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We study the formal geometric quantization of noncompact Hamiltonian
manifolds. Our main result is that two quantization processes coincide.
Ma and Zhang obtained the same result in a recent preprint by completely
different means.
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In [Paradan 2009], we studied some functorial properties of the “formal geomet-
ric quantization” process Q−∞, which is defined on proper Hamiltonian manifolds,
that is, noncompact Hamiltonian manifolds with proper moment map.

There is another way, denoted Q8, of quantizing proper Hamiltonian manifolds
by localizing the index of the Dolbeault Dirac operator on the critical points of the
square of the moment map [Paradan 2001; 2003; Ma and Zhang 2008].

The main purpose of this paper is to provide a geometric proof that the quan-
tization processes Q−∞ and Q8 coincide. Ma and Zhang [2008] proved this by
completely different means (see also their note [Ma and Zhang 2009]).

1. Introduction and statement of results

First, we recall the definition of the geometric quantization of a smooth and com-
pact Hamiltonian manifold. Then we show two ways of extending the notion of
geometric quantization to the case of a noncompact Hamiltonian manifold.

Let K be a compact connected Lie group, with Lie algebra k. In the Kostant–
Souriau framework, a Hamiltonian K -manifold (M, �,8) is prequantized if there
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is an equivariant Hermitian line bundle L with an invariant Hermitian connection∇
such that

(1) L(X)−∇X M = i〈8, X〉 and ∇
2
=−i�

for every X ∈ k. Here X M is the vector field on M defined by X M(m)= d
dt e−t X m|0.

The data (L ,∇) is also called a Kostant–Souriau line bundle, and8 :M→ k∗ is
the moment map. Via the equivariant Bianchi formula, the conditions of (1) imply
the relations

(2) ι(X M)�=−d〈8, X〉, X ∈ k.

Recall the notion of geometric quantization when M is compact. Choose a K -
invariant almost complex structure J on M that is compatible with � in the sense
that the symmetric bilinear form �( · , J · ) is a Riemannian metric. Let ∂L be the
Dolbeault operator with coefficients in L , and let ∂∗L be its (formal) adjoint. The
Dolbeault–Dirac operator on M with coefficients in L is DL =

√
2(∂L + ∂

∗

L),
considered as an elliptic operator from A0,even(M, L) to A0,odd(M, L). Let R(K )
be the representation ring of K .

Definition 1.1. The geometric quantization of a compact Hamiltonian K -manifold
(M, �,8) is the element QK (M) ∈ R(K ) defined as the equivariant index of the
Dolbeault–Dirac operator DL .

Consider the case of a proper Hamiltonian K -manifold M : the manifold is
(perhaps) noncompact but the moment map 8 : M→ k∗ is supposed to be proper.
Under this properness assumption, one defines the formal geometric quantization
of M as an element Q−∞K (M) that belongs to R−∞(K ) [Weitsman 2001; Paradan
2009]. Recall the definition:

Let T be a maximal torus of K . Let t∗ be the dual of the Lie algebra t of T
containing the weight lattice ∧∗, that is, α ∈ ∧∗ if iα : t→ iR is the differential of
a character of T . Let t∗

+
⊂ t∗ be a Weyl chamber, and let K̂ := ∧∗ ∩ t∗

+
be the set

of dominant weights. The ring of characters R(K ) has a Z-basis V K
µ , µ ∈ K̂ :V K

µ

is the irreducible representation of K with highest weight µ.
A representation E of K is admissible if it has finite K -multiplicities, that is,

dim(homK (V K
µ , E)) <∞ for every µ ∈ K̂ . Let

(3) R−∞(K )

be the Grothendieck group associated to the K -admissible representations. We
have an inclusion map R(K ) ↪→ R−∞(K ) and R−∞(K ) is canonically identified
with homZ(R(K ),Z). The tensor product induces an R(K )-module structure on
R−∞(K ) since E ⊗ V is an admissible representation when V and E are, respec-
tively, a finite-dimensional and an admissible representation of K .
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For any µ ∈ K̂ that is a regular value of the moment map 8, the reduced space
(or symplectic quotient) Mµ := 8

−1(K · µ)/K is a compact orbifold equipped
with a symplectic structure �µ. Moreover Lµ := (L|8−1(µ) ⊗ C−µ)/Kµ is a
Kostant–Souriau line orbibundle over (Mµ, �µ). The definition of the index of
the Dolbeault–Dirac operator carries over to the orbifold case, hence Q(Mµ)∈Z is
defined. In Section 2C, we explain how this notion of geometric quantization ex-
tends further to the case of singular symplectic quotients. So the integer Q(Mµ)∈Z

is well defined for every µ ∈ K̂ : in particular Q(Mµ)= 0 if µ /∈8(M).

Definition 1.2. Let (M, �,8) be a proper Hamiltonian K -manifold prequantized
by a Kostant–Souriau line bundle L . The formal quantization of (M, �,8) is the
element of R−∞(K ) defined by

Q−∞K (M)=
∑
µ∈K̂

Q(Mµ) V K
µ .

When M is compact, the fact that

(4) QK (M)= Q−∞K (M)

is known as the “quantization commutes with reduction” theorem. This was con-
jectured in [Guillemin and Sternberg 1982] and was first proved in [Meinrenken
1998; Meinrenken and Sjamaar 1999]. Other proofs of (4) were given in [Tian
and Zhang 1998; Paradan 2001]. For complete references on the subject, consult
[Sjamaar 1996; Vergne 2002].

We summarize the main features of the formal geometric quantization Q−∞:

Theorem 1.3 [Paradan 2009]. (1) (restriction to subgroup) Let M be a prequan-
tized Hamiltonian K -manifold that is proper. Let H ⊂ K be a closed con-
nected Lie subgroup such that M is still proper as a Hamiltonian H-manifold.
Then Q−∞K (M) is H-admissible and Q−∞K (M)|H = Q−∞H (M) in R−∞(H).

(2) (product) Let M and N be prequantized Hamiltonian K -manifolds, where M
is proper and N is compact. Then M × N is a proper prequantized Hamilton-
ian K -manifold and Q−∞K (M × N )= Q−∞K (M) ·QK (N ) in R−∞(K ).

When M is a proper Hamiltonian K -manifold, we can also define another “for-
mal geometric quantization”, denoted

(5) Q8K (M) ∈ R−∞(K ),

by localizing the index of the Dolbeault–Dirac operator DL on the set Cr(‖8‖2)
of critical points of the square of the moment map (see Section 2B for the precise
definition). This idea of nonabelian localization goes back to Witten [1992]. We
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proved in [Paradan 2003; 2009] that

(6) Q−∞K (M)= Q8K (M)

in some situations:

• M is a coadjoint orbit of a semisimple Lie group S that parametrizes a repre-
sentation of the discrete series of S.

• M is a Hermitian vector space.

In her ICM 2006 plenary lecture, Vergne [2007] conjectured that (6) holds when
Cr(‖8‖2) is compact. Recently, Ma and Zhang [2008] proved the following gen-
eralization of this conjecture.

Theorem 1.4. The equality (6) holds for any proper Hamiltonian K -manifold.

Corollary 1.5. The formal quantization map Q8 satisfies the functorial properties
listed in Theorem 1.3.

This article is dedicated to the study of the quantization map Q8. In Section 2B,
we give the precise definition of the quantization process Q8. In particular, we
refine the constant aγ that appears in [Ma and Zhang 2008, Theorem 0.1]. In
Section 2D, we explain how to compute the quantization of a point. In Section 3,
we give another proof of Theorem 1.4 by using the technique of symplectic cutting
developed in [Paradan 2009]. In Section 4, we consider the case where K =K1×K2

acts on M in such a way that the symplectic reduction M//0K1 is a smooth proper
K2-Hamiltonian manifold. We show then that the K1-invariant part of Q8K1×K2

(M)
is equal to Q82

K2
(M//0K1). In Section 5, we study the example of the cotangent

bundle of a homogeneous space: M = T∗(K/H) where H is a closed subgroup
of K .

We finish this introduction by discussing the two proofs of Theorem 1.4 in [Ma
and Zhang 2008] and in this paper. Both proofs use the Witten [1992] deformation
argument. The work of Ma and Zhang [2008] is analytic and makes a great use of
techniques initiated in [Bismut and Lebeau 1991]. One of Ma and Zhang’s main
tools is an interpretation of the transversal index as an Atiyah–Patodi–Singer type
index. In the present work, we stay on the topological/geometrical side. Our main
tools are based on localization formulas (see [Paradan 2001]) and on a symplectic
cutting technique (see [Paradan 2009]).

The approach of Ma and Zhang [2008] is different from ours, but the results are
equivalent. In [Ma and Zhang 2008, Theorem 0.5], they show that the geometric
quantization process Q8 is functorial with respect to the product (see the second
point of Theorem 1.3), and then deduce the equality Q8 = Q−∞.

I wish to thank the referees for their useful comments.
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2. Quantizations of noncompact manifolds

In this section we define the quantization process Q8, and we give another defi-
nition of the quantization process Q−∞ that uses the notion of symplectic cutting
[Paradan 2009].

2A. Transversally elliptic symbols. Here we give the basic definitions from the
theory of transversally elliptic symbols (or operators) defined in [Atiyah 1974].
For an axiomatic treatment of the index morphism, see [Berline and Vergne 1996a;
1996b; Paradan and Vergne 2009]. For a short introduction, see [Paradan 2001].

Let X be a compact K -manifold. Let p : TX→ X be the projection, and let
(−,−)X be a K -invariant Riemannian metric. If E0, E1 are K -equivariant complex
vector bundles over X, a K -equivariant morphism σ ∈ 0(TX, hom(p∗E0, p∗E1))

is called a symbol on X. The subset of all (x, v) ∈ TX where1 σ(x, v) : E0
x → E1

x
is not invertible is called the characteristic set of σ , and is denoted by Char(σ ).

In the following, the product of a symbol σ by a complex vector bundle F→M ,
is the symbol

σ ⊗ F

defined by σ ⊗ F(x, v) = σ(x, v)⊗ IdFx from E0
x ⊗ Fx to E1

x ⊗ Fx . Note that
Char(σ ⊗ F)= Char(σ ).

Let TK X be the following subset of TX:

TK X =
{
(x, v) ∈ TX | (v, XX(x))X = 0 for all X ∈ k

}
.

A symbol σ is elliptic if σ is invertible outside a compact subset of TX (that
is, Char(σ ) is compact), and is K -transversally elliptic if the restriction of σ to
TK X is invertible outside a compact subset of TK X (that is, Char(σ ) ∩ TK X is
compact). An elliptic symbol σ defines an element in the equivariant K0-theory of
TX with compact support, which is denoted by K0

K (TX), and the index of σ is a
virtual finite-dimensional representation of K , which we denote IndexK

X (σ )∈ R(K )
[Atiyah and Segal 1968; Atiyah and Singer 1968a; 1968b; 1971].

Consider the R(K )-submodule

R−∞tc (K )⊂ R−∞(K )

formed by all the infinite sums
∑

µ∈K̂ mµV K
µ where the map µ ∈ K̂ 7→ mµ ∈ Z

has at most a polynomial growth. The R(K )-module R−∞tc (K ) is the Grothendieck
group associated to the trace class virtual K -representations. We can associate to
any V ∈ R−∞tc (K ) its trace, k→ Tr(k, V ), which is a generalized function on K
invariant by conjugation. Then the trace defines a morphism of R(K )-modules

(7) R−∞tc (K ) ↪→ C−∞(K )Ad,

1The map σ(x, v) will be also denote σ |x (v)
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where C−∞(K )Ad is the vector space of generalized function on K invariant by
conjugation.

A K -transversally elliptic symbol σ defines an element of K0
K (TK X), and the

index of σ is defined as a trace class virtual representation of K , which we still
denote IndexK

X (σ ) ∈ R−∞tc (K ) [Atiyah 1974].
Any elliptic symbol of TX is K -transversally elliptic, hence we have a restriction

map K0
K (TX)→K0

K (TK X) and a commutative diagram

(8)

K0
K (TX) //

IndexK
X

��

K0
K (TK X)

IndexK
X

��
R(K ) // R−∞tc (K ).

Using the excision property, one can easily show that the index map

IndexK
U :K

0
K (TK U)→ R−∞tc (K )

is still defined when U is a K -invariant relatively compact open subset of a K -
manifold (see [Paradan 2001, Section 3.1]).

Suppose now that the group K is equal to the product K1×K2. When a symbol σ
is (K1×K2)-transversally elliptic we will be interested in the K1-invariant part of
its index, which we denote by

[IndexK1×K2
X (σ )]K1 ∈ R−∞tc (K2).

An intermediate notion between the “ellipticity” and “(K1×K2)-transversal ellip-
ticity” is “K1-transversal ellipticity”. When a (K1×K2)-equivariant symbol σ
is K1-transversally elliptic, its index IndexK1×K2

X (σ ) ∈ R−∞tc (K1 × K2), viewed
as a generalized function on K1 × K2, is smooth relative to the variable in K2

[Atiyah 1974; Berline and Vergne 1996b; Paradan and Vergne 2009]. It implies
that IndexK1×K2

X (σ )=
∑

λ θ(λ)⊗ V K1
λ with

θ(λ) ∈ R(K2) for all λ ∈ K̂1.

In particular, [IndexK1×K2
X (σ )]K1 = θ(0) belongs to R(K2).

Recall the multiplicative property of the index map for the product of manifolds
that was proved in [Atiyah 1974]. Consider a compact Lie group K2 acting on two
manifolds X1 and X2, and assume that another compact Lie group K1 acts on X1

commuting with the action of K2.
The external product of complexes on TX1 and TX2 induces a multiplication

(see [Atiyah 1974]):

� :K0
K1×K2

(TK1X1)×K0
K2
(TK2X2)→K0

K1×K2
(TK1×K2(X1×X2)).
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Recall the definition of the external product: For k=1, 2, consider equivariant mor-
phisms2 σk :E

+

k →E−k on TXk . Consider the equivariant morphism on T(X1×X2)

σ1� σ2 : E
+

1 ⊗E+2 ⊕E−1 ⊗E−2 → E−1 ⊗E+2 ⊕E+1 ⊗E−2

defined by

(9) σ1� σ2 =

(
σ1⊗ Id −Id⊗ σ ∗2
Id⊗ σ2 σ ∗1 ⊗ Id

)
.

We see that the set Char(σ1�σ2)⊂TX1×TX2 is equal to Char(σ1)×Char(σ2). Sup-
pose now that the morphisms σk are respectively Kk-transversally elliptic. Since
TK1×K2(X1 × X2) 6= TK1X1 × TK2X2, the morphism σ1 � σ2 is not necessarily
(K1×K2)-transversally elliptic. Nevertheless, if σ2 is almost homogeneous, then
the morphism σ1�σ2 is (K1×K2)-transversally elliptic (see [Paradan and Vergne
2009]). So the exterior product a1� a2 is the K0-theory class defined by σ1� σ2,
where ak = [σk] and σ2 is almost homogeneous.

The following property will be used frequently; see [Atiyah 1974, Lecture 3;
Paradan and Vergne 2009].

Theorem 2.1 (multiplicative property). For any [σ1] ∈ K0
K1×K2

(TK1X1) and any
[σ2] ∈K0

K2
(TK2X2) we have

IndexK1×K2
X1×X2

([σ1]� [σ2])= IndexK1×K2
X1

([σ1])⊗ IndexK2
X2
([σ2]).

The product of IndexK1×K2
X1

([σ1]) ∈ C−∞(K1 × K2)
Ad with IndexK2

X2
([σ2]) ∈

C−∞(K2)
Ad is well defined since the generalized function

(k1, k2) 7→ IndexK1×K2
X1

([σ1])(k1, k2)

is smooth relative to the variable k2 ∈ K2.
We finish this section by recalling the notion of limit in R−∞(K ).

Definition 2.2. The support of χ :=
∑

µ∈K̂ aµV K
µ ∈ R−∞(K ) is the set of µ ∈ K̂

such that aµ 6= 0.

We will say that χ ∈ R−∞(K ) is supported outside B ⊂ t∗ if the support of χ
does not intersect B. Denote by O(r) any character of R−∞(K ) that is supported
outside the ball Br = {ξ ∈ t∗ | ‖ξ‖< r}.

Definition 2.3. A sequence χn ∈ R−∞(K ) converges to χ∞ when n goes to infinity
if for any r > 0 there exists N ∈ N such that

χ∞−χn = O(r)

for any n ≥ N .

2To simplify notation, we do not distinguish between vector bundles on TX and on X.
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We will be interested in an infinite sum
∑

i∈I ψi of generalized characters. Here∑
i∈I ψi converges in R−∞(K ) if for any r > 0 the set

{i ∈ I | support(ψi )∩ Br 6=∅}

is finite.

2B. Definition and first properties of Q8. Let (M, �,8) be a proper Hamiltonian
K -manifold prequantized by an equivariant line bundle L . Let J be an invariant
almost complex structure compatible with �. Let p : TM→ M be the projection.

To begin, we describe the principal symbol of the Dolbeault–Dirac operator
√

2(∂L + ∂
∗

L). The complex vector bundle (T∗M)0,1 is K -equivariantly identified
with the tangent bundle TM equipped with the complex structure J . Let h be the
Hermitian structure on (TM, J ) defined by h(v,w) = �(v, Jw)− i�(v,w) for
v,w ∈ TM . The symbol

Thom(M, J ) ∈ 0
(
TM, hom(p∗(∧even

C TM), p∗(∧odd
C TM))

)
at (m, v) ∈ TM is equal to the Clifford map

(10) cm(v) : ∧
even
C Tm M→∧odd

C Tm M,

where cm(v).w=v∧w−ι(v)w forw∈∧•
C

Tm M . Here ι(v) :∧•
C

Tm M→∧•−1
C

Tm M
denotes the contraction map relative to h. Since cm(v)

2
=−‖v‖2Id, the map cm(v)

is invertible for all v 6= 0. Hence the characteristic set of Thom(M, J ) corresponds
to the 0-section of TM .

It is a classical fact that the principal symbol of the Dolbeault–Dirac operator
√

2(∂L + ∂
∗

L) is equal to3

(11) Thom(M, J )⊗ L

(see [Berline et al. 2004, Proposition 3.67]). Here also, Char(Thom(M, J )⊗ L)
coincides with the 0-section of TM .

Remark 2.4. If the manifold M is a product M1×M2, the symbol Thom(M, J )⊗L
is equal to the product σ1� σ2 where σk = Thom(Mk, Jk)⊗ Lk .

When M is compact, the symbol Thom(M, J ) ⊗ L is elliptic and then de-
fines an element of the equivariant K-group of TM . The topological index of
Thom(M, J )⊗ L ∈ K0

K (TM) is equal to the analytical index of the Dolbeault–
Dirac operator

√
2(∂L + ∂

∗

L):

(12) QK (M)= IndexK
M(Thom(M, J )⊗ L) in R(K ).

3Here we use an identification T∗M ' TM given by an invariant Riemannian metric.
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When M is not compact the topological index of Thom(M, J )⊗ L is not defined.
To extend the notion of geometric quantization to this setting we deform the sym-
bol Thom(M, J )⊗ L in the “Witten” way [Paradan 2001; 2003]. Consider the
identification ξ 7→ ξ̃ , k∗→ k defined by a K -invariant scalar product on k∗. Define
the Kirwan vector field on M as

(13) κm = (8̃(m))M(m), m ∈ M.

Definition 2.5. The symbol Thom(M, J )⊗ L pushed by the vector field κ is the
symbol cκ defined by the relation

cκ |m(v)= Thom(M, J )⊗ L|m(v− κm)

for any (m, v) ∈ TM . More generally, if E→ M is an equivariant complex vector
bundle, one defines the symbol cκE with the same relation (with E at the place of L).

Note that cκ |m(v) is invertible except if v = κm . If furthermore v belongs to the
subset TK M of tangent vectors orthogonal to the K -orbits, then v= 0 and κm = 0.
Indeed κm is tangent to K ·m while v is orthogonal.

Since κ is the Hamiltonian vector field of the function −1
2 ‖8‖

2, the set of zeros
of κ coincides with the set Cr(‖8‖2) of critical points of ‖8‖2. Finally we have

Char(cκ)∩TK M ' Cr(‖8‖2).

In general Cr(‖8‖2) is not compact, so cκ does not define a transversally elliptic
symbol on M . To define a kind of index of cκ , we proceed as follows. For any
invariant open relatively compact subset U ⊂ M the set

Char(cκ |U )∩TK U ' Cr(‖8‖2)∩U

is compact when

(14) ∂U ∩Cr(‖8‖2)=∅.

When (14) holds, denote by

(15) Q8K (U ) := IndexK
U (c

κ
|U ) ∈ R−∞tc (K )

the equivariant index of the transversally elliptic symbol cκ |U .
It will be useful to understand the dependence of the generalized character

Q8K (U ) relative to the data (U, �, L). So consider two proper Hamiltonian K -
manifolds (M, �,8) and (M ′, �′,8′) respectively prequantized by the line bun-
dles L and L ′. Let V ⊂ M and V ′ ⊂ M ′ two invariant open subsets.

Proposition 2.6. • The generalized character Q8K (U ) does not depend of the
choice of an invariant almost complex structure on U compatible with �|U .
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• Suppose that there exists an equivariant diffeomorphism9 :V→V ′ such that

(1) 9∗(8′)=8,
(2) 9∗(L ′)= L ,
(3) there exists a homotopy of symplectic forms taking 9∗(�′|V ′) to �|V .

Let U ′ ⊂U ′ ⊂ V ′ be an invariant open relatively compact subset such that
∂U ′ satisfies (14). Take U =9−1(U ′). Then ∂U satisfies (14) and

Q8
′

K (U
′)= Q8K (U ) ∈ R−∞(K ).

Proof. To prove the first point, let cκi |U , i=0, 1 be the transversally elliptic symbols
defined with the compatible almost complex structure Ji , i = 0, 1. Since the space
of compatible almost complex structure is contractible, there exists a homotopy Jt ,
t ∈ [0, 1] of almost complex structures linking J0 and J1. By [Paradan 2001,
Lemma 2.2], there exists an invertible bundle map A∈0(U,End(TU )), homotopic
to the identity, such that A ◦ J0 = J1 ◦ A. With the help of A we prove then that
the symbols cκ0 |U and cκ1 |U define the same class in K0

K (TK U ) (see [Paradan 2001,
Lemma 2.2]). Hence their equivariant indices coincide.

To prove the second point, observe that the characters Q8K (U ) and Q8
′

K (U
′) are

computed as the equivariant index of the symbols cκ |U and cκ ′ |U ′ . Let c̃κ |U the
pull back of cκ ′ |U ′ by 9. Thanks to conditions (1) and (2), the only thing which
differs in the definitions of the symbols cκ |U and c̃κ |U are the almost complex
structures J and J̃ =9∗(J ′): the first one is compatible with �|V and the second
one with 9∗(�′|V ′). Since these two symplectic structures are homotopic, the
almost complex structures J and J̃ are also homotopic. So we can conclude as in
the first point. �

We describe the critical points of ‖8‖2, when the moment map 8 is proper. We
know that m ∈ Cr(‖8‖2) if and only if β̃M(m) = 0 for β = 8(m). Hence the set
Cr(‖8‖2) has the decomposition

(16) Cr(‖8‖2)=
⋃
β∈k∗

M β̃
∩8−1(β)=

⋃
β∈B

K · (M β̃
∩8−1(β))︸ ︷︷ ︸
Zβ

,

where B is a subset of the Weyl chamber t∗
+

. The set of singular values of ‖8‖2

is then {‖β‖2, β ∈B}. Each part Zβ is compact, hence Cr(‖8‖2) is compact if B

is finite. Denote by Br ⊂ t∗ the open ball {ξ ∈ t∗ | ‖ξ‖< r}.

Proposition 2.7. • For any r > 0, the set B∩ Br is finite.

• Cr(‖8‖2) is compact if and only if B is finite.

• The set of singular values of ‖8‖2 : M→ R forms a sequence 0 ≤ r1 < r2 <

· · · < rk < · · · that is finite if and only if Cr(‖8‖2) is compact. In the other
case, limk→∞ rk =∞.



FORMAL GEOMETRIC QUANTIZATION II 179

Proof. To prove the first point, let r > 0 and consider the relatively compact in-
variant open subset Vr := 8

−1({ξ ∈ k∗ | ‖ξ‖ < r}) and the infinitesimal action
of the Lie algebra t on Vr . For any vector subspace a ⊂ t, define the T -invariant
submanifold

Vr (a) := {x ∈ Vr | Stabilizert(x)= a}.

Since Vr is relatively compact, it has finitely many types of stabilizers a1, . . . , ap.
Hence we have a decomposition Vr = Vr (a1)∪ · · · ∪Vr (ap) where each Vr (ak)

has a finite number, say n(r, k), of connected components. We will show that

(17)
p∑

k=1

n(r, k)≥ # B∩ Br .

Let Cr be the finite collection formed by the connected components of the man-
ifold Vr (ak), 1 ≤ k ≤ p. Let C′r ⊂ Cr be the subset formed by the connected
components F for which F β̃∩8−1(β) 6=∅ for some β∈B∩Br . The inequality (17)
follows from the existence of a surjective map θ : C′r →B∩ Br

Let F ∈ C′r . Suppose that there exist β, β ′ in B ∩ Br such that F β̃ ∩8−1(β)

and F β̃ ′ ∩8−1(β ′) are nonempty. It implies first that β̃, β̃ ′ ∈ ak . The relation (2)
shows that the function x ∈ F 7→ 〈8(x), Y 〉 is constant for any Y ∈ ak . If we take
Y = β̃, the fact that F intersects both 8−1(β) and 8−1(β ′) gives ‖β‖2 = (β, β ′).
By taking Y = β̃ ′, we have also ‖β ′‖2 = (β, β ′). Finally

‖β −β ′‖2 = ‖β‖2+‖β ′‖2− 2(β, β ′)= 0,

hence β = β ′. Define θ : C′r → B ∩ Br as follows: θ(F) is the unique element
β ∈B∩ Br such that F β̃ ∩8−1(β) 6=∅. It is easy to check that θ is onto.

The two other points are a direct consequence of the first one. �

To each regular value R of Cr(‖8‖2) associate the invariant open subset M<R :=

{‖8‖2 < R} that satisfies (14). The restriction cκ |M<R defines then a transversally
elliptic symbol on M<R . Let Q8K (M<R) be its equivariant index. We show that
Q8K (M<R) has a limit when R→∞.

For any β ∈ B, consider a relatively compact open invariant neighborhood Uβ

of Zβ such that Cr(‖8‖2)∩ Uβ = Zβ . By the excision property, the generalized
character Q8K (Uβ) = IndexK

Uβ
(cκ |Uβ

) does not depend of the choice of Uβ . To
simplify notation, use the following:

Definition 2.8. Denote by Q
β

K (M)∈ R−∞tc (K ) the equivariant 4 of the transversally
elliptic symbol cκ |Uβ

.
When E→ M is an equivariant complex vector bundle, denote by R R

K

β (M, E)
the equivariant index of the transversally elliptic symbol cκE |Uβ

.

4The index of cκ |Uβ was denoted R R
K

β (M, L) in [Paradan 2001].
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A simple application of the excision property [Paradan 2001, Section 4] gives

(18) Q8K (M<R)=
∑

β∈B∩B√R

Q
β

K (M),

where the sum is finite, thanks to Proposition 2.7.
For a dominant weight γ ∈ K̂ , the positive number

aγ = ‖γ + ρ‖2−‖ρ‖2 ≥ ‖γ ‖2

corresponds to the eigenvalue of the Casimir operator acting on the irreducible
representation V K

γ . Ma and Zhang [2008, Theorem 2.1] prove that the support of
the generalized character Q

β

K (M) is contained in {γ ∈ K̂ | aγ ≥ ‖β‖2}.
We propose another proof which refines Ma and Zhang’s result and uses a dif-

ferent method. They used Atiyah–Patodi–Singer index theory on manifolds with
boundary whereas we use localization and induction formulae for our transversally
elliptic index.

Theorem 2.9. The generalized character Q
β

K (M) is supported outside the open
ball B‖β‖.

Proof. The proof uses computations done in [Paradan 2001].
First consider the case where β 6=0 is a K -invariant element of B. Let i :Tβ ↪→T

be the compact torus generated by β. If F is Z-module denote by F⊗̂ R−∞(Tβ)
the Z-module formed by the infinite formal sums

∑
a Ea ha taken over the set of

weights of Tβ , where Ea ∈ F for every a.
Since Tβ lies in the center of K , the morphism π : (k, t) ∈ K ×Tβ 7→ kt ∈ K

induces a map π∗ : R−∞(K )→ R−∞(K ) ⊗̂ R−∞(Tβ).
The normal bundle N of M β̃ in M inherits a canonical complex structure JN

on the fibers. Denote by N→ M β̃ the complex vector bundle with the opposite
complex structure. The torus Tβ is included in the center of K , so the bundle N

and the virtual bundle 0 : ∧•
C

N := ∧even
C

N→∧odd
C

N carry a K ×Tβ-action. Thus
they can be considered as elements of K0

K×Tβ
(M β̃)=K0

K (M
β̃)⊗ R(Tβ).

In [Paradan 2001], we defined an inverse of ∧•
C

N,

[∧
•

CN ]−1
β ∈K0

K (M
β̃) ⊗̂ R−∞(Tβ),

which is polarized by β. This means that [∧•
C

N ]−1
β =

∑
a Na ha with Na 6= 0 only

if (a, β)≥ 0. [Paradan 2001, Theorem 5.8] proved the localization formula

(19) π∗[Q
β

K (M)] = R RK×Tβ
β

(
M β̃, L|M β̃ ⊗[∧

•

CN ]−1
β

)
,
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as an equality in R−∞(K ) ⊗̂ R−∞(Tβ). Let A be the set of connected components
of M β̃ that intersect8−1(β). For any equivariant vector bundle E on M β̃ , we have

R RK×Tβ
β (M β̃, E)=

∑
Z∈A

R RK×Tβ
β (Z , E |Z ).

For any weight µ, denote by Cµ the 1-dimensional representation of the maximal
torus T (which contains Tβ). We use now the crucial lemma which is a direct
consequence of [Paradan 2001, Lemma 9.4].

Lemma 2.10. The irreducible representation V K
µ occurs in R RK×Tβ

β (Z , E |Z ) only
if the vector bundle HomTβ (Cµ, E |Z ) is nonzero.

Thus V K
µ occurs in the character R RK×Tβ

β (M β̃, E) only if HomTβ (Cµ, E |Z ) 6=0
for some Z ∈A.

For E = L|M β̃ ⊗ [∧
•

C
N ]−1

β and any Z ∈ A, we check that the vector bundle
HomTβ (Cµ, E |Z ) is nonzero only if (µ, β) ≥ ‖β‖2. Hence V K

µ occurs in the
character Q

β

K (M) only if (µ, β)≥ ‖β‖2.
Now consider the case were β ∈ B is not a K -invariant element. Let σ be

the unique open face of the Weyl chamber t∗
+

which contains β. Let Kσ be the
corresponding stabilizer subgroup. Following [Guillemin and Sternberg 1984], we
introduce a Kσ -invariant open subset Uσ of k∗σ as Uσ := Kσ · {y ∈ t∗

+
| K y ⊂ Kσ }.

By construction, Uσ is a slice for the coadjoint action at any ξ ∈ σ ; see [Lerman
et al. 1998, Definition 3.1]. This means that the map K ×Uσ → k∗, (k, ξ) 7→ k · ξ
factors through an inclusion K×Kσ

Uσ ↪→k∗. The symplectic cross-section theorem
[Guillemin and Sternberg 1984] asserts that the preimage

Yσ :=8
−1(Uσ )

is a Kσ -invariant symplectic submanifold prequantized by the line bundle L|Yσ
.

The restriction of 8 to Yσ is a moment map 8σ :Yσ → k∗σ that is proper as a map
from Yσ into Uσ . The set

Kσ · (Y
β̃
σ ∩8

−1
σ (β))= M β̃

∩8−1(β)

is a component of Cr(‖8σ‖2). Let Q
β

Kσ
(Yσ ) ∈ R−∞tc (Kσ ) be the corresponding

character (see Definition 2.8).
In [Paradan 2001, Theorem 7.5], we proved the induction formula

(20) Q
β

K (M)= HolK
Kσ

(
Q
β

Kσ
(Yσ )

)
,

where HolK
Kσ
: R−∞(Kσ ) → R−∞(K ) is the holomorphic induction map. See

[Paradan 2001, Appendix] for the definition and properties of these induction maps.
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We know from the previous case that

Q
β

Kσ
(Yσ )=

∑
µ∈K̂σ

mµV Kσ
µ ,

where mµ 6= 0 implies (µ, β)≥ ‖β‖2. Then, with (20), we get

Q
β

K (M)=
∑

(µ,β)≥‖β‖2

mµ HolK
Kσ
(V Kσ
µ )

=

∑
(µ,β)≥‖β‖2

mµ HolK
T (t

µ),

where HolK
T : R−∞(T )→ R−∞(K ) is the holomorphic induction map. Here we

use that HolK
T = HolK

Kσ
◦HolKσ

T and that V Kσ
µ = HolKσ

T (tµ) for µ ∈ K̂σ ⊂ ∧
∗ (see

[Paradan 2001, Appendix]).
Let ρ be half the sum of the positive roots. The term HolK

T (t
µ) is equal to 0

when µ+ρ is not a regular element of t∗. When µ+ρ is a regular element of t∗,
we have HolK

T (t
µ)= (−1)|ω|V K

µω
, where

µω = ω(µ+ ρ)− ρ

is dominant for a unique element ω of the Weyl group.
Finally, a representation V K

λ appears in the character Q
β

K (M) only if λ=µω for
a weight µ satisfying (µ, β)≥ ‖β‖2. Hence, for such λ, we have

‖λ‖ = ‖µ+ ρ−ω−1ρ‖

≥

(
µ+ ρ−ω−1ρ,

β

‖β‖

)
≥ ‖β‖.

In the last inequality we use that (ρ −ω−1ρ, β) ≥ 0 since ρ −ω−1ρ is a sum of
positive roots, and β ∈ t∗

+
. �

With the help of Theorem 2.9 and decomposition (18), we see that the multi-
plicity of V K

γ in Q8K (M<R) does not depend on the regular value R > ‖γ ‖2.

Definition 2.11. The generalized character Q8K (M) is defined as the limit of char-
acters Q8K (M<R) in R−∞(K ) when R goes to infinity. In other words

(21) Q8K (M)=
∑
β∈B

Q
β

K (M).

For any regular value R of ‖8‖2 we have the useful relation

(22) Q8K (M)= Q8K (M<R)+ O(
√

R).
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2C. Quantization of a symplectic quotient. We will now explain how to define
the geometric quantization of singular compact Hamiltonian manifolds, where
“singular” means that the manifold is obtained by symplectic reduction.

Let (N , �) be a smooth symplectic manifold equipped with a Hamiltonian ac-
tion of K1 × K2. Denote by (81,82) : N → k∗1 × k∗2 the corresponding moment
map. Assume that N is prequantized by a (K1×K2)-equivariant line bundle L and
suppose that the map81 is proper. One wants to define the geometric quantization
of the compact symplectic quotient

N//0K1 :=8
−1
1 (0)/K1

which is in general singular.
Let κ1 be the Kirwan vector field attached to the moment map 81. Denote

by cκ1 the symbol Thom(N , J )⊗ L pushed by the vector field κ1. For any regular
value R1 of ‖81‖

2, consider the restriction cκ1 |N<R1
to the invariant, open subset

N<R1 := {‖81‖
2 < R1}. The symbol cκ1 |N<R1

is (K1×K2)-equivariant and K1-
transversally elliptic, hence we can consider its index

IndexK1×K2
N<R1

(cκ1 |N<R1
) ∈ R−∞(K1× K2),

which is smooth relative to the parameter in K2. Consider the following extension
of Definition 2.11.

Definition 2.12. The generalized character Q81
K1×K2

(N ) is defined as the limit in
R−∞(K1× K2) of IndexK1×K2

N<R1
(cκ1 |N<R1

) when R1 goes to infinity.

Here Cr(‖81‖
2) is equal to the disjoint union of the compact (K1×K2)-invariant

subsets Zβ1 :=K1·(M β̃1∩8−1
1 (β1)), β1∈B1. For β1∈B1, consider an invariant rel-

atively compact open subset Uβ1 such that: Zβ1 ⊂Uβ1 and Zβ1 =Cr(‖81‖
2)∩Uβ1 .

Let Q
β1
K1×K2

(N ) ∈ R−∞(K1×K2) be the equivariant index of the K1-transversally
elliptic symbol cκ1 |Uβ1

. The K1-transversality condition imposes that Q
β1
K1×K2

(N )=∑
λ θ

β1(λ)⊗ V K1
λ with

θβ1(λ) ∈ R(K2) for all λ ∈ K̂1.

We have the following extension of Theorem 2.9:

Theorem 2.13. We have

Q
β1
K1×K2

(N )=
∑
λ∈K̂1

θβ1(λ)⊗ V K1
λ ,

where θβ1(λ) 6= 0 only if ‖λ‖ ≥ ‖β1‖.

Proof. The proof works exactly like that of Theorem 2.9. �
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We now explain the “quantization commutes with reduction theorem”, or why
we can consider the geometric quantization of

N//0K1 :=8
−1
1 (0)/K1

as the K1-invariant part of Q81
K1×K2

(N ).
First suppose that 0 is a regular value of81. Then N//0K1 is a compact symplec-

tic orbifold equipped with a Hamiltonian action of K2: the corresponding moment
map is induced by the restriction of82 to8−1

1 (0). The symplectic quotient N//0K1

is prequantized by the line orbibundle

L0 := (L|8−1
1 (0))/K1.

Definition 1.1 extends to the orbifold case. We can still define the geometric quanti-
zation of N//0K1 as the index of an elliptic operator and denote it by QK2(N//0K1)∈

R(K2).

Theorem 2.14. If 0 is a regular value of 81, the K1-invariant part of Q81
K1×K2

(N )
is equal to QK2(N//0K1) ∈ R(K2).

Suppose now that 0 is not a regular value of 81. Let T1 be a maximal torus
of K1, and let t∗1,+ ⊂ t∗1 be a Weyl chamber. Since 81 is proper, the convexity
theorem says that the image of 81 intersects t∗1,+ in a closed locally polyhedral
convex set, which we denote by 1K1(N ) [Lerman et al. 1998].

Consider an element a ∈ 1K1(N ) which is generic and sufficiently close to
0 ∈ 1K1(N ). Denote by (K1)a the subgroup of K1 which stabilizes a. When
a ∈1K1(N ) is generic, one can show (see [Meinrenken and Sjamaar 1999]) that

N//a K1 :=8
−1
K1
(a)/(K1)a

is a compact Hamiltonian K2-orbifold, and that

La := (L|8−1
K1
(a))/(K1)a.

is a K2-equivariant line orbibundle over N//a K1. We can then define, like in
Definition 1.1, the element QK2(N//a K1) ∈ R(K2) as the equivariant index of the
Dolbeault–Dirac operator on N//a K1 (with coefficients in La).

Theorem 2.15. The K1-invariant part of Q81
K1×K2

(M) is equal to QK2(N//a K1) ∈

R(K2). In particular, the elements QK2(N//a K1) do not depend on the choice of
the generic element a ∈1K1(N ), when a is sufficiently close to 0.

Proofs of Theorems 2.14 and 2.15. When N is compact and K2 = {e}, the proofs
can be found in [Meinrenken and Sjamaar 1999; Paradan 2001]. We explain briefly
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how the K0-theoretic proof of [Paradan 2001] extends naturally to our case. Like
in Definition 2.11, we have the decomposition

Q81
K1×K2

(N )=
∑
β∈B1

Q
β1
K1×K2

(N ),

and Theorem 2.13 implies [Qβ1
K1×K2

(N )]K1 = 0 if β1 6= 0. This proves the first step:

[Q81
K1×K2

(N )]K1 = [Q0
K1×K2

(N )]K1 .

The analysis of the term [Q0
K1×K2

(N )]K1 is undertaken in [Paradan 2001] when
K2 = {e}: this term is equal either to Q(N//0K1) when 0 is a regular value (see
[Paradan 2001, Section 6.2]), or to Q(N//a K1) with a generic (see [Paradan 2001,
Section 7.4]). It works similarly with an action of a compact Lie group K2. �

Definition 2.16. The geometric quantization of N//0K1 :=8
−1
1 (0)/K1 is taken as

the K1-invariant part of Q81
K1×K2

(N ). Denote it by QK2(N//0K1) ∈ R(K2).

2D. Quantization of points. Let (M, �,8) be a proper Hamiltonian K -manifold
prequantized by a Kostant–Souriau line bundle L . Let µ∈ K̂ be a dominant weight
such that 8−1(K ·µ) is a K -orbit in M . Let mo

∈8−1(µ) so that

8−1(K ·µ)= K ·mo.

Then the reduced space Mµ := 8
−1(K ·µ)/K is a point. The aim of this section

is to compute the quantization of Mµ: Q(Mµ) ∈ Z.
The stabilizer subgroup H of mo is contained in the subgroup Kµ⊂ K that fixes

µ ∈ t∗. We have a linear action of H on the 1-dimensional vector space Lmo ⊂ L .
Let kµ be the Lie algebra of Kµ. We recall why the Lie algebra morphism

iµ : kµ → iR integrates in a character χµ of Kµ. The group Kµ, which is con-
nected, decomposes as Kµ = [Kµ, Kµ]Zµ, where Zµ is the connected compo-
nent of the center of Kµ. For the maximal torus T , we have T = TµZµ with
Tµ = T ∩ [Kµ, Kµ] = exp(t∩ [kµ, kµ]). The morphism iµ : t→ iR integrates in
a character χT

µ of T which is trivial on Tµ since 〈µ, [kµ, kµ]〉 = 0. Hence we can
define the character χµ as being trivial on [Kµ, Kµ], and equal to χT

µ on Zµ.
Let C−µ be the 1-dimensional representation of Kµ associated to the charac-

ter χ−1
µ . Denote by χ the character of H defined by the 1-dimensional representa-

tion Cχ := Lmo ⊗C−µ. We know from the Kostant formula (1) that χ = 1 on the
identity component H o

⊂ H .

Theorem 2.17. We have

(23) Q(Mµ)=

{
1 if χ = 1 on H,
0 otherwise.
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This theorem tells us in particular that Q(Mµ)= 1 when the stabilizer subgroup
H ⊂ K of a point mo

∈8−1(µ) is connected.

Proof. Let N = M × K ·µ be the proper Hamiltonian K -manifold which is pre-
quantized by the line bundle L N := L ⊗ [C−µ]. Denote by 8N the moment map
on N . Since 8−1(K · µ) is a K -orbit in M , we see that 8−1

N (0) is the K -orbit
through no

:= (mo, µ) where mo
∈8−1(µ). Note that H is the stabilizer subgroup

of no.
Let Q8N

K (N ) ∈ R−∞(K ) be the formal quantization of N through the proper
map 8N . We know by Theorem 2.15 and Definition 2.16 that

Q(Mµ)= [Q
8N
K (N )]K

= [Q0
K (N )]

K ,

where Q0
K (N ) depends only of a neighborhood of 8−1

N (0).
The orbit K · no ↪→ N is an isotropic embedding since it is the 0-level of the

moment map 8N . To describe a K -invariant neighborhood of K · no in N we can
use the normal-form recipe of Marle, Guillemin and Sternberg.

First consider, following [Weinstein 1979], the symplectic normal bundle

(24) V := T(K · no)⊥/T(K · no),

where the orthogonal ⊥ is taken relative to the symplectic 2-form. We have

V= K ×H V,

where the vector space V := Tno(K · no)⊥/Tno(K · no) inherits a canonical sym-
plectic structure �V and a Hamiltonian action of the group H . Let 8V : V → h∗

be the corresponding moment map.
Consider now the symplectic manifold

(25) Ñ := V⊕T∗(K/H)= K ×H
(
(k/h)∗⊕ V

)
.

The action of K on Ñ is Hamiltonian with moment map 8Ñ : Ñ → k∗ given by

(26) 8Ñ ([k; ξ, v])= k · (ξ +8V (v)) for k ∈ K , ξ ∈ (k/h)∗, v ∈ V .

The Hamiltonian K -manifold Ñ is prequantized by the line bundle L Ñ :=K×H Cχ .
The local normal form theorem (see [Guillemin and Sternberg 1984; Sjamaar

and Lerman 1991, Proposition 2.5]) tells us that there exists a K -Hamiltonian iso-
morphism ϒ : U1→ U2 between a K -invariant neighborhood U1 of K · no in N ,
and a K -invariant neighborhood U2 of K/H in Ñ . This isomorphism ϒ , when
restricted to K · no, corresponds to the natural isomorphism K · no

→ K/H .
We check that

{8Ñ = 0} = K ×H {8V = 0} and Cr(‖8Ñ‖
2)= K ×H Cr(‖8V ‖

2).
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See (30). Let κV be the Kirwan vector field associated to the Hamiltonian action
of H on (V, �V ). A simple computation gives

�(κV (v), v)=−2‖8V (v)‖
2,

which implies that Cr(‖8V ‖
2)={8V = 0} and then Cr(‖8Ñ‖

2)={8Ñ = 0}. Note
that {8V = 0} is a cone in V since the map 8V is quadratic. The map ϒ sends
{8N = 0} ∩ U1 onto {8Ñ = 0} ∩ U2. Our hypothesis imposes that {8N = 0}
is reduced to a K -orbit, therefore the cone {8V = 0} is reduced to {0}; this
last point is equivalent to the fact that 8V (and then 8Ñ ) is proper map (see
[Paradan 2009, Lemma 5.2]).

We get the equalities

(27) Q0
K (N )= Q0

K (Ñ )= Q8Ñ
K (Ñ ).

The first equality follows from Proposition 2.6 (applied to the isomorphism ϒ),
and the second one is due to the fact that Cr(‖8Ñ‖

2)=8−1
Ñ
(0).

Let IndK
H : R−∞(H)→ R−∞(K ) be the induction map that is defined by the

relation 〈IndK
H (ϕ), E〉 = 〈ϕ, E |H 〉 for any ϕ ∈ R−∞(H) and E ∈ R(K ). Note that

[IndK
H (ϕ)]

K
= 〈IndK

H (ϕ),C〉 = 〈ϕ,C〉 = [ϕ]H .

Since 8V : V → h∗ is proper, one can consider the quantization of the vector
space V through the moment map8V : Q8V

H (V )∈ R−∞(H). In the next proposition
we consider an H -invariant complex structure JV on V which is compatible with
the symplectic structure�V , and V ∗ denotes the complex H -module homC(V,C).

Proposition 2.18. • We have

(28) Q8Ñ
K (Ñ )= IndK

H (Q
8V
H (V )⊗Cχ ).

• The formal quantization Q8V
H (V ) coincides, as a generalized H-module, to

the H-module S(V ∗) of complex polynomial function on V .

• The set [S(V ∗)]H
o

of polynomials invariant by the connected component H o

is reduced to the scalars.

With Proposition 2.18, we can finish proving Theorem 2.17 with a calculation:

Q(Mµ)= [Q
8
K (N )]

K

= [Q8Ñ
K (Ñ )]K

= [Q8V
H (V )⊗Cχ ]

H

= [S(V ∗)⊗Cχ ]
H
= [Cχ ]

H .

Proof of Proposition 2.18. The first point is implied by the induction property
defined by Atiyah (see [Paradan 2001, Section 3.4]) by the following argument: We
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work with the H -manifold5 Y= k/h⊕V and the H -equivariant map j :Y ↪→ Ñ :=
K ×H Y, y 7→ [e, y].

Notice6 that TÑ ' K ×H (k/h⊕TY) and that TK Ñ ' K ×H (TH Y). Hence the
map j induces an isomorphism j∗ : K0

H (TH Y)→ K0
K (TK Ñ ). By [Atiyah 1974,

Theorem 4.1], the diagram

(29)

K0
H (TH Y)

j∗ //

IndexH
Y

��

K0
K (TK Ñ )

IndexK
Ñ

��
R−∞(H)

IndK
H

// R−∞(K )

is commutative. The tangent bundle TÑ is equivariantly diffeomorphic to

K ×H [k/h⊕T(k/h)⊕TV ] ' K ×H [Y× ((k/h)C⊕ V )],

where (k/h)C is the complexification of the real vector space k/h. Consider on Ñ
the almost complex structure JÑ = (i, JV ) for i the complex structure on (k/h)C.
Note that JÑ is compatible with the symplectic structure on a neighborhood U of
the 0-section of the bundle Ñ → K/H .

We compute the Kirwan vector field κÑ on Ñ . If we take Y = k · X and ñ =
[k; ξ ⊕ v] ∈ Ñ we have the following relations in Tñ Ñ ' (k/h)C⊕ V :

• YÑ (̃n)=−X when X ∈ k/h,

• YÑ (̃n)= i[ξ, X ]⊕−X · v when X ∈ h.

By taking Y =8Ñ ([k; ξ, v])= k · (ξ +8V (v)) we get

(30) κÑ ([k; ξ, v])=−ξ + i [ξ,8V (v)]⊕ κV (v) ∈ (k/h)C⊕ V .

Since κV vanishes only on {0} ⊂ V , the vector field κÑ vanishes exactly on the
0-section of the bundle Ñ → K/H .

Let cκÑ be the symbol Thom(Ñ , JÑ )⊗ L Ñ pushed by the vector field κÑ . The
generalized character Q8Ñ

K (Ñ ) is either computed as the equivariant index of the
symbols cκÑ or cκÑ |U .

Remark 2.19. The fact that JÑ is not compatible on the entire manifold Ñ is
not problematic, since JÑ is compatible in a neighborhood U of the set where κÑ
vanishes. See the first point of Proposition 2.6.

5We have an H -equivariant identification (k/h)∗ ' k/h.
6 These identities come from the following (K×H)-equivariant isomorphism of vector bundles

over K ×Y: TH (K ×Y)→ K × (k/h×TY), (k,m; d
dt |t=0(ket X )⊕vm) 7→ (k,m; prk/h(X)+ vm),

where prk/h : k→ k/h is the orthogonal projection.
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For (X + iη,w) ∈ T[k;ξ,v] Ñ ' (k/h)C× V , the map

(31) cκÑ (X + iη,w)= c
(
X + ξ + iη− i[ξ,8V (v)]

)
� c

(
w− κV (v)

)
acts on the vector space ∧C(k/h)C⊗∧CV ⊗Cχ . We see that

cκÑ = j∗(cY),

where cY is the symbol on Y defined as follows. For (ξ, v) ∈ Y = k/h× V , the
map cY

|(ξ,v)(η,w) acts on ∧C(k/h)C⊗∧CV ⊗Cχ as the product

c(ξ + iη− i[ξ,8V (v)])� c(w− κV (v)).

Let Bott(k/h) be the Bott symbol on the vector space k/h. It is an elliptic morphism
defined by

Bott(k/h)|ξ (η)= c(ξ + iη) acting on ∧C (k/h)C,

for η∈Tξ (k/h). Let cκV be the symbol Thom(V, JV ) pushed by the vector field κV .

Lemma 2.20. We have

cκÑ = j∗
(
Bott(k/h)� cκV ⊗Cχ

)
.

Proof. We work with the family of symbols σ T , T ∈ [0, 1], on Y= k/h×V defined
for (η,w) ∈ T(ξ,v)Y as the map

σ T
|(ξ,v)(η,w)= c(ξ + iη− iT [ξ,8V (v)])� c(w− κV (v))

acting on the vector space ∧C(k/h)C⊗∧CV⊗Cχ . Note σ 0
=Bott(k/h)�cκV⊗Cχ ,

and σ 1
= cY. It is now easy to check that

Char(σ T )= {(0, 0) ∈ T(k/h)}× {(v, κV (v)), v ∈ V } ⊂ TY

and that Char(σ T )∩TH Y= {(0, 0) ∈ T(k/h)} × {(0, 0) ∈ TV } for any T ∈ [0, 1].
Hence σ T , T ∈[0, 1], is a homotopy of H -transversally elliptic symbols on k/h×V .
It gives finally that cκÑ = j∗(cY)= j∗(σ 0). �

The commutative diagram (29) and the last lemma give

Q8Ñ
K (Ñ )= IndexK

Ñ (c
κÑ )

= IndK
H
(

IndexH
k/h×V

(
Bott(k/h)� cκV

)
⊗Cχ

)
= IndK

H
(

IndexH
k/h(Bott(k/h))⊗ IndexH

V (c
κV )⊗Cχ

)
= IndK

H (Q
8V
H (V )⊗Cχ ).

We have used here that the H -equivariant index of Bott(k/h) is equal to 1, that is,
the trivial representation of H ; see [Paradan and Vergne 2009, Section 2.4.1].
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We now prove the second point of Proposition 2.18. Since the Kirwan vector
field κV satisfies the relations (κV (v), JV v) = −�(κV (v), v) = 2‖8V (v)‖

2, we
have

(32) (κV (v), JV v) > 0

for v 6= 0. Consider on V the family of symbols σ s :

σ s
|v(w)= c

(
w− sκV (v)− (1− s)JV v

)
viewed as a map from ∧even

C
V to ∧odd

C
V . By (32), one sees that σ s is a family of

H -transversally elliptic symbols on V . Hence σ 1
= cκV and σ 0

= c(w − JV v)

defines the same class in the group K0
H (TH V ). The symbol σ 0 was first studied

by Atiyah [1974] when dimC V = 1. [Paradan 2001, Proposition 5.4] considered
the general case. We have

IndexH
V (σ

0)= S(V ∗) in R−∞(H).

The last point of Proposition 2.18 is a consequence of the properness of the moment
map 8V ; see [Paradan 2009, Section 5]. �

This completes the proof of Theorem 2.17. �

Example 2.21 [Paradan 2009]. Consider the action of the unitary group Un on Cn .
The symplectic form on Cn is defined by�(v,w)= i

2

∑
k vkwk−vkwk . Identify the

Lie algebra un with its dual through the trace map. The moment map 8 :Cn
→ un

is defined by 8(v) = (1/2i)v ⊗ v∗ where v ⊗ v∗ : Cn
→ Cn is the linear map

w 7→ (
∑

k vkwk)v. One checks easily that the pullback by 8 of a Un-orbit in un

is either empty or a Un-orbit in Cn . We know also that the stabilizer subgroup of
a nonzero vector of Cn is connected since it is diffeomorphic to Un−1. Finally,

(33) Q((Cn)µ)=

{
1 if µ ∈ Ûn belongs to the image of 8,
0 if µ ∈ Ûn does not belong to the image of 8.

Then one can check that Q−∞Un
(Cn) coincides in R−∞(Un)with the algebra S((Cn)∗)

of polynomial function on Cn .

Example 2.22 [Paradan 2003]. Consider the Lie group SL2(R) and its compact
torus of dimension 1 denoted by T . The Lie algebra sl2(R) is identified with its dual
through the trace map, and the Lie algebra t is naturally identified with sl2(R)

T .
For l ∈ Z \ {0}, consider the character χl of T defined by

χl

(
cos θ − sin θ
sin θ cos θ

)
= eilθ .
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Its differential 1
i dχl ∈ t∗ corresponds (through the trace map) to the matrix

Xl =

(
0 l/2
−l/2 0

)
.

Let Ol be the coadjoint orbit of the group SL2(R) through the matrix Xl . It is a
Hamiltonian SL2(R)-manifold prequantized by the SL2(R)-equivariant line bundle
L l ' SL2(R)×T Cl , where Cl is the T -module associated to the character χl . We
look at the Hamiltonian action of T on Ol . Let 8T : Ol→ t∗ be the corresponding
moment map. This moment map8T is proper and its image is equal to the half-line
{aXl, a ≥ 1} ⊂ t∗.

We check that for each ξ ∈ {aXl, a ≥ 1} the fiber 8−1
T (ξ) is equal to a T -orbit

in Ol . For k ∈Z, denote by (Ol)k the symplectic reduction of Ol at the level Xk . We
know that (Ol)k =∅ if k /∈ {al, a ≥ 1}, and that (Ol)k is a point if k ∈ {al, a ≥ 1}.

To compute Q((Ol)k), we look at the stabilizer subgroup Tm := {t ∈ T | t ·m=m}
for each point m ∈ Ol . One sees that Tm = T if m = Xl and Tm is equal to the
center {±Id} of SL2(R), when m 6= Xl .

Theorem 2.17 gives in this setting that, for k ∈ {al, a ≥ 1},

(34) Q((Ol)k)=

{
1 if l − k is even,
0 if l − k is odd.

Hence the formal geometric quantization of the proper T -manifold Ol is

(35) Q−∞T (Ol)=

{
Cl ·

∑
p≥0 C2p if l > 0,

Cl ·
∑

p≥0 C−2p if l < 0.

Here the quantization Q−∞T (Ol) coincides with the restriction of the holomorphic
(respectively antiholomorphic) discrete series representation 2l to the group T
when l > 0 (respectively l < 0).

2E. Wonderful compactifications and symplectic cuts. Another equivalent defi-
nition of the quantization Q−∞ uses a generalization of the technique of symplectic
cutting (originally due to [Lerman 1995]) that was introduced in [Paradan 2009]
and was motivated by the wonderful compactifications of [De Concini and Procesi
1983; 1985]; see also [Brion 1998].

Recall that T is a maximal torus of the compact connected Lie group K , and
W is the corresponding Weyl group. Define a K -adapted polytope in t∗ to be a
W -invariant Delzant polytope P in t∗ whose vertices are regular elements of the
weight lattice ∧∗. If {λ1, . . . , λN } are the dominant weights lying in the union
of all the closed one-dimensional faces of P , then there is a (G×G)-equivariant
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embedding of G = KC into

P

( N⊕
i=1

(V K
λi
)∗⊗ V K

λi

)

associating to g ∈ G its representation on
⊕N

i=1 V K
λi

. The closure XP of the image
of G in this projective space is smooth and is equipped with a (K×K )-action

(k1, k2) · x = k2 · x · k−1
1 .

The restriction of the canonical Kähler structure on XP defines a symplectic 2-
form �XP . Recall briefly the different properties of (XP , �XP )— all the details
can be found in [Paradan 2009].

(1) XP is equipped with an Hamiltonian action of K × K . Let 8 := (8l,8r ) :

XP → k∗× k∗ be the corresponding moment map.

(2) The image of 8 is equal to {(k · ξ,−k ′ · ξ) | ξ ∈ P and k, k ′ ∈ K }.

(3) The Hamiltonian (K×K )-manifold (XP , �XP ) has no multiplicities: the pull-
back by 8 of a (K×K )-orbit in the image is a (K×K )-orbit in XP .

Let UP := K · P◦, where P◦ is the interior of P . Define

X◦P :=8
−1
l (UP),

which is an invariant, open and dense subset of XP . We have the following impor-
tant properties concerning X◦P .

(4) There exists an equivariant diffeomorphism ϒ : K × UP → X◦P such that
ϒ∗(8l)(k, ξ)= k · ξ and ϒ∗(8r )(k, ξ)=−ξ .

(5) This diffeomorphism ϒ is a quasisymplectomorphism in the sense that there
is a homotopy of symplectic forms taking the symplectic form on the open
subset K×UP of the cotangent bundle T∗K to the pullback of the symplectic
form �XP on Xo

P .

(6) The symplectic manifold (XP , �XP ) is prequantized by the restriction of the
hyperplane line bundle O(1)→ P(

⊕N
i=1(V

K
λi
)∗⊗ V K

λi
) to XP : denote by L P

the corresponding (K×K )-equivariant line bundle.

(7) The pullback of the line bundle L P by the map ϒ : K ×UP ↪→ XP is trivial.

Let (M, �M ,8M) be a proper Hamiltonian K -manifold and XP be the Hamil-
tonian (K×K )-manifold associated to a K -adapted polytope P . Consider now the
product M ×XP with the following K × K action:
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• the action k ·1 (m, x) = (k · m, x · k−1), with corresponding moment map
81(m, x)=8M(m)+8r (x),

• the action k ·2(m, x)= (m, k ·x), with corresponding moment map82(m, x)=
8l(x).

Definition 2.23. Denote by MP the symplectic reduction at 0 of M ×XP for the
action ·1: MP := (81)

−1(0)/(K , ·1).

Then MP inherits a Hamiltonian K -action with moment map 8MP : MP → k∗

whose image is 8M(M)∩ K · P .
In [Paradan 2009], we proved that MP contains an open and dense subset of

smooth points which is quasisymplectomorphic to the open subset (8M)
−1(UP).

If the polytope P is fixed, we can work with the dilated polytopes n P for n ≥ 1.
We have then the family of compact, perhaps singular, K -Hamiltonian manifolds
Mn P , n ≥ 1. In Section 2C, we explained how their geometric quantization was
defined:

QK (Mn P) := [Q
81
K×K (M ×Xn P)]

(K ,·1) ∈ R(K ).

We have the following convenient property of Q−∞.

Proposition 2.24 [Paradan 2009]. The following equality in R−∞(K ) holds:

(36) Q−∞K (M)= lim
n→∞

QK (Mn P).

Here the limit is taken using the convention of Definition 2.3.

3. Proof of Theorem 1.4

The main result of this section is:

Theorem 3.1. Let rP := infξ∈∂P ‖ξ‖> 0. The generalized character

Q8K (M)−QK (MP) ∈ R−∞(K )

is supported outside the ball BrP .

Then, for the dilated polytope n P, n ≥ 1, the character Q8K (M)− QK (Mn P) is
supported outside the ball BnrP . Taking the limit as n goes to infinity gives

(37) Q8K (M)= lim
n→∞

QK (Mn P).

Finally, identity (6) of Theorem 1.4,

Q8K (M)= Q−∞K (M),

is a direct consequence of (36) and (37).
Recall that O(r)∈ R−∞(K ) denotes any generalized character supported outside

the ball Br .
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Theorem 3.1 follows from the comparison of three different geometrical situa-
tions. All of them concern Hamiltonian actions of K1× K2, where K1 and K2 are
two copies of K .

First setting. We work with the Hamiltonian (K1×K2)-manifold M ×XP , where
K1 acts both on M and on XP . Since the moment map81 (relative to the K1-action)
is proper, we may “quantize” M×XP via the map ‖81‖

2. Denote the correspond-
ing generalized character by

Q81
K1×K2

(M ×XP) ∈ R−∞(K1× K2).

Recall that QK2(MP) is equal to [Q81
K1×K2

(M ×XP)]
K1 .

Second setting. Consider as before the Hamiltonian action of K1×K2 on M×XP ,
but “quantize” M ×XP through the global moment map 8 = (81,82). Here we
have some liberty in the choice of the scalar product on k∗1 × k∗2. If ‖ξ‖2 is an
invariant Euclidean norm on k∗, we take on k∗1× k∗2 the Euclidean norm

(38) ‖(ξ1, ξ2)‖
2
ρ = ‖ξ1‖

2
+ ρ‖ξ2‖

2

depending on a parameter ρ > 0. Consider the quantization of M × XP via the
map ‖8‖2ρ :

Q
8,ρ
K1×K2

(M ×XP) ∈ R−∞(K1× K2).

Third setting. Consider the cotangent bundle T∗K with the Hamiltonian action of
K1×K2, where K1 acts by right translations and K2 by left translations. Consider
the Hamiltonian action of K1 × K2 on M × T∗K , where K1 acts both on M and
on T∗K . Let 8 = (81,82) be the global moment map on M × T∗K . Since the
moment map 8 is proper we can “quantize” M ×T∗K via the map ‖8‖2ρ . Let

Q
8,ρ
K1×K2

(M ×T∗K ) ∈ R−∞(K1× K2)

be the corresponding generalized character.
Theorem 3.1 is a consequence of the following propositions.
First we compare Q8K2

(M) with the K1-invariant part of Q
8,ρ
K1×K2

(M ×T∗K ).

Proposition 3.2. For any ρ ∈ ]0, 1], we have

(39) [Q
8,ρ
K1×K2

(M ×T∗K )]K1 = Q8K2
(M) in R−∞(K2).

Next we compare the K1-invariant parts of the generalized characters

Q
8,ρ
K1×K2

(M ×T∗K ) and Q
8,ρ
K1×K2

(M ×XP).

Proposition 3.3. For any ρ ∈ ]0, 1], we have the following relation in R−∞(K2)

(40) [Q
8,ρ
K1×K2

(M ×XP)]
K1 − [Q

8,ρ
K1×K2

(M ×T∗K )]K1 = O(rP),

where rP := infξ∈∂P ‖ξ‖> 0.
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Finally we compare the K1-invariant parts of the generalized characters

Q
8,ρ
K1×K2

(M ×XP) and Q81
K1×K2

(M ×XP).

Proposition 3.4. There exists ε > 0 such that

(41) QK2(MP)− [Q
8,ρ
K1×K2

(M ×XP)]
K1 = O((ε/ρ)1/2) in R−∞(K2),

if ρ > 0 is small enough.

If we sum the relations (39), (40) and (41) we get

Q8K2
(M)= QK2(MP)+ O(rP)+ O((ε/ρ)1/2)

if ρ is small enough. So Theorem 3.1 follows by taking (ε/ρ)1/2 ≥ rP .

3A. Proof of Proposition 3.2. The cotangent bundle T∗K is identified with K×k∗.
The data is then (see Section 5A):

• the Liouville 1-form λ =
∑

j ω j ⊗ E j , where (E j ) is a basis of k with dual
basis (E∗j ) and ω j is the left invariant 1-form on K defined by ω j

( d
dt a et X

|0
)
=

〈E∗j , X〉.

• the symplectic form � := −dλ,

• the action of K1× K2 on K × k∗ given by (k1, k2) · (a, ξ)= (k2ak−1
1 , k1 · ξ),

• the moment map relative to the K1-action 8r (a, ξ)=−ξ ,

• the moment map relative to the K2-action 8l(a, ξ)= a · ξ .

We work now with the Hamiltonian action of K1× K2 on M ×T∗K given by

(k1, k2) · (m, a, ξ)= (k1 ·m, k2ak−1
1 , k1 · ξ).

The corresponding moment map is 8= (81,82): 81(m, a, ξ)=8M(m)− ξ and
82(m, a, ξ)= a · ξ .

Let c1 be a symbol Thom(M, J1)⊗ L attached to the prequantized Hamiltonian
K1-manifold (M, �). The cotangent bundle T∗K is prequantized by the trivial
line bundle. Let c2 be the symbol Thom(T∗K , J2) attached to the prequantized
Hamiltonian (K1×K2)-manifold T∗K . The product c= c1�c2 corresponds to the
symbol Thom(N , J )⊗ L on N = M ×T∗K .

For the rest of this section we fix ρ > 0. Let κρ be the Kirwan vector field
associated to the map ‖8‖2ρ : M × T∗K → R. We check that ‖8‖2ρ(m, k, ξ) =
‖8M(m)− ξ‖2+ ρ‖ξ‖2, and

κρ(m, k, ξ)=
(
(8̃M(m)− ξ̃ ) ·m︸ ︷︷ ︸

κI

; 8̃M(m)− (1+ ρ)̃ξ︸ ︷︷ ︸
κII,ρ

; −[8̃M(m), ξ̃ ]︸ ︷︷ ︸
κIII

)
.
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Here T(m,k,ξ)(M ×T∗K )' Tm M × k× k. We have

Cr(‖8‖2ρ)= {κρ = 0}

=

⋃
β∈B

K1× K2 ·

[
M β̃
∩8−1

M (β)×{1}×
{
β̃

ρ+1

}]
︸ ︷︷ ︸

Zβ

,

where B⊂ t∗
+

parametrizes Cr(‖8M‖
2). One can check that

‖8‖2ρ(Zβ)=
(
ρ

ρ+1

)
‖β‖2

and ‖8M‖
2(Zβ)= ‖β‖2 for β ∈B.

Let cκρ be the symbol c pushed by the vector field κρ . We have

cκρ (v; X; Y )= c1(v− κI )� c2(X − κII,ρ ; Y − κIII )

for (v; X; Y ) ∈ T(m,k,ξ)(M ×T∗K )' Tm M × k× k.
For a real R > 0, define the open invariant subsets of M ×T∗K

UR := {‖8‖
2
ρ < R},

VR := {‖8M‖
2 < R}×T∗K .

We see that Zβ ⊂ UR if and only if (ρ/(ρ + 1))‖β‖2 < R and Zβ ⊂ VR if and
only if ‖β‖2 < R. By Definition 2.11, the generalized index Q

8,ρ
K1×K2

(M×T∗K ) is
defined as the limit of the equivariant index

Q
8,ρ
K1×K2

(UR) := IndexK1×K2
UR

(cκρ |UR )=
∑

(ρ/(ρ+1))‖β‖2<R

Q
β,ρ

K1×K2
(M ×T∗K )

when R goes to infinity (and stays outside the critical values of ‖8‖2ρ).
On the other hand, when R′ is a regular value of ‖8M‖

2, the symbol cκρ |VR′
is

(K1×K2)-transversally elliptic since

(42) Cr(‖8‖2ρ)∩ VR′ =
⋃
‖β‖2<R′

Zβ

is compact. The index map is well-defined on VR′ = {‖8M‖
2 < R′} ×T∗K since

T∗K can be seen as an invariant open subset of a compact (K1×K2)-manifold.

Lemma 3.5. The character Q
8,ρ
K1×K2

(M ×T∗K ) is equal to the limit of

IndexK1×K2
VR′

(cκρ |VR′
)

when R′ goes to infinity (and stays outside the critical values of ‖8M‖
2).
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Proof. Thanks to (42) and to the excision property we have

IndexK1×K2
VR′

(cκρ |VR′
)=

∑
‖β‖2<R′

Q
β,ρ

K1×K2
(M ×T∗K ),

and then

Q
8,ρ
K1×K2

(M ×T∗K )− IndexK1×K2
VR′

(cκρ |VR′
)=

∑
‖β‖2≥R′

Q
β,ρ

K1×K2
(M ×T∗K ).

By Definition 2.11, the support of Q
β,ρ

K1×K2
(M ×T∗K ) is contained in{

(γ1, γ2) ∈ K̂ × K̂
∣∣∣∣ ‖γ1‖

2
+ ρ‖γ2‖

2
≥

ρ

ρ+1
‖β‖2

}
⊂

{
(γ1, γ2) ∈ K̂ × K̂

∣∣∣∣ ‖γ1‖
2
+‖γ2‖

2
≥

ρ

(ρ+1)2
‖β‖2

}
.

Finally we have proved that

Q
8,ρ
K1×K2

(M ×T∗K )− IndexK1×K2
VR′

(cκρ |VR′
)=

∑
(γ1,γ2)

m R′
(γ1,γ2)

V K1
γ1
⊗ V K2

γ2

with m R′
(γ1,γ2)

= 0 if ‖γ1‖
2
+‖γ2‖

2
≤ (ρ/(ρ+ 1)2)R′. Hence the right hand side of

the last equation tends to 0 in R−∞(K1× K2) when R′→∞. �

Look now to the deformation κρ(s)= (κs
I ; κ

s
II,ρ; sκIII ), s ∈ [0, 1], where

κs
I (m, ξ)= (8̃M(m)− sξ̃ ) ·m and κs

II,ρ(m, ξ)= s8̃M(m)− (1+ sρ)̃ξ .

Let cκρ(s) be the symbol c pushed by the vector field κρ(s).

Lemma 3.6. Let R′ be a regular value of ‖8M‖
2.

• The family cκρ(s)|VR′
, s ∈[0, 1], defines a homotopy of (K1×K2)-transversally

elliptic symbols on VR′ .

• The K1-invariant part of IndexK1×K2
VR′

(cκρ(0)|VR′
) is equal to Q8K2

(M<R′).

Proof. The first point follows from the fact that Char(cκρ(s)|VR′
)∩TK1×K2(VR′),

which is equal to{
(m, k, s

1+sρ
8̃M(m))

∣∣∣∣ k ∈ K and m ∈ Cr(‖8M‖
2)∩ {‖8M‖

2 < R′}
}
,

stays in a compact set when s ∈ [0, 1].
The symbol cκρ(0)|VR′

is equal to the product of the symbol cκ1 |M<R′ , which is
K1-transversally elliptic, with the symbol

cκ2(X; Y )= c2(X + ξ ; Y ),
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which is a K2-transversally elliptic on T∗K . A basic computation in Section 5A1
gives that

IndexK1×K2
T∗K (cκ2)= L2(K )

=

∑
µ∈K̂

(V K1
µ )∗⊗ V K2

µ

in R−∞(K1× K2). Finally the multiplicative property (Theorem 2.1) gives

IndexK1×K2
VR′

(cκρ(0)|VR′
)= IndexK1

M<R′(c
κ
1 |M<R′

)⊗ IndexK1×K2
T∗K (cκ2)

=

∑
µ∈K̂

Q8K1
(M<R′)⊗ (V K1

µ )∗⊗ V K2
µ .

Taking the K1-invariant part completes the proof of the second point. �

Finally we have proved that the generalized character [IndexK1×K2
VR′

(cκρ |VR′
)]K1

is equal to Q8K2
(M<R′). Taking the limit R′→∞ gives

[Q
8,ρ
K1×K2

(M ×T∗K )]K1 = lim
R′→∞

[IndexK1×K2
VR′

(cκρ |VR′
)]K1

= lim
R′→∞

Q8K2
(M<R′)= Q8K2

(M).

3B. Proof of Proposition 3.3. We work here with the Hamiltonian action of the
product K1×K2 on M×XP . The action is (k1, k2)·(m, x)= (k1 ·m, k2 ·x ·k−1

1 ) and
the corresponding moment map is8= (81,82) with81(m, x)=8M(m)+8r (x)
and 82(m, x) = 8l(x). Let ‖(ξ1, ξ2)‖

2
ρ = ‖ξ1‖

2
+ ρ‖ξ2‖

2 be the Euclidean norm
k∗1× k∗2 attached to ρ > 0.

Consider the quantization of M ×XP via the map ‖8‖2ρ :

Q
8,ρ
K1×K2

(M ×XP) ∈ R−∞(K1× K2).

The critical set Cr(‖8‖2ρ) admits the decomposition

(43) Cr(‖8‖2ρ)=
⋃
γ∈Bρ

K1× K2 ·Cγ ,

where (m, x) ∈ Cγ if and only if γ = (γ1, γ2) with

(44)


8M(m)+8r (x)= γ1,

8l(x)= γ2,

γ̃1 ·m = 0,

γ̃1 ·r x + ρ γ̃2 ·l x = 0.

Here Bρ ⊂ t∗
+
× t∗
+

is defined as the set of elements γ = (γ1, γ2) ∈ t∗
+
× t∗
+

where
the equations (44) have solutions in M ×XP .
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We have

(45) Q
8,ρ
K1×K2

(M ×XP)=
∑
γ∈Bρ

Q
γ,ρ

K1×K2
(M ×XP),

where the generalized character Q
γ,ρ

K1×K2
(M × XP) is computed as an index of a

transversally elliptic symbol in a neighborhood of

K1× K2 ·Cγ ⊂ M ×8−1
l (K2 · γ2).

By Theorem 2.9, the support of the generalized character Q
γ,ρ

K1×K2
(M × XP) is

contained in {(a, b) ∈ K̂1× K̂2 | ‖a‖2+ ρ‖b‖2 ≥ ‖γ ‖2ρ}. Hence

support
(
[Q

γ,ρ

K1×K2
(M ×XP)]

K1
)
⊂ {b ∈ K̂2 | ρ‖b‖2 ≥ ‖γ ‖2ρ}.

Let rP = infξ∈∂P ‖ξ‖. We know then that

[Q
8,ρ
K1×K2

(M ×XP)]
K1 =

∑
γ∈Bρ

‖γ ‖2ρ<ρr2
P

[Q
γ,ρ

K1×K2
(M ×XP)]

K1 + O(rP).

Let RP < ρr2
P be a regular value of ‖8‖2ρ : M ×XP→ R such that for all γ ∈Bρ

we have ‖γ ‖2ρ < ρr2
P if and only if ‖γ ‖2ρ < RP . Then

(46) [Q
8,ρ
K1×K2

(M ×XP)]
K1 = [Q

8,ρ
K1×K2

((M ×XP)<RP )]
K1 + O(rP).

For the generalized index Q
8,ρ
K1×K2

(M ×T∗K ) we have also a decomposition

Q
8,ρ
K1×K2

(M ×T∗K )=
∑
γ∈B′ρ

Q
γ,ρ

K1×K2
(M ×T∗K ),

where B′ρ parametrizes the critical set of ‖8‖2ρ : M ×T∗K → R. As before,

(47) [Q
8,ρ
K1×K2

(M ×T∗K )]K1 = [Q
8,ρ
K1×K2

((M ×T∗K )<R′P )]
K1 + O(rP).

Here R′P < ρr2
P is a regular value of ‖8‖2ρ :M×T∗K→R such that for all γ ∈B′ρ

we have ‖γ ‖2ρ < ρr2
P if and only if ‖γ ‖2ρ < R′P .

Lemma 3.7. We have

(48) Q
8,ρ
K1×K2

((M ×XP)<RP )= Q
8,ρ
K1×K2

((M ×T∗K )<R′P ).

Proof. The lemma follows from Proposition 2.6. We take here V ′ = M × Xo
P ,

V = M × K ×UP ⊂ M ×T∗K and the equivariant diffeomorphism 9 : V → V ′

equal to Id×ϒ where ϒ was introduced in Section 2E. The map 9 satisfies points
(1)–(3) of Proposition 2.6.

The inequality ‖8(m, x)‖2ρ < ρr2
P implies that ‖8l(x)‖< rP and then x ∈ Xo

P .
Hence the open subset U ′ := (M × XP)<RP is contained in V ′ = M × Xo

P . In
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the same way the open subset U := (M × T∗K )<R′P is contained in V . We have
9(U )=U ′ if RP = R′P .

We have proved that (48) is a consequence of Proposition 2.6. �

Finally, taking the difference between (46) and (47) gives

[Q
8,ρ
K1×K2

(M ×XP)]
K1 − [Q

8,ρ
K1×K2

(M ×T∗K )]K1 = O(rP),

which is the relation of Proposition 3.3.

3C. Proof of Proposition 3.4. Here we want to compare the K1-invariant part of
the characters Q

8,ρ
K1×K2

(M ×XP) and Q81
K1×K2

(M ×XP).
By Theorem 2.15,

QK2(MP)= [Q
81
K1×K2

(M ×XP)]
K1 = [Q81

K1×K2
(Uε)]

K1

when ε > 0 is any regular value of ‖81‖
2, and Uε := {‖81‖

2 < ε} ⊂ M ×XP .
In this section we fix once and for all ε > 0 small enough so that

(49) Cr(‖81‖
2)∩ {‖81‖

2
≤ ε} = {81 = 0}.

Let c1 be the symbol Thom(M, J1)⊗ L attached to the prequantized Hamilton-
ian K1-manifold (M, �). Let c3 be the symbol Thom(XP , J3)⊗ L P attached to
the prequantized Hamiltonian (K1×K2)-manifold XP . The product c = c1 � c3

corresponds to the symbol Thom(N , J )⊗ L on N = M ×XP .
Let κ0 and κρ be the Kirwan vector fields associated to the functions ‖81‖

2 and
‖8‖2ρ on M ×XP :

κ0(m, x)=
(
8̃1(m, x) ·m︸ ︷︷ ︸

κI

; 8̃1(m, x) ·r x︸ ︷︷ ︸
κII

)
,

κρ(m, x)= κ0(m, x)+ ρ
(
0, 8̃l(x) ·l x︸ ︷︷ ︸

κIII

)
.

Let cκρ be the symbol c pushed by the vector field κρ . Then

cκρ (v; η)= c1(v− κI )� c3(η− κII − ρκIII )

for (v; η) ∈ T(m,x)(M ×XP).
The character Q81

K1×K2
(Uε) is given by the index of the K1-transversally ellip-

tic symbol cκ0 |Uε
. The character Q

8,ρ
K1×K2

(M × XP) is given by the index of the
(K1×K2)-transversally elliptic symbol cκρ .

Lemma 3.8. There exists ρ(ε) > 0 such that

Cr(‖8‖2ρ)∩
{
‖81‖

2
≤ ε

}
⊂
{
‖81‖

2
≤

ε
2

}
for any 0≤ ρ ≤ ρ(ε).
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Proof. With the help of Riemannian metrics on M and XP , define

a(ε) := inf
ε/2≤‖81(m,x)‖≤ε

‖κ0(m, x)‖,

b := sup
x∈XP

‖8l(x) ·l x‖.

We have a(ε) > 0 thanks to (49), and b <∞ since XP is compact. It is now easy
to check that {κρ = 0} ∩ {ε/2≤ ‖81‖

2
≤ ε} =∅ if 0≤ ρ < a(ε)/b. �

The symbols cκρ |Uε
, ρ ∈ [0, ρ(ε)], are (K1×K2)-transversally elliptic, and they

define the same class in K0
K1×K2

(TK1×K2Uε). Hence QK2(MP) can be computed
as the K1-invariant part of

Q
8,ρ
K1×K2

(Uε) := IndexK1×K2
Uε

(cκρ |Uε
) ∈ R−∞(K1× K2)

for any ρ ∈ [0, ρ(ε)].
Let ρ ∈ ]0, ρ(ε)]. A component K1×K2 ·Cγ of Cr(‖8‖2ρ) is contained in Uε if

and only if ‖γ1‖
2<ε, so the decomposition (45) for the character Q

8,ρ
K1×K2

(M×XP)

gives

Q
8,ρ
K1×K2

(M ×XP)= Q
8,ρ
K1×K2

(Uε)+
∑
γ∈Bρ

‖γ1‖
2
≥ε

Q
γ,ρ

K1×K2
(M ×XP),

where

Q
8,ρ
K1×K2

(Uε)=
∑
γ∈Bρ

‖γ1‖
2<ε

Q
γ,ρ

K1×K2
(M ×XP).

Taking the K1-invariant gives

(50) [Q
8,ρ
K1×K2

(M ×XP)]
K1 = QK2(MP)+

∑
γ∈Bρ

‖γ1‖
2
≥ε

[Q
γ,ρ

K1×K2
(M ×XP)]

K1 .

By Theorem 2.9 the support of the generalized character [Qγ,ρK1×K2
(M×XP))]

K1 ∈

R−∞(K2) is included in {b ∈ K̂2 | ρ‖b‖2 ≥ ‖(γ1, γ2)‖
2
ρ}. When ‖γ1‖

2
≥ ε

we have then that the support of [Qγ,ρK1×K2
(M ×XP))]

K1 is contained outside the
ball B(ε/ρ)1/2 .

Finally (50) imposes that

[Q
8,ρ
K1×K2

(M ×XP)]
K1 = QK2(MP)+ O((ε/ρ)1/2)

when 0< ρ ≤ ρ(ε), which is the precise content of Proposition 3.4.
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4. Other properties of Q8

Let (M, ω,8) be a proper Hamiltonian K -manifold that is prequantized by a line
bundle L . The character Q8K (M) is computed by means of a scalar product on k∗.
The fact that Q8K (M)= Q−∞K (M) gives the following:

Proposition 4.1. The character Q8K (M) does not depend of the choice of an in-
variant scalar product on k∗.

In this section we work in the setting where7 K = K1 × K2. Let 81 be the
moment map relative to the K1-action.

4A. 81 is proper. In this subsection, suppose that the moment map 81 relative to
the K1-action is proper. Fix an invariant Euclidean norm ‖ · ‖2 on k in such a way
that k1 = k⊥2 .

To “quantize” (M, �) via the invariant proper function ‖81‖
2, let

Q81
K1×K2

(M) ∈ R−∞(K1× K2)

be the corresponding generalized character.

Theorem 4.2. We have

(51) Q8K1×K2
(M)= Q81

K1×K2
(M) in R−∞(K1× K2).

Proof. On k = k1⊕ k2 we may consider the family of invariant Euclidean norms:
‖X1⊕ X2‖

2
ρ = ‖X1‖

2
+ ρ‖X2‖

2 for X j ∈ k j . Let

Q
8,ρ
K1×K2

(M) ∈ R−∞(K1× K2)

be the quantization of M computed via the map ‖8‖2ρ = ‖81‖
2
+ ρ‖82‖

2. By
definition, Q81

K1×K2
(M) is equal to Q8,0K1×K2

(M), and Proposition 4.1 implies that
Q8K1×K2

(M) coincides with the generalized character Q
8,ρ
K1×K2

(M) ∈ R−∞(K ) for
any ρ > 0.

Denote by O(r) ∈ R−∞(K1× K2) any generalized character supported outside
the ball {ξ ∈ t∗1× t∗2 | ‖ξ1‖

2
+‖ξ2‖

2 < r2
}. Also, denote by O1(r)∈ R−∞(K1×K2)

any generalized character supported outside the {ξ ∈ t∗1× t∗2 | ‖ξ1‖< r}.
Let R1 > 0 be a regular value of ‖81‖

2, and let M<R1 be the open subset
{‖81‖

2 < R1}, which is relatively compact. Theorem 2.13 tells us that

Q81
K1×K2

(M)= Q81
K1×K2

(M<R1)+ O1(
√

R1).

As in Lemma 3.8, there exists ρ(R1) ∈ ]0, 1[ small enough such that

(52) Cr(‖8‖2ρ)∩ {‖81‖
2
= R1} =∅ for ρ ∈ [0, ρ(R1)].

7In this section the Lie groups K1 and K2 are not identical.
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Let ρ ∈ ]0, ρ(R1)]. The identity (52) first implies that

Q
8,ρ
K1×K2

(M)=
∑
γ∈Bρ

‖γ1‖
2<R1

Q
γ,ρ

K1×K2
(M)+

∑
γ∈Bρ

‖γ1‖
2>R1

Q
γ,ρ

K1×K2
(M)

= Q
8,ρ
K1×K2

(M<R1)+ O(
√

R1),

where the second equality uses that Q
γ,ρ

K1×K2
(M) = O(

√
R1) when ‖γ1‖

2 > R1,
since the ball

{
(ξ1, ξ2) ∈ t∗1× t∗2 | ‖ξ1‖

2
+‖ξ2‖

2 < R1
}

is contained in{
(ξ1, ξ2) ∈ t∗1× t∗2 | ‖(ξ1, ξ2)‖

2
ρ < ‖(γ1, γ2)‖

2
ρ

}
.

The identity (52) shows also that the symbols cκρ |M<R1
are homotopic for ρ ∈

[0, ρ(R1)]. Hence

Q
8,ρ
K1×K2

(M<R1)= Q81
K1×K2

(M<R1)

if ρ > 0 is small enough. Finally,

Q
8,ρ
K1×K2

(M)−Q81
K1×K2

(M)= O(
√

R1)+ O1(
√

R1)

for any regular value R1 of ‖81‖
2, when ρ ∈ ]0, ρ(R1)]. Since the generalized

character Q
8,ρ
K1×K2

(M) does not depend of ρ > 0 (see Proposition 4.1),

Q8K1×K2
(M)= Q

8,ρ
K1×K2

(M)= Q81
K1×K2

(M). �

We explain how Theorem 4.2 contains the identity that we called “quantization
commutes with reduction in the singular setting” in [Paradan 2009]. By defini-
tion the K1-invariant part of the right hand side of (51) is equal to the geometric
quantization of the (possibly singular) compact Hamiltonian K2-manifold

M//0K1 :=8
−1
1 (0)/K1.

Using now the fact that the left hand side of (51) is equal to Q−∞K1×K2
(M), we see

that the multiplicity of V K2
µ in QK2(M//0K1) is equal to the geometric quantization

of the (possibly singular) compact manifold

M × K2 ·µ//(0,0)K1× K2.

4B. The symplectic reduction M//0 K1 is smooth. Let (M, �) be an Hamiltonian
(K1×K2)-manifold with proper moment map 8= (81,82). In this section, sup-
pose that 0 is a regular value of 81 and that K1 acts freely on 8−1

1 (0). We work
then with the smooth Hamiltonian K2-manifold

N :=8−1
1 (0)/K1.
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Continue to denote by 82 : N → k∗2 the moment map relative to the K2-action;
note that this map is proper. Hence we can quantize the K2-action on N via the
map 82. Let Q82

K2
(N ) ∈ R−∞(K2) be the corresponding character.

Proposition 4.3. We have

(53) [Q8K1×K2
(M)]K1 = Q82

K2
(N ) in R−∞(K2).

Proof. When 81 is proper, the manifold N is compact. Then the right hand side
of (53) is equal to QK2(N ), and we know from Theorem 4.2 that the left hand side
of (53) is equal to [Q81

K1×K2
(M)]K1 . In this case (53) becomes [Q81

K1×K2
(M)]K1 =

QK2(M//0K1) which is the content of Theorem 2.14.
Consider the general case where 81 is not proper. By Theorem 1.4, the mul-

tiplicities of V K2
µ in [Q8K1×K2

(M)]K1 and in Q82
K2
(N ) are respectively equal to the

quantization of the (possibly singular) symplectic reductions

Mµ := M × K2 ·µ//(0,0)K1× K2,

M′µ := N × K2 ·µ//0K2 with N = M//0K1.

Note that Mµ and M′µ coincide as symplectic reduced space. Their geometric
quantizations are identical also. The proof will be done for µ= 0: the other cases
follow from the shifting trick.

Let c be the (K1×K2)-equivariant symbol Thom(M, J )⊗ L M . Let κ be the
Kirwan vector field attached to the moment map 8 = (81,82). Let cκ be the
symbol c pushed by κ . Denote by M<ε the open subset {‖8‖2 < ε}. For ε > 0
small enough, the symbol cκ |M<ε

is (K1×K2)-transversally elliptic, and Q(M0) is
the (K1×K2)-invariant part of IndexK1×K2

M<ε
(cκ |M<ε

).
Let c2 be the K2-equivariant symbol Thom(N , J )⊗ L N . Let κ2 be the Kirwan

vector field attached to the moment map 82. Let cκ2
2 be the symbol c2 pushed

by κ2. Denote by N<ε the open subset {‖82‖
2 < ε}. For ε > 0 small enough, the

symbol cκ2
2 |N<ε is K2-transversally elliptic, and Q(M′0) is the K2-invariant part of

IndexK2
N<ε (c

κ2
2 |N<ε ).

Our proof follows from the comparison of the classes

[cκ |M<ε
] ∈K0

K1×K2
(TK1×K2 M<ε),

[cκ2
2 |N<ε ] ∈K0

K2
(TK2 N<ε).

A neighborhood of the smooth submanifold Z :=8−1
1 (0) in M is diffeomorphic to

a neighborhood of the 0-section of the bundle Z× k∗1→ Z . Let Z<ε = Z ∩M<ε so
that N<ε = Z<ε/K1. Hence [cκ |M<ε

] can be seen naturally a class in the K-group
K0

K1×K2
(TK1×K2(Z<ε × k∗1)).



FORMAL GEOMETRIC QUANTIZATION II 205

Following [Atiyah 1974, Theorem 4.3], the inclusion map j : Z<ε ↪→ Z<ε × k∗1
induces the Thom isomorphism

j! :K0
K1×K2

(TK1×K2 Z<ε)→K0
K1×K2

(TK1×K2(Z<ε × k∗1)),

with the commutative diagram

(54)

K0
K1×K2

(TK1×K2 Z<ε)
j ! //

Index
K1×K2
Z<ε ++

K0
K1×K2

(TK1×K2(Z<ε × k∗1))

Index
K1×K2
Z<ε×k∗1��

R−∞(K1× K2).

Let π1 : Z<ε → N<ε be the quotient relative to the free action of K1. The
corresponding isomorphism

π∗1 :K
0
K2
(TK2 N<ε)→K0

K1×K2
(TK1×K2 Z<ε)

satisfies the rule

(55) [IndexK1×K2
Z<ε (π∗1 θ)]

K1 = IndexK2
N<ε (θ)

for any θ ∈K0
K2
(TK2 N<ε).

Lemma 4.4 [Paradan 2001]. We have

j! ◦π∗1 ([c
κ2
2 |N<ε ])= [c

κ
|M<ε
]

in K0
K1×K2

(TK1×K2(Z<ε × k∗1)).

Proof. This lemma is proven in [Paradan 2001, Section 6.2] when the group K2 is
trivial. It is easy to check that the proof extends naturally to our setting. �

Using Lemma 4.4 together with (54) and (55), we get that

Q(M0)=
[
IndexK1×K2

Z<ε×k∗1
(cκ |M<ε

)
]K1×K2

=
[
IndexK2

N<ε (c
κ2
2 |N<ε )

]K2
= Q(M′0). �

5. Example: The cotangent bundle of an orbit

5A. The formal quantization of T∗ K. Let K be a compact connected Lie group
equipped with the action of two copies of K given by (k1, k2) · a = k2ak−1

1 . Then
we have a Hamiltonian action of K1 × K2 on the cotangent bundle T∗K . In this
section, we check that each formal geometric quantization of T∗K , Q−∞K1×K2

(T∗K )
and Q8K1×K2

(T∗K ) are both equal to the (K1×K2)-module L2(K ).
The tangent bundle TK is identified with K × k through the right translations:

to (a, X) ∈ K × k, associate d
dt aet X

|0. The action of K1 × K2 on the cotangent
bundle T∗K ' K × k∗ is then

(k1, k2) · (a, ξ)= (k2ak−1
1 , k1 · ξ).
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The symplectic form on T ∗K is � := −dλ, where λ is the Liouville 1-form. We
compute these two forms in coordinates. The tangent bundle of T∗K ' K × k∗ is
identified with T∗K ×k×k∗: for each (a, ξ)∈ T∗K , we have a two-form �(a,ξ) on
k× k∗. A direct computation gives

�(a,ξ)(X, X ′)= 〈ξ, [X, X ′]〉, �(a,ξ)(η, η
′)= 0, �(a,ξ)(X, η)= 〈η, X〉

for X, X ′ ∈ k and η, η′ ∈ k∗. So �(a,ξ) = �0 + πξ where �0 is the canonical
(constant) symplectic form on k× k∗ and πξ is the closed two-form on k defined
by πξ (X, Y )= 〈ξ, [X, Y ]〉.

If we identify k' k∗ through an invariant Euclidean norm, the symplectic struc-
ture on T(a,ξ)(T∗K )' k× k∗ is given by a skew-symmetric matrix

Aξ :=
(

ad(ξ) −In

In 0

)
,

so that

�(a,ξ)((X, η), (X ′, η′))= (Aξ (X, η), (X ′, η′))= (ξ, [X, X ′])+ (X, η′)− (X ′, η).

We will work with the following compatible almost complex structure on the tan-
gent bundle of T∗K : Jξ = Aξ (−A2

ξ )
−1/2. When ξ = 0, the complex structure J0

on k× k∗ is defined by the matrix

J0 :=

(
0 −In

In 0

)
.

Hence the complex K -module (k×k∗, J0) is naturally identified with the complex-
ification kC of k.

It is easy to check that the moment map relative to the (K1×K2)-action is the
proper map 8 : T∗K → k∗1× k∗2 defined by 8(a, ξ)= (−ξ, a · ξ).

Here the symplectic manifold T∗K is prequantized by the trivial line bundle.

5A1. Computation of Q−∞K1×K2
(T∗K ). Let O1×O2 be a coadjoint orbit of K1×K2

in k∗1× k∗2. One checks that

(56) 8−1(O1×O2)=

{
∅ if O1 6= −O2,

a (K1× K2)-orbit if O1 =−O2.

We know that the stabilizer subgroup Kξ of an element ξ ∈ k∗ is connected. Then
the stabilizer subgroup (K1×K2)(a,ξ)={(k1, ak1a−1), k1 ∈ Kξ } is also connected.

Let (T∗K )(µ,λ) be the symplectic reduction of T∗K at the level (µ, λ)∈ K̂ 2. For
any µ∈ K̂ , define µ∗ ∈ K̂ by the relation −K ·µ= K ·µ∗; note that V K

µ∗ ' (V
K
µ )
∗.

Using Theorem 2.17 gives

(57) Q((T∗K )(µ,λ))=
{

0 if λ 6= µ∗,
1 if λ= µ∗.
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Finally

Q−∞K1×K2
(T∗K )=

∑
(µ,λ)∈K̂×K̂

Q
(
(T∗K )(µ,λ)

)
V K1
µ ⊗ V K2

λ

=

∑
µ∈K̂

V K1
µ ⊗ (V

K2
µ )∗ = L2(K ).

5A1. Computation of Q8K1×K2
(T∗K ). The Kirwan vector field on T∗K is

κ(a, ξ)=−2ξ ∈ kC.

Let cκ be the symbol Thom(T∗K , J ) pushed by the vector field 1
2κ . At each (a, ξ)

in T∗K , the map cκ(a,ξ)(X ⊕ η) from ∧even
Jξ (k× k∗) to ∧odd

Jξ (k× k∗) is equal to the
Clifford map c(X + ξ ⊕ η). Note that cκ is a K2-transversally elliptic symbol
on T∗K : we have Char(cκ) ∩ TK2(T

∗K ) = {(1, 0)}. We will now compute the
equivariant index of cκ .

First consider the homotopy t ∈ [0, 1] → Jtξ of symplectic structure on T∗K .
Let c̃κ be the symbol acting on ∧•J0

(k×k∗)=∧•
C
kC. Proposition 2.6 shows that the

symbols cκ and c̃κ define the same class in K0
K1×K2

(TK2(T
∗K )).

The projection π : T∗K → k∗ corresponds to the quotient map relative to the
free action of K2. At the level of K0-groups we get an isomorphism

π∗ :K0
K1×K2

(TK2(T
∗K ))→K0

K1
(Tk∗).

The free action property (see [Atiyah 1974, Theorem 3.1]) gives that

IndexK1×K2
T∗K (σ )=

∑
µ∈K̂

IndexK1
k∗

(
π∗(σ ⊗ V K2

µ )
)
⊗ (V K2

µ )∗

for any class σ ∈ K0
K1×K2

(TK2(T
∗K )). In our case the symbol π∗(c̃κ) is equal to

the Bott symbol Bott(k∗), and for any K2-module E2 we have

π∗(c̃κ ⊗ E2)= Bott(k∗)⊗ E1,

where E1 is the module E2 with the action of K1. Then

Q8K1×K2
(T∗K )= IndexK1×K2

T∗K (c̃κ)

=

∑
µ∈K̂

IndexK1
k∗

(
Bott(k∗)⊗ V K1

µ

)
⊗ (V K2

µ )∗

=

∑
µ∈K̂

V K1
µ ⊗ (V

K2
µ )∗ = L2(K ),

since IndexK1
k∗ (Bott(k∗))= 1.
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5B. The formal quantization of T∗(K/H). Let H be a closed connected sub-
group of K . We look at T∗K as a Hamiltonian manifold relative to the action of
H × K ⊂ K1× K2. The moment map 8= (8H ,8K ) is defined by: 8H (a, ξ)=
−pr(ξ) and 8K (a, ξ)= a · ξ , where pr : k∗→ h∗ is the projection. Note that 8 is
a proper map.

The cotangent bundle T∗(K/H), viewed as K -manifold, is equal to the sym-
plectic reduction of T∗K relative to the H -action: if the kernel of the projection pr
is denoted h⊥, we have

8−1
H (0)/H = K ×H h⊥ = T∗(K/H).

This is the setting of Section 4B. The reduction of the H × K proper Hamiltonian
manifold T∗K relative to the H -action is smooth. Then its formal quantization is
computed as

Q8K (T
∗(K/H))= [Q8H×K (T

∗K )]H = [Q8K1×K2
(T∗K )|H×K ]

H(58)

= [L2(K )]H

= L2(K/H).

Here the fact that Q8H×K (T
∗K ) is equal to the restriction of Q8K1×K2

(T∗K )=L2(K )
to H × K is a consequence of Theorem 1.3.

Denote by [T∗(K/H)]µ the symplectic reduction atµ∈ K̂ of the K -Hamiltonian
manifold T∗(K/H). Theorem 1.4 together with (58) gives:

Corollary 5.1. For any µ ∈ K̂ , we have

Q([T∗(K/H)]µ)= dim[V K
µ ]

H ,

where [V K
µ ]

H is the subspace of H-invariant vector.

5C. The formal quantization of T∗(K/H) relative to the action of G. Let G be
a closed connected subgroup of K . We look at the Hamiltonian action of G on
T∗(K/H). Let 8G : T∗(K/H) → g∗ be the moment map. Consider also the
restriction of the K -module L2(K/H) to the subgroup G.

Proposition 5.2. The following statements are equivalent:

(1) The moment map 8G : T∗(K/H)→ g∗ is proper.

(2) 8−1
G (0) is equal to the zero section.

(3) k · g+ h= k for any k ∈ K .

(4) g+ h= k.

(5) G acts transitively on K/H.

(6) [L2(K/H)]G ' C.

(7) L2(K/H)|G is an admissible G-representation.
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Proof. The implication (1) ⇒ (7) is a consequence of Theorem 1.3. To prove
(7)⇒ (6), suppose now that

L2(K/H)|G =
∑
µ∈K̂

[V K
µ ]

H
⊗ (V K

µ )
∗
|G

is an admissible G-representation. This means that for any λ ∈ Ĝ, the set

Aλ :=
{
µ ∈ K̂ | [V K

µ ]
H
6= {0} and [(V G

λ )
∗
⊗ (V K

µ )
∗
|G]

G
6= {0}

}
is finite. Then the vector space [L2(K/H)]G is equal to the finite-dimensional
vector space

∑
µ∈A0
[V K
µ ]

H
⊗[(V K

µ )
∗
]
G . For any irreducible representation V K

µ

we have, for any k ≥ 1, a canonical K -equivariant inclusion

V K
µ ⊗ · · ·⊗ V K

µ︸ ︷︷ ︸
k times

↪→ V K
kµ.

Hence [V K
µ ]

H
6= 0 gives [V K

kµ]
H
6= 0 for any k ≥ 1. Then if µ ∈ A0, we have

kµ ∈ A0 for k ≥ 1. Finally the fact that A0 is finite implies that A0 is reduced to
µ= 0. Hence the only G-invariant functions on K/H are the scalars.

The equivalences (6)⇔ (5)⇔ (4)⇔ (3) are a general fact concerning smooth
actions of a compact connected Lie group G on a compact connected manifold M .
The manifold M does not have G-invariant functions which are not scalar if and
only if the action of G on M is transitive. Also, given a point m ∈M , the orbit G ·m
is all of M if and only if tangent spaces Tm(G ·m) and Tm M are equal. If we take
m= k−1 in M= K/H , the condition Tm(G ·m)=Tm M is equivalent to k ·g+h= k.

To check the implication (3) ⇒ (2), let [k, ξ ] ∈ K ×H h⊥ = T∗(K/H). We
have 8G([k, ξ ]) = 0 if and only if k · ξ ∈ g⊥. Therefore the vector ξ belongs to
k−1
· g⊥ ∩ h⊥ = (k−1

· g+ h)⊥. Hence condition (3) imposes that ξ = 0.
The implication (2)⇔ (1) comes from the fact that 8G is a homogeneous map

of degree one between the vector bundle T∗(K/H) and the vector space g∗. �

Suppose now that the cotangent bundle T∗(K/H) is a proper Hamiltonian G-
manifold. Denote by [T∗(K/H)]µ,G the (compact) symplectic reduction at µ ∈ Ĝ
of the G-Hamiltonian manifold T∗(K/H).

Corollary 5.3. The multiplicity of V G
µ in L2(K/H) is equal to the quantization of

the reduced space [T∗(K/H)]µ,G .

Proof. Using Theorem 1.3, Equation (58) gives

Q−∞G (T∗(K/H))= Q−∞K (T∗(K/H))|G = L2(K/H)|G .

In other words, the multiplicity of V G
µ in L2(K/H) is equal to the quantization of

the reduced space [T∗(K/H)]µ,G . �
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