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EIGENVALUE ESTIMATES FOR HYPERSURFACES IN Hm×R

AND APPLICATIONS
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In the first part of this paper, we give a lower bound for the spectrum of the
Laplacian on minimal hypersurfaces immersed into Hm×R. As an applica-
tion, in dimension 2, we prove that a complete minimal surface with finite
total extrinsic curvature has finite index. In the second part, we consider
the operator L =1g+ a+ bKg on a complete noncompact surface (M2, g).
Assuming that L is nonnegative for some constants a > 0 and b > 1/4, we
show that the infimum of the spectrum of M2 is bounded from above by
a/(4b− 1). We apply this result to stable minimal surfaces immersed into
homogeneous 3-manifolds.

1. Introduction

In this paper, we mainly consider orientable, minimal hypersurfaces immersed into
Hm
× R. Let ν denote a unit normal field along M and let v = ĝ(ν, ∂t) be the

component of ν with respect to the unit vector field ∂t tangent to the R-direction
in the ambient space.

In Section 3, we give a lower bound of the spectrum of 1g which relies on the
inequality −1gb ≥ (m− 2)+ v2 satisfied by a “horizontal” Busemann function b
(see Theorem 3.1). As an application, in Section 4, we get a finiteness result for the
index of a minimal surface in H2

×R with finite total extrinsic curvature (answering
a question raised in [Bérard and Sá Earp 2008]):

Theorem 1.1. Let (M2, g)# (H2
×R, ĝ) be a complete, orientable, minimal sur-

face with second fundamental form A. If
∫

M |A|
2 dvg is finite, then the immersion

has finite index.

We also obtain a lower bound for the spectrum of the Laplacian on a complete
minimal surface contained in a slab (Proposition 4.3).
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The stability operator of a minimal surface in H2
×R has the form1g+a+bKg

with a ≥ 0 and b > 1
4 . In Section 5A, we consider such operators on an arbitrary

complete Riemannian surface, and we show that their positivity implies an upper
bound on the infimum of the spectrum of 1g.

Theorem 1.2. Let (M, g) be a complete noncompact Riemannian surface. Let
a ≥ 0 and b > 1

4 . Denote by 1g the (nonnegative) Laplacian and by Kg the
Gaussian curvature of (M, g). Denote by λσ (1g) the infimum of the spectrum
of 1g and by λe(1g) the infimum of the essential spectrum of 1g.

(i) If the operator 1g + a+ bKg is nonnegative on C∞0 (M), then

λσ (1g)≤
a

4b−1
.

(ii) If the operator1g+a+bKg has finite index on C∞0 (M) and if M has infinite
volume, then

λe(1g)≤
a

4b−1
.

We also prove that the positivity of such operators implies an upper bound on
the volume growth of the surface (Proposition 5.3). In Section 5B, applying this
result to stable minimal surfaces in H3 or in H2

× R, we generalize and extend
results of [Candel 2007]. While Candel used Pogorelov’s method [1981], we use
the method of Colding and Minicozzi [2002] (see also [Castillon 2006]).

In Section 6, we give some applications of our general lower bounds on the
spectrum to higher dimensional hypersurfaces. In Section 2, we provide some
preliminary technical lemmas.

2. Preliminary computations

In this section, we make some preliminary computations for later reference. For the
sake of simplicity, we work in the following model for the hyperbolic space Hm+1:

(1)
{

Hm+1
= Rm

×R,

h = e2s(dx2
1 + · · ·+ dx2

m)+ ds2 at the point (x, s) ∈ Hm+1.

These coordinates are called horocyclic because the slices Rm
×{s} are horospheres

and the coordinate function s is a Busemann function. They are quite natural when
some Busemann function plays a special role, as will be the case in the sequel. Let

(2) γ0 : [0,∞)→ Hm+1, u 7→ γ0(u)= (0, . . . , 0, u).

be a geodesic ray. The Busemann function (see [Ballmann et al. 1985, page 23])
associated with γ0 is the function

(3) B : Hm+1
→ R, (x, s) 7→ B(x, s)= s.



EIGENVALUE ESTIMATES FOR HYPERSURFACES IN Hm
×R 21

In the sequel, we denote by

(4)
{

Dh the Levi-Civita connection,
1h the geometric (that is, nonnegative) Laplacian,

for the hyperbolic metric h on Hm+1.

Lemma 2.1. With the notation above, we have the formulas

1h B =−m,(5)

Hessh B = e2s(dx2
1 + · · ·+ dx2

m)(6)

at the point (x, s)∈Hm+1. In particular, if we decompose the vector u∈T(x,s)Hm+1

h-orthogonally as u = (ux , us), we have

(7) Hessh B(u, u)= h(ux , ux).

The proof is straightforward.
Recall the following general lemmas.

Lemma 2.2. Let (Mm, g) # (M̂m+1, ĝ) be an orientable, isometric immersion
with unit normal field ν and corresponding normalized mean curvature H. Let
F̂ : M̂→ R be a smooth function and let F := F̂ |M be its restriction to M. Then,
on M ,

1g F =1ĝ F̂ |M +Hessĝ F̂(ν, ν)−m Hd F̂(ν).

Proof. See for example [Choe and Gulliver 1992, Lemma 2]. �

Lemma 2.3. Assume that the manifold (M, g) carries a function f which satisfies

|d f |g ≤ 1 and −1g f ≥ c for some constant c > 0.

Then, any smooth, relatively compact domain � ⊂ M satisfies the isoperimetric
inequalities

Volm−1(∂�)≥ c Volm(�) and λ1(�)≥
c2

4
,

where λ1(�) is the least eigenvalue of1g in�, with Dirichlet boundary condition.

Proof. Use integration by parts and Cauchy–Schwarz. �

3. Hypersurfaces in Hm×R

We consider orientable, isometric immersions (Mm, g) # (M̂m+1, ĝ) with unit
normal ν, where M̂ = Hm

× R with the product metric ĝ = h + dt2. We take
the model (1) for the hyperbolic space (here with dimension m), so that M̂ is the
product Rm−1

×R×R with the Riemannian metric ĝ given by

ĝ = e2s(dx2
1 + · · ·+ dx2

m−1)+ ds2
+ dt2.
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We define the function b̂ on M̂ by

(8) b̂(x1, . . . , xm−1, s, t)= s.

This function is in fact a Busemann function of M̂ (seen as a Cartan–Hadamard
manifold) associated with a “horizontal” geodesic (justifying the name “horizontal”
Busemann function used in the introduction).

Denote by b := b̂|M the restriction of b̂ to M . Decompose the unit vector ν
according to the product structure Rm−1

×R×R, orthogonally with respect to ĝ, as

(9) ν = νx +w∂s + v∂t .

Applying Lemma 2.2, we obtain the equation

(10) 1gb =1ĝb̂|M +Hessĝ b̂(ν, ν)−m H ĝ(ν, ∂s).

Using (7) and (9), this inequality can be rewritten as

(11) −1gb = (m− 1)− |νx |
2
+m Hw.

From |νx |
2
+ v2
+w2

= 1, it follows that

(12) −1gb ≥ (m− 2)+ v2
+w2

−m H |w|.

Theorem 3.1. Let (Mm, g) # (Hm
× R, ĝ) be a complete, orientable, minimal

hypersurface with normal vector ν. Let v be the vertical component of the normal
vector, that is, v = ĝ(ν, ∂t).

(i) The function b satisfies the inequality

(13) −1gb ≥ (m− 2)+ v2,

and the infimum λσ (1g) of the spectrum of the Laplacian 1g of M satisfies

(14) λσ (1g)≥

(
m− 2+ infM v

2

2

)2

≥

(
m− 2

2

)2

.

In particular, if m ≥ 3, (M, g) is nonparabolic.

(ii) The spectrum of the operator1g+ (m−1)(1−v2) is bounded from below by
((m− 1)/2)2.

Proof. Assertion (i) follows immediately from (12) with H = 0. For the last
statement, apply (14) and [Grigoryan 1999, Proposition 10.1]. To prove (ii), we
start from the inequality (13), −1gb ≥ (m − 2)+ v2. Multiplying this inequality
by f 2, where f ∈ C∞0 (M), and integrating by parts using the fact that |db|g ≤ 1
gives (all integrals are taken with respect to the Riemannian measure dvg)

(m− 2)
∫

M
f 2
+

∫
M
v2 f 2

≤

∫
M
|d f 2
| ≤ 2

∫
M
| f ||d f |.
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Rewrite this inequality as

(m− 1)
∫

M
f 2
≤ 2

∫
M
| f ||d f | +

∫
M
(1− v2) f 2.

Using the Cauchy–Schwarz inequality 2| f | . |d f | ≤ 1
a
|d f |2 + a f 2 for a > 0, we

obtain

a(m−1−a)
∫

M
f 2
≤

∫
M

(
|d f |2+a(1−v2) f 2)

≤

∫
M

(
|d f |2+(m−1)(1−v2) f 2),

provided that 0≤ a ≤ m− 1. We can now maximize the constant on the left-hand
side by choosing a = (m− 1)/2. �

When the mean curvature H is nonzero, we also obtain the following result from
inequality (12):

Proposition 3.2. Let (Mm, g)# (Hm
×R, ĝ) be a complete, orientable hypersur-

face with normal vector ν and constant mean curvature H for 0≤ H ≤ (m−1)/m.
Recall that v = ĝ(ν, ∂t). Then,

(15) −1gb ≥ (m− 2)(1−
√

1− v2)+ (m− 2)
(

1− m H
m−2

)√
1− v2.

Remarks. (i) Inequalities (13), (14) and Theorem 3.1(ii) are sharp. Indeed,
taking the horizontal slice M = Hm

× {0} gives the case v = 1, and taking
M = P×R, where P is some totally geodesic (m−1)-space in Hm , gives the
case v = 0.

(ii) If we assume that v2
≤ α2 < 1, the spectrum of 1g + (m − 1)(1 − v2) is

bounded from below by (m− 1)(1−α2).

(iii) Inequality (15) generalizes an earlier result of [Castillon 1997] for subman-
ifolds immersed into Hadamard manifolds. For other estimates, see [Bessa
and Costa 2009]. We point out that it is more convenient in our context to
use the “horizontal” Busemann function rather than the hyperbolic distance
function as in [Castillon 1997].

(iv) Inequality (15) still holds if Mm is only assumed to have mean curvature
bounded from above by H .

4. Applications to minimal hypersurfaces in Hm×R

4A. Index of minimal surfaces immersed in Hm × R. The Jacobi (or stability)
operator of a minimal hypersurface Mm # Hm

×R is given by

(16) JM =1+ (m− 1)(1− v2)− |A|2,
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where v is the vertical component of the unit normal ν and A the second funda-
mental form of the immersion (see [Bérard and Sá Earp 2008]). As a corollary of
Theorem 3.1, we obtain:

Theorem 4.1. Let (M2, g)# (H2
×R, ĝ) be a complete, orientable, minimal sur-

face with second fundamental form A. If
∫

M |A|
2 dvg is finite, then the immersion

has finite index.

Proof. When
∫

M |A|
2 is finite, the second fundamental form tends to zero uniformly

at infinity (see [Bérard and Sá Earp 2008, Theorem 4.1]). Theorem 3.1(ii) with
m = 2 implies that the essential spectrum of the Jacobi operator JM is bounded
from below by 1

4 . Since the operator JM is also bounded from below, it has only
finitely many negative eigenvalues (see [Bérard et al. 1997, Proposition 1]). �

Remark. This theorem answers a question raised in [Bérard and Sá Earp 2008],
where the finiteness of the index of JM is proved in dimension m ≥ 3 under the
assumption that

∫
M |A|

m is finite, and in dimension 2 under the assumption that
both

∫
M v

2 and
∫

M |A|
2 are finite. In dimension m ≥ 3, the index of JM is bounded

from above by a constant times
∫

M |A|
m (see [Bérard and Sá Earp 2008]). In the

next section, we investigate bounds on the index in dimension 2.

4B. Bounds on the index of minimal surfaces immersed in Hm×R.

Proposition 4.2. Let (M2, g)# (H2
× R, ĝ) be a complete, orientable, minimal

surface with second fundamental form A. If
∫

M |A|
2 dvg is finite, then for any

r > 1, there exists a constant Cr such that the index of the immersion is bounded
from above by Cr

∫
M |A|

2r dvg.

Remarks. (i) The assumption that
∫

M |A|
2 dvg is finite implies that A tends to

zero uniformly at infinity. Thus the integrals
∫

M |A|
2r dvg are all finite.

(ii) Our proof provides a constant Cr that tends to infinity when r tends to 1. We
do not know whether there is a bound for the index in terms of

∫
M |A|

2 dvg,
as is the case for minimal surfaces in R3 [Tysk 1987].

Proof. As in Section 4A, we write the Jacobi operator as J =1g + 1− v2
− |A|2.

The closure Q̃ of the quadratic form

Q[ f ] =
∫

M

(
|d f |2+ (1− v2) f 2) dvg

with domain C1
0(M) satisfies the Beurling–Deny condition (if f is in the domain

of Q̃, then so is | f | and Q̃[| f |] = Q̃[ f ]; see [Davies 1989, Theorem 1.3.2]) and,
by Theorem 3.1, the Cheeger inequality

(17)
∫

M
f 2 dvg ≤ 4Q[ f ] for all f ∈ C1

0(M).
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On the other hand, the surface M satisfies the Sobolev inequality

(18)
∫

M
f 2 dvg ≤ S

(∫
M
|d f |2g dvg

)2

for all f ∈ C1
0(M),

for some constant S > 0. Indeed, this follows from the Sobolev inequality for
minimal surfaces in H2

×R, using the fact that the ambient space has nonpositive
curvature and infinite injectivity radius (see [Hoffman and Spruck 1974]).

From the above Cheeger and Sobolev inequalities, we can establish that for any
q ≥ 1, there exists a constant Dq such that for any f ∈ C1

0(M),

(19)
(∫

M
| f |2q dvg

)1/q

≤ Dq Q[ f ].

When q is an integer, the inequality follows from an induction argument and we
can conclude by interpolation.

We can then apply [Levin and Solomyak 1997, Theorem 1.2] to conclude that
the index is less than ep D p

q
∫

M |A|
2p dvg, where p = q/(q − 1). �

4C. Hypersurfaces in a slab. In this section, we use the computations of Section 3
to give a lower bound on the spectrum of the Laplacian on a complete minimal
surface immersed in a slab H2

×[−a, a], where a > 0.
First, consider functions on Hm

× R depending only on the height t , namely
β̂(x, s, t)= f (t). In this case, dβ̂ = f ′(t) dt , and

Hessĝ β̂(X, Y )= f ′′(t)ĝ(X, ∂t)ĝ(Y, ∂t).

In particular,

1ĝβ̂ =− f ′′(t) and Hessĝ β̂(ν, ν)= v
2 f ′′(t).

Define β = β̂|M . Using Lemma 2.2, we have

(20) −1gβ = (1− v2) f ′′(t)+m Hv f ′(t).

To estimate the first eigenvalue of a minimal hypersurface Mm#Hm
×R, use the

identity (20) with some particular choice of f . For instance, let

β̂(x, s, t)= 1
2 t2.

In this case,
−1gβ = (1− v2).

Assume now that Mm # Hm
×[−a, a], for some a > 0. Then,

−1gβ = (1− v2) and |dβ| ≤ a.
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Defining Z = b+β, where b is the restriction of the Busemann function b̂ to Mm ,
we can use the last inequality in (12) to obtain

(21) −1 Z ≥ m− 1 and |d Z | ≤
√

1+ a2.

Using the above notation and Lemma 2.3, we have the following estimate:

Proposition 4.3. Given a > 0, let (Mm, g)# (Hm
× [−a, a], ĝ) be a complete,

immersed, orientable, minimal hypersurface. Then, the infimum of the spectrum
of 1g on M is positive. More precisely,

(22) λσ (1g)≥
(m− 1)2

4(1+ a2)
.

5. Bounds derived from a stability assumption

Let (M, g) be a complete Riemannian surface with (nonnegative) Laplace oper-
ator 1g and Gaussian curvature Kg. Let a, b be real numbers with a ≥ 0 and
b > 1/4. Let L be the operator L =1g + a+ bKg.

Let Ind(L , �) denote the number of negative eigenvalues of the operator L in�
with Dirichlet boundary conditions on ∂�. The index Ind(L) of the operator L is
defined to be the supremum

Ind(L)= sup{ Ind(L , �) |�b M }

taken over the relatively compact subdomains � in M .
In Section 5A, we state two intrinsic consequences of the assumption that the

operator L has finite index. In Sections 5B and 5C, we consider applications to
minimal and CMC surfaces.

5A. Intrinsic results. We prove the next theorem using the method of [Colding
and Minicozzi 2002], and more precisely [Castillon 2006, Lemma 1.8].

Theorem 5.1. Let (M, g) be a complete noncompact Riemannian surface. Let
a ≥ 0 and b > 1

4 . Denote by 1g the (nonnegative) Laplacian and by Kg the
Gaussian curvature of (M, g). Denote by λσ (1g) the infimum of the spectrum
of 1g and by λe(1g) the infimum of the essential spectrum of 1g.

(i) If the operator 1g + a+ bKg is nonnegative on C∞0 (M), then

λσ (1g)≤
a

4b−1
.

(ii) If the operator1g+a+bKg has finite index on C∞0 (M) and if M has infinite
volume, then

λe(1g)≤
a

4b−1
.
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Proof. (i) We can assume the surface M has infinite volume (otherwise λσ (1g)= 0
because the function 1 is in L2(M, vg), and the estimate is trivial). Fix a point x0 in
M and let r(x) denote the Riemannian distance to the point x0. Given S> R>0, let
B(R) denote the open geodesic ball in M with center x0 and radius R. Let C(R, S)
denote the open annulus B(S) \ B̄(R). Let V (R) denote the volume of B(R) and
L(R) the length of its boundary ∂B(R). Let G(R) denote the integral curvature of
B(R), that is, G(R)=

∫
B(R) Kg(x) dvg(x), where dvg is the Riemannian measure.

The main idea in [Castillon 2006] is to use the work of [Shiohama and Tanaka
1989; 1993] on the length of geodesic circles, which shows that the function L(r)
is differentiable almost everywhere and is related to the Euler characteristic and to
the integral curvature of geodesic balls by the formula

L ′(r)≤ 2πχ(B(r))−G(r)≤ 2π −G(r)

(see [Castillon 2006, Theorem 1.7]; the second inequality comes from the fact that
the Euler characteristic of balls is less than or equal to 1).

Now choose ξ as in the following lemma:

Lemma 5.2 [Castillon 2006, Lemma 1.8]. For 0 < R < S, let ξ : [R, S] → R be
such that ξ ≥ 0, ξ ′ ≤ 0, ξ ′′ ≥ 0 and ξ(S)= 0. Then∫

C(R,S)
Kgξ

2(r) dvg

≤−ξ 2(R)G(R)+ 2πξ 2(R)− 2ξ(R)ξ ′(R)L(R)−
∫

C(R,S)
(ξ 2)′′(r) dvg. �

Choose a function f : B(S)→ R such that f (r)≡ ξ(R) on B(R), f (r)= ξ(r)
on C(R, S), and write the positivity assumption

0≤
∫

M
|d f |2g dvg + a

∫
M

f 2 dvg + b
∫

M
Kg f 2 dvg.

On the ball B(R), we have
∫

B(R) Kg f 2 dvg = ξ
2(R)G(R) and

∫
B(R) |d f |2 dvg = 0.

Using Lemma 5.2, we obtain

0≤
∫

C(R,S)
(ξ ′)2(r) dvg + a

∫
M

f 2 dvg + bξ 2(R)G(R)− bξ 2(R)G(R)

+ 2πbξ 2(R)− 2bξ(R)ξ ′(R)L(R)− b
∫

C(R,S)
(ξ 2)′′(r) dvg,

and hence,

(23) 0≤ (1− 2b)
∫

C(R,S)
(ξ ′)2(r) dvg + a

∫
M

f 2 dvg + 2πbξ 2(R)

− 2bξ(R)ξ ′(R)L(R)− 2b
∫

C(R,S)
ξ(r)ξ ′′(r) dvg.
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Choose ξ(r) = (S − r)k in [R, S] for k ≥ 1 big enough (we will eventually let k
tend to infinity). Then ξ(r)ξ ′′(r)= (1− 1

k )(ξ
′(r))2. It follows that

0≤
(

1−4b+2b
k

)∫
M
|d f |2 dvg+a

∫
M

f 2 dvg+2b
(
π(S−R)2k

+kL(R)(S−R)2k−1).
Using the fact that

∫
M f 2 dvg ≥ (S− R)2k V (R), we obtain

(24) λσ (1g)≤

∫
M |d f |2 dvg∫

M f 2 dvg

≤
a

4b−1−2b/k
+

2b
(4b−1−2b/k)V (R)

(
π +

kL(R)
S−R

)
.

First letting S tend to infinity, then letting R tend to infinity, using the fact that M
has infinite volume, and finally letting k tend to infinity gives

λσ (1g)≤
a

4b−1
.

(ii) The finiteness of the index of the operator 1g + a + bKg implies that it is
nonnegative outside a compact set (see [Fischer-Colbrie 1985, Proposition 1], for
instance). Choose R0 big enough for1g+a+bKg to be nonnegative in M\B(R0).
Next, for S > R > R1+1> R0+1, choose ξ as in Lemma 5.2 and a test function

(25) f (r)=


0 in B(R1),

ξ(R)(r − R1) in C(R1, R1+ 1),
ξ(R) in C(R1+ 1, R),
ξ(r) in C(R, S).

Following the same scheme as for (i), and under the assumption that the volume
of M is infinite, we can prove that the bottom of the spectrum of 1g in M \ B(R1)

with Dirichlet boundary conditions on ∂B(R1) satisfies the inequality

λσ (1g,M \ B(R1))≤
a

4b−1
.

To conclude the proof of Theorem 5.1, we use the fact that

λe(1g)= lim
R→∞

λσ (1g,M \ B(R)). �

Proposition 5.3. Let (M, g) be a complete Riemannian surface with (nonnegative)
Laplace operator 1g and Gaussian curvature Kg. Let V (r) denote the volume of
the geodesic ball of radius r in M centered at some point. Let a, b be positive real
numbers with b > 1

4 . Let α0 =
√

a/(4b− 1). If the operator L := 1g + a + bKg

has finite index, then∫
∞

0
e−2αr V (r) dr <∞ for all α > α0,
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and hence, the lower volume growth of M satisfies

lim inf
r→∞

ln V (r)
r
≤ 2α0.

Proof. It follows from our assumptions that the operator L is positive outside some
compact set (see [Fischer-Colbrie 1985, Proposition 1]). In particular, it is positive
on M \ B(R0) for some radius R0. Choose R > R0+ 1 and define the function

(26) ξ(r)=


0 for r ≤ R0,

(1− (R0+ 1)/R)αR(r − R0) for R0 ≤ r ≤ R0+ 1,
(1− r/R)αR for R0+ 1≤ r ≤ R,

where the parameter α will be chosen later on. The positivity of the operator L on
M \ B(R0) implies that

0≤
∫

M

(
(ξ ′(r))2+ aξ 2(r)+ bKgξ

2(r)
)

dvg.

Write this integral as the sum of
∫

C(R0,R0+1) and
∫

C(R0+1,R). The first integral can
be written as ∫

C(R0,R0+1)
=

(
1− R0+1

R

)αR
C(B(R0)),

where C(B(R0)) is a constant which only depends on the geometry of M on the
ball B(R0). Using Lemma 5.2 and the fact that χ(B(r)) ≤ 1 for all r , the second
integral can be estimated as follows:∫

C(R0+1,R)
≤

∫
C(R0+1,R)

(
(ξ ′)2+ aξ 2

− b(ξ 2)′′
)

dvg

+ 2πb− ξ 2(R0+ 1)G(R0+ 1)+ 2αL(R0+ 1).

Using (26), the definition for the function ξ , the integral in the first line of the
above inequality can be written as

−

(
(4b− 1)α2

−
2bα

R
− a

) ∫ R

R0+1

(
1− r

R

)2αR−2
L(r) dr.

Taking α big enough so that the constant is positive, and using L(r) = V ′(r), we
obtain the inequality

2αR− 2
R

(
(4b− 1)α2

−
2bα

R
− a

) ∫ R

R0+1

(
1−

r
R

)2αR−3
V (r) dr ≤ D(B(R0), α),

where D(B(R0), α) is a constant which only depends on the geometry of M in the
ball B(R0) and α. Letting R tend to infinity finally shows

2α
(
(4b− 1)α2

− a
) ∫ ∞

R0+1
e−2αr V (r) dr <∞,
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provided that α > α0, which proves the first assertion in the proposition. The
second assertion follows easily. �

Remark. In Proposition 5.3, we assumed that a> 0. In the case a= 0, the volume
growth is at most quadratic (see [Castillon 2006, Proposition 2.2]).

5B. Applications to stable minimal surfaces in H3 or H2×R. Let M be a com-
plete, orientable, minimal immersion into either 3-dimensional hyperbolic space H3

or into H2
×R. Let JM denote the Jacobi operator of the immersion.

In the case of a minimal immersion M # H3(−1), the operator JM takes the
form JM = 1M + 2− |A|2, where A is the second fundamental form. Using the
Gauss equation, we have that KM =−1− 1

2 |A|
2, so that we can rewrite the Jacobi

operator of M # H3(−1) as

(27) JM =1M + 4+ 2KM .

In the case of a minimal immersion M#H2(−1)×R, the Jacobi operator is given
by JM =1M+1−v2

−|A|2, where v is the vertical component of the unit normal
vector to the surface. Using the Gauss equation, we have that KM =−v

2
−

1
2 |A|

2,
so that we can rewrite the Jacobi operator of M # H2(−1)×R as

(28) JM =1M + 2+ 2KM − (1− v2)≤ J̃M :=1M + 2+ 2KM .

In this case, the positivity of the operator JM implies the positivity of the opera-
tor J̃M .

Applying Theorem 5.1 to the operator JM in the form (27) when M is a minimal
surface in H3, respectively, to the operator J̃M in the form (28) when M is a minimal
surface in H2

×R, we obtain the following corollary.

Corollary 5.4. Let (M, g)# (M̂, ĝ) be a complete, orientable, minimal immer-
sion. Assume that the immersion is stable.

(i) If M̂ = H3, then λσ (1g)≤
4
7 .

(ii) If M̂ = H2
×R, then λσ (1g)≤

2
7 .

If the immersion is only assumed to have finite index, then the same inequalities
hold with λσ (1g) replaced by λe(1g), the infimum of the essential spectrum.

Remarks. (i) The first assertion improves an earlier result from [Candel 2007],
to the effect that λσ (M)≤ 4

3 , provided that M is a complete, simply connected,
stable minimal surface in H3.

(ii) In both cases, the bottom of the spectrum of a totally geodesic H2 is 1
4 .

Applying Proposition 5.3, we have the following corollary.
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Corollary 5.5. Let (M, g)# (M̂, ĝ) be a complete, orientable, minimal immer-
sion. Let µ denote the lower volume growth rate of M , given by

µ= lim inf
r→∞

ln V (r)
r

,

where V (r) is the volume of the geodesic ball B(x0, r) about some point. Assume
that the immersion has finite index.

(i) If M̂ = H3, then µ≤ 2
√

4
7 .

(ii) If M̂ = H2
×R, then µ≤ 2

√
2
7 .

Remarks. (i) Assertion (i) in Corollary 5.5 improves an earlier upper bound on
µ given in [Candel 2007] under the assumption that M is simply connected.

(ii) Recall from [Brooks 1981; Kumura 2007] that the volume growth is related
to the infimum of the essential spectrum by the formula

λe(1g)≤

(
1
2

lim inf
r→∞

ln V (r)
r

)2

.

5C. Further applications. The argument above also works for surfaces with con-
stant mean curvature |H | ≤ 1 in hyperbolic space. In that case,

KM =−(1− H 2)− 1
2 |A|

2 and JM =1M + 4(1− H 2)+ 2KM .

Proposition 5.6. Let (M, g)# H3 be a complete, orientable, stable CMC immer-
sion with |H | ≤ 1. Then

λσ (1g)≤
4(1− H 2)

7
.

The space H2
×R is a simply connected 3-dimensional homogeneous manifold,

whose isometry group has dimension 4. Such manifolds have been well studied
(see for instance [Daniel 2007] and references therein) and can be parametrized by
two real parameters, say κ and τ with κ 6=4τ 2. Denote these manifolds by E3(κ, τ ).
When τ = 0, the manifold E3(κ, 0) is the product space E2(κ)×R, where E2(κ) is
the space form of constant curvature κ . In particular, H2

×R= E3(−1, 0).
If (M, g)# E3(κ, τ ) is an immersed CMC H surface, then its Jacobi operator

is given by (see [Daniel 2007, Proposition 5.11])

JM :=1g + 2K − 4H 2
− κ − (κ − 4τ 2)v2.

In the next proposition we give an upper bound for the bottom of the spectrum in
this general framework.
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Proposition 5.7. Let (M, g) # E3(κ, τ ) be a complete, orientable, stable CMC
H immersion such that κ < 4τ 2. Assume furthermore that 2H 2

≤ (2τ 2
− κ). Then

λσ (1g)≤
4τ 2
− 2κ − 4H 2

7
.

Proof. Under the hypotheses we have the inequalities

0≤1g + 2K − 4H 2
− κ − (κ − 4τ 2)v2

≤1g + 2K − 4H 2
− 2(κ − 2τ 2),

and we may apply Theorem 5.1 again. �

6. Applications in higher dimensions

In this section, we give some further applications of the inequalities proved in
Section 3. In the following proposition, we give a structure theorem for minimal
hypersurfaces in Hm

×R.
Let Mm#Hm

×R be a complete, orientable minimal hypersurface with second
fundamental form A, where ‖A‖m <∞ and m≥ 3. By [Bérard and Sá Earp 2008],
the Ricci curvature of Mm satisfies the inequality (30) below and furthermore |A|
tends to zero uniformly at infinity. It follows that M satisfies the assumption of
[Li and Wang 2001, Theorem 3.1] provided that m ≥ 7 and hence that M has only
finitely many infinite volume ends. On the other-hand, all ends of M must have
infinite volume [Cheng et al. 2008, Proposition 2.1]. Thus M has only finitely
many ends provided that m ≥ 7. The next result gives a sufficient condition for M
to have only one end.

Proposition 6.1. Let Mm # Hm
× R, m ≥ 3, be a complete, orientable minimal

hypersurface with unit normal field ν and second fundamental form A. Let v denote
the component of ν along ∂t . Assume that

(i) m ≥ 7 and 0≤ α ≤ 1, or

(ii) m = 6 and 0.083≤ α ≤ 1, or

(iii) m = 5 and 0.578≤ α ≤ 1.

There exists a constant c(m, α) > 0 such that, if M satisfies ‖A‖m ≤ c(m, α) and
v2
≥ α2, then M carries no nontrivial L2-harmonic 1-form and hence has at most

one end.

Sketch of proof. Step 1: According to [Hoffman and Spruck 1974], the manifold
Mm satisfies the Sobolev inequality

(29) ‖ϕ‖22m/(m−2) ≤ S(2,m)‖dϕ‖22 for all ϕ ∈ C1
0(M).

Step 2: Let u ∈ T1 M be a unit tangent vector to M . By the Gauss equation, we have

Ric(u, u)= R̂ic(u, u)− R̂(u, ν, u, ν)− |A(u)|2,
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where Ric denotes the Ricci curvature of M , R̂ic the Ricci curvature of M̂=Hm
×R

and R̂ the curvature tensor of M̂ , and where A denotes the Weingarten operator of
the immersion. Using the curvature computations in [Bérard and Sá Earp 2008]
and the fact that A has trace zero, we obtain the inequality

(30) Ric(u, u)≥−(m− 1)−
m− 1

m
|A|2.

Step 3: Let ω be an L2 harmonic 1-form on M . Using the Weitzenböck formula
for 1-forms, the improved Kato inequality

(31)
1

m− 1
|d|ω||2 ≤ |Dω|2− |d|ω||2,

and inequality (30), we find that ω satisfies the inequality

(32)
1

m− 1
|d|ω||2+ |ω|1|ω| ≤ (m− 1)|ω|2+

m− 1
m
|A|2|ω|2

in the weak sense. The following formal calculation can easily be made rigorous
by using cut-off functions. Integrate (32) over M using integration by parts and
using the notation f := |ω|, we obtain

m
m− 1

∫
M
|d f |2 ≤ (m− 1)

∫
M

f 2
+

m− 1
m

∫
M
|A|2 f 2.

Plug the assumption |v| ≥ α and the inequality (14) into the preceding inequal-
ity. Use Hölder’s inequality to estimate the integral

∫
M |A|

2 f 2 and the Sobolev
inequality (29). It follows that(

m
m− 1

−
4(m− 1)

(m− 2+α)2

)
‖ f ‖22m/(m−2) ≤ S(2,m)

m− 1
m
‖A‖2m‖ f ‖22m/(m−2)

and we can conclude the proof with the constant

c(m, α)=
m

(m− 1)S(2,m)
m(m− 2+α)2− 4(m− 1)2

(m− 1)(m− 2+α)2
. �

Proposition 6.2. Let Mm # Hm
× R, m ≥ 3, be a complete, orientable minimal

hypersurface with unit normal field ν and second fundamental form A. Let v denote
the component of ν along ∂t . The immersion M is stable if

(i) ‖A‖∞ ≤ 1
4(m− 1)2, or

(ii) ‖A‖∞ ≤ 1
4(m− 2+α)2 and v2

≥ α, or

(iii) |A|2+ (m− 1)v2
≤

1
4 m2 on M.

Proof. Recall that the Jacobi operator JM of the immersion M is given by JM =

1g + (m− 1)(1− v2)− |A|2. The proposition follows from Theorem 3.1. �



34 PIERRE BÉRARD, PHILIPPE CASTILLON AND MARCOS CAVALCANTE

Remark 1. Condition (ii) is not so interesting. Indeed, if M is connected, we may
assume that v > 0 and it follows that M is stable because v is a Jacobi field.

Remark 2. We can write the operator JM as

JM =1g −

(m−2
2

)2
+

((m
2

)2
− |A|2

)
.

In view of the results à la Lieb or Li and Yau, one can show that if the integral∫
M

((m
2

)2
− |A|2

)m/2

−

is small enough, then M is stable.
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