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Cassidy, Phan and Shelton have associated to any regular cell complex X a
quadratic K -algebra R(X). They gave a combinatorial solution to the ques-
tion of when this algebra is Koszul. The algebra R(X) is a combinatorial
invariant but not a topological invariant. We show that, nevertheless, the
property that R(X) be Koszul is a topological invariant.

In the process, we establish some conditions on the types of local singular-
ities that can occur in cell complexes X such that R(X) is Koszul, and more
generally in cell complexes that are pure and connected by codimension-one
faces.

1. Introduction

Let X be a finite regular cell complex of dimension d , and let K be a field. Follow-
ing Cassidy, Phan and Shelton (see [Cassidy et al. 2010], henceforth abbreviated
[CPS]) we will associate to X , under certain global assumptions, a quadratic K -
algebra R(X) (defined below). The focus of [CPS] is to determine the combina-
torial properties required for this algebra to be Koszul. The primary focus of this
paper is to show that the Koszul property is actually a topological invariant, even
though the algebra is not. In the process we see that our global assumptions also
imply some restrictions on singularities of appropriate spaces X .

After a definition of our two technical assumptions we can state our main the-
orem. Our complexes will be finite throughout. We will generally not restate this
hypothesis.

Definition 1. Let X be a regular cell complex of dimension d.

(1) X is pure if X is the closure of its open d-cells.

(2) A pure, finite regular cell complex X , is connected through codimension-one
faces if the space X−X (d−2) is path connected (where X (d−2) is the (d−2)-skeleton
of X ).
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Theorem 2. Let X be a pure regular cell complex of dimension d, connected
through codimension-one faces. Then R(X) is Koszul (for the field K ) if and only
if both of the following conditions hold.

(1) H̃i (X; K )= 0 for i < d.

(2) Hi (X, X −{p}; K )= 0 for each p ∈ X and each i < d.

Because our hypotheses on the cell complex structure and on homology are
obviously homeomorphism invariant, Theorem 2 shows that the Koszul property
for R(X) is a homeomorphism invariant. Also, Hi (X, X−{p}; K ) depends only on
the open cell containing p, so (2) involves checking only finitely many conditions.
We point out, however, that one does not have any nice homotopy invariance:

Example 3. There are homotopy equivalent, pure regular cell complexes X and Y
of dimension three such that R(X) is not Koszul but R(Y ) is Koszul. For instance,
let Y the union of two 3-cells attached by some 2-dimensional face (so R(Y ) is
Koszul by Theorem 2) and let X be the complex in Example 22, taken from [CPS,
Example 5.9]. X is homotopy equivalent to Y since one gets a space homeomorphic
to Y by collapsing the contractible subcomplex a of X to a point. But [CPS] shows
that R(X) is not Koszul (as one can also see by Theorem 2).

Although our argument does not make direct use of the definition of R(X), we
review that definition here in the interest of self-containedness.

Let P be any finite ranked poset with minimal element 0̄. For each x ∈ P let
s1(x)= {y ∈ P | y < x, rank(x)− rank(y)= 1} (the elements immediately below x
in the ranked poset). We define R(P) to be the quadratic K -algebra on generators
rx , x ∈ P −{0̄} with relations

rxry = 0 for all y 6∈ s1(x)

and
rx

∑
z∈s1(x)

rz = 0 for all x .

The set of all closed cells of a regular cell complex, together with the empty set,
form a finite ranked poset under set inclusion. Following [CPS], this is denoted
P̄(X). (In this poset the rank of a cell is one more than its dimension, so that the
rank of the empty set is 0).

If we assume that X is pure, we may adjoin one additional (maximal) element
to the poset P̄(X). The resulting poset, which is denoted P̂(X) is still a ranked
poset. If we also assume that X is connected through codimension-one faces, then
P̂(X) has the combinatorial property known as uniform (cf. [Gelfand et al. 2005]).
Then we define R(X) to be R(P̂(X)). While R(P̄(X)) is always Koszul under
the hypotheses that X is pure and connected through codimension-one faces (see
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[CPS] and [Retakh et al. 2010]), the Koszul property for R(X) is substantially
more subtle. In [CPS, Theorem 5.3] a precise statement was given in terms of
the combinatorial cell structure of X describing when R(X) is Koszul (refer to
Theorem 5 below).

We note that there are results of a similar nature about different sorts of com-
binatorially derived algebras in the literature. One example of results in a similar
spirit but of a different nature can be found in [Reiner and Stamate 2010].

2. CPS cohomology and local homology

We fix X , a finite regular CW complex of dimension d . We begin by recalling the
definitions of the groups HX (n, k) from [CPS, Section 4], which we will write as
H n

k (X).
Assign orientations to each cell of X . If β is an n cell and α is an n + 1 cell,

let [α : β] be the incidence number of β in α. Because X is regular, this is either
0, 1 or −1. These incidence numbers are usually defined in the context of cellular
homology so that, if C∗(X) is the cellular chain complex of X and α is an n + 1
cell,

d(α)=
∑

n−1 cellsβ

[α : β]β.

Because X is finite and we have a chosen basis for the cellular chains, (given by the
cells of X ) we have an isomorphism between the cellular chains and the cellular
cochains of X . We consider the cochains in dimension n to be generated by the
basis dual to the cellular basis for Cn(X), but we will use the same notation. That is,
an n-cell α when considered as a generator of Cn(X) has value 1 on α considered
as a generator of Cn(X), and value 0 on other cells generating Cn(X). With this
identification, the coboundary map δ : Cn(X)→ Cn+1(X) is given by

δ(α)=
∑

n+1 cellsβ

[β : α]β.

We define Cn
k (X) to be the submodule of Cn(X)⊗Ck(X) generated by α⊗β, such

that β ⊆ ∂α (that is, the cell associated to β is a subset of the boundary of the cell
associated to α). Then, d induces a differential Cn

k (X)→ Cn
k−1(X) and δ induces

a differential Cn
k (X)→ Cn+1

k (X).

Definition 4 [CPS, Definition 4.1]. For each k and n, let

Ln
k (X)= coker(Cn

k+1(X)
d
−→ Cn

k (X)).

Then, L∗k(X) is a cochain complex with differential induced by δ. The CPS coho-
mology groups of X are defined by

H n
k (X)= H n(L∗k(X)).
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These cohomology groups are defined with coefficients in Z. We write H n
k (X; R)

to denote the same groups when calculated with coefficients in a commutative
coefficient ring R.

Theorem 5 [CPS, Theorem 5.3]. Let X be a pure regular cell complex of dimen-
sion d, connected by codimension-one faces. Then, the K -algebra R(X) is Koszul
if and only if H n

k (X, K )= 0 for 0≤ k < n < d.

For our purposes, it is convenient to present a reformulation of Theorem 5 in
terms of relative cohomology groups involving the stars of the cells of X .

Definition 6. The star of a cell σ in a regular cell complex X is

st(σ )= {y ∈ X : y is in some open cell whose closure contains σ }.

We note that st(σ ) is an open subset of X . We also use stl(σ ) to denote the union
of the open cell σ with all open cells in st(σ ) of dimension ≤ l.

Theorem 7. Let X be a pure regular cell complex of dimension d , connected by
codimension-one faces. Then, the K -algebra R(X) is Koszul if and only if

(1) H̃ n(X, K )= 0 for n < d ,

(2) For every k-cell σ and k+ 1< n < d , H n(X, X − st(σ ); K )= 0.

Remark 1. Theorem 7 is a reformulation of [CPS, Corollary 5.8], where the con-
dition k+ 1< n was inadvertently omitted.

As we will see in the next section, the cohomology groups H n(X, X − st (σ ))
can be replaced by the local homology groups Hn(X, X −{x}) for any x ∈ σ (see
Lemma 10). This suggests the following definition.

Definition 8. We define the set Sn (relative to the ring of coefficients R) by x ∈ Sn

if Hi (X, X −{x}; R)= 0 for i ≤ n and Hn+1(X, X −{x}; R) 6= 0.

Now we can state and prove a proposition equivalent to Theorem 2. We will
leave certain technical aspects of the proof to the subsequent two sections, as well
as a more extensive discussion of the structure and significance of the sets Sn .

Proposition 9. Let X be a pure regular cell complex of dimension d which is con-
nected through codimension-one faces. Then, R(X) is Koszul if and only if

(1) H̃ n(X, K )= 0 for n < d

(2) The sets Sk (relative to K ) are empty for 0≤ k ≤ d − 2.

Proof. In this proof all homology and cohomology groups should be computed
relative to the field K . We suppress this from the notation.

We must see that condition (2) of Theorem 7 and condition (2) of Proposition 9
are equivalent under the hypotheses on X and condition (1). Suppose the sets Sk

are empty for 0≤ i ≤ d − 2. Then by Lemma 10, Hi (X, X − st(σ ))= 0 for every
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cell σ and every i < d . The same follows by the universal coefficient theorem for
H i (X, X − st(σ )).

Conversely, assume that for some i ≤ d − 2, the set Si is not empty. Let m be
minimal such that Sm 6=∅. By Lemma 14 and Proposition 17, Sm is a union of cells
and must contain a cell α of dimension k<m. By Lemma 10, H m+1(X, X−st (α))
does not vanish, contradicting (2) of Theorem 7. �

3. Preliminary homotopy results

Let X be a regular cell complex of dimension d . If x ∈ X , we write σ(x) for
the unique open cell of X containing x . The following is a standard lemma of
piecewise linear topology.

Lemma 10. Given a cell σ , st(σ ) is contractible (and in fact has a strong defor-
mation retract to σ ). Also, given any point x ∈ σ , there is a strong deformation
retract

X −{x} → X − st(σ (x)).

Proof. To see that st(σ ) has a strong deformation retract to σ , we want a homotopy

H : st(σ )× I → st(σ ).

Of course H |σ×I will just be the projection to σ .
Now suppose H has been defined on the subset of st(σ ) consisting of σ together

with other open cells up through cells of dimension l. Since X was a regular cell
complex, for each open l+1 cell E of st(σ ), H is defined on a contractible subset
of the boundary, E ′ ⊆ ∂E . So H is defined on W = E × {0} ∪ E ′ × I . The pair
(E × I,W ) has the homotopy extension property (see [Hatcher 2002, page 23]),
so we use that to define H on E × I .

To define our retract

X −{x} → X − st(σ (x)),

we begin by noting there is a strong deformation retract σ(x)−{x} to ∂σ(x). Now
assume the homotopy is defined on stl(σ (x))− {x} (and of course is the identity
on X − st(σ (x))). Note that st0(σ (x))= σ(x).

Let E be the closure of an l + 1 cell of st(σ (x)). Since the pair

((E −{x})× I, (E −{x})×{0} ∪ (∂E −{x})× I )

has the homotopy extension property, extend H across E−{x}. Continue until the
homotopy is defined on all of X −{x}. �

Corollary 11. Given a cell σ there is a strong deformation retract

X − σ → X − st(σ ),
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such that if x ∈ E for some cell E , then the image of x × I is in E , and meets no
cells of st(σ ) other than E.

Proof. Apply the strong deformation retract of Lemma 10 to the space X − σ . �

As an application of Corollary 11 we have:

Corollary 12. Let D be an open n-cell of X and σ a 0-cell in ∂D. Then,

X − (σ ∪ D)' X − σ.

Proof. Apply the homotopy from Corollary 11 to the space X − (σ ∪ D). This
gives a retract of X − (σ ∪ D) to X − (st(σ )), and since that space is also a retract
of X − σ , we get X − (σ ∪ D)' X − σ . �

Proposition 13. Let X be the realization of a simplicial complex1, and let A be a
closed i-simplex in 1′ (the first barycentric subdivision of 1). Let v be the vertex
that A shares with an i-simplex of 1. Then,

X −{v} ' X − A.

Proof. In the complex given by 1 we can construct the deformation retract of
X −{v} to X − st(v) (where st(v) is defined using the simplicial complex 1)

H : (X −{v})× I → X −{v}

explicitly by using barycentric coordinates in each simplex of 1.
Specifically, if σ is a simplex of1 not containing v, then H(p, t)= p for p ∈σ .
If σ does contain v, let the vertices of σ be v = v0, v1, . . . , vk . Then a typical

point of σ −{v} is given by sv0+ (1− s)
∑k

i=1 aivi , where
∑k

i=1 ai = 1. Then,

H
(

sv0+ (1− s)
k∑

i=1

aivi , t
)
= (1− t)sv0+ (1− s+ ts)

k∑
i=1

aivi .

Applying this homotopy to X − A gives a deformation retract to X − st(v). So
X −{v} ' X − A. �

4. Singularities detected by local homology

The singular sets Sn are composed of cells of dimension less than or equal to
n. We continue to assume that X is a finite regular cell complex of dimension d.
Throughout this section we assume further that X is pure. Recall that we refer to
H∗(X, X − x) as the local homology at x . Since X is locally contractible, we can
choose a contractible neighborhood of x , say U . Then, by excision, we have

H∗(X, X −{x})∼= H∗(U,U −{x})∼= H̃∗−1(U −{x}).
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From this we see that any x in the interior of a d-cell of X has local homology
H∗(X, X− x)∼= H̃(Sd) and x ∈ Sd−1. Similarly, if x is on the boundary of exactly
one d-cell then H∗(X, X−x)=0 and x is none of the sets Sk . So if we think of X as
a singular manifold with boundary, the point with neighborhoods homeomorphic
to Rd or the corresponding half-space is not in Sk when k < d − 1. The sets Si ,
0≤ i ≤ d − 2, form a stratification of those singularities of X that are detected by
local homology.

Of course it is also possible for X to be topologically singular and still have local
homology zero in dimensions below d at every point. A simple but illustrative
example (for d = 1) is the space consisting of three copies of the unit interval
identified at one end point:(

[0, 1]× {a, b, c}
) /
{(0, a)∼ (0, b)∼ (0, c)}.

The identification point is a singular point and has no local homology below di-
mension one. This singularity is still detected by local homology of course, but
not until dimension one.

As is well known, there are also spaces with singularities so that all the local
homology groups are those of a manifold. A standard source of examples is the
suspension of any homology sphere which isn’t actually a sphere.

We begin by showing that the sets Sn put restrictions on the cell structure of X .
Recall first that Sn does not depend on the cellular structure of X (Definition 8).
Nevertheless, we have the following.

Lemma 14. The set Sn is a union of open cells (in any cell structure on X ).

Proof. If x is in some open cell D, then X−D' X−{x} by Lemma 10 together with
Corollary 11. So applying the same argument to x ′ ∈ D and using the appropriate
long exact sequences, we get

H∗(X, X −{x})∼= H∗(X, X − D)∼= H∗(X, X −{x ′}). �

Lemma 15. If x ∈ Sn for n < d − 1, then x must be in the interior of a cell of
dimension n or lower.

Note that this fact depends on X being pure. For example, If we take X to be
the union of a two cell and a one cell at a vertex, then points in the interior of the
one cell will be in S0. Geometrically, x ∈ Sn says that if we take a contractible
neighborhood of x and remove x from that neighborhood then the resulting set is
no longer n-connected.

Proof. Recall stk(σ ) is the union of σ and the open cells of dimension k and lower
that are contained in st(σ ). This is the same as st(σ ) within the space X (k) if σ is
a cell of dimension less than or equal to k.
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Suppose x is in the interior of a cell of dimension k<d . We have a commutative
square of spaces

X (k+1)
−{x} −−−→ X (k+1)

− st(k+1)(σ (x))y y
X −{x} −−−→ X − st(σ (x)).

The horizontal maps are homotopy equivalences by Lemma 10. The spaces on the
right are subcomplexes of X , and the right hand vertical map is inclusion of the
k + 1-skeleton. So, by cellular approximation, all maps induce isomorphisms in
Hi for i < k+ 1.

From the long exact sequence of a pair, it follows that

Hi (X (k+1), X (k+1)
−{x})→ Hi (X, X −{x})

is an isomorphism for i ≤ k. Now let U = st(k+1)(σ (x)), which is an open neigh-
borhood of x in X (k+1). U consists of the open k-cell containing x and any open
k+1 cells that have that k-cell as a face. So, U looks like a finite collection of k+1-
cells identified along part of their boundary, and x is in that part of the common
boundary. It follows that U −{x} is homotopy equivalent to a wedge of k-spheres
(one fewer than the number of k+ 1-cells attached to σ(x)).

So,
Hi (X (k+1), X (k+1)

−{x})= Hi (U,U −{x})

is 0 for i < k + 1 (and is free abelian on one fewer generator than the number of
k+ 1-cells attached to σ(x) for i = k+ 1).

It follows that x is not in Sn for n < k. �

See the appendix for examples where Sn contains the interiors of cells of dimen-
sion strictly smaller than n.

The implications of connectivity by codimension-one faces. We have already as-
sumed the global topological condition: X is pure. Our final goal is to understand
the effect of the extra global topological condition: connected by codimension-one
faces. Under that condition we can prove a remarkable strengthening of Lemma 15
(see Proposition 17 and its Corollary). We require one technical lemma.

Lemma 16. Let X be a pure regular cell complex of dimension d. Let n < d.
Suppose S0 = · · · = Sn−1 = ∅, H̃k(X) = 0 for k < d , and D is an open n-cell of
Sn with Sn ∩ ∂D =∅. Let Y = X − D.

Let A ⊆ ∂D be a subspace homeomorphic to Di (the closed i disk) and also
a subcomplex of ∂D under some cell structure on ∂D which subdivides the given
cell structure.

Then, H̃ j (Y − A)= 0 for j < n+ 1− i .
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Proof. The proof is by a double induction with the outer induction on i and the
inner induction on the number of i-cells in A, which we’ll denote by r .

Let i be 0. Note that r =1 by our hypotheses that A∼=D0. Then by Corollary 12,
Y − A= X−(A∪D)' X− A. Since A is a single point in ∂D, and by hypothesis
that point isn’t in S0 ∪ · · · ∪ Sn , we have H̃ j (X − A)= 0 for j < n+ 1.

Now suppose the lemma is established for i−1≥ 0. Consider first the following
special case. Subdivide the cell complex structure on ∂D so that it is a simplicial
complex. Then take the first barycentric subdivision of that simplicial complex.
Let A be the closure of an i-cell in that complex, so A ∼= Di .

Let v be the vertex that A shares with the i-simplex (before subdivision) that
A is part of. By Proposition 13, Y − A ' Y − {v}, which is in turn homotopy
equivalent to X −{v} by the previous case. So H̃ j (Y − A)= 0 for j < n+ 1.

Now let A be as in the hypotheses, with the additional assumption that it is a
subcomplex of a barycentric subdivision of a simplicial subdivision of ∂D, as in
the special case above. Suppose A has r+1 cells, and that the lemma is true in the
case of r cells. Write A = A′ ∪ A′′ where A′ is a single cell, A′′ has r -cells, and
A′ ∩ A′′ is homeomorphic to Di−1.

We look at the Mayer–Vietoris sequence for

Y − (A′ ∩ A′′)= (Y − A′)∪ (Y − A′′),

which gives

H j+1(Y − A′)⊕ H j+1(Y − A′′)→ H j+1(Y − (A′ ∩ A′′))→ H j (Y − A)

→ H j (Y − A′)⊕ H j (Y − A′′).

By our two inductive hypotheses (on i−1 and r ), we have H j+1(Y−(A′∩A′′))= 0
for j + 1< n+ 1− (i − 1) (or j < n+ 1− i), and H j (Y − A′′)= H j (Y − A′)= 0
for j < n+ 1− i .

It follows that H j (Y− A)= 0 for j < n+1−i . By induction on r , this holds for
any A which is an appropriate subcomplex of our subdivision (of the cell structure
on ∂D).

Finally, if A⊆ ∂D is any appropriate subcomplex of a subdivision of ∂D so that
A ∼= Di , then A is also an appropriate subcomplex of a finer subdivision of ∂D
which is itself a barycentric subdivision of a simplicial complex. So our special
case covers this subcomplex A of ∂D. �

Proposition 17. Let X be a complex as above. In addition, assume that H̃i (X)= 0
for i < d , and that X is connected through codimension-one faces. If there is an
n < d − 1 so that Sn 6= ∅, then there is some point in some such Sn which is in an
open cell of dimension smaller than n.
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Proof. Let n be minimal so that Sn 6= ∅. If there is no such n, or if n ≥ d − 1,
we’re done. So assume n< d−1. By Lemmas 14 and 15 Sn must contain an open
cell D of dimension n at most. If D has dimension less than n, then we are done.
So assume D has dimension n. Let Y = X − D. From the hypothesis H̃k(X) = 0
for k < d, we get Hn(Y )= Hn+1(X, Y ) 6= 0.

We wish to prove that Sn ∩ ∂D 6= ∅. Choose a sequence of subsets Ai , Bi ,
i = 0, . . . , n− 1 subcomplexes of ∂D (or of some subdivision) so that

• An−1
∪ Bn−1

= ∂D ∼= Sn−1,

• Ai
∪ Bi ∼= Si ,

• Ai
∩ Bi
= Ai−1

∪ Bi−1.

Notice that A0 and B0 are distinct singleton sets.
Assume Sn ∩ ∂D =∅. Consider

(18) Y = (Y − A0)∪ (Y − B0).

The space Y − A0
' X − A0 by Corollary 12, so since the point of A0 is not in

S0 ∪ · · · ∪ Sn , we get H̃ j (Y − A0)= 0 for j ≤ n, and of course the same result for
H̃J (Y − B0).

Then, in the Mayer–Vietoris sequence for (18), we get

Hn(Y )∼= Hn−1(Y − (A0
∪ B0)).

We do a similar analysis for

(19) Y − (A0
∪ B0)= (Y − A1)∪ (Y − B1).

We have H̃ j (Y − A1)= 0 for j < n+ 1− 1= n by Lemma 16.
Then, in the Mayer–Vietoris sequence for (19), we get

Hn−1(Y − (A0
∪ B0))∼= Hn−2(Y − (A1

∪ B1)).

Similarly, we have

(20) Y − (Ak−1
∪ Bk−1)= (Y − Ak)∪ (Y − Bk).

Lemma 16 tells us that H̃ j (Y − Ak)= 0 for j < n+1− k (and a similar result for
Bk).

So, by the Mayer–Vietoris sequence for (20), we get

H̃n−k(Y − (Ak−1
∪ Bk−1))∼= H̃n−k−1(Y − (Ak ∪ Bk)).

Assembling this information, we get

0 6= Hn(Y )= H̃0(Y − (An−1
∪ Bn−1))= H̃0(X − D).
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The hypothesis that X is connected through codimension-one faces tells us that
H̃0(X − D) = 0 unless (possibly) D has codimension 1. But D was assumed
to have dimension n < d − 1, so we have a contradiction to our assumption that
Sn ∩ ∂D =∅. �

Corollary 21. Suppose X is a pure regular cell complex of dimension d , connected
through codimension-one faces, and with H̃i (X)= 0 for i < d.

If for each 0 ≤ i < d − 1, Si contains no cells of dimension less than i , then for
0≤ i < d − 1, each Si is empty.

Appendix: Examples of singularities

As is clear from the above, x ∈ Sn does not determine the dimension of the open
cell containing x . For example, Sd−1 contains all open d cells and all interior open
d − 1 cells. Similarly, the 3-dimensional complex X of Example 22 below has
points x ∈ S1 so that x is in an open 1-cell, and also at least one x ∈ S1 which is in
an open 0-cell.

Below we give examples of contractible cell complexes connected through co-
dimension-one faces, where (regardless of the chosen cell structure) the singular
set Sr , for some r , is composed of cells of varying dimensions.

Example 22. Let T1 be a 3-simplex with vertices {v0, . . . , v3} and T2 be a 3-
simplex with vertices {w0, . . . , w3}. Define X by

(T1 t T2)/∼ ,

where the relation ∼ is given by identifying the 2-simplex spanned by {v0, v1, v2}

linearly (preserving the order of the vertices) with that spanned by {w0, w1, w2},
and by identifying the 1-simplex spanned by {v0, v3}with that spanned by {w0, w3}

(again preserving the order of simplices).
If we just made the first identification we would have something homeomorphic

to a 3-disk. With both identifications, we have something homotopy equivalent to
a 3-disk since it is a homotopy equivalence to identify the contractible subcomplex
consisting of the closed 1-cell that is the image of the 1-simplex spanned by {v0, v3}

to a point.
In this space, S1 is the open 1-cell that is the image of the open 1-simplex

spanned by {v0, v3} (or equivalently by {w0, w3}) together with the image of v0.
The point that is the image of v0 will be a 0-cell in any cell structure on X , so that
S1 (in this example) will always have points belonging to 0-cells.

Example 23. We can mimic Example 22 in higher dimensions. For example to
create a space of dimension 4 such that S1 must necessarily contain both points of
1-cells and 0-cells, we can define X as follows. Let T1 be a 4-simplex with vertices
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{v0, . . . , v4}, and let T2 be a 4-simplex with vertices {w0, . . . , w4}.

X = (T1 t T2)/∼ ,

where the relation ∼ is given by linearly identifying the 3-simplex spanned by
{v0, v1, v2, v3} (while preserving the order of the vertices) with that spanned by
{w0, w1, w2, w3}, and by identifying the 1-simplex spanned by {v0, v4} with that
spanned by {w0, w4} (again preserving the order of simplices).

Then S1 is analogous to the previous example; it contains the image of the 1-
simplex spanned by {v0, v4} together with the image of v0. S2 = ∅. As in the
previous example, the point that is the image of v0 will be a 0-cell in any cell
structure on X , and the rest of the points of S1 will be in 1-cells or 0-cells.

Example 24. We can also create a complicated S2.
Let T1 be a 4-simplex with vertices {v0, . . . , v4}, and let T2 be a 4-simplex with

vertices {w0, . . . , w4}.

X = (T1 t T2)/∼ ,

where the relation ∼ is given by linearly identifying the 3-simplex spanned by
{v0, v1, v2, v3} (while preserving the order of the vertices) with that spanned by
{w0, w1, w2, w3}, and by identifying the 2-simplex spanned by {v0, v1, v4} with
that spanned by {w0, w1, w4} (preserving the order of simplices).

Then S1=∅, but S2 consisted of the open 2-cell that is the image of the simplex
{v0, v1, v4} together with the open 1-cell that is the image of the simplex {v0, v1}.
This subset of X will be a union of a nonzero number of open 2-cells and a nonzero
number of open 1-cells in any cell complex on X .

Example 25. It is also possible to create a complex X of dimension 4, where S2

will be a union of a nonzero number of 2-cells, a nonzero number of 1-cells and a
nonzero number of 0-cells for any cell structure on X .

We begin by creating the subcomplex most of which will become S2. We will
glue three 2-simplices together along a common edge. So let A be the simpli-
cial complexes with vertices a, b, c, d, e, 2-simplices {a, d, e}, {b, d, e}, {c, d, e}.
This determines the 1-simplices, and, thus, the 1-simplex common to the three 2-
simplices is {d, e}. This is illustrated by the three shaded 2-simplices in Figure 1.

Next we attach three 4-simplices to A by attaching adjacent 2-faces (sharing
a 1-face) of each 4-simplex to pairs of 2-simplices in A. Let T1 be the 4-simplex
with vertices {u0, . . . , u3}, let T2 have vertices {v0, . . . , v3} and let T3 have vertices
{w0, . . . , w3}.

We identify the 2-face spanned by u0, u1, u2 with the simplex e, d, a, and the
2-face spanned by u0, u1, u3 with the simplex e, d, c (preserving the given order
in both cases).
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e

Figure 1. A with {u0, . . . , u3} and {v0, . . . , v3} attached.

Similarly for v0, v1, v2 we use e, d, c and for v0, v1, v3 we use e, d, b. Finally,
for w0, w1, w2 we use e, d, b and for w0, w1, w3 we use e, d, a. We sketch part
of this complex in Figure 1, but note that we have no realistic way to sketch the
4-simplices involved, so we are only showing a two dimensional sketch of a three
dimensional picture of the space.

Of course this is contractible, and S2 consists of the three open 2-simplices
from A together with the open 1-simplex e, d. But this space is not connected
through codimension-one faces. To fix this, we add a last 4-simplex with vertices
{x0, . . . , x4}. We identify the face with vertices x0, . . . , x3 with u1, u2, u3, u4, the
face x0, x2, x3, x4 with v1, v2, v3, v4 and the face x0, x1, x3, x4 withw1, w3, w2, w4.

We’ll call the resulting space X . X is now dimension 4, contractible and con-
nected through codimension-one faces. S0 = S1 = ∅ and S2 is the union of the
open 2-cells of A together with the open 1-cells {a, d}, {b, d}, {c, d} and the 0-cell
{d}. In any cell structure on X , {d} will be a zero cell, and all but finitely many
points of the open 1-cells we just listed will be in open 1-cells. Of course almost
all points in the interiors of the 2-cells listed will be in open 2-cells.
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