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EMBEDDED CONSTANT-CURVATURE CURVES
ON CONVEX SURFACES

HAROLD ROSENBERG AND MATTHIAS SCHNEIDER

We prove the existence of embedded closed constant-curvature curves on
convex surfaces.

1. Introduction

Let (S2, g) be a two-dimensional oriented sphere with a smooth Riemannian metric
g. We prove existence results for closed embedded curves with prescribed geodesic
curvature in (S2, g), when the Gauss curvature Kg of the metric g is positive. In
particular, we study the existence of closed embedded constant-curvature curves
on strictly convex spheres.

Let c : S2
→R be a smooth positive function. We consider the following equation

for curves γ on S2:

Dt,gγ̇ (t)= |γ̇ (t)|gc(γ (t))Jg(γ (t))γ̇ (t),(1-1)

where Dt,g is the covariant derivative with respect to g, and Jg(x) is the rota-
tion by π/2 in Tx S2 with respect to g and the given orientation. Solutions γ to
Equation (1-1) are constant-speed curves with geodesic curvature cg(γ, t) given
by c(γ (t)). Besides the geometric interpretation, (1-1) describes the motion of a
charged particle on (S2, g) in a magnetic field with magnetic form cµg, where µg

denotes the volume form of g [Arnold 1986; Novikov 1982; Ginzburg 1996].
By [Schneider 2011b; Taimanov 1992], closed embedded solutions to (1-1) exist

if the curvature function c is large enough, depending on the metric g. When g is
1
4 -pinched, that is, sup Kg < 4 inf Kg, then there are embedded closed solutions of
(1-1) for every positive function c [Schneider 2011b; Rosenberg and Smith 2010].
It is conjectured [Novikov 1982, §5; Rosenberg and Smith 2010] that this remains
true for an arbitrary metric g on S2. If Kg and c are positive, then by [Rosenberg
and Smith 2010; Robadey 2001; Schneider 2011a] there are always Alexandrov-
embedded, closed solutions to (1-1), that is, curves that bound an immersed disc.
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We show that on strictly convex spheres, that is, Kg > 0, there are closed em-
bedded solutions to (1-1) if the curvature function is small enough, depending on
the metric g. In particular, we show:

Theorem 1.1. Suppose (S2, g) has positive Gauss curvature. Then there exists an
ε0 > 0 such that for all 0 < c ≤ ε0 there are two embedded closed curves with
constant geodesic curvature c.

Hence, on strictly convex spheres, there are closed, embedded constant-curvature
curves for large and small values of c> 0. We conjecture that this remains true for
all c > 0 and any metric on S2.

We use the degree theory developed in [Schneider 2011b] to prove our exis-
tence result. The required compactness results are given in Section 2. The a priori
estimates follow from Reilly’s formula [1977]. The fact that a geodesic cannot
touch itself continues to hold for solutions to (1-1) when the geodesic curvature is
close to zero. This allows us to carry out the degree argument within the class of
embedded curves. The existence result is given in Section 3.

2. The a priori estimate

Lemma 2.1. Suppose (S2, g) has positive Gauss curvature Kg and γ ∈C2(S1, S2)

is an (Alexandrov) embedded curve with nonnegative geodesic curvature. Then the
length L(γ ) of γ is bounded by

L(γ )≤ 2π
√

2
(

inf
S2

Kg
)−1/2

.

Proof. As in [Choi and Wang 1983], where area bounds for embedded compact
minimal surfaces in S3 are given, we use Reilly’s formula [1977]: Let (M, g) be
a compact Riemannian manifold with boundary ∂M , f ∈ C∞(M), z = f |∂M and
u = ∂ f/∂n on ∂M , where n denotes the outer normal. Then

(2-1)
∫

M
(1̄ f )2− |∇̄2 f |2

=

∫
M

Ric(∇̄ f, ∇̄ f )+
∫
∂M
(1z+ Hu)u−〈∇z,∇u〉+5(∇z,∇z),

where we denote by 1̄, 1 and ∇̄, ∇ the Laplacians and covariant derivatives on M
and ∂M respectively; H is the mean curvature and 5 is the second fundamental
form of ∂M .

If the curve γ is embedded or Alexandrov-embedded, then we may assume that
we are in the above situation with ∂M = γ .

We take z an eigenfunction of λ1 the first nontrivial eigenvalue on ∂M ,

1z+ λ1z = 0 on ∂M,
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and f its harmonic extension to M . In dimension two, (2-1) leads to∫
M
(1̄ f )2− |∇̄2 f |2 =

∫
M

Kg|∇̄ f |2+
∫
∂M
1zu+ cu2

−〈∇z,∇u〉+ c|∇z|2,

where c is the geodesic curvature of ∂M and Kg denotes the Gauss curvature of M .
Using the facts that the geodesic curvature c of ∂M is nonnegative, f is harmonic,
and z is an eigenfunction, we obtain

0≥
(

inf
M

Kg
) ∫

M
|∇̄ f |2− 2λ1

∫
∂M

zu.

Integrating by parts again, we see∫
∂M

zu =
∫

M
|∇̄ f |2+ f 1̄ f =

∫
M
|∇̄ f |2.

Since z is a nontrivial eigenfunction, f is nonconstant and we arrive at(
inf
M

Kg
)
≤ 2λ1.

The first nontrivial eigenvalue λ1 depends only on the length L(∂�) of ∂M and is
given by

λ1 =
4π2

L(∂�)2
. �

Lemma 2.2. Let (γn) be a sequence of simple closed curves that converge in
C2(S1, S2) to a nonconstant closed geodesic γ in (S2, g). Then γ is also simple.

Proof. To obtain a contradiction, assume that there are θ1 6= θ2 in S1
= R/Z such

that γ (θ1)= γ (θ2). Since γ is a limit of simple curves and |γ̇ | ≡ const, we have

γ̇ (θ1)=±γ̇ (θ2).

From the uniqueness of geodesics, we have for t ∈ S1

γ (t)= γ (±(t − θ1)+ θ2).

Setting t = (θ1+ θ2)/2, we find that

γ (t)= γ (t − θ1+ θ2).

Consequently, γ is an n-fold covering of a simple geodesic for some n ≥ 2. From
the stability of the winding number, we get a contradiction. �

We denote by gcan the standard round metric on S2 with curvature Kgcan ≡ 1. We
fix a function ϕ ∈ C∞(S2,R) and a conformal metric

g = eϕgcan
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on S2 with positive Gauss curvature Kg > 0. We consider the family of metrics
{gt : t ∈ [0, 1]} defined by

gt := etϕgcan.

Then the Gauss curvature Kgt of the metric gt satisfies, for some K0 > 0,

Kgt = e−tϕ(
− t1gcan(ϕ)+ 2

)
= e−tϕ(

− t (2− Kgeϕ)+ 2
)
≥ K0,

because Kg is positive.

Lemma 2.3. Suppose c : S2
→R is a nonnegative smooth function. For r ∈ [0, 1],

we define the set of closed curves Mr by

Mr := {γ ∈ C2(S1, S2) : γ is embedded, |γ̇ |g ≡ const,

and there exists (t, s) ∈ [0, 1]× [0, r ] : cgt (γ, θ)= sc(γ (θ)) for all θ ∈ S1
},

where cgt (γ, · ) denotes the geodesic curvature of γ with respect to gt .
Then there is ε0 > 0 such that Mε0 is compact. Moreover, ε0 > 0 may be chosen

uniformly with respect to ‖c‖∞.

Proof. Let (γn)n∈N be a sequence in Mr for some r > 0. By Lemma 2.1 and (1-1),
we get a uniform bound in C3(S1, S2), and from the Gauss–Bonnet formula, the
length of γn is bounded below; and in both cases the bounds are uniform with
respect to r . Since the metrics {gt : t ∈ [0, 1]} are uniformly equivalent, there is
C0 > 0 such that we have for all t ∈ [0, 1]

(2-2) |γ̇n|gt > (C0)
−1 and ‖γn‖C3(S1,S2),gt < C0.

Up to a subsequence we may assume (tn, sn)→ (t, s) ∈ [0, 1]× [0, r ],

γn→ γ in C2(S1, S2),

where |γ̇ |gt ≡ const and

(2-3) cgt (γ, θ)= sc(γ (θ)) for all θ ∈ S1.

Thus, if Mr is not compact, there is (t, s) ∈ [0, 1] × [0, r ] and γr ∈ C2(S1, S2)

satisfying |γ̇ |gt ≡ const and (2-3), which is not embedded, but a limit of embedded
curves in Mr . Thus there are θ1, θ2 ∈ S1, such that θ1 6= θ2 and γr (θ1) = γr (θ2).
From (2-2) we deduce that there is δ > 0 independent of r , such that

(2-4) δ ≤ |θ1− θ2| ≤ 1− δ.

Hence for any n ∈ N there is γn ∈Mr such that

(2-5) dist(γn(θ1), γn(θ2))≤
1
n
.
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To obtain a contradiction, assume there is (rn) converging to 0 such that Mrn is not
compact. Then for any n ∈ N, there are (tn, sn) ∈ [0, 1] × [0, rn], θ1,n, θ2,n ∈ S1,
and γn ∈ Mrn that satisfy (2-4) and (2-5). From the uniform bounds, going to a
subsequence, we may assume that (tn, sn, γn, θ1,n, θ2,n) converge to (t, 0, γ, θ1, θ2),
where θ1 and θ2 satisfy (2-4) and γ is a closed nontrivial geodesic in (S2, gt)

satisfying γ (θ1)= γ (θ2). This contradicts Lemma 2.2. Since all the above bounds
are uniform with respect to ‖c‖∞, the constant ε0> 0 may be chosen uniform with
respect to ‖c‖∞ as well. �

3. Existence results

We follow [Schneider 2011b] and consider solutions to (2-3) as zeros of the vec-
tor field Xc,g defined on the Sobolev space H 2,2(S1, S2) as follows: For γ ∈
H 2,2(S1, S2), we let Xc,g(γ ) be the unique weak solution of

(3-1)
(
− D2

t,g + 1
)
Xc,g(γ )=−Dt,gγ̇ + |γ̇ |gc(γ )Jg(γ )γ̇

in Tγ H 2,2(S1, S2).
Solutions to (2-3), or equivalently, zeros of Xc,g, are invariant under a circle

action: For θ ∈ S1
=R/Z and γ ∈ H 2,2(S1, S2), we define θ ∗γ ∈ H 2,2(S1, S2) by

θ ∗ γ (t)= γ (t + θ).

Thus, any solution gives rise to an S1-orbit of solutions, and we say that two solu-
tions γ1 and γ2 are (geometrically) distinct if S1

∗ γ1 6= S1
∗ γ2.

We denote by M ⊂ H 2,2(S1, S2) the set

M := {γ ∈ H 2,2(S1, S2) : γ̇ (θ) 6= 0 for all θ ∈ S1 and γ is embedded}.

In [Schneider 2011b], an integer-valued S1-degree χS1(Xc,g,M) is introduced. The
S1-degree is defined whenever Xc,g is proper in M , that is, the set

{γ ∈ M : Xc,g(γ )= 0}

is compact, and does not change under homotopies in the class of proper vector
fields.

Theorem 3.1. Suppose (S2, g) has positive Gauss curvature. Then there is ε0 > 0
such that for all smooth functions c : S2

→ R satisfying 0 < c ≤ ε0, there are two
embedded geometrically distinct closed curves that solve Equation (1-1).

Proof. From the uniformization theorem up to isometries, we may assume without
loss of generality that

g = eϕgcan,

where ϕ ∈ C∞(S2,R) and gcan denotes the standard round metric on S2.
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We consider the set of metrics {gt : t ∈ [0, 1]} defined by

gt := etϕgcan.

From Lemma 2.3, there is ε0 > 0 such that the set

{γ ∈ M : Xc,gt (γ )= 0 for some t ∈ [0, 1]}

is compact for all functions c with 0< c ≤ ε0. Consequently,

[0, 1] 3 t 7→ Xc,gt

is a homotopy of proper vector fields. From [Schneider 2011b], we have

−2= χS1(Xc,gcan,M),

such that the homotopy invariance leads to

χS1(Xc,g,M)=−2.

Since the local degree of an isolated zero orbit is greater than or equal to −1
by [Schneider 2011b, Lemma 4.1], there are at least two geometrically distinct
solutions to (1-1). This gives the claim. �
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