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FINSLER SURFACE INTO AN n-SPHERE

XIAOHUAN MO AND LIANG ZHAO

We study harmonic maps on Finsler surfaces. Using Berwald frames on
Finsler surfaces, we prove conformal invariance for the energy of Finsler
harmonic maps. As an application, we show that weakly harmonic maps
from a Finsler surface to a sphere S" are in fact smooth by establishing a
new Jacobi structure, generalizing the regularity result previously known
for the case of a harmonic map from a Riemannian surface.

1. Introduction

Harmonic maps between Riemannian manifolds are very important both in classi-
cal and modern differential geometry. They are defined as the critical points of the
energy functionals. One of the fundamental problems in the theory of harmonic
maps is to study regularity [Evans 1991; Hélein 1990; 1991b; 1991a]. Harmonic
maps on Riemann surfaces are the natural extension of minimal surfaces in Rie-
mannian manifolds. More importantly, the energy of a harmonic map on a two-
dimensional domain is a conformal invariant, i.e. the set of harmonic maps from a
Riemannian surface M depends only on the conformal structure on M.

Finsler manifolds are just Riemannian manifolds with metrics without the qua-
dratic restriction [Chern 1996]. Many Finslerian geometers have made effort in the
investigation of the geometric and analytic properties (such as, existence, stability,
etc) of harmonic maps on Finsler manifolds [He and Shen 2005; Mo 2001; Mo
and Yang 2005; Shen and Wei 2008; Shen and Zhang 2004].

In this paper, we are going to study the theory of harmonic maps on Finsler
surfaces. Let (M, F) be a Finsler manifold and (N, &) a Riemannian manifold.
We will say that ¢ : (M, F) — (N, h) is Finsler harmonic if ¢ is a critical point
of the energy functional with respect to any compactly supported variation of ¢
[Mo 2001]. First, we obtain conformal invariance for Finsler harmonic maps from
surfaces by using the Berwald frames on surfaces (see Theorem 3.1).
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As an application, we obtain a regularity result of a weakly Finsler harmonic
map on a Finsler surface M, generalizing a theorem of Hélein for the case of M
being a Riemannian surface [Hélein 1990]. More precisely:

Theorem 1.1. For a Finsler surface (M, F) with dM = @, if ¢ € W-2(M, S™) be
a weakly Finsler harmonic map, then ¢ € C*° (M, S").

Recall that W'2(M, R!) is the usual Sobolev space of L? functions on M to R/
having first derivatives in the sense of distributions in L?. A map ¢ € W'2(M, N)
is weakly Finsler harmonic map if it is a weak solution to the Euler—Lagrange
equation (4-8), where the Sobolev space Wh2(M, N) of maps from M to N C R!
is defined by

WL2(M, N)y={p e W'2(M, R) : ¢(x) € N a.e. x € M}

(see Section 4).

It is well-known that the Jacobi (determinant) structure plays an important role in
studying the regularity of harmonic maps from Riemannian surfaces to Riemannian
spheres [Lin and Wang 2008]. But, in general, we cannot get the Jacobi structure
of Finsler harmonic maps directly. So we have to construct a new Jacobi structure
by using the existence and regularity theory of elliptic equations (see Lemma 4.1).
After obtaining this interesting structure, we can prove Theorem 1.1 successfully.

2. Preliminaries

Finsler harmonic maps. Let¢: (M, F)— (N, h) be amap from an m-dimensional
Finsler manifold (M, F) to an n-dimensional Riemannian manifold (N, #). In
natural coordinates, the energy density of ¢ is given by

dp* dpP

1

2-1 e(¢) = 38" — 55 Ox — 5 hap

where ¢ = (¢!, ..., ¢"), g&ij = (%Fz)yiyj and (g") = (gij)_l. We introduce a

dual adapted orthonormal frame e¢; on the Riemannian vector bundle (x*TM, g)
and coframe w; with w,, := (3F/dy")dx’ where m : SM — M is the canonical
projection map, SM the projective sphere bundle of M and g is the fundamental
tensor of F. Put w; = v;;dx/. Then det(v;;) = v/det(gx) [Mo 2001, p. 1333] and
g=21, o

Taking the exterior derivative of w,, yields the Chern connection on 7*TM
described by an m x m matrix of 1-forms (w;;) on SM. The coframe w; and
connection forms (uma determine the volume form with respect to the Riemannian
metric G := Y 7" @? + Y 17 w2, on SM as follows:

M=o A AOR ADI A+ A Oy m—1-
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A direct calculation yields
(2-2) M= vl,-ldxi' ARERWA vm,'mdxil ANOpI N A Omom—1
= det(v;j)dx' A--- Adx™ A x = \/det(gu) dx A X,
where dx =dx' A--- Adx™ and
(2-3) X=Oni A A®ppu_1 mod dx’.

If Q is a compact domain in M, define the energy of ¢ : (2, F) — (N, h) by

1
(2-4) E(p, Q) = ;fm e(P)I,

where ¢ is the volume of the standard (m—1)-dimensional sphere and S<2 is the
projective sphere bundle of 2. If M is compact, we write E(¢) = E(¢, M).
Plugging (2-1) into (2-4) and using (2-2) we have

1 - 0p* AP
(2-5) E(p)=— f g" d). _¢~hcxﬁ\/ det(gr) dx A x.
2¢ Jsm ax! oxJ

Conformal transformations of Finsler metrics. Let F be a Finsler metric on a
manifold M and g its fundamental tensor. For two arbitrary nonzero vectors v, y
in T, M, the angle 6(y, v) between y and v is defined by [Antonelli et al. 1993;
Bécsé and Cheng 2007]

8, »(y, v)
\/g(x,y)(y’ y)\/g(x,y)(va V)

Let F and F be two Finsler metrics on a manifold M. If the angle 6(y, v) with
respect to F is equal to the angle 6(y, v) with respect to F for any nonzero vectors
v, y €T, M and any x € M, then F is called conformal to F and the transformation
F — F of the metric is called a conformal transformation.

Now assume that F is conformal to F. From [Antonelli et al. 1993], we have

cosf(y, v):=

(2-6) F(x, y)=e“F(x, y)

for some scalar function c¢(x). Furthermore, we have (see [Matsumoto 2003])
2-7) 8ij(x, y) =e*Wgi(x, y),

(2-8) g (x, y) = e Wgl(x, ).

3. Conformal invariance

In this section we are going to show an important property for Finsler harmonic
maps on two-dimensional domains: the conformal invariance required in the proof
of the regularity result.
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Theorem 3.1. The energy functional E on the set of Finsler harmonic maps from a
surface M to a Riemannian manifold N depends only on the conformal structures
on M.

Proof. This follows from the conformal invariance of the energy functional £ in
dimension two. We assume that ¢ : F — F is given by (2-6) and denote the
corresponding objects with respect to F by adding a bar ~.

By using (2-7), we obtain

G- Vdet(@u) = Vdet(e* @ gy) = Ve Odet(gir) = 2V det(gu).
The first structure equation for (M, F) can be written as
(3-2) doi =) wjAwji, oj+oj;=-23 Ajrox,

where A;jx = A(e;, ej, er) and A is the Cartan tensor of F. From [Mo 2006,
(3.79)], we have

(3-3) w12 =—ui' Fyiyidy’  mod dx'.
By using (2-3), (3-2) and (3-3) we obtain
(3-4) X = =—w1 -2 Agjjwy = —wip = ui' Fyiyidy’,

where the equivalences are mod dx’ and the u ji are defined by

;0
e =uj —.
J J ax!
It is not difficult to conclude that the section e; is in fact globally defined [Mo

2006]. The frame {e;, ey} is call the Berwald frame [Bao and Chern 1996]. Ex-
plicitly,

F» 0 —F, 0
eg=—> 4
det(gij) ax! det(gij) x>
It follows that
. Fy2 5 —F

y
U = ——, U~ = —
Vdet(gi;) Vdet(gi;)

Under the conformal transformation (2-6), from (3-1) we have

” (x)
il = F\» _ e F ey,
JVdet(gij) €™, /det(g;;)
F,
I/_t]2=— y — 7c(x)u]2’

Vdet(gi;)

Fyiyj = (ec(x)F)yiyj = ec(x)Fyiyj.
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Hence

ﬁliﬁyiyj = M]iFyiyj
From this together with (3-4) we get
(3-5) X=X mod dx'.

Thus, for any ¢ € wh2(M, N),

_ 1 ;i 0p” ad)ﬂ
E(¢)=§/ g/ hag/det(gr) dx A
SM

dxi axJ
_ 1 —2c(x) ijovr 8¢ 8¢ 2¢(x)
_Z/s g 3xT 3T hepge™y/det(gr) dx A x
1 ¢” ¢’3
Z g” P hop/det(gr) dx A x = E(¢). ([

Let (M, F) be a Finsler surface and set

Js.m 87 (x, M/det(gulx, y)x
S5 1 V/det(gu(x, y)x

§:=gdx' ®dx’/, where (§;)=(7)"".

g7 () =

Then (see [Mo and Yang 2005, Lemma 5.2]) g is a Riemannian metric on M, called
the (Riemannian) metric induced by F.

Proposition 3.2. Let F and F be two Finsler metrics on a surface. If F(x, y) =
e F(x, y), then

2¢(x) ~

g(x) =e*Wg,

where g and g are the induced metrics by F and F respectively.

Proof. Using (2-7), (3-1) and (3-5) we get

s 87 (x, )/det(@ulx, )X

[N
f ZC(X)glJ(x y)eZC(x)x/WX

Js.p €20 /det(gu (x, y)x

i) =

672c(x)§ij (x)

It follows that
§(x) 1= gij(x)dx' @ dx! = e* ™ g;;(x)dx' @ dx! = e*™ g (x). O

Note that locally all Riemannian conformal structures are equivalent [Hélein
2002, Theorem 1.1.3].
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Corollary 3.3. Let (M, F) be a Finsler surface. For each point xo, there is a local
coordinate system (U, x') in M, and a conformal transformation F — F, such
that the Riemannian metric induced by F is a canonical Euclidean metric on U.

4. Proof of Theorem 1.1

Before giving the proof proper, we state several lemmas. Throughout this section,
D will denote a small disc in R?, but its radius may shrink as we go along if
necessary.

Lemma 4.1. Let D C R? be a disk. If € W'2(D, S") is a weakly Finsler har-
monic map, then for any 1 < a, B < n, the field

Vel = ¢f Vg — ¢* VP — Ve e LA(D, R?),
is divergence-free, where ¢®® is a solution of
(4-1) AP =V - (P Ve — ¢ VoF)
in which

¥ (x) = — log v/det(Gur) — log /S Vet .

Moreover, ¢ satisfies

n+l
(4-2) —Ap - =3 Vgl Ve
p=1
where n = (', ..., n"tY) is a solution of
n+1
(4-3) —An" =Y V§P Vot — Vi Ve
p=1

Proof. For a round spherical target manifold, the Euler-Lagrange equation of ¢ is
given by A¢ = |V¢|?¢ + Vi - V¢ [Mo and Yang 2005], equivalently,
(4-4) AP® = |V’¢* + Vi - Vo©
fora =1, ..., n+1. Set Q% = pPVep* — p*V¢P. Then
div(Q¥) = div(¢p? V¢*) — div(¢* VoP)
= 9P AQ" + VP Vo — (9" Ag" + Vg VP
= ¢F AP —¢" AgP
=P (IVPIPP" + VY - V) — ¢* (IVPI*¢F + Vi - VoF)
= VY- (¢'Ve* —¢*VeP) = vy . Q.
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Together with (4-1) we obtain

div(V*) = div(Q¥ — V) = div(Q*F) — div(V¢*#)
=V - Q% — A =V - (Q¥ — P VY + ¢ VeP) =0.
This implies that V*# is divergence-free. From (4-1) and the regularity theory of
elliptic equations, we obtain (p"ﬂ € W22(D). To see (4-2), observe that
n+1
(4-5) > ¢Pvel =0,
p=1
since |¢|> = 1. We rewrite (4-4) as

(4-6) —A¢* =—K —-Vy - Vo©,

where
n+1

n+1
@7 K =IVePe" = (X Ve - VeP)e = 3 VP - (97VeP)
p=1 B=1
n+1 n+1
=3 Vol - (@*VeF — P V) = = 37 Vol - (VY + V),
B=1 B=1
where we used (4-5). Plugging the last expression into (4-6) and using (4-3) yields
n+l n+1
—Ag* =3 VP (VP £ V) — VY Vet =Y Ve v — A,
p=1 p=1
Thus ¢ — n satisfies (4-2). ([l
Remark. From (4-3) and the regularity theory of elliptic equations, we have n* €

c%(D).

The right-hand side of (4-2) has a special structure: it is the product of a curl-
free vector field and a divergence-free vector field. It follows from Lemma 4.3
below that the product belongs to the Hardy space %! (R”) [Lin and Wang 2008,
Definition 3.2.3]. (The next three lemmas can be found in [Lin and Wang 2008].)

Lemma 4.2 [Stein 1993]. For f € #'(R™), let u € L' (R™) be a solution of
—Au=f inR",

where Au is the Laplacian of u. Then all second-order derivatives V2u of u satisfy
VZu € LY(R™) and

2
IVoullpr@ny < CILSf et -
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Lemma 4.3 [Coifman et al. 1989]. For1 < p <+ocoand g = p/(p — 1), suppose
h e WhP(R™) and G € LY(R™, R™) is a divergence-free vector field. Then the
function f = Vh-G € ¥ (R™). Moreover, there exists a positive constant C,
depending only on m such that

I f llser mmy < Conllrllwrr @y |G || La @)

Lemma 4.4 [Hélein 2002, Theorem 3.3.4]. If f € WY2(R?) has compact support
and the weak derivative V f of f belongs to the Lorentz space L*VD(R?), then
f e CUR?).

Proof of Theorem 1.1. Since regularity is a local property, it suffices to show that it
is valid in the neighborhood of each point in M. But, since every sufficiently small
geodesic ball in (M, g) is conformal equivalent to the unit ball D of R? equipped
with the canonical metric via a conformal transformation of corresponding Finsler
metric (Corollary 3.3), and Finsler harmonic maps are preserved under Finsler
conformal transformation (Theorem 3.1), we assume that M = D is a disc in R2.

The Euler—Lagrange equation for Finsler harmonic map ¢ is given by [Mo and
Yang 2005, (5.8)]

(4-8) Ap=A@P)(VP,VP)+ VY-V,

where A(¢) is the second fundamental form of S” in R**!. Note that S" is a totally
umbilical hypersurface in R"*! with unit normal field ¢. Hence

A(@)(Vo, Vo) = |Vo|*p.

Plugging this into (4-8) yields (4-4).

For 1 <a, B<n+1,let V*f € L2(D, R?) be divergence-free vector fields given
by Lemma 4.2. Let g?) e WL2(R?, R™) be an extension of ¢ such that ||V¢A5||L2(Rz) <
ClIVéIlL2py and Vep ¢ L?*(R?, R?) be an extension of V*# such that

(4-9) div (V%) =0, IV @) < CIVl 2y

The existence of such V*# can be obtained as follows.
We write V¥ as

(4-10) ved = (vi?, vy,

Then
vt aveP
ox! ax2

0 =div(v®) =

It follows that
v’ a(-vyP)
axl — oax2
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therefore, there exists p € W!2(D) such that
9p. op P _ yeP

axt T2 gx2 !
Substituting these into (4-10) yields

yeb — 3_/0 _8_’0
ax2’  ox!

in D. Let p € WH2(R?) be an extension of p such that

VAl 2wz < ClIIVollL2(p)-

pas . (20 _ 9P
ax2’ ox!
satisfies (4-9).

For 1 <o <n+1,let * € L'(R?) be a solution of

Then

n+1
—Ao®* =) Vel VP
B=1
in R2. By Lemmas 4.2 and 4.3, we know that VZw® € L'(R?) and

n+1 " n
V2™ |l 1wy < C Y IVEP - VPl e
f=1

n+1 8 ~op
<C Y IVl 2@ IV 2wy
o

n+1
<C Y IV Iy IV 2y < CIIVEIT2 -
B=I
It follows that Vo* € W1 (R?). Note that for m > 2, WHI(R™) is continuously
embedded in L% 7' D(R™) [Hélein 2002]. This implies that Vo® € L&D (R2).
Hence by Lemma 4.4 we have o® € CIOOC(IRZ).
Let v* = ¢* — n* —w* : D — R. By using (4-2) we have

— AV = — A — 1% — ) = —A@* — 1) + Ao

n+1 n+l n
= Vol v 3 vh . veb
B=1 B=1
n+1 n+l1
=Y VP VP -3 VP . V¥ =0 in D,
B=1 B=1

so v* € C°(D). This implies that ¢ € C°(D, S") and ¢ € C*(D, S") by higher-
order regularity theory for harmonic maps [Jost 2008, Section 8.6]. (]
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