, whereas Section 3 recalls some general facts and con-
jectures about Galois representations associated with automorphic representations
of GLn(A Q).

2. p-adic Hodge theory

We start by recalling some results we need from p-adic Hodge theory. For the basic
definitions in the subject, e.g., of Fontaine’s ring Bst, filtered (ϕ, N )-modules with
coefficients and descent data, and Newton and Hodge numbers, see [Fontaine 1994;
Savitt 2005; Fontaine and Ouyang; Ghate and Mézard 2009, §2]. Also, see [Ghate
and Kumar 2010, §2] for proofs.

Newton and Hodge numbers. We start by stating some facts about Newton and
Hodge numbers, which do not seem to be in the literature when the coefficients
are not necessarily Qp.

Let F and E be two finite field extensions of Qp, and assume that all the con-
jugates of F are contained in E .

Lemma 2.1 (Newton number). Suppose D is a filtered (ϕ, N , F, E)-module of
rank n such that the action of ϕ is E-semisimple, that is, there exists a basis
{e1, . . . , en} of D such that ϕ(ei )= αi ei , for some αi ∈ E×. Then

tN (D)= [E :Qp] ·

n∑
i=1

vp(αi ).

Lemma 2.2 (Hodge number). Suppose D is a filtered (ϕ, N , F, E)-module of rank
n. Then

tH (D)= [E :Qp] ·
∑
i∈Z

i · rankF⊗Qp E gr i DF .
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Remark. By the last two lemmas, one can drop the common factor of [E : Qp]

when checking the admissibility of a filtered (ϕ, N , F, E)-module.

Lemma 2.3. Let D1 and D2 be filtered (ϕ, N , F, E)-modules of rank r1 and r2,
respectively. Assume that the action of ϕ on D1 and D2 is semisimple. Then

tN (D1⊗ D2)= rank(D1) tN (D2)+ rank(D2) tN (D1),

tH (D1⊗ D2)= rank(D1) tH (D2)+ rank(D2) tH (D1).

Remark. The formulas above are well-known if E =Qp.

Potentially semistable representations. Let E and F be two finite extensions of
Qp, and let V be a finite dimensional vector space over E .

Definition. A representation ρ :GQp→GL(V ) is said to be semistable over F or
F-semistable, if

dimF0 Dst,F (V )= dimF0(Bst⊗Qp V )G F = dimQp V,

where F0 = BG F
st . If such an F exists, ρ is said to be a potentially semistable

representation. If F =Qp, we say that ρ is semistable.

Remark. If ρ is F-semistable, ρ is F ′-semistable for any finite extension of F ′/F .
Hence we may and do assume that F is Galois over Qp.

The following fundamental theorem plays a key role in subsequent arguments.

Theorem 2.4 [Colmez and Fontaine 2000]. There is an equivalence of categories
between F-semistable representations ρ :GQp→GLn(E)with Hodge–Tate weights
−βn ≤ · · · ≤ −β1 and admissible filtered (ϕ, N , F, E)-modules D of rank n over
F0 ⊗Qp E such that the jumps in the Hodge filtration Fili DF on DF := F ⊗F0 D
are at β1 ≤ · · · ≤ βn .

The equivalence of categories in the theorem is induced by Fontaine’s functor
Dst,F . The Frobenius ϕ, monodromy N , and filtration on Bst induce the corre-
sponding structures on Dst,F (V ). There is also an induced action of Gal(F/Qp)

on Dst,F (V ).
As an illustration of the power of the theorem we recall a useful and well-known

fact:

Corollary 2.5. Every potentially semistable character χ : GQp → E× is of the
form χ = χ0 · λ(a0) · χ

i
cyc,p, where χ0 is a finite order character of Gal(F/Qp)

for a cyclotomic extension F of Qp, −i ∈ Z is the Newton number of Dst,F (χ),
and λ(a0) is the unramified character that takes arithmetic Frobenius to the unit
a0 = p−i/a ∈ O×E , where a = ϕ(v)/v for any nonzero vector v in Dst,F (χ).
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Weil–Deligne representations. We now recall the definition of the Weil–Deligne
representation associated with an F-semistable representation ρ :GQp→GLn(E),
due to Fontaine. We assume that F/Qp is Galois and F ⊆ E . Let WF denote the
Weil group of F . For any (ϕ, N , F, E)-module D, we have the decomposition

(2-1) D '
[F0:Qp]∏

i=1

Di ,

where Di = D⊗(F0⊗Qp E,σ i ) E , and σ is the arithmetic Frobenius of F0/Qp.

Definition 2.6 (Weil–Deligne representation). Let ρ : GQp → GLn(E) be an F-
semistable representation. Let D be the corresponding filtered module. Noting
WQp/WF = Gal(F/Qp), we let

g ∈WQp act on D by (g mod WF ) ◦ϕ
−α(g),

where the image of g in Gal(F̄p/Fp) is the α(g)-th power of the arithmetic Frobe-
nius at p. We also have an action of N via the monodromy operator on D. These
actions induce a Weil–Deligne action on each Di in (2-1), and the resulting Weil–
Deligne representations are all isomorphic. This isomorphism class is defined to
be the Weil–Deligne representation WD(ρ) associated with ρ.

Remark. If F/Qp is totally ramified and Frobp ∈WQp is the arithmetic Frobenius,
then observe that WD(ρ)(Frobp) acts by ϕ−1.

Lemma 2.7. Let ρ : Gal(Q̄p/Qp)→ GLn(E) be a potentially semistable repre-
sentation. If WD(ρ) is irreducible, so is ρ.

Compatible systems. We recall the notion of a strictly compatible system of Galois
representations following [Khare and Wintenberger 2009, §5], where it was used
to great effect in the two-dimensional case. Let F be a number field, ` a prime,
and ρ : G F → GLn(Q̄`) a continuous global Galois representation.

Definition. Say that ρ is geometric if it is unramified outside a finite set of primes
of F and its restrictions to the decomposition groups at primes above ` are poten-
tially semistable.

A geometric representation defines, for every prime q of F , a representation
of the Weil–Deligne group at q, denoted by WDq , with values in GLn(Q̄`), well-
defined up to conjugacy. For q of characteristic not `, the definition is classical,
and comes from the theory of Deligne–Grothendieck, and for q of characteristic `,
the definition comes from Fontaine theory (Definition 2.6).

Definition. Let L be a number field. An L-rational, n-dimensional strictly com-
patible system of geometric representations (ρ`) of G F is the collection of data
consisting of:
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(1) For each prime ` and each embedding i : L ↪→ Q̄`, a continuous, semisimple
representation ρ` : G F → GLn(Q̄`) that is geometric.

(2) For each prime q of F , an F-semisimple (Frobenius semisimple) representa-
tion rq of the Weil–Deligne group WDq with values in GLn(L) such that
• rq is unramified for all q outside a finite set;
• for each ` and each i : L ↪→ Q̄`, the Frobenius semisimple Weil–Deligne

representation WDq→GLn(Q̄`) associated with ρ`|Dq is conjugate to rq

(via the embedding i : L ↪→ Q̄`); and
• there are n distinct integers β1 < · · · < βn such that ρ` has Hodge–Tate

weights {−β1, . . . ,−βn}. (The minus signs arise since the weights are the
negatives of the jumps in the Hodge filtration on the associated filtered
module.)

The existence of strictly compatible systems attached to classical cusp forms is
well-known [Katz and Messing 1974; Saito 1997]. For general cuspidal automor-
phic representations, we will not use the full strength of this definition. In fact
we only use it to obtain information about the Weil–Deligne parameter at p. Our
results could equally well be stated using this parameter as the starting point of
our analysis.

3. The case of GLn

The goal of this paper is to prove various generalizations of Theorem 1.1 for
the local (p, p)-Galois representations attached to automorphic representations of
GLn(A Q). In this section we collect together some facts about such automorphic
representations and their Galois representations needed for the proof. The main
results we need are the local Langlands correspondence [Henniart 2000; Harris
and Taylor 2001] and the existence of strictly compatible systems of Galois repre-
sentations attached to cuspidal automorphic representations of GLn (much progress
has been made on this by Clozel, Harris, Kottwitz, and Taylor [Clozel et al. 2008]).

Local Langlands correspondence. We will need a few results concerning the local
Langlands correspondence. We follow [Kudla 1994] in our exposition, noting that
that article follows [Rodier 1982], which in turn is based on the original work of
Bernstein and Zelevinsky.

Let F be a complete non-Archimedean local field of residue characteristic p,
let n ≥ 1, and let G =GLn(F). For a partition n= n1+n2+· · ·+nr of n, let P be
the corresponding parabolic subgroup of G, let M be the Levi subgroup of P , and
N the unipotent radical of P . Let δP denote the modulus character of the adjoint
action of M on N . If σ = σ1⊗ σ2⊗ · · · ⊗ σr is a smooth representation of M on
V , we let
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I G
P (σ )=

{
f : G→ V | f smooth on G and f (nmg)= δ1/2

P (m)(σ (m)( f (g))
}

for n ∈ N , m ∈ M , and g ∈ G. The group G acts on functions in I G
P (σ ) by right

translation and I G
P (σ ) is the usual induced representation of σ . It is an admissible

representation of finite length.
A result of Bernstein and Zelevinsky says that if all the σi are supercuspidal

and σ is irreducible, smooth and admissible, then I G
P (σ ) is reducible if and only

if ni = n j and σi = σ j (1) for some i 6= j . For the partition n = m +m + · · · +m
(r times), and for a supercuspidal representation σ of GLm(F), call the data

(σ, σ (1), · · · , σ (r − 1))= [σ, σ (r − 1)] =1

a segment. Clearly I G
P (1) is reducible. By [Kudla 1994, Theorem 1.2.2], the

induced representation I G
P (1) has a unique irreducible quotient Q(1) that is es-

sentially square-integrable.
Two segments

11 = [σ1, σ1(r1− 1)] and 12 = [σ2, σ2(r2− 1)]

are said to be linked if 11 *12, 12 *11, and 11∪12 is a segment. We say that
11 precedes 12 if 11 and 12 are linked and if σ2 = σ1(k) for some k ∈ N.

Theorem 3.1 (Langlands classification). Let 11, . . . ,1r be segments such that if
i < j then 1i does not precede 1 j .

(1) The induced representation I G
P (Q(11)⊗ · · · ⊗ Q(1r )) admits a unique irre-

ducible quotient Q(11, · · · ,1r ), called the Langlands quotient. Moreover,
r and the segments 1i up to permutation are uniquely determined by the
Langlands quotient.

(2) Every irreducible admissible representation of GLn(F) is isomorphic to some
Q(11, · · · ,1r ).

(3) The induced representation I G
P (Q(11)⊗ · · · ⊗ Q(1r )) is irreducible if and

only if no two of the segments 1i and 1 j are linked.

So much for the automorphic side. We now turn to the Galois side. Recall that
a representation of WF is said to be Frobenius semisimple if arithmetic Frobenius
acts semisimply. An admissible representation of the Weil–Deligne group of F is
one for which the action of WF is Frobenius semisimple. Let Sp(r) denote the
Weil–Deligne representation of order r with the usual definition. When F = Qp,
there is a basis { fi } of Sp(r) for which ϕ fi = pi−1 fi , and N fi = fi−1 for i > 1 and
N f1 = 0. It is well-known that every indecomposable admissible representation of
WF is of the form τ⊗Sp(r), where τ is an irreducible admissible representation of
WF and r ≥ 1. Moreover (cf. [Rohrlich 1994, §5, Corollary 2]), every admissible
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representation of WF is of the form⊕
i
τi ⊗Sp(ri ),

where the τi are irreducible admissible representations of WF and the ri ∈ N.

Theorem 3.2 (local Langlands correspondence: [Harris and Taylor 2001, VII.2.20;
Henniart 2000; Kutzko 1980]). There is a bijection between isomorphism classes
of irreducible admissible representations of GLn(F) and isomorphism classes of
admissible n-dimensional representations of WF .

The correspondence is given as follows. The key point is to construct a bijection
8F : σ 7→ τ = 8F (σ ) between the set of isomorphism classes of supercuspidal
representations of GLn(F) and the set of isomorphism classes of irreducible ad-
missible representations of WF . This was done in [Henniart 2000] and [Harris and
Taylor 2001]. Then, to Q(1), for the segment 1 = [σ, σ (r − 1)], one associates
the indecomposable admissible representation8F (σ )⊗Sp(r) of the Weil–Deligne
group of F . More generally, to the Langlands quotient Q(11, · · · ,1r ), where
1i = [σi , σi (ri − 1)], for i = 1 to r , one associates the admissible representation⊕

i 8F (σi )⊗Sp(ri ) of the Weil–Deligne group of F .

Automorphic forms on GLn. The Harish-Chandra isomorphism identifies the cen-
ter zn of the universal enveloping algebra of the complexified Lie algebra gln of
GLn , with the algebra C[X1, X2, · · · , Xn]

Sn , where the symmetric group Sn acts
by permuting the X i . Given a multiset H ={x1, x2, . . . , xn} of n complex numbers
one obtains an infinitesimal character of zn given by χH : X i 7→ xi .

Cuspidal automorphic forms with infinitesimal character χH (or more simply
just H ) are smooth functions f : GLn(Q)\GLn(A Q) → C satisfying the usual
finiteness condition under a maximal compact subgroup, a cuspidality condition,
and a growth condition, for which we refer the reader to [Taylor 2004]. In addition,
if z ∈ zn , then z · f = χH (z) f . The space of such functions is denoted by

A◦H (GLn(Q)\GLn(A Q)).

This space is a direct sum of irreducible admissible GLn(A
(∞)

Q
) × ( gln, O(n))-

modules each occurring with multiplicity one, and these irreducible constituents are
referred to as cuspidal automorphic representations of GLn(A Q) with infinitesimal
character χH . Let π be such an automorphic representation. By a result of Flath,
π is a restricted tensor product π =

⊗
′

p πp [Bump 1997, Theorem 3.3.3] of local
automorphic representations.

Galois representations. Let π be an automorphic representation of GLn(A Q)with
infinitesimal character χH , where H is a multiset of integers. The following very
strong, but natural, conjecture seems to be part of the folklore.



(p, p)-GALOIS REPRESENTATIONS AND AUTOMORPHIC FORMS 389

Conjecture 3.3. Let H consist of n distinct integers. There is a strictly compat-
ible system of Galois representations (ρπ,`) associated with π , with Hodge–Tate
weights H , such that local-global compatibility holds.

Here local-global compatibility means that the underlying semisimplified Weil–
Deligne representation at p in the compatible system (which is independent of the
residue characteristic ` of the coefficients by hypothesis) corresponds to πp via the
local Langlands correspondence. Considerable evidence towards this conjecture
is available for self-dual representations, thanks to the work of Clozel, Kottwitz,
Harris, and Taylor. We quote the following theorem from [Taylor 2004], referring
to that paper for the original references (e.g., [Clozel 1991]).

Theorem 3.4 [Taylor 2004, Theorem 3.6]. Let H consist of n distinct integers.
Suppose that the contragredient representation π∨ = π ⊗ ψ for some character
ψ : Q×\A×

Q
→ C×, and suppose that for some prime q, the representation πq is

square-integrable. Then there is a continuous representation

ρπ,` : GQ→ GLn(Q̄`)

such that ρπ,`|GQ`
is potentially semistable with Hodge–Tate weights given by H ,

and such that for any prime p 6= `, the semisimplification of the Weil–Deligne
representation attached to ρπ,`|GQp

is the same as the Weil–Deligne representation
associated by the local Langlands correspondence with πp, except possibly for the
monodromy operator.

Subsequent work of Taylor and Yoshida [2007] shows that the two Weil–Deligne
representations in the theorem above are in fact the same (i.e., the monodromy
operators also match).

In any case, for the rest of this paper we shall assume that Conjecture 3.3 holds.
In particular, we assume that the Weil–Deligne representation at p associated with
a p-adic member of the compatible system of Galois representations attached to π
using Fontaine theory is the same as the Weil–Deligne representation at p attached
to an `-adic member of the family, for ` 6= p.

A variant. A variant of the result above can be found in [Clozel et al. 2008]. We
state it now, using the notation and terminology from §4.3 of that reference.

Say π is an RAESDC (regular, algebraic, essentially self-dual, cuspidal) auto-
morphic representation if π is a cuspidal automorphic representation such that

• π∨ = π ⊗χ for some character χ :Q×\A×
Q
→ C×, and

• π∞ has the same infinitesimal character as some irreducible algebraic repre-
sentation of GLn .
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Let a ∈ Zn satisfy

(3-1) a1 ≥ · · · ≥ an.

Let 4a denote the irreducible algebraic representation of GLn with highest weight
a. We say that an RAESDC automorphic representation π has weight a if π∞ has
the same infinitesimal character as 4∨a ; in this case there is an integer wa such that
ai + an+1−i = wa for all i .

Let S be a finite set of primes of Q. For v ∈ S let ρv be an irreducible square-
integrable representation of GLn(Qv). Say that an RAESDC representation π has
type {ρv}v∈S if for each v ∈ S, πv is an unramified twist of ρ∨v .

With this setup, Clozel, Harris, and Taylor attached a Galois representation to
an RAESDC π .

Theorem 3.5 [Clozel et al. 2008, Proposition 4.3.1]. Let ι : Q̄` ' C. Let π be
an RAESDC automorphic representation as above of weight a and type {ρv}v∈S .
There is a continuous semisimple Galois representation r`,ι(π) : Gal(Q̄/Q) →
GLn(Q̄`) such that:

(1) r`,ι(π)|ss
GQp
= (r`(ι−1πp)

∨)(1 − n)ss for every prime p - `. (Here r` is the
reciprocity map defined in [Harris and Taylor 2001].)

(2) If ` = p, then the restriction r`,ι(π)|GQp
is potentially semistable and if πp

is unramified, it is crystalline, with Hodge–Tate weights −(a j + n − j) for
j = 1, . . . , n.

The Newton and Hodge filtrations. Let ρπ,p|GQp
be the (p, p)-representation at-

tached to an automorphic representation π , and let D be the corresponding filtered
(ϕ, N , F, E)-module (for suitable choices of F and E).

There are two natural filtrations on DF , the Hodge filtration Fili DF and the
Newton filtration defined by ordering the slopes of the crystalline Frobenius (the
valuations of the roots of ϕ). To keep the analysis of the structure of the (p, p)-
representation ρπ,p|GQp

within reasonable limits, we make this assumption:

Assumption 3.6. The Newton filtration on DF is in general position with respect
to the Hodge filtration Fili DF .

Here, if V is a space and Fili1V and Fil j
2V are two filtrations on V, we say they

are in general position if each Fili1V is as transverse as possible to each Fil j
2V .

We remark that the condition above is in some sense generic since two random
filtrations on a space tend to be in general position.

(Quasi)ordinary representations. As mentioned earlier, our goal is to prove that
the (p, p)-Galois representation attached to π is upper triangular in several cases.
To this end it is convenient to recall some terminology (see, e.g., [Greenberg 1994,
p. 152] or [Ochiai 2001, Definition 3.1]).
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Definition. Let F be a number field. A p-adic representation V of G F is called
ordinary (respectively quasiordinary) if the following conditions are satisfied:

(1) For each place v of F over p, there is a decreasing filtration of G Fv -modules
· · · Fili

vV ⊇ Fili+1
v V ⊇ · · · such that Fili

vV = V for i � 0 and Fili
vV = 0 for

i � 0.

(2) For each v and i , Iv acts on Fili
vV/Fili+1

v V via the character χ i
cyc,p, where

χ cyc,p is the p-adic cyclotomic character (respectively, there exists an open
subgroup of Iv acting on Fili

vV/Fili+1
v V via χ i

cyc,p).

4. Principal series

Let π be an automorphic representation of GLn(A Q) with infinitesimal character
H , for a set of distinct integers H . Let πp denote the local automorphic repre-
sentation of GLn(Qp). In this section we study the behavior of the (p, p)-Galois
representation assuming that πp is in the principal series.

Spherical case. Assume that πp is an unramified principal series representation.
Since πp is a spherical representation of GLn(Qp), there exist unramified char-
acters χ1, . . . , χn of Q×p such that πp is the Langlands quotient Q( χ1, . . . , χn).
We can parametrize the isomorphism class of this representation by the Satake
parameters α1, . . . , αn for αi = χi (ω), where ω is a uniformizer for Qp.

Note that ρπ,p|GQp
is crystalline with Hodge–Tate weights H . Let D be the

corresponding filtered ϕ-module, having a filtration with jumps β1<β2< · · ·<βn

(so that the Hodge–Tate weights H are −β1 > · · ·>−βn).

Definition 4.1. An automorphic representation π is p-ordinary if βi +vp(αi )= 0
for all i = 1, . . . , n. (In particular, the vp(αi ) are integers.)

Theorem 4.2 (spherical case). Suppose that π is an automorphic representation
of GLn(A Q) with infinitesimal character given by the integers −β1 > · · · > −βn

and such that πp is in the unramified principal series with Satake parameters
α1, . . . , αn . If π is p-ordinary, then

ρπ,p|GQp
∼

λ
(

α1

pvp(α1)

)
·χ
−β1
cyc,p ∗ ∗ ∗

0 λ
(

α2

pvp(α2)

)
·χ
−β2
cyc,p ∗ ∗

. . .

0 0 λ
(
αn−1

pvp(αn−1)

)
·χ
−βn−1
cyc,p ∗

0 0 0 λ
(

αn

pvp(αn)

)
·χ
−βn
cyc,p


.
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In particular, ρπ,p|GQp
is ordinary.

Proof. Since πp is p-ordinary, we have vp(αn)<vp(αn−1)< · · ·<vp(α1). By strict
compatibility, the characteristic polynomial of the inverse of crystalline Frobenius
of Dn is equal to

∏
i (X −αi ).

Since the vp(αi ) are distinct, there exists a basis of eigenvectors of Dn for the
operator ϕ, say {ei }, with corresponding eigenvalues {α−1

i }. For 1 ≤ i ≤ n, let Di

be the ϕ-submodule generated by {e1, . . . , ei }. Since Dn is admissible we know
that tH (Di )≤ tN (Di ) for all i = 1, . . . , n.

The filtration on Dn is

· · · ⊆ 0 ( Filβn (Dn)⊆ · · ·( Filβ1(Dn)= Dn ⊆ · · · .

Since Dn is admissible, we have

(4-1)
n∑

i=1

βi =−

n∑
i=1

vp(αi ).

By Assumption 3.6, the jumps in the induced filtration on Dn−1 are β1, . . . , βn−1.
By (4-1), we have

tH (Dn−1)=

n−1∑
i=1

βi =−

n−1∑
i=1

vp(αi )= tN (Dn−1),

since βn = −vp(αn). This implies that Dn−1 is admissible. Moreover, Dn/Dn−1

is also admissible since tH (Dn/Dn−1)= βn and tN (Dn/Dn−1)=−vp(αn) since ϕ
acts on Dn/Dn−1 by α−1

n . Therefore, the Galois representation ρπ,p|GQp
looks like

ρ ∼

ρn−1 ∗

0 λ

(
αn

pvp(αn)

)
·χ
−βn
cyc,p

 ,
where ρn−1 is the (n−1)-dimensional representation of GQp corresponding to
Dn−1.

Successive application of this argument to Dn−1, Dn−2, . . . , D1 yields the result.
�

Variant, following [Clozel et al. 2008]. Let π now be an RAESDC representation
of weight a as in Theorem 3.5, and let πp denote the local p-adic automorphic
representation associated with π . For any i = 1, . . . , n, set β ′n+1−i := ai + n − i ,
where the ai ’s are as in (3-1). We have β ′n >β

′

n−1 > · · ·>β
′

1, and the Hodge–Tate
weights are −β ′n <−β

′

n−1 < · · ·<−β
′

1.
Assume that πp is in the unramified principal series, so πp=Q( χ1, χ2, . . . , χn),

where the χi are unramified characters of Q×p . Set α′i = χi (ω)p(n−1)/2. Let t ( j)
p
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be the eigenvalue of T ( j)
p on πGLn(Zp)

p , where T ( j)
p is the j-th Hecke operator as in

[Clozel et al. 2008], and πGLn(Zp)
p is spanned by a GLn(Zp)-fixed vector, unique

up to a constant. We would like to compute the right-hand side of the equality in
Theorem 3.5(1). By [Clozel et al. 2008, Corollary 3.1.2], in the spherical case, one
has

(r`(ι−1πp)
∨)(1− n)(Frob−1

p )

=
∏
i
(X −α′i )

= Xn
− t (1)p Xn−1

+ · · ·+ (−1) j p j ( j−1)/2t ( j)
p Xn− j

+ · · ·+ (−1)n pn(n−1)/2t (n)p ,

where Frob−1
p is geometric Frobenius. Let s j denote the j-th elementary symmetric

polynomial. Then, by the equation above, for any j = 1, . . . , n, we have

p j ( j−1)/2t ( j)
p = s j (α

′

i )= p j (n−1)/2s j ( χi (p)),

and hence t ( j)
p = s j ( χi (p))p j (n− j)/2. In this setting, we have:

Definition 4.3. An automorphic representation π is p-ordinary if β ′i +vp(α
′

i )= 0
for all i = 1, . . . , n.

Again, if π is p-ordinary, the vp(α
′

i ) are integers.
By strict compatibility, crystalline Frobenius has its characteristic polynomial

exactly as above. The next theorem is proved like Theorem 4.2.

Theorem 4.4 (spherical case, variant). Let π be a cuspidal automorphic represen-
tation of GLn(A Q) of weight a, as in Theorem 3.5. Let rp,ι(π) be the corresponding
p-adic Galois representation, with Hodge–Tate weights −β ′n+1−i := ai + n − i ,
for i = 1, . . . , n. Suppose πp is in the principal series with Satake parameters
α1, . . . , αn , and set α′i = αi p(n−1)/2. If π is p-ordinary, then

rp,ι(π)|GQp
∼

λ
(

α′1
pvp(α

′

1)

)
·χ
−β ′1
cyc,p ∗ ∗ ∗

0 λ
(

α′2
pvp(α

′

2)

)
·χ
−β ′2
cyc,p ∗ ∗

. . .

0 0 λ
( α′n−1

pvp(α
′

n−1)

)
·χ
−β ′n−1
cyc,p ∗

0 0 0 λ
(

α′n
pvp(α′n)

)
·χ
−β ′n
cyc,p


.

In particular, rp,ι(π)|GQp
is ordinary.
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Theorem 4.4 was also obtained by D. Geraghty in the course of proving mod-
ularity lifting theorems for GLn (see [Geraghty 2010, Lemma 2.7.7 and Corollary
2.7.8]). We thank T. Gee for pointing this out to us.

Ramified principal series case. Returning to the case where π is an automorphic
representation with infinitesimal character H , we assume now that the automorphic
representation πp = Q( χ1, . . . , χn), where the χi are possibly ramified characters
of Q×p .

By the local Langlands correspondence, we think of the χi as characters of the
Weil group WQp . In particular, the restriction of the χi to the inertia group have
finite image. By strict compatibility,

WD(ρ)|Ip '

⊕
i

χi |Ip .

The characters χi |Ip factor through Gal(Qnr
p (ζpm )/Qnr

p ) ' Gal(Qp(ζpm )/Qp) for
some m ≥ 1. Denote Qp(ζpm ) by F . Observe that F is a finite abelian totally
ramified extension of Qp. Let ρπ,p|GQp

: GQp → GLn(E) be the corresponding
(p, p)-representation. Note that ρπ,p|G F is crystalline.

Let Dn be the corresponding filtered module. Then Dn= Ee1+· · ·+Een , where
g ∈ Gal(F/Qp) acts by χi on ei . A short computation shows that ϕ(ei ) = α

−1
i ei ,

where αi = χi (ωF ) for ωF a uniformizer of F .
Using Corollary 2.5, and following the proof of Theorem 4.2, we obtain:

Theorem 4.5 (ramified principal series). Say πp = Q( χ1, . . . , χn) is in the rami-
fied principal series. If π is p-ordinary,

ρπ,p|GQp
∼

χ1·λ
(

α1

pvp(α1)

)
·χ
−β1
cyc,p ∗ ∗

0 χ2·λ
(

α2

pvp(α2)

)
·χ
−β2
cyc,p ∗

0 0
. . . ∗

χn·λ
(

αn

pvp(αn)

)
·χ
−βn
cyc,p


.

In particular, ρπ,p|GQp
is quasiordinary.

5. The Steinberg case

In this section we treat the case where the Weil–Deligne representation attached
to πp is a twist of the special representation Sp(n). The case of unramified twists
occupies most of the section; ramified twists are the subject of Theorem 5.8 at the
end.
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We start with the case where the Weil–Deligne representation attached to πp is
of the form χ ⊗Sp(n), where χ is an unramified character.

Let D be the filtered (ϕ, N ,Qp, E)-module attached to ρπ,p|GQp
. Thus D is

a vector space over E . Note N n
= 0 and N n−1

6= 0 so that there is a basis
{ fn, fn−1, . . . , f1} of D with fi−1 := N fi for 1< i ≤ n and N f1 = 0, i.e.,

fn
N
7→ fn−1

N
7→ · · ·

N
7→ f1

N
7→ 0.

Say χ takes arithmetic Frobenius to α. Since Nϕ = pϕN , we may assume that
ϕ( fi )= α

−1
i fi for all i = 1, . . . , n, where α−1

i = pi−1/α. When α = 1, D reduces
to the Weil–Deligne representation Sp(n) mentioned after Theorem 3.1.

For each 1≤ i ≤n, let Di denote the subspace 〈 fi , . . . , f1〉. Clearly, dim(Di )= i
and D1 ( D2 ( · · ·( Dn . One can easily prove:

Lemma 5.1. For every integer 1 ≤ r ≤ n, there is a unique N-submodule of D, of
rank r , namely Dr .

Let βn > · · ·>β1 be the jumps in the Hodge filtration on D. We assume that the
Hodge filtration is in general position with respect to the Newton filtration given
by the Di (Assumption 3.6). An example of such a filtration is

〈 fn〉( 〈 fn, fn−1〉( · · ·( 〈 fn, fn−1, . . . , f2〉( 〈 fn, fn−1, . . . , f1〉.

The following elementary lemma plays an important role in later proofs.

Lemma 5.2. Let m be a natural number. Let {ai }
n
i=1 be an increasing sequence

of integers such that |ai+1 − ai | = m. Let {bi }
n
i=1 be another increasing sequence

of integers, such that |bi+1 − bi | ≥ m. Assume that
∑

i ai =
∑

i bi . If an = bn or
a1 = b1, then ai = bi for all i .

The same holds with “decreasing” instead of “increasing”.

Proof. Let us prove the lemma when an = bn and the ai are increasing. The proof
in the other cases is similar. We have

m(n−1+n−2+· · ·+1)≤
n∑

i=1

(bn−bi )=

n∑
i=1

(an−ai )=m(n−1+n−2+· · ·+1).

The first equality follows from an = bn . From the equation above, we see that
bn − bi = an − ai for every 1 ≤ i ≤ n. Since an = bn , we have ai = bi for every
1≤ i ≤ n. �

By Lemma 5.1, the Di are the only (ϕ, N )-submodules of D. The following
proposition shows that if two consecutive submodules Di and Di+1 are admissible,
all the Di are admissible.
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Proposition 5.3. Suppose there exists an integer 1 ≤ i ≤ n such that both Di and
Di+1 are admissible. Then each Dr , for 1≤ r ≤ n, is admissible. Moreover, the βi

are consecutive integers.

Proof. Since Di and Di+1 are admissible, we have the equalities

(5-1) β1+β2+· · ·+βi =−

i∑
r=1

vp(αr ) and β1+β2+· · ·+βi+1=−

i+1∑
r=1

vp(αr ),

whose difference gives

(5-2) −vp(αi+1)= βi+1.

Define ar =−vp(αr ) and br = βr for 1≤ r ≤ n. Hence,

(5-3)
an > · · ·> ai+2 > ai+1 > ai > · · ·> a1,

bn > · · ·> bi+2 > bi+1 > bi > · · ·> b1.

By (5-2), ai+1=bi+1. By Lemma 5.2 and (5-1), we have ar =br for all 1≤r≤ i+1.
Since Dn is admissible,

(5-4) tH (Dn)=

n∑
r=1

βr =−

n∑
r=1

vp(αr )= tN (Dn).

From (5-1) and (5-4), we have

n∑
r=i+1

βr =−

n∑
r=i+1

vp(αr ).

Again, by (5-3) and Lemma 5.2, we have ar = br for all i + 1 ≤ r ≤ n. Hence
βr =−vp(αr ) for all 1≤ r ≤ n. This shows that all the other Di ’s are admissible.
Also, the βi are consecutive integers since the vp(αi ) are consecutive integers. �

Corollary 5.4. Keeping the notation as above, the admissibility of D1 or Dn−1

implies the admissibility of all other Di .

Theorem 5.5. Assume that the Hodge filtration on D is in general position with
respect to the Di (Assumption 3.6). Then the crystal D is either irreducible or
reducible, in which case each Di , for 1≤ i ≤ n, is admissible.

Proof. If D is irreducible, we are done. If not, there exists an i , such that Di is
admissible. If Di−1 or Di+1 is admissible, then by Proposition 5.3, all the Dr are
admissible. So, it is enough to consider the case where neither Di−1 nor Di+1 is
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admissible (and Di is admissible). We have

β1+β2+ · · ·+βi−1 <−

r=i−1∑
r=1

vp(αr ),(5-5a)

β1+β2+ · · ·+βi =−

r=i∑
r=1

vp(αr ),(5-5b)

β1+β2+ · · ·+βi+1 <−

r=i+1∑
r=1

vp(αr ).(5-5c)

Subtracting (5-5b) from (5-5a), we get −βi < vp(αi ). Subtracting (5-5b) from
(5-5c), we get βi+1 < −vp(αi+1) = −vp(αi )+ 1. Adding these inequalities, we
obtain βi+1− βi < 1. But this is a contradiction, since βi+1 > βi . This proves the
theorem. �

Definition 5.6. Say π is p-ordinary if β1+ vp(α)= 0.

If π is p-ordinary, D1 is admissible, so the flag D1 ⊂ D2 ⊂ · · · ⊂ Dn is an
admissible flag by Theorem 5.5 (an easy check shows that if π is p-ordinary,
Assumption 3.6 holds automatically).

Applying the discussion above to the local Galois representation ρπ,p|GQp
, we

obtain:

Theorem 5.7 (unramified twist of Steinberg representation). Say π is a cuspidal
automorphic representation of GLn(A Q) with infinitesimal character given by the
integers −β1 > · · ·>−βn . Suppose that πp is an unramified twist of the Steinberg
representation, that is, WD(ρπ,p|GQp

) ∼ χ ⊗ Sp(n), where χ is the unramified
character mapping arithmetic Frobenius to α. If π is ordinary at p (that is,
vp(α)=−β1), then the βi are necessarily consecutive integers and

ρπ,p|GQp
∼



λ
(

α

pvp(α)

)
·χ
−β1
cyc,p ∗ ∗

0 λ
(

α

pvp(α)

)
·χ
−β1−1
cyc,p ∗

. . .

0 0 λ
(

α

pvp(α)

)
·χ
−β1−(n−1)
cyc,p


,

where λ(α/pvp(α)) is an unramified character that takes arithmetic Frobenius to
α/pvp(α), and in particular, ρπ,p|GQp

is ordinary. If π is not p-ordinary and
Assumption 3.6 holds, then ρπ,p|GQp

is irreducible.

Proof. By strict compatibility, D is the filtered (ϕ, N ,Qp, E)-module attached to
ρπ,p|GQp

. If π is p-ordinary, we are done and the characters on the diagonal are
determined by Corollary 2.5.
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If π is not p-ordinary, D is irreducible. Indeed, if D is reducible, then by
Theorem 5.5, all Di , and in particular D1, are admissible, so π is p-ordinary. �

Theorem 5.8 (ramified twist of Steinberg representation). Let the notation and
hypotheses be as in Theorem 5.7, except that this time assume that

WD(ρπ,p|GQp
)∼ χ ⊗Sp(n),

where χ is an arbitrary, possibly ramified, character. Write χ = χ0 · χ
′ where

χ0 is the ramified part of χ , and χ ′ is an unramified character taking arithmetic
Frobenius to α. If π is p-ordinary ( β1 = −vp(α)), then the βi are consecutive
integers and

ρπ,p|GQp
∼

χ0 ·λ
(

α

pvp(α)

)
·χ
−β1
cyc,p ∗ ∗

0 χ0 ·λ
(

α

pvp(α)

)
·χ
−β1−1
cyc,p ∗

. . .

0 0 χ0 ·λ
(

α

pvp(α)

)
·χ
−β1−(n−1)
cyc,p


.

If π is not p-ordinary and Assumption 3.6 holds, then ρπ,p|GQp
is irreducible.

Proof. Let F be a totally ramified abelian (cyclotomic) extension of Qp such
that χ0|IF = 1. Then the reducibility of ρπ,p|G F over F can be shown exactly as
in Theorem 5.7, and the theorem over Qp follows using the descent data of the
underlying filtered module. If π is not p-ordinary, then by arguments similar to
those used in proving Theorem 5.7, ρπ,p|G F is irreducible, so that ρπ,p|GQp

is also
irreducible. �

6. Supercuspidal ⊗ Steinberg

We now turn to the case where the Weil–Deligne representation attached to πp is
indecomposable. Thus we assume that WD(ρπ,p|GQp

) is Frobenius semisimple and
is of the form τ ⊗ Sp(n), where τ is an irreducible m-dimensional representation
corresponding to a supercuspidal representation of GLm for m ≥ 1, and Sp(n) for
n ≥ 1 denotes the usual special representation.

(ϕ, N)-submodules. We start by classifying the (ϕ, N , F, E)-submodules of D,
the crystal attached to the local representation ρπ,p|GQp

, when WD(ρπ,p|GQp
) =

τ⊗Sp(n) for m≥ 1 and n≥ 1. This will play a key role in the study of the structure
of ρπ,p|GQp

, when taking the Hodge filtration on D into account.
Recall from [Breuil and Schneider 2007, Proposition 4.1] that there is an equiva-

lence of categories between (ϕ, N )-modules with coefficients and descent data, and
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Weil–Deligne representations. We write Dτ for the (ϕ, N )-modules corresponding
to τ , and likewise DSp(n) for those corresponding to Sp(n), and so on.

Theorem 6.1. All the (ϕ, N , F, E)-submodules of D= Dτ⊗DSp(n) are of the form
Dτ ⊗ DSp(r) for some 1≤ r ≤ n.

The case that m = 1 was treated in the previous section (twist of Steinberg), and
the case n = 1 is vacuously true.

Assume first that τ is an induced representation of dimension m of the form
IndWp

WK
χ , where K is a p-adic field such that [K : Qp] = m, and χ is a character

of WK . This is known to always hold if (p,m) = 1 or p > m. For simplicity, we
shall assume that K is the unique unramified extension of Qp, namely Qpm , and
refer to τ in this case as an unramified supercuspidal representation. Let σ be the
generator of Gal(Qpm/Qp), and let Ipm denote the inertia subgroup of Qpm . Then

τ |Ip=Ipm ' (IndWp
Wpm χ)|Ipm '

m⊕
i=1
χσ

i
|Ipm .

Since τ is irreducible, by Mackey’s criterion, we have χ 6= χσ
i

for all i , on Wpm

and also on Ipm . Moreover, χσ
j
6= χσ

i
for any i 6= j .

Following the methods of [Ghate and Mézard 2009], it is possible to explicitly
write down the crystal Dτ whose underlying Weil–Deligne representation is the
unramified supercuspidal representation τ above. For the details we refer the reader
to [Ghate and Kumar 2010, §7.2]. In particular, one may write down appropriate
finite extensions F0 and F of Qp, so that Dτ is a free rank m module over F0⊗ E
with basis ei , i = 1, . . . ,m, such that Dτ is given by

(6-1)
ϕ(ei )= t−1/m

m ei , N (ei )= 0, σ (ei )= ei+1,

g(ei )= (1⊗χσ
i−1
(g))(ei ), g ∈ I (F/K )

for all 1≤ i ≤ m and some constant tm ∈ OE . When m = 2, this (ϕ, N )-module is
exactly the one given in [Ghate and Mézard 2009, §3.3], though the ei used here
differ by a scalar from the ei used there.

Recall that the module DSp(n) has a basis { fn, fn−1, . . . , f1}, with properties as
in Section 5. Using (6-1) and a basis of Dτ⊗DSp(r) of the form ei⊗ f j , it is possible
to give an explicit proof of Theorem 6.1, when τ is an unramified supercuspidal
representation of dimension m [Ghate and Kumar 2010, §7.2.5]. However, it is
also possible to prove the theorem for general τ , independently of any explicit
formulas. We give this proof now. The following general lemma is useful:

Lemma 6.2. The theory of Jordan canonical forms can be extended to nilpotent
operators on free finite-rank (F0 ⊗ E)-modules. We call the number of blocks in
the Jordan decomposition of the monodromy operator N as the index of N .
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Proof. One simply extends the usual theory of Jordan canonical forms on each
projection under (2-1) to modules over F0⊗ E-modules. �

Returning to our situation:

Lemma 6.3. There are no rank r (ϕ, N , F, E)-submodules of D = Dτ ⊗ DSp(n)

on which N acts trivially for 1≤ r ≤ m− 1.

Proof. Suppose there exists such a module, say D̃, of rank r < m. Since N acts
trivially on D̃, we have D̃ ⊆ Dτ ⊗〈 f1〉 = Dτ ⊗ DSp(1) ' Dτ . But τ is irreducible,
so Dτ is irreducible by Lemma 2.7, a contradiction. �

Corollary 6.4. The index of N on a (ϕ, N , F, E)-submodule of D is m.

Proof of Theorem 6.1. Let D′ be a (ϕ, N , F, E)-submodule of D = Dτ ⊗ DSp(n).
By the corollary above, there are m blocks in the Jordan canonical form of N on D′.
Without loss of generality, assume that the blocks have sizes r1≤ r2≤· · ·≤ rm with∑m

i=1 ri = rank D′. Supposew1, . . . , wm are the corresponding basis vectors in D′

such that the order of nilpotency of N on wi is ri , so that the N j (wi ) form a basis
of D′. If all the ri are equal to say r , an easy argument shows D′ = Dτ ⊗ DSp(r).
We show that this is indeed the case.

Suppose towards a contradiction that ri 6= ri+1 for some 1≤ i <m. For 1≤ i ≤n,
let Di denote the submodule Dτ ⊗Ker(N i )= Dτ ⊗DSp(i). Now, arrange the basis
vectors N jwk of D′ as follows:

w1, Nw1, . . . , N r1−1w1,

...

wk, Nwk, . . . , N rk−1wk,

wk+1, Nwk+1, . . . , N rk+1−r1−1wk+1, N rk+1−r1wk+1, . . . , N rk+1−1wk+1,

...

wm, Nwm, N 2wm, . . . , N rm−r1−1wm, N rm−r1wm, . . . , N rm−1wm .

With respect to this arrangement, denote the span of the vectors in the last i columns
by Ai . Since ri 6= ri+1, the rank of the space Ari+1/Ari is less than m. Moreover,
Ari+1/Ari is a subspace of Dri+1/Dri ; that is, there is an inclusion of (ϕ, N , F, E)-
modules Ari+1/Ari ↪→ Dri+1/Dri . Now

Dri+1/Dri = (Dτ ⊗ DSp(ri+1))/(Dτ ⊗ DSp(ri ))

' Dτ ⊗ (DSp(ri+1)/DSp(ri ))' Dτ ⊗ DSp(1) ' Dτ .

All the isomorphisms above are isomorphisms of (ϕ, N, F, E)-modules over F0⊗E .
By Lemma 6.3, the inclusion above is not possible! Hence all the ri are indeed
equal. This finishes the proof of Theorem 6.1. �



(p, p)-GALOIS REPRESENTATIONS AND AUTOMORPHIC FORMS 401

Filtration on D = Dτ ⊗ DSp(n). We can now apply the discussion above to write
down the structure of the (p, p)-Galois representation attached to a cuspidal auto-
morphic representation of GLmn(A Q).

We start with some remarks. Suppose D1 and D2 are two admissible filtered
modules. It is well-known (see [Totaro 1996]) that the tensor product D1 ⊗ D2

is also admissible. The difficulty in proving this lies in the fact that one does
not have much information about the structure of the (ϕ, N )-submodules of the
tensor product. If they are of the form D′⊗ D′′, where D′ and D′′ are admissible
(ϕ, N )-submodules of D1 and D2 respectively, then D′⊗D′′ is also admissible by
Lemma 2.3. But not all the submodules of D1⊗ D2 are of this form.

However, we saw in Theorem 6.1 that for D= Dτ⊗DSp(n), all the (ϕ, N , F, E)-
submodules of D are of the form Dτ⊗DSp(r) for some 1≤r≤n. This fact allows us
to study the crystal D and its submodules, once we introduce the Hodge filtration.

Filtration in general position. Assume that the Hodge filtration on D is in general
position with respect to the Newton filtration (Assumption 3.6). Let m be the rank
of Dτ . Let {βi, j }

i=n, j=m
i=1, j=1 be the jumps in the Hodge filtration with βi1, j1 >βi2, j2 , if

i1 > i2, or if i1 = i2 and j1 > j2. Thus

βn,m > βn,m−1 > · · ·> βn,1 > βn−1,m > · · ·> β1,m > · · ·> β1,1.

Define, for every 1≤ k ≤ n,

bk =

j=m∑
j=1

βk, j ,

and

ak = tN (Dτ ⊗ DSp(k))− tN (Dτ ⊗ DSp(k−1))= tN (Dτ )+m(k− 1),

where the last equality follows from Lemma 2.3. Clearly,

bn > bn−1 > · · ·> b2 > b1,

an > an−1 > · · ·> a2 > a1.

Observe that bi+1 − bi ≥ m2 and ai+1 − ai = m for every 1 ≤ i ≤ n. Since
D is admissible, the submodule Dτ ⊗ DSp(i) of D is admissible if and only if∑i

k=1 bk =
∑i

k=1 ak .
The arguments below are similar to the ones used when analyzing the Steinberg

case. We start with an analog of Lemma 5.2.

Lemma 6.5. Let {ai }
n
i=1 be an increasing sequence of integers such that ai+1−ai =

m for every i and for some fixed natural number m. Let {bi }
n
i=1 be an increasing

sequence of integers such that bi+1 − bi ≥ m2 for every i . Suppose that
∑

i ai =∑
i bi . If an = bn or a1 = b1, then m = 1 and hence ai = bi for all i .
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Proof. We prove the lemma when an = bn; the case of a1 = b1 is similar. Write

m2(n−1+n−2+· · ·+1)≤
n∑

i=1

(bn−bi )=

n∑
i=1

(an−ai )=m(n−1+n−2+· · ·+1),

where the first equality follows from an = bn . From the inequality we see that
m = 1. Now, the rest of the proof follows from Lemma 5.2. �

Theorem 6.6. If Dτ ⊗ DSp(i) and Dτ ⊗ DSp(i+1) are admissible submodules of D,
then m = 1, in which case all the Dτ ⊗ DSp(i), for 1≤ i ≤ n, are admissible.

Proof. Since Dτ ⊗ DSp(i) and Dτ ⊗ DSp(i+1) are admissible, we have

(6-2) b1+ b2+ · · ·+ bi =

i∑
r=1

ar and b1+ b2+ · · ·+ bi+1 =

i+1∑
r=1

ar .

From these expressions, bi+1 = ai+1. As recalled above:

bn > · · ·> bi+2 > bi+1 > bi > · · ·> b1,

an > · · ·> ai+2 > ai+1 > ai > · · ·> a1.

Since ai+1 = bi+1 and (6-2) holds, by Lemma 6.5 we have m = 1 and ai = bi for
all 1≤ i ≤ n. This shows that all the Dτ ⊗ DSp(i) are admissible. �

Theorem 6.7. Let D= Dτ⊗DSp(n) and assume that the Hodge filtration on D is in
general position (Assumption 3.6). Then either D is irreducible or D is reducible,
in which case m = 1 and the (ϕ, N , F, E)-submodules Dτ ⊗ DSp(i), for 1≤ i ≤ n,
are all admissible.

Proof. Let Di = Dτ ⊗ DSp(i) for 1 ≤ i ≤ n. If D is irreducible, we are done. If
not, by Theorem 6.1, there exists an 1≤ i ≤ n such that Di is admissible. If Di−1

or Di+1 is also admissible, then by the theorem above, m = 1 and hence all the
(ϕ, N , F, E)-submodules of D are admissible. So, assume Di−1 and Di+1 are not
admissible, but Di is admissible. We shall show that this is not possible. Indeed,
we have

b1+ b2+ · · ·+ bi−1 <

r=i−1∑
r=1

ar ,(6-3a)

b1+ b2+ · · ·+ bi =

r=i∑
r=1

ar ,(6-3b)

b1+ b2+ · · ·+ bi+1 <

r=i+1∑
r=1

ar .(6-3c)
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Subtracting (6-3b) from (6-3a), we get−bi <−ai . Subtracting (6-3b) from (6-3c),
we get bi+1<ai+1. Adding these two inequalities, we get bi+1−bi <ai+1−ai =m.
But this is a contradiction, since bi+1− bi ≥ m. �

For emphasis we state separately:

Corollary 6.8. With assumptions as above, the crystal D = Dτ ⊗ DSp(n) is irre-
ducible if m ≥ 2.

Definition 6.9. Say π is ordinary at p if a1 = b1, that is, tN (Dτ )=
∑m

j=1 β1, j .

This condition implies m = 1; the definition then coincides with Definition 5.6.
Applying the discussion above to the local (p, p)-Galois representation in a

strictly compatible system, we obtain:

Theorem 6.10 (indecomposable case). Say π is a cuspidal automorphic represen-
tation with infinitesimal character consisting of distinct integers. Suppose that

WD(ρπ,p|GQp
)∼ τm ⊗Sp(n),

where τm is an irreducible representation of WQp of dimension m ≥ 1, and n ≥ 1.
Assume that Assumption 3.6 holds.

• If π is ordinary at p, then ρπ,p|GQp
is reducible, in which case m=1, τ1 is a

character, and ρπ,p|GQp
is (quasi)ordinary as in Theorems 5.7 and 5.8.

• If π is not ordinary at p, then ρπ,p|GQp
is irreducible.

Tensor product filtration. One might wonder what happens if the filtration on D is
not necessarily in general position. As an example, we consider here just one case
arising from the so-called tensor product filtration.

Assume that Dτ and DSp(n) are the usual filtered (ϕ, N , F, E)-modules, and
equip Dτ⊗DSp(n) with the tensor product filtration. By the formulas in Lemma 2.3,
one can prove:

Lemma 6.11. Suppose that D = Dτ ⊗DSp(n) has the tensor product filtration. Fix
1≤ r ≤ n. Then Dτ ⊗ DSp(r) is an admissible submodule of D if and only if DSp(r)

is an admissible submodule of DSp(n).

We recall that if the filtration on DSp(n) is in general position (as in Assumption 3.6),
then we have shown that furthermore DSp(r) is an admissible submodule of DSp(n)

if and only if DSp(1) is an admissible submodule.
The lemma can be used to give an example where the tensor product filtration

on D is not in general position (i.e., does not satisfy Assumption 3.6). Suppose
that τ is an irreducible representation of dimension m = 2 and DSp(2) has weight 2
(as in [Breuil 2001] or [Ghate and Mézard 2009, §3.1]). Note that DSp(1) is an ad-
missible submodule of DSp(2). Hence, by the lemma, Dτ ⊗DSp(1) is an admissible
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submodule of Dτ⊗DSp(2). If the tensor product filtration satisfies Assumption 3.6,
then the admissibility of Dτ ⊗ DSp(1) would contradict Theorem 6.7, since m = 2.

In any case, we have the following application to local Galois representations.

Proposition 6.12. Suppose that ρπ,p|GQp
∼ ρτ ⊗ ρSp(n) is a tensor product of

two (p, p)-Galois representations, with underlying Weil–Deligne representations
τ and Sp(n), respectively. If ρSp(n) is irreducible, so is ρπ,p|GQp

.

Errata

We end this paper by correcting some errors in [Ghate and Mézard 2009]:

• p. 2254, lines 6 and 7: Q should be Qp.

• p. 2257, first two lines should be ϕ(e1)= (1/
√

t) e1 and ϕ(e2)= (1/
√

t) e2.

• p. 2260: first three lines in the middle display should be ϕ(e1) = (1/
√

t) e1,
ϕ(e2) = (1/

√
t) e2, and t ∈ OE , valp(t) = k − 1. Moreover, t is to be chosen

in §3.4.3 satisfying t2
= 1/c (we may take c = d , since ι commutes with ϕ,

and s is no longer required).
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