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FUSION RULES ON A PARAMETRIZED SERIES OF GRAPHS

MARTA ASAEDA AND UFFE HAAGERUP

A series of pairs of graphs (I';, '), k=0, 1, 2, ..., has been considered as
candidates for dual pairs of principal graphs of subfactors of small Jones
index above 4 and it has recently been proved that the pair (I';, I';) comes
from a subfactor if and only if £ = 0 or k£ = 1. We show that nevertheless
there exists a unique fusion system compatible with this pair of graphs for
all nonnegative integers k.

1. Introduction

A subfactor N C M with finite index and finite depth generates finitely many
isomorphism classes of bimodules with four different combinations of left and right
coefficients. They form a bigraded fusion category. Its Grothendieck ring forms a
fusion ring or a fusion hypergroup, namely a bigraded Z-algebra o satisfying:

» 9 has a basis given by finitely many irreducible bimodules of four different
kinds: € = yEn U Ty U &y U &y (we call the labels N and M right or
left coefficients, depending on the position).

e An involution X € p¥ o — X e oXp is defined, where P, Q € (N, M}.

o A product is defined for a pair of bimodules with “matching” coefficients,
namely, for a pair (X, Y) € & x & such that the right coefficient of X and the
left coefficient of ¥ match, XY is defined. It decomposes as

XY =Y N%,z

where the sum is taken over those Z € & that have the same left (respectively,
right) coefficient as X (respectively, Y), and N }%’Y € No. Moreover, Frobenius
reciprocity holds:

Z _NX_ _NY —NZ_ _NY _nNE
NX,Y—Nz,Y_NX,Z_NY,X_NZ,X_NY,Z‘

o There are identity objects 1y € y&y, 1y € 4%y that act as identity with
respect to the product, whenever it is defined.
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The involution extends linearly to define an involution on . For a fusion ring s,
there is a unique weight function u : i — R satisfying

udy) =pndy) =1,
u(XY) = u(X)u(Y),
WX +2) = pn(X)+ n(2),

where X, Y, Z € & are with suitable coefficients for each equality, so that XY and
X + Z are defined. The (dual) principal graph of the subfactor encodes partial
information of the fusion algebra: namely, the (dual) principal graph has the ver-
tices corresponding to y& v L ¥y (respectively, X n U y&pr), with the number
of the edges between vertices y Xy and y Yy, (respectively, py X s and 5/ Yy) given
by N )?N m,, (respectively, N ;M My-)

On the other hand, one may start with a pair of graphs and may consider if
there is a fusion algebra compatible with the fusion constraints determined by the
graphs. Such investigation may be used to exclude graphs as (dual) principal graphs
of subfactors. For example, type E7 and D,,4; Dynkin diagrams are proved not
to be (dual) principal graphs of subfactors, by showing that the fusion constraints
given by the graphs give rise to inconsistency in fusion rules [Izumi 1991; Sunder
and Vijayarajan 1993]. Note that the existence of a fusion algebra compatible with
a given pair of graphs does not imply the existence of a subfactor with given graphs
as (dual) principal graphs.

In this paper, we deal with the series of pairs of graphs shown in Figure 1.
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Figure1. n=4k+3,k=0,1,...
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These graphs are a part of the list of the graphs that were candidates for (dual)
principal graphs of a subfactor with indices between 4 and 3 + /3 given by
[Haagerup 1994]. The notation used here is somewhat different from the one used
in [Haagerup 1994]. It has been already proved that, for k = 0, 1, the graphs I'y
(respectively, I'; ) are (dual) principal graphs of a subfactors [Asaeda and Haagerup
1999; Bigelow et al. 2009], and for k£ > 1, they are not realized as (dual) princi-
pal graphs [Asaeda and Yasuda 2009]. In this paper, we prove that, despite that
the I'y (respectively, I';) are not principal graphs for k > 1, there are still fusion
algebras consistent with the graphs, and moreover such fusion algebras are unique
for each k.

Theorem 1.1. Let V1| := {even vertices of T'y}, V12 := {odd vertices of 'y}, Vo1 :=
{odd vertices of T'} }, Vay := {even vertices of T',}, and V := Vi1 U Vip U Vo U Vap.
For each k, there is a unique fusion algebra 4 = 7%, where

X=NEyUNEy Uy U Xy

is compatible with the graphs T, T';. Namely,

NN = Vi1,
NEm = V12,
mMEN = Va1,
mMEm = Vn

as sets, and

1 if X and Y are connected by an edge,

Ny, (respectively, NY . ) =
ol ol 0 else,
N ;1 =dxy,
where X, Y € X, and 1 denotes identity objects 1 y =ag € nEn or 1y = a(’) € u¥um.

In Section 2 we show that if there is a fusion system compatible with the
graphs T'y, I';, it must be unique. In Section 3 we show the existence of such
a fusion system.

2. Uniqueness, positivity, and integrality of the fusion rules

In this section we prove that if there is a fusion algebra compatible with the graphs,
it is unique. Positivity and integrality of fusion coefficients is derived: we do not
impose them in showing uniqueness of the fusion rules.

2A. Fusion rules for the even vertices. In this subsection we show that there is
a unique fusion algebra structure on s{; = Zy&y compatible with the graph ;.
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The main issue is to determine the fusion rule among i, 83, y1, 3. The rest will
follow easily from this.

In the following we assume there is a fusion algebra compatible with (I'x, I'}).
The involution y € V — y € V extends linear to a map on RV. For simplicity, we
refer to the objects in ¥ by corresponding vertices in V. For X :=) N §Z e RV
and Y € V, denote

(X,Y)=(Y, X):= NY.

Observe that (-, - ) expends linearly to define a bilinear form on RV, and
(XY, Z)=(X,ZY) = (Y. XZ)

holds by Frobenius reciprocity. The graph I'; encodes the decomposition of X«
for X in Vi as a direct sum of vertices from V}, and the decomposition of Y| as
a direct sum of vertices from V);. Let G be the adjacency matrix for (Vq1, Vi2),
that is,

G=(Gx,y)xev,,Yevp

where Gy y is the number of the edges connecting X and Y, namely
Gxy = (Xa,Y)=(Ya,, X).

G has dimensions (% +4) x (% +2) and can be written as

:32 Y2 Oy Op—2 - s (]
B 1 0 0 0 0
B 1 0 1 0 0
V3 0 1 0 0 0
" o 1 1 0 0
M G=u .l o 1 1 0 0
o 0O O 0 1 1 0
w \0 0 o 1 1 )
Letting
0 G
(29
we have

GG' 0
A= .
( 0 G G)
Put D := GG!, which acts on s := RV;;. We utilize certain eigenvectors of D to
determine the fusion structure of «;.



FUSION RULES ON A PARAMETRIZED SERIES OF GRAPHS 261

Observe from the graph that

ABr=a,+ B2, Ayi=a,+ 2,
APr=PB1+ B3, Ayr=yi+y,

ABs = B, Ays = p».
Put
E=B1—y)+(B3—y3),
n=B1—r)—(Bs—y3).
Then

DE = A’ = A(2B2 —212) = 28,

Dn = Azn =0.
Let E(D, ¢), c € R, be the eigenspace of the eigenvalue ¢ for D in R(V7y).
Lemma 2.1. dim E(D, 2) = E(D, 0) = 2.

Proof. The matrix D is

Bs Bi V3 Vi Qu1 - s e a2 Qo
B3 (1 1 0 0 0 0 0
Bi 1 2 0 1 1 0 :
vi o o 1 1 o0 o0
v o 11 2 1 o0

D= %-—1 0 1 0 1 2 1 0

o,_3] O 0 0 0 1 2 1 0
: : 0 1 2 1
a 0 v cii e .0 1 201
o 0 v cee e .0 11

Recall that n = 4k + 3. Let pi(x) :=det(¢/ — D) be the characteristic polynomial
of D = GG". It was proved in [Asaeda 2007] that the characteristic polynomial of
G'G is equal to (r — 2)2qk (t), where the polynomials gk (t), k > 0, can be defined
recursively by

qo(t) =t* =5t +3,
qi(t) = (1 — )3 =8> + 171 — 5),
Q1) = (1> =4t +2)qe—1(t) — qu2(t), k>2.
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Since the matrix G has 2k +6 rows and 2k +4 columns, GG’ is a unitary conjugate
of G'G ® 0,, where 05 is the zero 2 x 2 matrix. Hence

or(t) =1 det(t] — G'G)
=12t =2 qe(0).
The recursion formula for g (¢) gives qx(0) =2k+3 and gx (2) = (— D®ED 2k +3)
In particular neither 0 nor 2 is a root of ¢g;. Hence 0 and 2 are roots of multiplicity 2
in pr. Since D = GG’ is a symmetric matrix, the dimensions of the eigenspaces

for D for the eigenvalues 0 and 2 are both equal to 2.
Bases of E(D, 2), E(D, 0) may be taken as

E(D, 2) := span{xy, x2},

E(D, 0) :=span{y, y»},
where

x1 = 2(ag + @) — 2(as 4 a6) + - - -+ (=1 2(0ar + g s2)

+ (D B v+ B3+ 13),
x:=&=(p1—r)+(Bs—y3),
y1 =200 — 202+ -+ + 201 — 204142+ (B1 + 1) — (B3 + v3),
y2:=n=0B1—y1)—(B3—73).

Assume that we have a fusion algebra compatible with the pair of the graphs
(T, F,/(), and let 7 and 7’ be the conjugate maps y + ¥ on Vi; and Va. By
the argument used in [Haagerup 1994, pp 28-31], the map 7’ fixes every element
of V. For m, there are only two possibilities:

Case 1 [Haagerup 1994, Case (b), p 31].
Bi=Bi. Vi=v. Bi=wn(&¥yi=p5).

Case 2 [Haagerup 1994, Case (a), p 31]. (This case will be eliminated.)
Bi=ni(evi=p), Bi=p Vi=vs.

In both cases, ap; = ap; for j =0, 1,...,2k + 1. Note that 7 extends linearly
to o; and sd; = RVy;. Let E(D, ¢) := E(D, ¢)™. Observe that

c1X1+cXo =cix1+cpxp, ¢, €R,
holds if and only if ¢; = 0 in both Cases 1 and 2, and similarly

cic1yr +ey2 =ciy1 +cy2, c1,0 €R,
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if and only if ¢, = 0 in both cases. Therefore
E(D, 2)sc = Rxy,
E(D, 0)sc = Ryi.

By the definition of principal graphs, the matrix D : RV;; — RVj; corresponds to
the fusion rule of the right tensor product by o, where o = «;. Therefore

D(EE) = ED(E) = 288,

D(mn) = nD(n) =0.
Hence
£t € E(D, 2)sc = Rxy,

nn € E(D, 0)sc = Ryy.
Thus

(EE, ap) = (£, Eap) = (£, €) = 4.

Hence the coefficient of £ at «g is 4. Since £€ € Rx;, we have £& = 2x;. Likewise
we obtain 771 = 2y;. Noting that

= n in Case 1,
§= {—n in Case 2,
we have
En =2y, né = 2x in Case 1,
{Sn =—2y;, né=-2x; inCase?2,
which completes the proof. ([

Lemma 2.2. £2 =0 and n*> =0.

Proof. The equality D(£2) = £D(&) = 2&2 implies &2 = c1x| + c2x, for some
c1, ¢z € R. Moreover, since (£, n) = 0, we have

(5%, ao) = (5, o) = =(5, 1) =0
Together with (c1x1 4+ cox2, o) = 2¢1, €1, ¢2 € R, we obtain
£2 = crxn = 2k
We show that ¢; = 0, using that ££ = 2x; and £ = 2y, in Cases 1 and 2:

4oy = (028, 28) = (§°,E%) = (E&. £E) = 4(x1. y1)
=2-2)-Q2-)+--+(=Df@=-2)+U+1-1-1=0.

Thus £2 = 0. Then £2 = n*> = 0 for both cases. O
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Since B3 — 3 = 5(§ — 1), we get
Bs—r)i=LE-n?
=1E>+ P —En—né)
=—1(En+né)

_ —%(xl—i—yl) in Case 1,
N %(xl—i—yl) in Case 2.

Remark 2.3. For k even, that is, n = 3 (mod 8) and k = 2/,
TG+ 1) =2(c0 — g+ oz — g +aje— -+ og) — (B3 + 3)
and for k odd, that is, n =7 (mod 8) and k = 2/ + 1,
201+ y1) =2(0 — ap+og —og+age — - +ag — agie) + (B + v1).
Consider next the sequence of polynomials R, given recursively by
Rot) =1, Ri(t)=1, Rn(t) =tRy—1(t) — Rm—2(t), n=2,

as in [Haagerup 1994, pp 33-34]. Note that R, (t) = Um(%), where U, is the
m-th Chebyshev polynomial of second kind [Erdélyi et al. 1981, Section 10.11].

Moreover,

i 1)6
Rm(20059)=—sm(n,1+ ) , 0<0<m.
sin 6

By the recursion formula for R,,
Ri(May=aj, 0=<j=n,
Ryp1(A)ag = p1 + 1,
Ryp2(A)ao = an + P2 + 12,

Ry 3(A)ag =a,—1+ B1+y1+ B3+ ys.
Hence
B3+ v =(Ryy3(A) — Ry 1(A) — Ry—1(A))ag

= (R4t +6(A) — Rajy4(A) — Ryp12(A))ap.

For m even, R, (¢) is an even polynomial in #, thus there is are unique polynomials
(Q))j=0,1,2,... with deg(Q;) =1, such that

Q) =Ry;(1), teR, j=0,1,2,....

With this notation, we have

B3+ v3 = (Qu+3(D) — Q242(D) — Qox41(D)) e

= (Q243 — Qo+2 — Qoxr1) (o).
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Therefore

(B3 —v3) (B3 + v3) = (Qa43 — Qokt2 — Q2+ 1) (D) (B3 — ¥3)
= 1(Q%43 — Qas2 — Qo) (D)(E — 7).
Since D& = 2£ and
sz(\/i) _ sin2j + 1) /4

On(2) = sin /4
_{ 1 j=0,1(mod4),
-1 j=2,3(mod4),
we have
. _ & j=0,1 (mod4),
QJ(D)S_{—g j=2,3 (mod 4).

Similarly, since Dn = 0 and

sin(2j + 1)m /2
sinyw/2

0;(0) = Ryj(0) = = (1),

we have

0;DMn=(-1)/n, j=012....
Therefore,

(Q2%+3(D) — Q2% 42(D) — Q2 41(D))E
_ {(Q41+3([D) — Qu2(D) — Qu1 (D) = —& fork =2I,1 €Ny,
(Q4145(D) — Q4144(D) — Qy43(D)) =& fork=2[+1,1 € Ny,

and in both cases

(Q2k+3(D) — Q2p42(D) — Q2p+1(D))n = —.
Hence
(B3 — v3) (B3 +v3) = 5(Qar43 — Qo2 — Qi )(D)(E — 1)

_ {%(—E +n) =y3—Bs keven,
Ie+m=p—-n  kodd

Using the contragredient map we get in Case 1 that

Bs+v3)(Bs—v3) = (B3 —¥3) (B3 +¥3)
=3 —B3)(y3+B3)
=—(Bs—y3)(B3+¥3)

= {_(73 —B3)=—(Bs—y3) keven,
—(B1—¥71)=—(B1—y1) kodd,
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and in Case 2 (to be eliminated) that

B3+ v3)(Bs—v3) = (B3 —73) (B3 +73)
=B3—v3)(B3+v3)

_ {)73—,33=V3—ﬁ3 k even,
Bi—¥Vi=y1i—p1 kodd.

Thus in both cases,

y3— B3 keven,

B3 +y3)(Bs—13) = {7/1 — Bk odd.

So far, we have obtained the three formulae

. .
o |=3Gi—y) inCasel,
(A) Bz —v3)" = L(x1—y1) inCase2,
1
5(—&+n)=y3— B3 keven,
B - +y) =11
(B) Bz —v3) (B3 +y3) Ye+m=p—y  kodd,
_|rs—Bs keven,
(©) (B3 +v3)(Bs —v3) = vi— B kodd.

Next we compute (83 + )/3)2, in order to find /832, y32, B3ys and y3 3.
Claim 2.4. We have

(D) (B3+y3)* =2(coco+craa+ - +ear10a2) +cars2(Br+11)+cu(Bs+v3),
where the c; are defined by

co=1,

ci=c=0,

cj=cj_1+cja2+cj3 forj=>3.
Proof. Recall that

(B3 +y3) = (Qon43 — Q22 — Q41 (D)
= (R4r16(A) — Rag44(A) — Rap2(A))ap;
thus

6y (B3+¥3)” = (Ragy6(A) — Raty4(A) — Ry 12(A) (B3 + 13).

Our strategy of the proof is as follows: First we find a sequence of polynomials ()
such that S;(A)(B5 + y3) is given by a simple formula. Next we rewrite the right-
hand side of (f) using the S;.
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From the graph, we obtain

Ro(A)(B3 +v3) = (B3 + ¥3),

Ri(A)(B3+y3) = (B2 + 1)

Ry(A)(Bs+y3) = AB2+1v2) — (B3 +v3) =B+,
R3(A) (B3 +y3) = AB1+ 1) — (B2 + y2) =200,
R4(A)(B3 +y3) =200, — (B1 +y1) =201+ B1 + 1.

Define the polynomials (S;(#)) j>3 by the recursive formula
S3(1) = R(1),

S4(t) = Ry(t) — Ry (1),
Sj(t)=1S;_1(t) = Sj—2(1), j=5.

By definition S3(A)(B3 + y3) = 2w, and S4(A)(B3 + y3) = 2a,—1. Since oy =
Aoy —oyyg forl=1,2,...,n—1, we easily obtain
Si(A)(B3+y3) =2an—j+3
for j =3,4,...,n+3. Next we express the R; in terms of the S;.
Lemma 2.5. For j > 2,
Ryj_1=doSrj—1+diSrj—3+---+d;j28S3+(dj—1 —dj2)R,
Roj=doSrj+diSrj o+ +dj_2S4+dj—1Ry+d;_3Ry,

where the d; satisfy

d_1=0, dy=di=1, dj=dj_1+dj>+d;_s.

Proof. For j = 2 this is obvious by the definition of the S;. We proceed with
induction. Assume the statement is true for j > 2. Using the recursion formulae
for the R; and S;, we have

Ryjy1(t) =tR2j(t) — Rpj—1 (1)
=1(doS2j +d1S2j—2+---+dj2S4+dj_ 1Ry +d;_3)
—(doSrj—1+di1Srj3+---+dj2S3+(dj—1 —dj-2)Ry)
=doSrjp1+d1S2j—1+---+dj 2S5+t (dj—1Ry+dj_3)—(dj—1 —dj—2)Ri
=doS2jy1+d1S2j—1+---+dj 2S5+d; 1 (tRy —R))+1tdj_3—d; 2R
=doSrjr1+d1S2j-1+--+dj28S5+d; 153+ (dj_3—d;2)R;.
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The last equality was obtained using S3=R3, Ry =t,andd; >»+d;_3=d;—d;_;.
Likewise we have

Ryj2(t) =t Rpj41(t) — Ry (1)
=doSrj2+d1S2j+- - +dj—2S6
+1(dj_1S3+(dj —d;—1)R) — (dj— 1Ry +d;_3Ro)
=dpSrjyr+d1Soj+---+dj_2S¢+dj—1Rs
+(dj —dj-1)(R2+ Ro) —d;j—3Ro
=doSrjio+d1Soj+ - -+dj 28 +dj_154
+djRy+(dj—dj—1 —d;_3)Ro
=doSrj2+d 1S+ -+dj 2S¢ +dj_1S4+djRy+d; >Ry,

which completes the proof of Lemma 2.5. ([

We return to (ff). Using Lemma 2.5,

Raj+6 — Raj+a — Rajyo
= doSak+6 + (di — do) Saxya +d_1Sar2 +doSar + dy Sax—2
+ -+ dy—2S4 +dy—1 Ry + dru—3 Ry
= Suk+6 + doSax +d1Sak—2 + - - + dog—2S4 + dog—1 R2 + dog—3 Ro.

Recall
Si(A)Y(B3 +v3) =20 43,
Ra(B3+y3) =B+
Letting ¢o :=1, ¢y = ¢, =0 and ¢; :=d;_3 for j > 3, we obtain Equation (D),

which concludes the proof of Claim 2.4. O

Thus far we have obtained the formulae for (83 — y3)2, Bz — y3)(B3 + 13),
(B3 +¥3)(B3 — y3) and (B3 + 3)? in Equations (A), (B), (C) and (D). This enables
us to understand the fusion rules among B3, y3 and their conjugates.

Proposition 2.6. Case 2 does not occur. Namely, B) and y, are self conjugate and
B3 = ys if there is a fusion algebra compatible with the graphs T and Iy

Proof. First observe that, by the definition of ¢;, j > 0, in Claim 2.4, it follows
that ¢; (mod 4) is periodic in j with period 8. The values are:

jmod8) |0|1]2]3]4|5|6|7
c;j(mod4)|1]0]0|1|1[2]0]0
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In particular,

) {czj =1 (mod 4) for jeven,

c2j =0 (mod 4) forj odd.

In the following we assume Case 2 and derive a contradiction.
First consider the case when k is even. By (B) and (C), we have

(B3 —y3)(Bs+v3) = (B3 +y3) (B3 — 13),
hence
B3vs = y3Bs = 5 (B3ys + v3B3)
= 3((Bs+ 73> = (B — ¥)?).
From (A) for Case 2, (D) and Remark 2.3, the coefficient of 83 in the expansion

of B3ys in irreducible objects is equal to

e+ 1
Y

Since k is even, ¢y = 1 mod 4 by (%), so (car +1)/4 is not an integer. This implies
that Case 2 does not occur if k is even.
Next consider the case when k is odd. From (B) and (C), we get

Bz —y3)(Bs+v3) =—(Bs+v3)(B3—13).
Hence
Bi=vi= 2(53 +75)
= 1 (B3 + 73> + (B3 — ).

From (A) for Case 2, (D) and Remark 2.3, it follows that the coefficient of 8| in
the expansion of ,832 in irreducible objects is equal to

Cop+2+ 1

—
Since k is odd, cor42 = 1 mod 4 by (), so (cyx + 1)/4 is not an integer. This
excludes Case 2 for k odd as well. O

In the following we determine all the irreducible decompositions for the products
of any two objects in V and show that the coefficients are nonnegative integers.
Since we excluded Case 2, we rewrite (A) as

—2(ap—ag+ag—ais+oaje—---+ag) — (B3 +y3)
k=2l,1=0,1,2,...,

—2(ap— g +ag—ajgtae—---+ag —agi16) +(B1+y1)
k=2l+1,1=0,1,2,....

(A) (B3—r3)* =
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Put
A= (83— 1), B:=(B3—y3)(B3+v3).
=B +r)Bs—y3). D=3+
Then
Bayy = (O A)I(B ) 532:(D+A):(B+C)’
Vs = (D_A)Z(B_C)’ y2o (D+A)Z(B+C)’

We introduce new constants ( f;) >0, (gj)j>0 by
fi=3C;j+1),g;=2%(c;—1) for j=0 (mod4),
fi=2(c;—1),g =%(c;+1) forj=3 (mod4),

Note that f; + g; = c; for all j. Further, from the table on page 268, observe that
fj» g is an nonnegative integer for all j > 0. Here are some values of f; and g;:

J10[1]{2(3]4(5|6]|7|8]9 101112
fil1]0]0(0|1|1|2{3|7|12]22|40|75
gi10]0]0[1|{0]|1|2]4]|6]12|22|41|74

For k even, using (A"), (B), (C), (D), we have

D—A
7 = fodto+ fron+-+ fokp10ars2 + 3Cou2(B1 + 1) + e — D (B3 +13),

D+A
% = 800+ 8102+ + gak410arr2 + §Cur2(Br +¥1) + 5 (cax + D (B3 +13),

B-C

— =0
B
I =1(r3—Ba).

Since k is even, cog+2 =2 for+2 = 282442, Cox +1 =2 fo and ¢y — 1 =2g2;. Hence
we obtain the following theorem:

Theorem 2.7. For k even,
Bsys =vy3Ps = foao + fiaa+ -+ fat10uri2
+ 3 faer2(Br+ 7)) + 5 (fr = D(B3 + 73),
B3 = g0+ 8102+ - -+ ot 10ak42+ 3 8242 (BL+¥1) + 382 B3+ 3 (821 +2) ¥,
y3=_goo0+8102+" -+ gut102us2+ 38242(B1+ 1) + 5 (26 +2) B3+ 3 2 v3.

All the coefficients of irreducible elements are nonnegative integers.
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Proof. The only remaining thing to prove is that fy;> is even, fo; is odd and g»;
is even for any j. Since k is even, cpp+2 =0 (mod 4). Thus forio = %C2k+2 is even.
Likewise ¢y = 1 (mod 4), thus fp, = %(Czk + 1) is odd. Now,

%(czj —1) for j even,
82 =11 .
5C2j for j odd.

Since ¢; — 1 =0 (mod 4) for j even and ¢;; =0 (mod 4) for j odd, we have that
&> 1s even for any j. ([

In the same way, we get for k odd,

D—A
—g = Jodo+ froat e+ fori ko + T2+ DB+ + 3cuBs+13),
D+A 1 1
4 =800t giont e+ gttt 12— D(Bi+r1)+ zcu (B3 +13),
B-C
5 =1Bi-7),
B+C
——=0.
4

Since k is odd, cor+2 + 1 = 2 fort2, cok+2 — 1 = 2gok42 and ¢ = 2 for = 2804
Hence we get:

Theorem 2.8. For k odd,

B3ys = foao + fiaa + -+ fakt10ak+2
+ 3 (s + DB+ 5 (P2 = Dy + 5 o (Bs +13),

v3B3 = fooo + fraz + -+ for+10ak42
+ 3 (fakrz = DB+ 3 (fars2 + Dyi+ 5 (B3 + v3),
B3 =v3i = goao+ 8102 + - + Qakr10ak42 + 382u2(B1 + 1) + 582k (B3 + 13).

All the coefficients of irreducible elements are nonnegative integers.

Proof. 1t remains to show that fy4o is odd and fo¢ is even. In the proof of
Theorem 2.7, it has been already proved that g>; is even for any ;.

Since k is Odd, Cok+2 = 1 (mod 4). Thus f2k+2 —1= %(C2k+2 — ]) is even, that
1S, far+2 1s odd. Likewise cpx = 0 (mod 4), thus fo; = %Czk is even. O

Thus far we determined that 8; and y; are self-conjugate and computed the full
irreducible decompositions of B3 and y3, in particular, B3 = y3. This determines the
rest of the fusion rule. Note that the conjugate map r on ZV|; is now determined.

First, for az;, j =0, 1, ..., 2k + 1, the right and left multiplication of o; on
any other object from Vi, is represented by the matrices Q;(D) and Q;(7wDm)
respectively.
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Claim 2.9. The entries of the matrices R;(A) fori =0, 1, ..., 4k + 3 are nonneg-
ative integers. In particular, the entries of the matrices Q ;(D) for j =0,1, ...,
2k + 1 are nonnegative integers.

Proof. This immediate from the result in [de la Harpe and Wenzl 1987], which
states that when A is an adjacency matrix of a graph with norm greater than 2, the
matrix R;(A) has nonnegative integer entries for any i. U

It remains to determine the decomposition of tensor product of 8; and y; with
themselves and B3 and y3.

Since by the graph B8, = B3a» and y; = y3ap, the fusion among B3 and y3
together with the fusion of o, with all the objects determine B381, v3y1, B3V1,
y3B1 by imposing associativity. Taking the conjugate, we obtain 883, 13, B1V3,
1B as well. Thus 7 = Biyse, ¥i = yivaaa, Biyvi = Biysaa, viBi = y1Baas are
all determined. Since there is no division, subtraction of objects are involved in the
process of determining each desired fusion rule, the coefficients are all nonnegative
integers.

2B. Fusion rules on N¥n x N¥ . We identify y& with V1 and y &, with Vi;.
Claim 2.9 implies that ;Y for i even and any Y € V), are determined, and so are
Xa; for X € Vi1 and i odd. Thus it remains to obtain 8;Y and y; Y, where i =1, 3,
Y = B or y». They are easily determined, since B8, = B3a1, y» = y31, and the
fusion among B;, y;, i, j =1, 3 are already determined. (Here we used associativity
again.) Since the fusion coefficients among the B; and the y; are nonnegative
integers and the product of «; from the right gives fusion with nonnegative integers,
the fusion coefficients of 8;Y and y;Y are nonnegative integers as well.

2C. Fusion rules on ¥y x & n. Let X € y¥p. Then for j odd,
Xoa;=R;(A)X.

Claim 2.9 implies that R;(A)X is a linear combination of the objects in y&y
with nonnegative integer coefficients. It remains to show that B2po, B2va, yzﬁz
and y» ¥, also have this property. It is immediate, since Br = a1B3, Yo =01¥3,
Boa = B1+ B3, y2& =y1+ Y3, and all the fusion rules involved have decompositions
into simple objects with Z-(-coefficients.

2D. Fusion rules on p%a X Mm% s and Xy X y%n. Recall that we have iden-
tification ¥y = Voo and ¥y = Vo1. Let A’ be the adjacency matrix for I'.

Then the fusion rules of the tensor products of the oz;. for j =0,2,...,n—1, as
well as the oy for k =1, 3,...,n — 1 with any objects in V5 U V;; are given by
the matrices R;(A’), where [ =0, 1, ..., n. Similarly to Claim 2.9, the entries of

R;(A) are all nonnegative integers. Furthermore, using Frobenius reciprocity, this
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also takes care of the coefficients of the a} and o in the tensor product of two
bimodules.

2E. Fusion rules on ¥y x pyXy. The remaining issue is to determine the fusion
rule among f and g. Observing the Perron-Frobenius weights shows that f = f,
g = g. Since for j even, each a; is self-conjugate as well, fg =gf.

Theorem 2.10. We have
(f* fy=du-1, (fg f)=du,
(fg.8) =dus1, (8%, 8) = dusa,
where the dy are defined as in the proof of Claim 2.4 by
di=dj_1+dj2+d; 3, d1=0, dy=d =1.
Lemma 2.11. We have
(f2. f) = (f8. 8) = dak—1 — doyy1,

(fg. f)— (g% &) = do — days2,
(fg,8) — (g% g) =duy1 —dayia.

Proof of Lemma 2.11. We use a similar strategy to the proof of Claim 2.4. Let G’ be
the adjacency matrix for (Vay, V21) corresponding to the graph I'; (see Figure 1),

and let
0 G
A= (G” 0 > :

Ro(A) (g~ f)=(g— /),
Ri(AYg— ) =72+ o,
Ry(A)g—f)=g+ ]
R3(A)(g — f)=2d',,
Ry(A)g— f)=2a, 1+ f+sg,

where o/,. =« for j odd. Then we have

Observe that

S;(A)(g — f) =203

for j=3,4, ..., n+3, where the polynomial S, is defined in the proof of Claim 2.4.
On the other hand,

g+ f=Rup1(DNof = Rap4a(D)ay = Qoppa(@ay).
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Using Lemma 2.5,

&+ Hg—1)
= (doS22k+2) + d1 S22k +1) + - - - + dox Sa + dogy1 Ry + dog—1 Ro) (A (g — f)
= (linear combination of the o) + dax41(g + f) + dax—1(g — f)
= (linear combination of the o) + (dok+1 + dak—1)g + (dak+1 — dok—1) f-

Therefore we have
((g— g+ )8 =(g% 8 — (f% g = dut1 +dox—1 = dois2 — o,
((g— g+ 1) =1 f)—(f* [) = dous1 — do—1.

We obtain further information by investigating Ry(A")(g + f)(g — f). Note that
Ry(A')(g+ f) =2a;,_, + f + 3g. Therefore

o1

#) Ra(A)g+ f)g—f)

= (2, + f+3g)(g— f)

=2a)_(g— f)+38*— f2—2fg

= (@) +2(da (g + f) +do—2(g — ) +38* — f2—2fg

= (0}’s) + 2(dok + dok—2)g + 2(dox — dax—2) f +38% — f* —2f3.
On the other hand,

(£2) Ro(A)(g+ f)g— 1)
= Ro(A) 2(doay +diay + - - - + daty ) + (dary1 +dos—1) Ra(A')g
+ (dag1 — dok—1)Ra(A') f
= (a’s) +2dy (f + &) + (do 1 +du—1) (e + f +28)
+ (dag+1 — dok—1) (et _ + 8)
= (a,’8) + Qdo + do 11 +do—1) f + doy + 3doiy1 +doi—1)g.

Comparing (1) and (§2) we obtain
3(8%,8) — (%, 8) = 2(fg, &) = 3dair1 +doy—1 — 22,
38 f) = (f% ) —2(f8. f) = das1 +do—1 + 2do—.

Combining Equations (b1) and (b2), we obtain the statement of the lemma. Note
that we use Frobenius reciprocity such as (fg, f) = (f2, g), etc. ([

(v2)

The next lemma, together with Lemma 2.11, implies Theorem 2.10.

Lemma 2.12. (g2, g) = do4o.



FUSION RULES ON A PARAMETRIZED SERIES OF GRAPHS 275

Proof. Since g = Boot; = Yootq,
2¢ = (Ba+ 7o = (B3 + y3)arar =@ (B3 + y3)a.
Also, Y2 = 301 = @1 3. Therefore
4(g%, g) = (@1 (B3 + y )o@ (B3 + y3)an, @1 )

= ({x1a1(B3 + y3)a1a1 (B3 + y3)aar, B3)

= (B3 + ) (@i@)*, B3) = (B3 + v3)%, Bs(i@r)?),
where we used

1Bz +y3)=p+B+ri+vs
=p1+B+rit+y3=(Bs+ o = B3+ y)aiar.

A computation using the graph I'; gives

B3(1@1)® = 53 + 101 + 60,1 + 691 + o3 + v5.
Using the formula for (83 + )/3)2 given in Claim 2.4, we obtain
(B3 +13)2, B3(1@1)?) = 8cap + 1200141 + 16c2142 = deagr1 + 8caka + 8cants
=4coky2 +4cor43 +4cokqa = deriys = 4do .

Therefore (g2, g) = doria. O

2F. Fusion rules on y%¥y x y¥n. The remaining problem is to determine the
fusion rule on { f, g} x (B2, Vo)

(fBa, B2) = (f, B2B2) = (f, &1 B3a1) = (a1 fay, B3) = (w1, B3)
= (B3, B1) + (B3, 1) + (B3 ctn—1).
Theorems 2.7 and 2.8 imply that
(f B2, B2) = gokr2 + gkt
Both values are nonnegative integers. Similarly we obtain
(fB2. 72) = (V2. B2) = farra + faas1
(fV2,72) = 8ak+2 + 82441,
(gB2. B2) = (Brc1 B2, B2) = (@1 B3c1@1 B3, @1 B3) = (1@ y3e1 @1, ¥3f53)
= (11 + v, y3B3).,
1+ v = (1 + B = (-1 + 1 +2y1 +3) + b1 + B3
=an—1+2B1+ty)+y3tB=an1 +2(B1+y1) +v3+ B3
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Thus, using Theorems 2.7 and 2.8 we obtain

2 2 {f2k+1 +2fok42+ fox — 1 for k even,

(B2, B2) = Foeer 42 foesn + P for k odd.
Similarly,

(B2, V2) = (72, B2)
ot vk, W77l B
3. Existence of the fusion algebra
Let k € Ny, and put n =4k +-3 as before. In this section we will reserve the symbols
(@j)o<k<n>» (Bji<j<z» Wii<j<3

for elements in a certain bigraded Z-algebra ¢ which we define later. Therefore
we relabel the vertices of the graph I'y as in Figure 2.
As in Section 2A, let G be the adjacency matrix for (I';**", F,‘gdd), where

even
Fk :{a(),a2,...,an_l,b],CI,b3,c3},

dd
I ={ay,as, ..., an, b, c2}.

0 G
s (2 9)

Let (gx)7-, be the sequence of polynomials defined by

Set D = GG’ and

qo(t) = 1> — 5t + 3,
q1() =@t — 1) (> =82+ 17t — 5),
G (1) = (2 — 4t +2)qr_1(t) — qr—2(t), k>2,

Fk .
aop ag ap ap—1 ay C1

Figure 2
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as in Section 2A. Then the characteristic polynomial for D is
Xe(t) = 12t = 2)*qi (1)
(see Section 2A). Moreover gx(t) is a polynomial of degree 2k + 2 with 2k 4 2
distinct roots, because by [Asaeda and Yasuda 2009], either g (¢) or gx(t)/(t — 1)
is an irreducible polynomial. The recursion formula for the g, -polynomials implies
qx(0) =2k 43,
e (2) = (=D 2k +3).

In particular, O and 2 are not roots of g;. Let k € Ny be fixed. Then xi(¢) has
2k+4

exactly 2k +4 distinct roots (¢;); ", where t; =0, , =2 and 13, . . ., x4 are the
roots of g (¢). Since D = GG' is a positive operator, tj>=0forl <j<2k+4.
Lemma 3.1. Let E; be the orthogonal projection on the eigenspace of D corre-
sponding to the eigenvalue t;, 1 < j <2k +4, and put
wj = (Ejao, ap),
where (-, -) is the inner product in lz(l"zven). Then
2k+4

(@) 355" ) =

(b) wj>0forl <j<2k+4,

(©) 1= p2=1/2k +3).
Proof. (a) Since D is a symmetric matrix, ZZkH E; =1, thus ZZI‘H =1

(b) From Section 2A, we have
Qj(D)ag=Ryj(A)ag =azj, 0=<j<2k+1,
Q2u+2(D)ap = Rag+a(A)ag = by +ci,
Q2u+3(D)ag = Rax+6(A)ao = by +c1 + bz +c3.

Since {ag, az, .. ., asr+2, b1 +c1, b1 +c1 + b3z +c3} is a set of 2k + 4 linearly inde-
pendent vectors in /2(I'$¥*"), and since (Q)o<,<2x+3 spans the set of polynomials
of degree less or equal to 2k + 3, we have

P(D)ag #0

for every nonzero polynomial P € R[x] with deg(P) < 2k + 3. On the other hand,

D is diagonalizable with eigenvalues (tj)ikzﬁ“, SO

E; = P;(D),

where

r—1t
Pj(z)—]_[t_l 1 eR,
i#] !
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is a polynomial of degree 2k + 3. Hence
;= (Exao, ap) = || Ejaol* >0, 1< <2k+4.
(c) From Section 2A, we have
rg(Ey) = E(D, 0) = span{y1, y2},
rg(E>) = E(D, 2) = span{xy, x2},
where
x11=2(ao+az) —2(as+ae) + - - - + (—=1)*2(as + as+2),
+(=D by 41 + b3+ ¢3),
x3 = (b1 —c1) + (b3 — c3),
yi:i=2a0—2ay+ - +2a4; — 204442 + (b1 +c1) — (b3 +¢c3),
y2:= (b1 —c1) — (b3 —¢3).

Since y; L y; and y, L ag, we get

[(y1, ao)|? 1
w1 = (Eagp, ag) = = ,
y1112 2k+3
and similarly,
|(x1, a)|? 1
= (E»ap, ap) = = . U
w2 = (Ezao, ap) ™ %43
Corollary 3.2. Let (e; j)l.z’kjﬁ1 be the matrix units of My14(R). Put
B = spang{err, e12, €21, €22, €33, €44, . . ., €2k44,2k+4}

= My(R) ®1°((3, 4, ..., 2k + 4}, R).

Then B is a finite dimensional real C*-algebra and the map p : B — R given by

2k+4
n) =Y b, b= eB,
j=1

is a faithful trace state on R.

Proof. Tt is clear from Lemma 3.1(a), (b) that u is a faithful state on %. The trace
property
u(be) = p(cb), b,ce®B,

follows from Lemma 3.1(c). U

Lemma 3.3. Fix k € Ny, let 1 : B — R be the trace in Corollary 3.2, and put

A = diag(0, v/2, /53, . .. Tz ),
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where t3, . .., th1q are the roots of g.

(a) For every even polynomial P € R[x],

w(P(A)) = (P(A)ao, ao).

(b) Let P, Q € R[x] be two polynomials, which are either both even or both odd.
Then

n(P(A)Q(A)) = (P(A)ao, Q(A)ag).
(c) Let n = 4k + 3 (as usual). Then
Rp14(A) — Ryy2(A) — Ry (A) — Ry —2(A) =0.
Proof. (a) Choose Q € R[x] so that P(t) = Q(t%). Then
(P(A)ao, ao) = (Q(D)ao, ao).

Let E; denote the spectral projection of ) corresponding to the eigenvalue 7;,
1 < j <2k +4, as before, where t; = 0 and #, = 2. Then

2k+4

QD) =" Q()E;.
j=1

Hence
2k+4 2k-+4
(QD)ag, ao) = Y QUH(E jao, a0) = Y 1 Q(t)) = u(Q(A?) = u(P(A)).
Jj=1 j=1

(b) Under the assumption on P and @, the product P Q is an even polynomial.
Hence by (a) we have

(P (A)Q(A)) = (P(A)Q(A)ao, ao)
= (P(A)ag, Q(A)ao).
(c)Put P=Q =R, 44— Ry42 — R, — R,_>, which is an odd polynomial. By (b),
1(P(A?) = | P(A)agls.
From the recursive formula for the polynomials R;,
Ry—2(A)ap = ap—2,
R, (A)ag = ap,
Ry2(AN)ao = an + by + 2,
Ryta(D)ag=ay,—2+2a,+br+c
= (Ry42(A) + Ry (A) + Ry—2(A))a.
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Hence (P (A)%) = || P(A)aollg =0, and since p is a faithful trace on %, we have
P(A) =0. U

Remark 3.4. Since P = R,44 — Ry42 — R, — R, is an odd polynomial and
P(A) =0, we know that P(r) has at least n +4 = 4k + 7 roots

Oa :l:\/iv i\/t_a s NV t2k+47

which are exactly the distinct roots of ¢ (2 —2)qy (t?). Since P and (t> —2)qy (t%)
are both monic polynomial of degree 4k + 7, it follows that

(Ruta — Ruya — Ry — Ry—2) (1) = 1 (t* — 2)qi (£*).

It is not hard to prove this identity directly by using the recursion formulas for the
polynomials {g,} and {R;}.

Definition 3.5. Let k € Ny, n =4k + 3, and let B and p be as in Corollary 3.2 and

A = diag(\/11, /12, . - ., /T2k+4) € B be as in Lemma 3.3. Let (fij)iz,j:1 be the
matrix units in M»(R), and put

Vi=ViuVipu Vo u Vo,
where Vi; CBQ® fi;, i, j =1, 2, are as follows:
(@) Vi1 ={ag, a2, a4, . . ., aak42, B1, ¥1, B3, 3}, where
0 =R(A)® fi1, 0=<j=<2k+1,
B = %(R,,H(A) + N2k +3(e1n +€21)) ® fu1,
V1= S(Rus1(A) — V2k +3(ern +€21) ® fu1,
By = L((Ruy3 — Rut1 — Ruo1)(A) +V2k 1 3(e12 — e21)) ® fi1,
3= 3((Ry43 — Rus1 — Ru—1)(A) — v2k +3(e12 — €21)) ® fi1.
(b) Vi = {1, a3, s, . . ., 443, B2, v2}, where
jt1=Ryj11(A)® fra, 0=<j=<2k+1,
Br= 3(Rua = R)(A) +22k +3)en) ® fio.
V2 = L((Rut2 — R)(A) = 22k +3)e12) ® fia.
(c) Va1 ={@1, @3, @s, . .., Aax43, B2, Y2}, where
0jr1 =R 1(A)® fo1, 0=<j=<2k+1,
B2 = L(Rut2 — R)(A) + 22k +3)ea) ® for,
V2= 2((Rpy2 — Ru)(A) — V22k+3)ean) ® for.
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(d) Vo = {a, &5, ..., Ay », fr g}, Where

o =Roj(A)® fn, 0=<j=<2k+1,
f=32(Ru_1 +2Rut1 — Rit3)(A) ® foo,
§=2(Rut3 — Ri1)(A) ® foo.

(e) The conjugation map Vi, — V,; and V1 — V), is already defined earlier. For
Vi1 and V), all the elements are defined to be self-conjugate except 83 and y3
which are defined to be conjugate of each other. Note that for every X € V;;, the
conjugate X is equal to X* (or X', since all the matrices here are real).

(f) Equip RV;; C B ® f;; with inner products given by

(b® fij, ¢ ® fijhu = pu(c'b) = pu(bc")
forevery b,c e RV;;, i, j=1,2.
Lemma 3.6. Leti, j €{1,2}. For X,Y € V;;,

1 iftX=Y,

X Y= {o if X #£7Y.

Proof. Let (b, ¢),, := u(c'b) = pu(bc'), b, ¢ € B, be the inner product on B given
by . and put ||b (b, b),/*. b € B.

(a) Case (i, j) = (1, 1). It suffices to show that
S1:={Ro(A), R2(A), ..., Ruy1(A), (Ry13—Rny1—Ry—1)(A), e1n+e21, e1n—ea}

is an orthogonal set in % and that

. _n—1
IR (Ml =1, 0=j="F—,
IRu1 (A2, =2,
I(Rut3 = Ru1 — Ra- (A}, =2,
2 _ _ 2 2
lleiz +elly, = lleiz —eall, = %3

By the definition of p in Corollary 3.2, it is clear that ej» + e2; and ey — ey are
u-orthogonal to the remaining matrices in Sy, because R;(A) is a diagonal matrix
for all j € Ny. Moreover, by Lemma 3.1,

(€12 +e21, €12 —ea1) = (e —exn) = 1 — u2 =0,

2 _ 2 _ _ __2
llera +exll, = llexz —exll, = plen +ex) = pi+u2 = 573
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By Lemma 3.3(b), the remaining part of the proof in the V;; case reduces to show-
ing that

T\ :={Ro(A)ao, Ra(A)ao, ..., Rpr1(A)ag, (Rp3(A) — Ryy1(A) — Ry—1(A))ao}
is an orthogonal set in 1?(Ty) with
IR2j(Maol> =1, 0<j<n—1,
1Rn1(Aao* =2,
I(Ra+3 = Rut1 = Ru1)(B)ao|* = 2.
This follows from the fact that
Ty ={ao, az, ..., an—1, b1 +c1, b3+ c3}.
(b) Cases (i, j) = (1,2) and (i, j) = (2, 1). It suffices to show that
$2:={Ri1(A), R3(A), ... Ry(A), (Rut2 — Ry)(A), e12}

1s an orthonormal set in 98 and that

n—1
2 9

IRy 1 (A% =1, 0<j<

I(Rut2 — Ra) (A7, =2,
2 1
el = 570

It is easy to check that e, is orthogonal to the remaining elements of S, and that
lle 12||i =Qk+3)"! by Lemma 3.3(b). The remaining statement about the set S
follow from the fact that

T, = {Ri(A)ag, R3(A)ao, ..., R,(A)ag, (Ryy2 — R,)(A)ao}
={ay,as,...,a,, by+c}

is an orthonormal set in /?(I';), and from the equalities

. —1
by +eal>=2,  fagjal>=1 for 0<j <2~

(c) Case (i, j) = (2, 2). The statement follows in this case if we can show that
S3:={Ro(A), Ra(A), ..., Ry_1(A),
5(Ry—1+2Rp41 — Ryy3)(A), 5(Ruy3 — Ru_1)(A)}
is a w-orthogonal set in 8. By Lemma 3.3(b) this reduces to showing that
Ts:={ag,az,...,an-1, 3(b1 +c1+b3+c3), (b1 +c1 —b3 —c3)}

is an orthogonal set in I?(T'%), which is obvious. O
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Theorem 3.7. Let V =V uVpuVo1UVy asin Definition 3.5. Then ZV C M (RB)
forms a fusion ring, with coefficients given by

N{y = (XY, Z),,

where X € V;;,Y € Vi, Z € Vi, (i, j, k) € {1, 2)3, and with units oy € Vi, and
ot(’) € Vyy. Moreover the graph with vertices Vi1 U Viy obtained by right multipli-
cation by o = « is T'y and the graph with vertices Vo1 U Vyy obtained by right
multiplication by o is T}

Proof. By Lemma 3.6, for all i, j € {1, 2}, the set V;; is linearly independent in
B fij. Hence

dim(RVn) = |V11| = 2k+6,
dim(RVy;) =dim(RV,;) = dim(R V) = 2k + 4.

This implies that

RVii =B ® fi1,

RV12 = span{eyy, €2, €33, . . ., €2k 14,2k+4} ® f12,
RV, = span{ez1, €2, €33, . . ., €2p 4214} @ f21,
RV2, = span{eyy, €2, €33, . . ., €2 14.2k+4} @ f22,

because the four inclusions C are obvious, and the right-hand sides have dimen-
sions 2k + 6 (respectively, 2k + 4, 2k + 4, 2k +4). Therefore

RV =RV &RV, @RV, & RVa

forms a bigraded R-algebra, and the conjugation X — X extends by linearity to all
of RV and it is given by transposition of matrices. Moreover, for X € V;;, Y € Vjy,
i, j,k €{l,2}, we have a unique decomposition

XY= Y N{,Z
ZeVig
where by Lemma 3.6,

N{y=(XY,Z), R
The identities - B
Z _nX _NY _nY X
Nyy=N,y=N;z,=N; =N,
are now a simple consequence of the fact that u is a trace state on the real C*-
algebra %, so in particular

ub) =punbd"), be®,
u(bc) = u(ch), b,ceB.
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It remains to prove that N )%’Y € Np and that multiplication from the right by
o = o (respectively, @) on Vj; (respectively, V»y) generates the graph I'y (re-
spectively, I'}).

Lemma 3.8. Let 0 = «;.

(a) For X e V|1,Y € Vi,
(Xa,Y), =(X,Ya), €Ny,

and ((Xo, Y) ) xev,,.vev, is the adjacency matrix Gy, for I'y.

(b) For X € Vp, Y € Vyy,
(X&’ Y)M = <X7 Ya)/.t € NO!
and (X, Y) ) xevs,vevy is the adjacency matrix G, for T'}.

Proof. This follows from simple computations using Definition 3.5, Lemma 3.6,
the recursion formula

() IRy (1) = Ryt1(1) + Ry—1 (1), n=>1,

and the identity from Lemma 3.3(c)

(k%) Ry44(A) = Rpy2(A) — Ry (A) — Rp—2(A) =0.

(a) It follows immediately from (%) that for 1 < j <2k +1,
a0 =a2j41 +a2j-1,

which shows that as; € Vj; is connected to ;41 and a1 in Vi (with simple
edges) and not connected to any other ¥ € V5. To prove that we recover the
graph I'; this way we just have to check that egae = 1, which is obvious, and that
Bia = oy + By and B3 = B,. The last equality follows from

B3 = 1 ((Rp43 — Rust — Rum1)(A) + 32k +3(e12 +€21))A) ® fio
= $(Ruta — 2Ry — Ry2)(A) + 22k + 3)e12) ® f1
= 1(Rps2 — R)(A) ++/2Q2k +3)e1n) ® fiz
= B,

where we used (%) and (xx) and the fact that ej;A = «/5612, e21A = 0. The proof
of Bio = o, + B, is similar.
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(b) To recover the graph I'y from V»; LI V51, it suffices to prove that
O{é-&zazﬂrl-i-&zj,l, 1<j<2k+1,

80 =0y + P2+ 72
The first two are obvious. A computation proves fo = dj:
f&=3((Ri=1(A) +2Ru41(A) = Rur3(ANA® fou
= 3(Ru—2+ 3Ry + Ryt2 — Ruta)(A) ® fo1
=1.2R, (M) ® fo

Il
SN

ns
where we again used (x) and (xx). The formula for g is obtained similarly. [

Lemma 3.9. Put

&:=(B1—y)+(Bs—3).
Then

E:=B1—y1)—(Bs—13),
and
1EE =200 — 200 + - + 204 — 20442+ (Br + 11) — (B3 + 3).
TEE = 2(a0 + o) — 2(aa + ) + - - -+ (= 1) 2(ar + ctags2)
+ (=DM B+ 1+ B3+ 13).

Proof. Clearly & = (81 — y1) — (B3 — ¥3). By Lemma 3.8, the linear maps

Ra : RVH —> RV]Q,
Ru : RV, — RV
obtained by right multiplication by « (respectively, by &) have the matrices G’

(respectively, G) expressed with respect to bases V;; for RV;; and Vi for RV,.
Hence

Ra& = R&Ra : RVH —> vaz

has the matrix D = GG' with respect to the basis Vi for RVj;. We can now argue
exactly as in Case 1 of Section 2A to get

SE € E(lD7 O)SC == Ryh
£t € E(D, 2)5c = Ry,
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where

yi =200 — 202+ - - + 2045 — 204542 + (B1 + 1) — (B3 + 13),
x1 = 2(atg + 02) — 2(0tg +0t6) + - - - + (= 1) 2(0ap + aar42),
+ (DB 1+ B3+ 3).

Since (£&, o), = (€€, ap) = (£, &)y =4 and (y1, o), = (X1, &0, =2, it follows
that ££ =2y, and £ = 2x;. O

End of proof of Theorem 3.7. It remains to prove that N )%,y € Ny for all X € V;;,
Y € Vjp and Z € Vi, (i, j € {1,2,3}).Having established the formulas for EE
and £¢ in Lemma 3.8, the proof that N )% y € No can be obtained from Section 2:
Using
Ny = Né? - N)%z’

if X, Y or Z is one of the elements (c¢j)o<j<n. (ot;.)ofjfn (where oy, | = Q2k11),
then N f’y is an entry of the matrix R;(A) or R;(A’), which is a nonnegative
integer by [de la Harpe and Wenzl 1987]. In the remaining cases, X, Y and Z are
compatible and come from the list

Bi, vi,» B3 V3. B2 v2, B2 V2, fs &

For X,Y,Z € {B1, 1, B3, v3}, we have N)%’Y e Ny by Theorems 2.7 and 2.8,
and the remark at the end of Section 2A. The case X, Y, Z € {f, g} is treated
in Theorem 2.10 and the remaining cases can easily be reduced to these two cases
by using 8> = B3« and y» = y3a (see Sections 2B and 2F). O

Remark 3.10. From Definition 3.5, we have

E=(B1—y)+(Bs—v3) =2vV2k+3e12® fi1,

E=Bi—r)— (Bs—y3) =232k +3ex ® fi1.
Thus _
§E =42k +3)e11 ® fi1,

§6 =4(2k+3)en ® fu-
Since A = diag(O0, V2, 1y ooy STkra), Where B3, . . ., o4 are the distinct roots
of g (¢), and since 0, 2 ¢ {3, . . ., for+4}, the maps e1] and e, are the projections on
the eigenspaces for A with eigenvalues 0 and 2, respectively. Using ¢ (0) =2k +3
and g (2) = (=D (2k +3) gives
(2 — A*)q(A®) =22k + ey,
A%qi(A?) = (=) 2k +3)en,
because the polynomial (2 —7)gy(¢) vanishes att =2 andr =1;,3 < j <2k +4,
and has the value 2(2k + 3) at ¢+ = 0. Similarly 7g;(¢) vanishes at + = 0 and
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t=t;,3<j <2k+4, and has the value (—1)**12(2k +3) at r = 2. Hence the two
identities

EE =202 — AHg(A?) ® fi1 = 2(1y — a@) g (@),

EE = (—D"2A%(AY) ® fi1 = (—D* P 2a@qy (ad@)

hold, where 1y = a9 and o = ;. Let Q; denote as usual the polynomial for which
Ry;(t) = Q;(t?),t € R. Then by Definition 3.5,

arj = Qj(aq),
B1+y1 = Qxuy2(aa),
B3+ 3 = (Q2us3 — Q2ru+2 — Quy1) ().

Hence a more direct proof of Lemma 3.8 can be obtained if the two polynomial
identities hold:

re=02Q0—201+ - +20% —202%+1) + (Q2+1 +202%+42 — Q2%+3),
sk =2(Q0+ 02) —2(Q2+ Qa) +- -+ (= D*2(Qak + Q2t1)

+ (=D (Qaty3 — Omr1),
where

i) =Q—ng), si@)=—1""tqu).

These two polynomials identities are actually true, and they can be proved using
the recursion formulas for (gx);2, and (R j);?‘;o. U
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