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CONFORMALLY COVARIANT OPERATORS

SUN-YUNG A. CHANG, MATTHEW J. GURSKY AND PAUL YANG

We study Riemannian manifolds (Mn, g) equipped with a smooth mea-
sure m. We show that the construction of conformally covariant operators
of Graham–Jenne–Mason–Sparling can be adapted to this setting. As a
byproduct, we define a family of scalar curvatures, one of which corre-
sponds to Perelman’s scalar-curvature function. We also study the varia-
tional problem naturally associated to these curvature/operator pairs.

1. Introduction

This paper draws its inspiration from an observation about the scalar curvature
function introduced by Perelman [2002], with the goal of illustrating the connection
between conformally covariant operators and the W-functional of Perelman.

Let (Mn, g) be a Riemannian manifold endowed with a smooth measure m,
which we write as

dm = e− f d Vol(g).

The Bakry–Emery Ricci tensor of the Riemannian measure space (Mn, g,m) is

Ricm(g)= Ricm
∞
(g)= Ric(g)+∇2 f.

Although typically attributed to Bakry and Emery [1985], this tensor was studied
much earlier by Lichnerowicz [1970]. In this setting, Perelman [2002] introduced
a notion of scalar curvature given by

Rm(g)= Rm
∞
(g)= R(g)+ 21 f − |∇ f |2.

When the measure m is the canonical Riemannian measure, then f ≡ 0 and the
generalized curvatures agree with their classical counterparts.

From the perspective of conformal geometry, the scalar curvature is naturally
considered in conjunction with the conformal Laplacian, the linear second-order
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operator which describes how the scalar curvature transforms under a conformal
change of metric. In our setting, if ĝ = v4/(n−2)g, then

R(ĝ)=
4(n− 1)

n− 2
v(n+2)/(n−2)Lgv,

where
L =−1+

n− 2
4(n− 1)

R(g).

Moreover, the conformal Laplacian is conformally covariant: writing ĝ = e2wg,

(1-1) L ĝφ = e−(n+2)/2wLg
(
e(n−2)/2wφ

)
.

The question naturally arises, is there a linear, conformally covariant differential
operator associated to Perelman’s scalar curvature? What are the corresponding
transformation formulas?

The answer to the first question is, somewhat surprisingly, “yes”: The operator
is given by

(1-2) Lm
2,∞ =−1+ 2〈∇ f, · 〉 +

n+ 2
4

Rm
∞
(g)

(see Section 4.1). Moreover, if ĝ = v−4/(n+2)g is a conformal metric, then

Rm
∞
(ĝ)=

4(n− 1)
3n− 2

v−(n−2)/(n+2)Lm
2,∞v.

Writing ĝ = e2wg, the operator in (1-2) satisfies the covariance property

(Lm
2,∞)ĝφ = e(n−2)/2w(Lm

2,∞)g(e
−(n+2)/2wφ).

Note the interesting comparison with the bidegree of the conformal Laplacian in
(1-1).

Our first goal in this paper is to put the preceding formulas for Rm
∞

and Lm
2,∞ into

a broader context. That is, by adapting the construction of Graham–Jenne–Mason–
Sparling [1992] to Riemannian measure spaces we prove the existence of a 1-
parameter family of conformally covariant operators, of which Lm

2,∞ is a particular
example (i.e., α=2). As a byproduct of this construction we define a new family of
scalar curvature functions R(m,α) generalizing Perelman’s scalar curvature. Thus,
for each value of the parameter α, we have a pair (R(m,α),Lm

α ) consisting of a scalar
curvature function and covariant operator. The relationship between curvature and
operator are completely analogous to the case of the scalar curvature/conformal
Laplacian detailed above. We remark that the conformally invariant curvatures of
[Chang et al. 2006] figure in this construction in an important way.

The second goal of this paper is to study the variational problem naturally as-
sociated to this new family (R(m,α),Lm

α ). As we shall see in Section 3, the Euler–
Lagrange equation can be subcritical, critical (as it is for the usual scalar curvature),
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or even supercritical, depending on the value of α. In Section 4 we prove existence
of extremals for the Lagrangian in the subcritical case. For the remaining cases
existence seems to be a difficult issue.

In Section 5 we study another special case (α = 1), and formulate a weighted
L2-eigenvalue problem. We then give a characterization of the Yamabe invariant
as the solution of a mini-max problem for this eigenvalue. This result is directly
inspired by Perelman’s work; indeed, the Lagrangian associated to the operator Lm

1
is (up to a constant) Perelman’s entropy functional. Why it is that a Lagrangian
which comes from a construction in conformal geometry should coincide with
Perelman’s functional — which characterizes gradient Ricci solitons — is some-
what mysterious. In some sense, Section 5 brings us full circle: what started with
an observation about Perelman’s scalar curvature brings us via the Graham–Jenne–
Mason–Sparling construction back to Perelman’s work.

Some material in this paper was announced in [Chang et al. 2006]. See also the
note (added in proof) on page 55.

2. Conformally covariant operators on RM-spaces

In this section we adapt the construction of Fefferman and Graham [1985] and
Graham, Jenne, Mason and Sparling [Graham et al. 1992] to construct families
of conformally covariant differential operators associated to an RM-space. As
we shall see here and in Section 3, the conformally invariant scalar and Ricci
curvatures of [Chang et al. 2006] arise naturally in these constructions.

Let (Mn, g) be a Riemannian manifold of dimension n≥2. A metrically defined
differential operator A=Ag is said to be conformally covariant of bidegree (a, b) if
it obeys the following transformation under a conformal change of metric ĝ=e2wg:

(2-1) Aĝ(ψ)= e−bwAg(eawψ)

for some constants a, b and all ψ ∈C∞(Mn). For example, when n = 2, Ag =1g

is conformally covariant with a = 0 and b = 2. More generally, when n ≥ 3 the
conformal Laplacian

(2-2) Ag = Lg =−1g +
n− 2

4(n− 1)
R(g)

is conformally covariant with a = (n− 2)/2 and b = (n+ 2)/2.
In [Graham et al. 1992], conformally covariant operators Pk were constructed

for all positive integers k when n is odd, and for 1≤ k ≤ n/2 when n is even, with
a = (n− 2k)/2 and b = (n+ 2k)/2. The principal part of Pk is given by (−1)k ;
when k = 1 then P1 is just the conformal Laplacian. These operators were derived
from the ambient metric construction of Fefferman and Graham which is briefly
described below. Aside from their intrinsic interest, they have also played a role in
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[Fefferman and Graham 2002; Fefferman and Hirachi 2003; Graham and Zworski
2003]. Given an RM-space (Mn, g,m), we can modify the method of [Graham
et al. 1992] to derive a family of operators Am

g satisfying

(2-3) if ĝ = e2wg, then Am
ĝ (ψ)= e−bwAm

g (e
awψ),

for some constants a, b, and for all ψ ∈ C∞(Mn).

Theorem 2.1. Let (Mn, g,m) be an RM-space with n ≥ 3. Let k be a positive
integer; if n is even we assume in addition that 1 ≤ k ≤ n/2. For α ∈ R, denote
βk(α)= (nα−n+2k)/2. Then, given any α ∈R there is an operator Pm

α,k satisfying
(2-3) with a =−βk(α) and b = 2k−βk(α), the leading term of which is given by

Pm
α,k =

(
−1g +α〈∇ f,∇ · 〉

)k
+ · · ·

When α= 0 the operator Pm
α,k coincides with Pk . For k= 1 we have the formula

(2-4) Pm
α,k(ψ)=−1gψ +α〈∇ f,∇ψ〉+

n−2−nα
2(n− 2)

(
α1g f +

nα+n−2
2(n− 1)

R(g)
)
ψ.

As in the work of Graham, Jenne, Mason and Sparling [Graham et al. 1992], our
operators are constructed by an inductive algorithm; when k becomes large the
formulas become increasingly complicated. In fact, these authors presented two
(equivalent) ways of deriving their operators. We will briefly describe one of their
methods, indicating the modifications necessary to produce the measure-dependent
operators Pm

α,k .
To begin, given a Riemannian manifold (Mn, g), let G⊂ S2T ∗Mn denote the ray

bundle consisting of metrics in the conformal class of g. Fixing a representative
g∈[g] determines a fiber variable t on G, by writing a general point in G in the form
(x, t2g(x)). If {x i

} are local coordinates on Mn , the coordinate system (t, x i ) on G

extends to a coordinate system (t, x i , ρ) on G̃=G×(−1, 1), where ρ is a defining
function for G, homogeneous of degree 0 (see [Fefferman and Graham 1985] for
details). Using these coordinates we can define the ambient metric g̃ on G̃ by

(2-5) g̃ = 2ρ dt2
+ 2t dt dρ+ t2gi j (x, ρ) dx i dx j ,

where gi j (x, 0) = gi j (x) is the given representative of [g]. For ρ 6= 0 the Taylor
expansion of gi j (x, ρ) is determined by formally solving the Einstein equation

(2-6) Ric(g̃)= 0.

We remark that in the construction of [Fefferman and Graham 1985], when n is
even, (2-6) determines the Taylor coefficient of gi j up to the (ρ)n/2 term; the trace
part of gi j (∂ρ)

n/2gi j is determined at ρ = 0 but the trace-free part of (∂ρ)n/2gi j is
not. When n is odd, (2-6) determines the expansion of all orders. This partially
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explains the constraint on the order k for the existence part of the GJMS operator
when the dimension n is even.

Let δs : G→ G denote the dilations δs(g) = s2g, with s > 0. Functions on G

which are homogeneous of degree β with respect to δs are known as conformal
densities of weight β. Given a density φ of weight β, consider the problem of
extending φ to a harmonic function on G̃ with the same homogeneity. That is, we
want to find the formal power series solution of

(2-7) 1̃(tβφ)= 0.

The operators of [Graham et al. 1992] arise as the obstruction to formally solving
(2-7) with β + (1/2)n = k = 1, 2, 3, . . . .

Given an RM-space (Mn, g,m) we can also construct the ambient metric g̃, but
we need to extend the density function f associated to m as well.

Lemma 2.2. Let (Mn, g,m) be a Riemannian measure space with

dm = e− f d Vol(g).

Let k be a positive integer; if n is even we assume in addition that 1 ≤ k < n/2.
Then there is an extension f̃ : G̃→ R with

(2-8) f̃ (t, x, ρ)= f (x, ρ)+ n log t,

such that f (x, 0)= f (x) for all x ∈ Mn , and f̃ satisfies

(2-9) 1̃ f̃ = O(ρk)

near G on G̃.

This lemma is a special case of Proposition 2.2 in [Graham et al. 1992]; see
also Lemma 2.1 in [Fefferman and Hirachi 2003]. In order to make the paper self-
contained and to derive specific formulas for Pm

α,k in (2-4) for the case k = 1, we
will outline the proof here.

Proof. We will establish (2-9) by induction on k. Given a function ψ defined on
the ambient space ψ = ψ(t, x, ρ), denote ψ ′ = ∂ψ/∂ρ, ψ ′′ = ∂2ψ/∂ρ2. Then

1̃ψ = t−2(1gψ + (n− 2)ψ ′− 2ρψ ′′+ 2t∂tψ
′
+

1
2 tgi j g′i j ∂tψ − ρ(log |g|)′ψ ′

)
,

where g = gi j (x, ρ) dxi dx j . Thus, for a function f̃ (t, x, ρ) = f (x, ρ)+ n log t
with f (x, 0)= f (x) we have

(2-10) t21̃ f̃ =1g f̃ + (n− 2) f ′− 2ρ f ′′+ 2t ∂t f ′+
n
2

gi j g′i j − ρ(log |g|)′ f ′.
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To see that f̃ can be chosen to satisfy (2-9) for k = 1 and all n > 2, we use the
identities

(2-11)
g′i j (x, 0)= 2Pi j =

2
n−2

(
Ri j −

1
2(n− 1)

Rgi j

)
,

(log |g|)′
∣∣
ρ=0 =

1
n−1

R,

where Ri j and R are respectively the Ricci and scalar curvature of the metric g.
Substituting these into the formula (2-10), we see that (2-9) for k = 1 is equivalent
to finding f (x, ρ), with

(2-12) f ′(x, 0)=−
1

n− 2
1g f (x)−

n
2(n− 1)(n− 2)

R,

which can easily be done.
To see that (2-9) can be solved for all k with 1≤ k < n

2 if n is even and for all k
when n is odd, we apply the same strategy that appears in the construction of the
operators in [Graham et al. 1992]. That is, we inductively differentiate 1̃ f̃ exactly
(k− 1)-times w.r.t. ρ, then evaluate at ρ = 0. For example, when k = 2, using the
identities in (2-11) and doing some routine calculations we obtain

(2-13) t2(1̃ f̃ )′
∣∣
ρ=0 =−2P i j

∇i∇ j f −
1

2(n− 1)
∇ j R ∇ j f

+1g f ′+ (n− 4) f ′′− n P i j Pi j −
1

n− 1
R f ′.

From (2-13), it is clear that to solve (2-9) for k = 2 and n 6= 4 one only needs
to choose f (x, ρ) with f ′′(x, 0) satisfying

(2-14) (n− 4) f ′′(x, 0)= 2P i j
∇i∇ j f (x)+

1
2(n− 1)

∇R ∇ f (x)

−1g f ′(x, 0)+ n P i j Pi j (x)+
1

n− 1
R f ′(x, 0),

with f ′(x, 0) satisfying Equation (2-12). We refer to [Graham et al. 1992] for the
proof of the general k. �

Proof of Theorem 2.1. To derive the operators Pm
α,k we replace (2-7) with

(2-15) −1̃(tβφ)+α〈∇̃ f̃ , ∇̃φ〉 = 0,

where φ = φ(x, ρ) is any extension of a given function φ defined on M and where
f̃ is an extension of f chosen according to Lemma 2.2. The operators Pm

α,k arise
as the obstruction to formally solving (2-15) up to order ρk independent of the
extension φ = φ(x, ρ) of φ. We then find that a suitable choice of β is β =
βk(α)= (nα−n+2k)/2 for each k ≥ 1 when n is odd, and for 1≤ k< n/2 when n
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is even. As the proof is by induction on k and very similar to the proof in [Graham
et al. 1992] we will only give an outline.

Given a smooth function φ̃ = φ(t, x, ρ) defined on the ambient space G̃, we
define the operator

L̃
m
α,g̃(φ̃)=−1̃(φ̃)+α〈∇̃ f̃ , ∇̃φ̃〉.

Let φ, f ∈C∞(M) and suppose φ(x, ρ) and f (x, ρ) are smooth extensions defined
on G; i.e., φ(x, 0) = φ(x) and f (x, 0) = f (x). Given β ∈ R, denote φ̃(t, x, ρ) =
tβφ(x, ρ) and f̃ (t, x, ρ)= f (x, ρ)+ n log t ; then

L̃m
αg̃(φ̃)= tβ−2

(
2ρφ′′−

(
2β + (n− 2)−

1
n− 1

ρR− nα
)
φ′−1gφ

−
1

2(n− 1)
βRφ+αβφ f ′+αgi j

∇iφ∇ j f − 2ραφ′ f ′
)
.

Therefore,

t2−β L̃m
α,g̃(φ̃)

∣∣
ρ=0 =

(
nα− (n− 2)+ 2β

)
φ′−1gφ

−
1

2(n− 1)
βRφ+αβφ f ′+α〈∇gφ,∇gt〉.

Consequently, if we choose β = β1(α) so that nα− (n− 2)− 2β = 0, and choose
f̃ to satisfy (2-12) in Lemma 2.2, the operator Pm

α,1 given by

Pm
α,1(φ)= t2−βLm

α,g̃(φ̃)
∣∣
ρ=0

is well defined and satisfies covariance property

(Pm
α,1)ĝ(φ)= e(β−2)w(Pm

α,1)g(e
−βwφ)

for all functions φ ∈ C∞(M), where ĝ = e2wg. Note in the formula of Pm
α,1 ĝ

we
should replace f by f̂ = f + nw. The explicit formula for Pm

α,1 for the choice of
f ′ in (2-12) is given by (2-4).

As before, for general k the idea of the proof is to differentiate the term L̃m
α,g̃(φ̃)

exactly (k−1)-times w.r.t. ρ and inductively define the operators Pm
α,k in a similar

fashion. We refer to [Graham et al. 1992] for details. �

Remarks. 1. The conformally invariant curvatures of [Chang et al. 2006] can also
be defined in terms of the extension f̃ . For example, Rm

n (g) is given by

Rm
n (g)=−

(n− 1)(n− 2)
n2 |∇̃ f̃ |2

∣∣
Mn .

2. When n is even, the operators of [Graham et al. 1992] exist up to k ≤ n/2, but
our construction above only gives the existence of operators for k < n/2 due to
the choice of the extension f̃ in Lemma 2.2. However, when k = 1 the preceding
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remark indicates a way of modifying our construction, as follows. First, note that
one can add a multiple of Rm

n (g) to the operator Pm
α,1 and obtain an operator with the

same conformal covariance property. For example, if one adds the term C Rm
n (g),

with

C = C(α, n)=
n2

4(n− 1)(n− 2)
αβ1(α),

then the operator defined by

L̃m
α,1(φ)= Pm

α,1(φ)+C(α, n) Rm
n (g) φ

=−1gφ+α〈∇g f,∇gφ〉

−β1

((
1−

nα
2

) 1
2(n− 1)

Rg −
α

2
1g f +

α

4
|∇g f |2

)
φ

satisfies the conformal covariance property (2-3), with a = −β1(α) and b = 2−
β1(α). It has the additional advantage that it exists for all n ≥ 2, including n = 2.
When k ≥ 2, it is not yet clear how to modify the operator Pm

α,k . On the other hand,
the existence of m-conformally covariant operators for all k when n is even and for
1≤ k ≤ n

2 (when n is odd) follows from an observation of R. Graham. The details
are given in the next remark.

3. R. Graham pointed out to us another possible construction of conformally co-
variant operators on RM-spaces, by using the operators Pk of [Graham et al. 1992].
Letting

Gm
α,k(φ)= eα f/2 Pk(e−α f/2φ),

it is easy to see that these operators satisfy the same conformal covariance as the
operators Pm

α,k in Theorem 2.1. Interestingly, in general Gm
α,k and Pm

α,k do not agree.
For example, when k = 1 they again differ by a multiple Cα,n of Rm

n (g).

3. Properties of the operators

In this section we will discuss some properties of the operators constructed in
Section 2. To simplify the presentation, we will restrict ourselves to a discussion
of the case k = 1.

As before, (Mn, g, dm) will be an RM-space, and dm = e− f dvg defines the
density function f . Let us define

(3-1) Lm
αψ = Pm

α,k=1ψ

=−1gψ +α〈∇ f,∇ψ〉+
n−2−nα
2(n− 2)

(
α1g f +

nα+n−2
2(n− 1)

R(g)
)
ψ.

We begin by summarizing some elementary properties of the operators Lm
α .
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Proposition 3.1. Let α ∈ R.

(i) Lm
α is self-adjoint with respect to the measure

(3-2) dmα = e−α f d Vol(g).

(ii) Suppose ĝ = e2wg is a conformal metric. Then

(3-3) (Lm
α )ĝ (φ)= e(β(α)−2)wLm

α (e
−β(α)wφ)

for all φ ∈ C∞(M), where

(3-4) β(α)=
nα− n+ 2

2
.

(iii) Denote v = vα = e−β(α)w. Then

(3-5) (Lm
α )ĝ (1)= v

−γα (Lm
α )g(v),

where

(3-6) γα =
n+ 2− nα
n− 2− nα

, α 6=
n− 2

n
.

Proof. Properties (i)–(iii) follow from the properties of the operators Pm
α,k=1 de-

scribed in Section 2. �

Remarks. 1. The properties of Lm
α listed in Proposition 3.1 are shared by any

operator which differs from Lm
α (g) by a constant multiple of Rm

n (g). In particular,
the operators Gm

α satisfy the same properties.

2. One can interpret Equation (3-5) as defining a a scalar curvature associated to
the triple (g,m, α). Let

(3-7) R(m,α) = R(m,α)(g)=
n− 2− nα

n− 2

(
R(g)+

2α(n− 1)
n− 2+ nα

1g f
)
.

We will refer to R(m,α) as the (g,m, α)-scalar curvature, or just the α-scalar cur-
vature if the context is clear. Note we can also write

(3-8) R(m,α)(g)=
4(n− 1)

n− 2+ nα
Lm
α (1).

By (3-5) and (3-8), given a conformal metric

(3-9) ĝ = e2wg = v4/(n−αn−2)g,

the α-scalar curvature of ĝ is given by

(3-10) R(m,α)(ĝ)=
4(n− 1)

n− 2+ nα
v−γα (Lm

α )g(v).
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These formulas define a pair (R(m,α),Lm
α ) generalizing the well known example

of the scalar curvature/conformal Laplacian (R, L). Indeed, the pair (R, L) is just
(R(m,0),Lm

0 ), i.e., the case α = 0.

3. It is interesting to note that the semilinear equation (3-10) associated to the
α-scalar curvature can be subcritical, critical, or super-critical with respect to the
Sobolev embedding, depending on α. To see this, we note the following apparent
properties of the exponent γα:

(a) γ0 = (n+ 2)/(n− 2), γ1 =−1, γ(n+2)/n = 0.

(b) limα→±∞ γα = 1.

(c) dγα/dα = 4n/(n− 2− nα)2, α 6= (n− 2)/n.

(d) limα→((n−2)/n)− γα =+∞.

(e) limα→((n−2)/n)+ γα =−∞.

Here is a plot of γα as a function of α:

−4 −3 −2 −1 0 1 2 3

−8

−6

−4

−2

0

2
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6

8

’Plot of γ
α
’

(n+2)/n

(n+2)/(n−2)

(n−2)/n

y=1

(1,−1)

γ
α

4. When α= (n−2)/n one needs to modify the definition of the α-scalar curvature,
since the definition (3-7) gives zero. In addition, one sees from the figure above that
the exponent in (3-10) becomes infinite. Using an ansatz due to Branson known as
continuation in the dimension, we can construct an operator T m to supplant

(3-11) Lm
(n−2)/n =−1+

n− 2
n
〈 · ,∇ f 〉,

and this permits us to define a scalar curvature K m(g) corresponding to the case
α = (n− 2)/n. Indeed, set ᾱ = (n− 2)/n, and define
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T m
g φ = lim

α→ᾱ

1
β(α)

(
Lm
α (e

β(α) φ)−Lm
α (1)

)
= lim
α→ᾱ

1
β(α)

(
−1(eβ(α)φ − 1)+α

〈
∇(eβ(α)φ − 1),∇ f

〉
−

β

(n− 2)

(
α1 f +

nα+ n− 2
2(n− 1)

R
)
(eβ(α)φ − 1)

)
=−1w+

n− 2
n
〈∇w,∇ f 〉.

We also define

K m(g)= lim
α→ᾱ

1
β(α)

Lm
α (1)=−

1
(n− 1)

(
R(g)+

n− 1
n

1 f
)
.

If ĝ = e2wg, then

(3-12) T m
ĝ = e−2wT m

g ,

in analogy with the Laplacian on surfaces. Also, the behavior of K m under a
conformal change is given by

(3-13) T m
g w+ cn K m(ĝ) e2w

= cn K m(g),

where cn =
n−2
n−1

. Note the obvious parallel with the prescribed Gauss curvature
equation.

As we observed in Remark 3 on the previous page, Equation (3-10) can be
subcritical, critical, or supercritical depending on the value of α. In the next Section
we will study the existence of conformal metrics with constant α-scalar curvature
for the subcritical case; i.e., −∞< α < 0 and α > 1.

4. When −∞< α < 0 or α > 1: the subcritical cases

In order to introduce the variational problems associated to the operators defined
in Section 3 we define the functionals

(4-1) Em
α [v] =

∫
vLm

α v dmα(g)= 〈v,Lm
α v〉L2(dmα)

,

where
dmα(g)= e−α f d Vol(g).

We also define the constraint set

(4-2) Cα =
{
v ∈W 1,2(M)

∣∣∣ v ≥ 0,
∫
vγα+1 dmα(g)= 1

}
.

Note that

(4-3) 1+ γα =
2n(α− 1)

n(α− 1)+ 2
,
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which is positive when −∞< α < 0 or α > 1.
Consider the variational problem

(4-4) inf
v∈Cα

Em
α [v].

By the identity (3-10) this is equivalent to the following geometric variational prob-
lem: define

R(m,α)
: g 7→

∫
R(m,α)(g) dmα(g),(4-5)

Cα([g])=
{
ĝ = v4/(n−αn−2)g

∣∣ v ∈ C∞(M), v > 0, v ∈ Cα
}
.(4-6)

Then

(4-7) R(m,α)
[ĝ] =

4(n− 1)
n− 2+ nα

Em
α [v],

where ĝ = v4/(n−αn−2)g. Consequently,

inf
ĝ∈Cα([g])

R(m,α)
[ĝ] =

4(n− 1)
n− 2+ nα

inf
v∈Cα

Em
α [v] if α <

n− 2
n

,(4-8)

sup
ĝ∈Cα([g])

R(m,α)
[ĝ] =

4(n− 1)
n− 2+ nα

inf
v∈Cα

Em
α [v] if α >

n− 2
n

.(4-9)

Again, when α = 0 we recover the familiar relation between the total scalar cur-
vature and the Yamabe quotient. Moreover, when α < 0 or α > 1, the exponent in
the definition of the constraint set Cα is subcritical for the Sobolev embedding.

Theorem 4.1. (i) Suppose α ≤ 0 or α > 1. Then

(4-10) inf
v∈Cα

Em
α [v]>−∞.

(ii) If α < 0 or α > 1, then the infimum in (4-10) is attained by a positive function
v = vα ∈ C∞(M) satisfying

(4-11) Lm
α vα = cvγα

for some constant c. Equivalently:

• If α < 0 there is a conformal metric ĝ= v4/(n−αn−2)
α g ∈Cα([g]) attaining

the infimum of Rm,α.
• If α > 1 there is a conformal metric ĝ= v4/(n−αn−2)

α g ∈Cα([g]) attaining
the supremum of Rm,α.

In both cases, the α-scalar curvature of ĝ satisfies

R(m,α)(ĝ)= c.
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Proof. To verify (4-10), let v ∈ Cα; then

(4-12) Em
α [v] ≥

∫
|∇v|2 d Vol(g)−C(g, f )

∫
v2 d Vol(g).

Therefore, by the Sobolev embedding theorem,

(4-13)
(∫

v2n/(n−2) d Vol(g)
)(n−2)/n

≤C‖v‖W 1,2 ≤C
(

Em
α [v]+

∫
v2 d Vol(g)

)
.

When α ≤ 0, then 1+ γα satisfies

(4-14) 2< 1+ γα ≤
2n

n− 2
,

and by Hölder’s inequality

(4-15)
∫
v2 dV ≤

(∫
v1+γα dV

)2/(1+γα)

≤ C.

It follows from (4-13) that

(4-16) Em
α [v] ≥ C‖v‖22n/(n−2)−C ≥−C.

If α > 1, by Hölder’s inequality gives

(4-17)
∫
v2 dV ≤

(∫
v2n/(n−2) dV

)θ(∫
v1+γα dV

)1−θ

,

where

(4-18) θ =
n− 2
αn

<
n− 2

n
.

Substituting this into (4-13) and using the constraint one verifies that (4-16) also
holds for α > 1.

For existence, we now suppose α < 0 or α > 1, and let {vk} be a minimizing
sequence for Em

α with vk ∈ Cα. We may assume

Em
α [vk] ≤ inf

Cα
Em
α + 1.

By (4-16) we see that
‖vk‖2n/(n−2) ≤ C,

and from (4-12) we conclude that {vk} is bounded in W 1,2. Since

1+ γα <
2n

n− 2

when α < 0 or α > 1, the embedding

W 1,2 ↪→ L1+γα
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is compact. Therefore, a subsequence of {vk} will converge weakly in W 1,2, but
strongly in L1+γα , to a minimizer v ∈ Cα. Using the fact that Lm

α is self-adjoint it
is easy to check that a W 1,2-critical point of Em

α subject to the constraint in (4-2)
will satisfy (4-11) weakly. Elliptic regularity implies v ∈ C∞. �

4.1. α= 2: Perelman’s scalar curvature. The case α= 2 is of particular interest.
Note that

R(m,2)(g)=−
n+ 2
n− 2

(
R(g)+

4(n− 1)
3n− 2

1 f
)
.

Recall the definition of the conformally invariant scalar curvature in [Chang et al.
2006]:

Rm
n (g)= R(g)+

2(n− 1)
n

1 f −
(n− 1)(n− 2)

n2 |∇ f |2.

When n = ∞, this corresponds formally to the scalar curvature introduced by
Perelman [2002]:

Rm
∞
(g)= R(g)+ 21 f − |∇ f |2.

Comparing these formulas we see that

(4-19) R(m,2)(g)=
(n+ 2)(n− 1)

3n− 2
Rm
∞
(g)−

n2(n+ 2)
(3n− 2)(n− 2)

Rm
n (g).

In particular, if we define the operator

(4-20) Lm
2,∞ = Lm

2 +
n2(n+ 2)

4(n− 1)(n− 2)
Rm

n (g),

then by Remark 1 following Proposition 3.1, Lm
2,∞ enjoys the same conformal

covariance properties as Lm
2 . One can check that

(4-21) Lm
2,∞ =−1+ 2〈∇ · ,∇ f 〉+

n+ 2
4

Rm
∞
(g),

so that the “scalar curvature” associated to Lm
2,∞ is a multiple of Perelman’s scalar

curvature. This leads to the following corollary of Theorem 4.1:

Corollary 4.2. Given an RM-space (M, g,m), there is a conformal metric ĝ =
v−4/(n+2)g with

(4-22) Rm
∞
(ĝ)= const.

Moreover, v can be realized as the infimum of the functional

(4-23) Em
2,∞[φ] =

∫
〈φ,Lm

2,∞φ〉 dm2(g)

subject to the constraint
∫
φ2n/(n+2) dm2 = 1.
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5. The case α = 1: Perelman’s entropy functional

For the borderline case α= 1, the parameter γ−1=−1, and the measure m−1=m.
Also, the 1-scalar curvature is given by

(5-1) R(m,1)(g)= 2 Lm
1 (1)=−

2
n− 2

(1 f + R(g)).

It follows that the functional R(m,1) defined in (4-5) is

(5-2) R(m,1)
[g] =

∫
R(m,1)(g) dm =−

2
n− 2

∫ (
R(g)+1 f

)
dm

=−
2

n− 2

∫ (
R(g)+ |∇ f |2

)
dm.

Up to a constant, this is precisely the entropy functional defined by Perelman [2002,
§1]. The difficulty in studying the corresponding variational problem (4-4) is that
the constraint set Cα is not well defined when α = 1, since then γ1 = −1 (or, to
be more precise, it does not impose any constraint). In this section we study a re-
lated eigenvalue problem inspired by Perelman’s work and point out an interesting
connection to the Yamabe invariant.

To begin, let us introduce the modified constraint set

(5-3) Dm(g)=
{
v ∈W 1,2(M)

∣∣∣ v ≥ 0,
∫
v2e−(2/n) f dm = 1

}
.

In a slight abuse of notation we will write ĝ = v−2g ∈Dm(g) whenever v > 0, v ∈
C∞(Mn), and v ∈ Dm(g).

A key property used in our analysis is that the functional Em
1 enjoys a certain

conformal covariance when restricted to Dm . To explain this, let us modify our
notation slightly to emphasize the dependence of Em

1 on the choice of metric, and
write

(5-4) Em
1 (g)[v] = Em

1 [v] = 〈v, (L
m
1 )gv〉L2(dm).

Lemma 5.1. For all smooth functions ρ > 0, v ∈W 1,2(Mn), we have

Em
1 (g)[v] = Em

1 (ρ
2g)[ρv],(5-5)

v ∈ Dm(g) ⇐⇒ ρv ∈ Dm(ρ2g).(5-6)

Proof. To prove (5-5), we use the covariance of Lm
1 given in Proposition 3.1(ii): If

ĝ = e2wg, then

(Lm
1 )e2wgφ = e−w(Lm

1 )g(e
−wφ).
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Taking ew = ρ, this implies

Em
1 (ρ

2g)[ρv] =
∫ 〈
ρv, (Lm

1 )ρ2g(ρv)
〉
dm =

∫ 〈
ρv, ρ−1(Lm

1 )g(ρ
−1ρv)

〉
dm

=

∫ 〈
v, (Lm

1 )gv
〉
dm = Em

1 (g)[v].

To prove (5-6), suppose ρ > 0 is smooth and write

dm = e− fρd Vol(ρ2g),

where fρ = f + n log ρ. Therefore,∫
(ρv)2e−(2/n) f dm =

∫
(ρv)2e−(2/n)( f+n log ρ) dm =

∫
(ρv)2e−(2/n) fρ dm.

If follows that v ∈ Dm(g) if and only if (ρv) ∈ Dm(ρ2g), as claimed. �

For simplicity we now adopt Perelman’s notation and write

(5-7) Fm
[g] = −

(n− 2)
2

R(m,1)
[g]

=

∫ (
R(g)+1 f

)
dm =

∫ (
R(g)+ |∇ f |2

)
dm.

It will be convenient if we normalize the measure m to have total mass one; let P

denote the set of all such smooth probability measures on Mn .

Theorem 5.2. Let (Mn, g) be a Riemannian manifold.

(i) For each m ∈ P,

(5-8) λ(m, [g])= sup
ĝ∈Dm(g)

Fm
[ĝ]

is attained by some metric σm ∈ [g] satisfying

(5-9) R(σm)+1σm fm = λ(m, [g])e−
2
n fm ,

where fm is the density function of m relative to σm .

(ii) Let Y (Mn, [g]) denote the Yamabe invariant of [g]. Then

(5-10) λ∗([g])= inf
m∈P

λ(m, [g])= Y (Mn, [g]),

and the infimum is attained by all Yamabe measures, i.e., measures m ∈ P

such that

(5-11) dm = e− fY d Vol(g),

with gY = e−(2/n) fY g a Yamabe metric.
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Proof. (i) First, by (4-7) we have

Fm(ĝ)=−
n− 2

2
R(m,1)(ĝ)=−(n− 2) Em

1 (g)(v),

where ĝ = v−2g. Therefore, the variational problem in (5-8) is equivalent to a
weighted L2-eigenvalue problem for the operator Lm

1 . It follows that there is a
function v ∈ C∞(Mn)∩Dm(g), v > 0 satisfying the Euler–Lagrange equation

(5-12) Lm
1 v = µve−(2/n) f ,

where

µ= inf
v∈Dm(g)

Em
1 (g)[v] = −

1
n− 2

sup
ĝ∈Dm(g)

Fm
[ĝ] = −

1
n− 2

λ(m, [g]).

Using (3-10), Equation (5-12) implies the metric σm = v
−2g satisfies

(5-13) R(m,1)(σm)=−
2

n− 2
λ(m, [g])v2e−

2
n f .

Since d Vol(σm)= v
−nd Vol(g), it follows that fm = f − n log v, hence

v2
= e−(2/n) fm e(2/n) f .

Substituting this into (5-13) and using the definition in (5-1) we find

R(σm)+1σm fm =−
n− 2

2
R(m,1)(σm)= λ(m, [g])e−(2/n) fm ,

as claimed.

(ii) We will prove the statement through a series of claims.

Claim 1. For each m ∈ P,

(5-14) λ∗([g])≤ Y (Mn, [g]).

Proof. Let gY = ρ
2
0 g denote a Yamabe metric in [g] and mY = d Vol(gY ) denote the

Yamabe measure associated to gY . We will assume that gY has been normalized
to have unit volume, so that dmY is a probability measure and

(5-15) R(gY )= Y (Mn, [g]).

By the definitions above,

λ(mY , [g])= sup
v−2g∈DmY (g)

FmY [v−2g] = sup
v∈DmY (g)

−(n− 2)EmY
1 (g)[v].

By Lemma 5.1,

EmY
1 (g)[v] = EmY

1 (ρ2
0 g)[ρ0v] = EmY

1 (gY )[ρ0v]
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and

v ∈ DmY (g) ⇐⇒ w = ρ0v ∈ DmY (gY ).

Thus,

λ(mY , [g])= sup
w∈DmY (gY )

−(n− 2)EmY
1 (gY )[w].

Now,

−(n− 2) EmY
1 (gY )[w] =

∫ (
−(n− 2)|∇w|2+

(
R(gY )+1 fY

)
w2) dm.

Since mY = d Vol(gY ), the density function fY ≡ 0. Therefore,

λ(mY , [g])= sup
w∈DmY (gY )

−(n− 2)EmY
1 (gY )[w]

= sup
w∈DmY (gY )

∫ (
−(n− 2)|∇w|2+ R(gY )w

2) dm

≤ sup
w∈DmY (gY )

R(gY )

∫
w2 dmY = R(gY ) = Y (Mn, [g]). �

Claim 2. As in [Chang et al. 2006], define the conformally invariant functional

(5-16) Sm
[g] =

∫
Rm

n (g) e(2/n) f dm.

Then for each m ∈ P,

(5-17) λ(m, [g])≥ Sm
[σm].

Proof. Recall from above the definition of Rm
n (g):

(5-18) Rm
n (g)= R(g)+

2(n− 1)
n

1 f −
(n− 1)(n− 2)

n2 |∇ f |2.

Taking g = σm , and using (5-9), we have

Rm
n (σm)=

(n− 2)
n

1 fm −
(n− 1)(n− 2)

n2 |∇ fm |
2
+ λ(m, [g])e−2/n.

Therefore,

Sm
[σm] =

∫ (
n− 2

n
1 fm −

(n− 1)(n− 2)
n2 |∇ fm |

2
+ λ(m, [g]) e−2/n

)
e(2/n) fm dm

= λ(m, [g])−
n− 2

n2

∫
|∇ fm |

2 e(2/n) fm dm,

which implies (5-17). �
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Claim 3. We have

(5-19) inf
m∈P

Sm
[g] = Y (Mn, [g]).

The infimum is achieved by a measure mY if and only if mY is a Yamabe measure.

Proof. Let m ∈ P with density function f . By (5-16) and (5-18),

Sm
[g] =

∫ (
R(g)+

2(n− 1)
n

1 f −
(n− 1)(n− 2)

n2 |∇ f |2
)

e(2/n) f dm(5-20)

=

∫ (
R(g)+

(n− 1)(n− 2)
n2 |∇ f |2

)
e−(n−2) f/n d Vol(g).

Let gm = e−(2/n) f g; then (5-20) implies that

Sm
[g] =

∫
R(gm) d Vol(gm).

Since m is a probability measure, gm has unit volume, and it follows that

inf
m∈P

Sm
[g] = inf

gm=e−(2/n) f g

∫
R(gm) d Vol(gm)= Y (Mn, [g]). �

Combining (5-17) and (5-19), we see that for any m ∈ P,

λ(m, [g])≥ Sm
[σm] ≥ inf

m∈P
Sm
[g] = Y (Mn, [g]).

Therefore,
λ∗([g])≥ Y (Mn, [g]).

Combining this with (5-14), we arrive at (5-10).
Moreover, it is clear from the proofs of the claims that any Yamabe measure

attains λ∗([g]). �

Note added in proof. After this paper was accepted for publication, we learned
about the preprints [Case 2010; 2011], which develop a variant of the conformal
Laplacian for metrics with a measure.
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