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DAVID G. CARABALLO

We prove that B2-convexity is sufficient for lower semicontinuity of surface
energy of partitions of Rn, for any n ≥ 2. We establish lower semicontinuity
in the usual strong topology, assuming the regions converge in volume. We
also establish lower semicontinuity in the more general situation in which
we suppose integral currents associated with individual regions converge to
some integral current in the weak topology of integral currents.

B2-convexity, formulated by F. Morgan in 1995, is a powerful condition
since it is easy to work with and since many other conditions from the liter-
ature imply it. Our results therefore imply that each of those conditions is
sufficient for strong and weak lower semicontinuity of surface energy.

We establish other results of independent interest, including a Lebesgue
point theorem for partitions and a localization theorem, which shows that if
lower semicontinuity holds locally then it holds globally.

1. Introduction

Many applications, both static and dynamic, involve surface area or surface energy
of interfaces in space, Rn . Energy minimization problems involving surface energy
of partitions – or polycrystals – are central to materials science, physics, biology,
computer science, image processing, and other fields. Some such applications
include crystal growth, tumor growth, annealing of metals, image segmentation,
noise reduction in images, as well as the study of cell structures, immiscible fluids,
metal foams, and semiconductors; see, for example, [Almgren 1976; Almgren and
Taylor 1996; Ambrosio and Braides 1995; Ambrosio et al. 2001; 2003; 2000;
Aubert and Kornprobst 2002; Bellettini et al. 2002; 2006; Braides 1998; Brook
et al. 2003; Gurtin 1993; 1986; Morgan 1997; 1998; Mumford and Shah 1989;
Osher and Fedkiw 2001; Sethian 1999; Taylor 1978; 1993; 1999; 2003; White
1996]. Indeed, most materials are polycrystalline.
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Lower semicontinuity of energy of partitions, which under suitable compactness
conditions ensures existence of energy minimizers, is therefore of fundamental
importance. In this paper, we consider the surface energy functional

(1) SE(P)=
∑

1≤u<v≤s

∫
p∈∂Ku∩∂Kv

φuv(nKu (p)) dHn−1 p,

where P = K1..s is a polycrystal corresponding to the partition {K1, K2, . . . , Ks}

of Rn , nKu (p) is a measure-theoretic exterior unit normal vector to Ku at p, and the
functions φuv are surface energy density functions used to model surface energy
dependence on orientation, or anisotropy, of the interface ∂Ku ∩ ∂Kv between re-
gions u and v in Rn . This surface energy functional was first rigorously considered
by F. Almgren [1976] for the special case φuv = cuvφ for constants cuv satisfying
additional hypotheses and for a fixed norm φ satisfying additional regularity hy-
potheses. It has subsequently been considered more generally; see, for example,
[Almgren et al. 1993; Ambrosio and Braides 1990a; 1990b; Ambrosio et al. 2000;
Bellettini et al. 2006; Braides 1998; Caraballo 1997; 2008; 2009; Morgan 1997;
1998; Taylor 1993; 1999; White 1996].

Although Almgren’s restrictions on the functions φuv were sufficient for lower
semicontinuity of the surface energy functional (1) with respect to strong conver-
gence (i.e., convergence in volume of each of the regions separately), his hypothe-
ses were far from necessary [Caraballo 2008]. L. Ambrosio and A. Braides [1990a;
1990b] discovered the first necessary and sufficient conditions that the functions
φuv must satisfy for strong lower semicontinuity, an integral condition they named
BV-ellipticity. This condition, which ensures that certain perturbations of a planar
interface cannot have less surface energy than the original planar interface, is anal-
ogous, for the setting of surface energy functionals defined on partitions, to C. B.
Morrey’s quasi-convexity [1952].

Unfortunately, BV-ellipticity is an integral condition and is often quite difficult
to check in practice. As a result, many other conditions on the integrands φuv have
been introduced and studied, such as (B)-convexity (introduced in [Ambrosio and
Braides 1990b]; cf. [Ambrosio et al. 2000]), joint convexity (see [Ambrosio et al.
2000] but also [Ambrosio and Braides 1990b]), LSC1 and LSC3 (introduced in
[Caraballo 1997]), B2-convexity (introduced in [Morgan 1997]), and A-convexity,
A2-convexity, and directional control (introduced in [Caraballo 2008]). These
other conditions are easier to work with than BV-ellipticity, and yet are less re-
strictive than Almgren’s conditions.

F. Morgan’s B2-convexity is particularly important, as it is quite general and
relatively easy to work with. In [Caraballo 2008], we showed that Almgren’s
condition, (B)-convexity, LSC1, LSC3, A-convexity, A2-convexity, and directional
control each imply B2-convexity. When those results are combined with the main
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results of this paper, Theorems 14 and 15, we conclude that each of those conditions
on the integrands φuv is sufficient for both strong and weak lower semicontinuity
of the surface energy functional (1).

Because it is implied by most other conditions on the integrands φuv, it seemed
that B2-convexity might be necessary for lower semicontinuity. As observed in
[Morgan 1997], the example given in [Ambrosio and Braides 1990b] to show
that (B)-convexity is not necessary for lower semicontinuity does not apply to B2-
convexity. When φuv = cuvφ, for a norm φ and for positive constants cuv satisfying
the triangle inequality cuv ≤ cuw + cwv for each triple (u, v, w), B2-convexity is
necessary for lower semicontinuity [Morgan 1997]. (This important special case
arises, for example, when one considers immiscible fluids; see also [Almgren 1976]
and [White 1996].) The necessity of B2-convexity for lower semicontinuity of (1)
in general had remained an open question ever since the condition was formu-
lated in 1995, in an early version of [Morgan 1997]. This question was settled in
[Caraballo 2010]: B2-convexity is not necessary for lower semicontinuity.

In this paper, we prove that B2-convexity is sufficient for lower semicontinuity
of the surface energy functional (1). This is a very useful result since B2-convexity
has turned out to be a convenient to check condition, implied by most other condi-
tions considered in the literature; as noted above, our results here imply the other
conditions are all sufficient for both strong and weak lower semicontinuity. There
are currently no published proofs of the sufficiency of B2-convexity for lower semi-
continuity, the only other proof being the author’s original proof in the unpublished
thesis [Caraballo 1997]. Our proof here is simpler, much clearer, and significantly
shorter than our original proof, on which this proof was based.

We establish lower semicontinuity for both strong and weak topologies. In
Theorem 14, we have a sequence {Pi } of polycrystals Pi =K1..s,i (each correspond-
ing to the partition {K1,i , K2,i , . . . , Ks,i } of Rn) converging to a fixed polycrystal
P= K1..s in the sense that [Ku,i ]→[Ku] in the strong topology of integral currents
for each u = 1, . . . , s − 1. This is equivalent to the volume convergence used in
other lower semicontinuity results in the literature, i.e., Pi = K1..s,i converges to
P = K1..s in volume provided

Ln((Ku,i \ Ku)∪ (Ku \ Ku,i )
)
→ 0 for each u.

In Theorem 15, we relax the convergence assumptions somewhat and require
(for each u = 1, . . . , s− 1) that [Ku,i ] converges in the weak topology of integral
currents (i.e., pointwise for each compactly supported C∞ differential form) to an
integral n-current Tu as i →∞. Assuming the crystals [Ku,i ] stay in a bounded
region and that their masses are uniformly bounded, we deduce strong convergence
and lower semicontinuity. The weak lower semicontinuity is a little surprising,
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since in general a collection of integral n-currents T1, . . . , Ts−1 does not specify a
polycrystal.

We also establish other results of independent interest, such as a Lebesgue point
theorem (Theorem 10) which shows that individual interfaces have surface energy
which may be locally approximated by that of a disk, and a powerful localization
estimate (Theorem 13), which shows that if lower semicontinuity holds locally
then it holds globally.

We work in the context of the sets of finite perimeter and integral and rectifiable
currents of geometric measure theory. The setting is general enough to allow for
realistically complex boundary and topological structures, such as those present
in an annealing metal, in a metal foam, in a soap bubble cluster, in a tumor, or
in image segmentation problems, and yet is sufficiently structured that suitable
notions of convergence and compactness exist.

2. Crystals and polycrystals

2.1. Basic notation and sets of finite perimeter. We will measure volume and
surface area in Rn (for n≥2) with n-dimensional Lebesgue measure Ln and (n−1)-
dimensional Hausdorff measure Hn−1, respectively. We let B(p, r) and U (p, r)
denote, respectively, the closed and open balls in Rn with center p and radius r , and
we set α(n) = Ln(B(0, 1)), where 0 denotes the zero vector in Rn . If A, B ⊂ Rn

and 0 < m ≤ n, we write A ⊂m B (read “A is Hm-almost contained in B”) when
Hm(A \ B) = 0. If A, B ⊂ Rn , A4 B denotes the symmetric difference of A and
B: A4 B = (A \ B)∪ (B \ A). If A, B ⊂Rn we write Ab B if A, the topological
closure of A in Rn , is a compact subset of B. Given a point p ∈ Rn and a unit
vector u ∈Rn , we define the open half-spaces H+(p, u)= {x : (x− p) ·u > 0} and
H−(p, u)= {x : (x− p) ·u < 0} and the hyperplane H(p, u)= {x : (x− p) ·u = 0}
through p and orthogonal to u, and for each r > 0 we also define the closed disk

(2) D(p, u, r)= H(p, u)∩ B(p, r),

having area Hn−1(D(p, u, r))= α(n− 1)rn−1.
If K ⊂ Rn , p ∈ Rn , and 1≤ m ≤ n, the m-dimensional density of K at p is

2m(K , p)= lim
r→0

(
Hm(K ∩ B(p, r)) / α(m)rm),

provided the limit exists.
Let C denote the collection of all bounded, Ln-measurable subsets K ⊂ Rn

having finite perimeter, P(K ). If χK ∈ L1(Rn), then P(K ) < ∞ if and only if
χK ∈ BV (Rn). In particular, if K is a bounded, Ln-measurable subset of Rn , then
K ∈ C if and only if χK ∈ BV (Rn), where χK is the characteristic function of K .
Whenever K ∈C, we let ∂K (the reduced boundary of K ) be the set of all points p
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in Rn at which K has a measure-theoretic exterior unit normal nK (p) in the sense
of H. Federer [1969, 4.5.5], satisfying

2n(H+(p, nK (p))∩ K , p
)
=2n(H−(p, nK (p)) \ K , p

)
= 0

whenever p ∈ ∂K . Also, if K ∈ C then P(K ) = Hn−1(∂K ) <∞. If K ∈ C and
Ln(K ) > 0, the isoperimetric inequality implies that we also have Hn−1(∂K ) > 0,
and so it follows that ∂K has Hausdorff dimension equal to n−1. Some excellent
references that treat sets of finite perimeter and functions of bounded variation in
detail are [Ambrosio et al. 2000; Burago and Zalgaller 1988; Evans and Gariepy
1992; Giusti 1984; Krantz and Parks 1999; Mattila 1995].

The following proposition, which follows quickly from [Federer 1969, 4.5.6],
will be useful later.

Proposition 1. Suppose K ∈ C. Then for Hn−1-almost every p ∈ ∂K we have
2n−1(∂K , p)= 1, and for Hn−1-almost every p /∈ ∂K we have 2n−1(∂K , p)= 0.

2.2. Integral currents. The standard reference for currents is the treatise [Federer
1969]. Other very good references are [Almgren 1986a; Burago and Zalgaller
1988; Federer and Fleming 1960; Hardt and Simon 1986; Krantz and Parks 2008;
Morgan 2009; Simon 1983].

An m-dimensional current1 T is any element of D∗m , the dual space of the real
vector space

Dm
= {ϕ : ϕ is a C∞ m-form on Rn having compact support}.

If m > 0 the boundary of T is defined so as to satisfy Stokes’s theorem; i.e.,
∂T (ϕ)= T (dϕ) whenever ϕ is an (m−1)-form. ∂T is therefore an (m−1)-current.

A set X ⊂Rn is called m-rectifiable2 if for each ε > 0 there exists a compact C1

submanifold with boundary Mε such that Hm(X4Mε) < ε (cf. [Almgren 1986a]).
Perhaps the most interesting m-currents are those associated with rectifiable sets.
An m-dimensional current T in Rn is a rectifiable m-current if it can be represented
in the form T = (Hm xS)∧ (θσ )— more compactly, T = t(S, θ, σ )— where

(1) S is a bounded, m-rectifiable subset of Rn ,

(2) θ : S→ {1, 2, 3, . . . } is Hm xS summable (θ being the multiplicity, or density,
function for the set S), and

(3) σ : S→3mRn is the orientation function: σ(x) is a simple m-vector satisfying
|σ(x)|=1, and, for Hm-a.e. x ∈ S, the linear subspace of Rn spanned by σ(x) is the

1Currents were introduced in [Rham 1955]. They are generalizations of Schwartz’s distributions.
2This differs from the terminology used in [Federer 1969], where such sets are referred to as

Hm -measurable and (Hm ,m) rectifiable.
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approximate tangent m-subspace to S at p. (See [Federer 1969, 4.1.28; Almgren
1986a; Almgren et al. 1993, 3.1.3].)

We denote the set of rectifiable m-currents in Rn by Rm . For the remainder of
this section, T ∈Rm unless otherwise noted. Whenever ϕ ∈ Dm , we have

T (ϕ)= (Hm xS) ∧ (θσ )(ϕ)=
∫

x∈S

〈
σ(x), ϕ(x)

〉
θ(x) dHm x .

T is called an integral m-current if T is a rectifiable m-current, and (for m > 0
only) ∂T is a rectifiable (m−1)-current. The space of all integral m-currents in Rn

is denoted Im(R
n). It follows from the closure theorem [Federer 1969, 4.2.16] that

Im(R
n)= {T ∈Rm : M(∂T ) <∞} whenever m > 0.

The variation measure associated with T , ‖T ‖=Hm
∧θ , assigns to each subset

X ⊂ Rn the upper integral of θ over the set S ∩ X :

‖T ‖(X)=
∫
∗

x∈S∩X
θ(x) dHm x .

The mass (a semi-norm) of T [Federer 1969, 4.1.7] is the integral of the density
function over the set S: M(T )= ‖T ‖(Rn). The support of T is

spt T =
⋂
{�⊂ Rn closed : spt(ϕ)∩�=∅⇒ T (ϕ)= 0},

as with distributions. Since (sptϕ) ∩ S = ∅ implies T (ϕ) = 0, it follows that
S ⊂ spt T . However, the set spt T can be much bigger than S in general (unless S
is known to be regular).

The flat (semi-)norm F is defined by F(T ) = inf{M(Q)+ M(R)}, where the
infimum is taken over all currents R ∈ Rm and (if m < n) Q ∈ Rm+1 for which
T = R + ∂Q. In particular, rectifiable (n−1)-currents S and T are flat close to
each other when S−T can be altered slightly (i.e., the piece R has small mass) so
as to bound a crystal Q having small mass. F is useful for determining how close
together surfaces are geometrically.

The weak topology on Dm is specified by asserting Ti → T weakly if and only
if Ti (ϕ)→ T (ϕ) for each ϕ ∈ Dm . Convergence in the mass norm (strong con-
vergence) implies convergence in the flat norm (flat convergence), which implies
convergence on fixed m-forms (weak convergence). Suppose (for some m> 0) that
{Ti } is a sequence in Im(R

n), and that T ∈ Im(R
n). If supi≥1 M(Ti )+M(∂Ti )<∞,

then weak convergence Ti→T is equivalent to convergence in the flat norm [Simon
1983, 31.2]. If m = n, then mass convergence is implied as well [Almgren et al.
1993, 3.1.5].

2.3. Crystals. Following [Almgren 1976] and other sources, we define crystals
(and polycrystals) using integral currents associated with Lebesgue measurable
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subsets of Rn having finite perimeter. We consider both weak and strong conver-
gence for such integral currents. Throughout this section, suppose that K , L ∈ C.
The current

En
= Ln

∧ (e1 ∧ · · · ∧ en)

is called the n-dimensional Euclidean current in Rn . It is a locally integral current
with ∂En

= 0. It follows that

[K ] = En xK = Ln xK ∧ (e1 ∧ · · · ∧ en)= t(K , 1, e1 ∧ · · · ∧ en)

is an integral n-current in Rn . The boundary (n−1)-current ∂[K ] is given by

∂[K ] =Hn−1x∂K ∧∗nK = t(∂K , 1, ∗nK ),

where ∗nK is the Hodge dual of nK . Since ∂ ◦∂[K ] = 0, we have ∂[K ] ∈ In−1(R
n).

Also, M(∂[K ])=Hn−1(∂K ). Next, we define

K= {T ∈ In(R
n) : T = [K ] for some K in C}.

Any element [K ] ∈K will be called a crystal. We will also use the term crystal to
refer to the underlying set K . If we have several crystals, such as K1 and K2, for
simplicity we will often refer to these as crystals 1 and 2. Because elements of K

are integrals of differential forms, two sets K and L differing by a set having Ln

measure zero give rise to the same crystal in K.
Suppose K , L ∈ C with Ln(K 4 L)= 0. Then ∂K = ∂L . Furthermore,

(3) M([K ] − [L])= M([K \ L] − [L \ K ])= Ln(K 4 L)= 0,

so [K ] = [L]. In this way, sets of measure zero are ignored automatically.
Finally, we state some important facts concerning slicing of n-dimensional inte-

gral currents by distance functions to a point. The results in the following theorem
are specializations of results given for integral currents of any dimension sliced by
general Lipschitz functions in [Almgren et al. 1993, 3.1.8], and in a much more
general setting in [Federer 1969, 4.1–4.3].

Theorem 2 (slicing of n-dimensional integral currents [Almgren et al. 1993, 3.1.8;
Federer 1969, 4.1–4.3]).

Hypotheses:

(1) T = t(S, θ, σ ) ∈ In(R
n).

(2) p ∈ Rn .

(3) f (x)= |x − p| whenever x ∈ Rn .

(4) m(q)= ‖T ‖(Uq) for each q > 0, where Uq = {x ∈Rn
: f (x) < q} =U (p, q).

Conclusions: For L1-almost every q > 0 each of the following is true:
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(1) ‖T ‖(∂Uq)= 0.

(2) T xUq ∈ In(R
n).

(3) (∂T )xUq ∈ In−1(R
n).

(4) The slice current 〈T, f, q〉, defined as

〈T, f, q〉 = t(S ∩ ∂Uq , θ, σ
′)

for the right σ ′ (see [Federer 1969, 4.3.1]), is an element of In−1(R
n).

(5) spt〈T, f, q〉 ⊂ (spt T )∩ ∂Uq .

(6) M(〈T, f, q〉)≤ m′(q).

(7) ∂(T xUq)= (∂T ) xUq +〈T, f, q〉.

2.4. Surface energy integrands.

Definition 3. A surface energy integrand (or surface energy density function) on
Rn is a function φ : Rn

→ [0,∞) that satisfies

(a) φ(x)≥ 0 for all x ∈ Rn , with φ(x)= 0 if and only if x = 0,

(b) φ(cx)= cφ(x) whenever c ≥ 0 and x ∈ Rn , and

(c) φ(x + y)≤ φ(x)+φ(y) for all x, y ∈ Rn (triangle inequality).

Definition 4. Suppose φ is a surface energy integrand on Rn . We say that φ is of
class 1 provided φ is continuously differentiable at each x ∈ Rn

\ {0}.

I.e., φ is a surface energy integrand provided it is a continuous, positive-valued
function on unit vectors in Rn , which, when extended by positive homogeneity of
degree one (i.e., φ(cx)= cφ(x) if c≥0) to all of Rn , becomes a convex function. If
φ(v)=φ(−v) for all unit vectors v in Rn , so that φ is even, then φ is a norm on Rn .
φ determines which orientations are cheap, which in turn affects the orientation of
any exposed pieces of surface. In the case of evolution problems, φ determines
which directions are favorable for growth. Perhaps the simplest case is the one
where φ is taken to be the Euclidean norm: φE(v) = |v| for all v ∈ Rn . φE is
called the area integrand since surface energy is just surface area if φ = φE . If φ
is a positive constant multiple of φE , then no directions are preferable, and we call
φ isotropic; otherwise, φ is anisotropic. While there are isotropic surface energy
densities in nature (e.g., as in soap bubbles), anisotropic ones are far more common.

The next theorem, stated in greater generality in [Federer 1969, 5.1.2] and
proved in detail in [Caraballo 1997, 4.4] using Jensen’s inequality [Federer 1969,
2.4.19], asserts that planar interfaces are not more expensive than non-planar ones
having the same boundary, provided the surface energy integrand is convex.
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Theorem 5 (planar interfaces are cheap). Suppose T = t(S, 1, σ )∈ In−1(R
n). Sup-

pose that D = t(D0, 1, τ ) ∈ In−1(R
n), where D0 is a bounded, Hn−1-measurable

subset of an (n−1)-dimensional hyperplane in Rn , and there is a simple (n−1)-
vector τ0 such that τ(z) = τ0 for all z in D0. Suppose further that ∂D = ∂T (i.e.,
T −D is an integral (n−1)-cycle). Let φ be a fixed surface energy integrand. Then

(4)
∫

z∈S
φ(σ(z)) dHn−1z ≥

∫
z∈D0

φ(τ(z)) dHn−1z = φ(τ0)Hn−1(D0).

2.5. Polycrystals and interfaces between crystals. An admissible partition of Rn

is any partition {K1, . . . , Ks} of Rn into s pairwise disjoint, Ln-measurable subsets
Ku having finite perimeter, and for which Ku is bounded for each u < s, so that
Ks = Rn

\ (K1 ∪ · · · ∪ Ks−1) is the only unbounded region. Since Rn has no
boundary, ∂Ks = ∂(K1∪···∪Ks−1). The last set Ks can represent the “outside” or
“melt” in the case of crystals. We could also consider s different immiscible fluids
in a bounded container, in which case Ks would also be bounded.

A polycrystal is any s-tuple ([K1], . . . , [Ks]), associated with an admissible
partition {K1, . . . , Ks} of Rn through the relations [Ku] = En xKu ∈K if 1≤ u ≤
s−1, and [Ks] = En

−[K1∪· · ·∪Ks−1]. For convenience, we write P = K1..s for
such a polycrystal P , and we let Ps denote the space of polycrystals P = K1..s , as
above. When s = 2, a polycrystal can be modeled as a single crystal, since there is
only one interface, and we let φ denote the surface energy density function. The
case s > 2 is substantially more complicated, since each interface is allowed to
have its own surface energy density function. Let φuv denote the surface energy
density function for the u-v interface (with 1 ≤ u < v ≤ s). Given a collection of
integrands {φuv}1≤u<v≤s , we set

(5)
φ0 = inf

{
φuv(w) : |w| = 1, 1≤ u < v ≤ s

}
,

φ0
= sup

{
φuv(w) : |w| = 1, 1≤ u < v ≤ s

}
.

A continuity-compactness argument shows that these extrema are attained and that
0< φ0 ≤ φ

0 <∞.
Strong (or mass) convergence in K corresponds to convergence in volume of

the underlying sets of finite perimeter, in accordance with (3). More precisely, if
L i ∈ C for each i = 1, 2, . . . , and if L ∈ C, then [L i ] → [L] strongly (or, in mass)
provided Ln(L i4 L)→ 0 as i→∞, since M([L i ]−[L])=Ln(L i4 L). We now
extend this notion to polycrystals in a natural way.

Definition 6. If {Pi } is a sequence of polycrystals Pi = K1..s,i ∈ Ps , and P =
K1..s ∈ Ps , we say that Pi → P in the strong topology provided [Ku,i ] → [Ku]

strongly as i→∞ for each 1≤ u ≤ s.
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The u-v interface (for u < v) between two crystals [Ku] and [Kv] is the recti-
fiable (n−1)-current 0uv = Hn−1x(∂Ku ∩ ∂Kv) ∧∗nKu , associated with the rec-
tifiable set 0∗uv = 0

∗
vu = ∂Ku ∩ ∂Kv. 0vu is defined in the same manner, and its

orientation is opposite to that of 0uv. The main disadvantage of working in such
a general context is that very complicated objects have to be manipulated. For
example, sets with excessively wild boundaries may yield currents whose boundary
supports have positive, even large n-dimensional volume. Also, the boundaries of
crystals in polycrystals may conceivably be so mixed up that the local structure
is everywhere complex, so that we cannot work with individual interfaces. We
preclude such pathological behavior in Theorem 7, which shows the relationship
between the interfaces in a polycrystal and the boundaries of the individual crystals.
Measure-theoretic unit normal vectors from one crystal into another exist Hn−1

almost everywhere, and boundary currents are the sum of the individual interface
currents.

Theorem 7 (boundary structure theorem [Caraballo 1997, Theorem 6; Caraballo
2008, Theorem 2.4]). Let P = K1..s be in Ps . Let B=

⋃s
u=1 ∂Ku .

(1) For Hn−1-almost every point p ∈B there exist distinct integers u and v so that
unit normals nKu (p) and nKv

(p) exist, with nKu (p)=−nKv
(p).

(2) For each 1≤ u ≤ s, the function nKu is (Hn−1x∂Ku)-measurable.

(3) For each 1≤ u ≤ s, ∂[Ku] =
∑

i 6=u 0ui .

(4) Hn−1(B \
⋃

1≤u<v≤s 0
∗
uv)= 0.

Remark 8. Property (1) implies that the set of “bad” points (such as typical mul-
tiple junctions) at which there is no well-defined interface normal direction has
Hn−1 measure zero.

The next theorem (see [Federer 1969, 2.8.15; Krantz and Parks 2008, 4.2.13;
Morgan 2009, 2.7]) is indispensable because it allows us to carry out our analysis
locally on interfaces of polycrystals.

Theorem 9 (Besicovitch–Federer covering theorem). Suppose µ is a Borel mea-
sure on Rn (n ≥ 1), that A is a subset of Rn with µ(A) < ∞, and that F is a
nonempty family of closed balls (having positive radii uniformly bounded from
above) such that each point a ∈ A is contained in at least one member of F, and
inf
{

R : B(a, R) ∈F
}
= 0 for each a ∈ A. Then there exists a countable, disjointed

subcollection of F which covers µ-almost all of A.

2.6. Surface energy of a polycrystal. Suppose P = K1..s ∈ Ps , U ⊂ Rn is open,
and 1 ≤ u < v ≤ s. We define the surface energy of the u-v interface of P in U
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according to the formula

SEu,v(P,U )=
∫

p∈0∗uv∩U
φuv(nKu (p)) dHn−1 p.

If U = Rn , we simply write SEu,v(P). We define the surface energy of P in U in
the obvious way as SE(P,U )=

∑
1≤u<v≤s

SEu,v(P,U ). If U =Rn , we simply write

SE(P). That is,

(6) SE(P)=
∑

1≤u<v≤s

SEu,v(P,Rn)=
∑

1≤u<v≤s

∫
p∈0∗uv

φuv(nKu (p)) dHn−1 p.

If V is any closed subset of Rn and 1 ≤ u < v ≤ s, we define SEu,v(P, V ) =
SEu,v(P)− SEu,v(P, Rn

\ V ) and SE(P, V ) = SE(P)− SE(P, Rn
\ V ). Without

loss of generality, when computing surface energies of interfaces, surface energy
density functions are always evaluated at the normals pointing toward the higher-
numbered crystal.

2.7. A Lebesgue point theorem for partitions. In this section, we prove a result
concerning some surprising cancellation of oscillations. It is of independent inter-
est, as it will be useful for localizing many arguments involving surface energy of
partitions in Rn (and in other nice manifolds, since the argument is local). In the
present paper, we use it to establish 5 in the proof of Theorem 14.

The following theorem shows that surface energy is well-behaved in small balls
centered at Lebesgue points of suitable functions, and moreover Hn−1 every point
in
⋃s

u=1∂Ku is such a Lebesgue point. This is somewhat surprising since the
boundary may be nonsmooth at such points, and since our surface energy den-
sity functions are typically non-differentiable and may be extremely sensitive to
orientation changes. We are given only (see Theorem 7) that Hn−1-almost every
x ∈

⋃s
u=1∂Ku has a well-defined measure-theoretic unit normal vector, which

means that small balls centered at x consist essentially of two crystals, in the sense
that each of two crystals occupies approximately one half of the total volume of
the small balls.

Result (4) in the following theorem ensures that

SEi, j (P, Br )≈ φi j (nKi (x))Hn−1(D(x, nKi (x), r)),

with an error that becomes arbitrarily small compared to rn−1 as r→ 0+, provided
x is a Lebesgue point of u = φi j ◦ nKi .

Theorem 10 (Lebesgue point estimate). Suppose P = K1..s ∈ Ps . Fix integers i
and j with 1 ≤ i < j ≤ s, let ϕ = Hn−1x(∂Ki ∩ ∂K j ), and let φi j be any surface
energy density function. Let u(x)= φi j (nKi (x)) for each x. Then:
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(1) u is ϕ-measurable.

(2)
∫

z∈� |u(z)|dϕz <∞ for all bounded, ϕ-measurable �⊂ Rn .

(3) For ϕ-almost every x ,

lim
R→0+

∫
z∈B(x,R) |u(z)− u(x)| dϕz

ϕ(B(x, R))
= 0.

Those points x satisfying this equation are the Lebesgue points of u.

(4) For Hn−1-almost every x ∈ ∂Ki ∩ ∂K j ,

lim
R→0+

SEi, j (P, B(x, R))−φi j (nKi (x))Hn−1
(
D(x, nKi (x), R)

)
α(n− 1)Rn−1 = 0.

Proof. Since φi j is continuous and nKi is ϕ-measurable by Theorem 7(2), it fol-
lows that u is ϕ-measurable, so (1) holds. Let φmax = sup

{
φi j (v) : |v| = 1

}
.

We have φmax ∈ (0,∞) by a standard continuity/compactness argument, and so∫
z∈� |u(z)|dϕz ≤ φmax ·H

n−1(∂Ki ∩∂K j ) <∞, proving (2). Since (1) and (2) are
true, we invoke Corollary 2.9.9 of [Federer 1969] with f = u, S = B(x, R), and
Y = R to deduce (3). To prove (4), suppose x ∈ ∂Ki ∩ ∂K j is a Lebesgue point
of u, and let BR denote B(x, R). Since ϕ = Hn−1x(∂Ki ∩ ∂K j ), SEi, j (P, BR) =∫

BR
u(z) dϕz. Since u(x)= φi j (nKi (x)), we have

∫
z∈BR

u(x) dϕz = u(x) ϕ(BR).
Fix any arbitrary ε > 0. Conclusion (3) guarantees the existence of an R′ > 0

such that for L1-almost every R ∈ (0, R′) we have

(7)
∣∣∣∣SEi, j (P, BR)

ϕ(BR)
− u(x)

∣∣∣∣=
∣∣SEi, j (P, BR)− u(x) ϕ(BR)

∣∣
ϕ(BR)

≤

∫
z∈BR
|u(z)− u(x)| dϕz

ϕ(BR)
<
ε

2
.

Because x ∈ ∂Ki ∩ ∂K j , there exists an R′′ > 0 such that for L1-almost every
R ∈ (0, R′′) ∣∣∣∣1− ϕ(BR)

α(n− 1) Rn−1

∣∣∣∣≤ ε

2φ0 .

For L1-almost every R ∈
(
0,min(R′, R′′)

)
, it follows that

(8)

∣∣∣∣∣
∣∣∣∣SEi, j (P, BR)

ϕ(BR)
− u(x)

∣∣∣∣− ∣∣∣∣ SEi, j (P, BR)

α(n− 1) Rn−1 − u(x)
∣∣∣∣
∣∣∣∣∣

≤

∣∣∣∣SEi, j (P, BR)

ϕ(BR)
−

SEi, j (P, BR)

α(n− 1) Rn−1

∣∣∣∣= SEi, j (P, BR)

ϕ(BR)

∣∣∣∣1− ϕ(BR)

α(n− 1) Rn−1

∣∣∣∣
≤ φ0

∣∣∣∣1− ϕ(BR)

α(n− 1) Rn−1

∣∣∣∣≤ ε2 .
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The bounds (7) and (8), together with the triangle inequality, give∣∣∣∣∣SEi, j (P, BR)−φi j (nKi (x))Hn−1
(
D(x, nKi (x), R)

)
α(n− 1)Rn−1

∣∣∣∣∣=
∣∣∣∣ SEi, j (P, BR)

α(n− 1) Rn−1 − u(x)
∣∣∣∣

≤ ε,

so (4) follows since ε was arbitrary. �

3. Lower semicontinuity of surface energy

3.1. Restrictions on the integrands. We begin by defining B2-convexity, intro-
duced in [Morgan 1997]. The sets X and Y need not have positive Ln measure.

Definition 11. A family of integrands {φuv}1≤u<v≤s satisfies B2-convexity if, for
any K1..s ∈ Ps and for each pair (u, v) with u 6= v, the union

⋃
z /∈{u,v} Kz of the

other regions in K1..s may be partitioned into two disjoint, Ln-measurable sets X
and Y in such a way that, when one is renamed to u and the other is renamed to v,
the resulting polycrystal (corresponding to the partition {Ku ∪ X, Kv ∪ Y } of Rn

into two sets) has surface energy not exceeding SE(K1..s).

B2-convexity is significant for several reasons. Although it was shown in [Cara-
ballo 2010] that B2-convexity is not necessary for lower semicontinuity of (6),
many other conditions on surface energy density functions {φuv}1≤u<v≤s in Rn

imply B2-convexity, most notably partitioning regularity (introduced in [Almgren
1976]), (B)-convexity (introduced in [Ambrosio and Braides 1990b]; cf. [Am-
brosio et al. 2000]), LSC1 and LSC3 (introduced in [Caraballo 1997]), and A-
convexity, A2-convexity, and directional control (introduced in [Caraballo 2008]).
Since B2-convexity is sufficient for lower semicontinuity of the surface energy
functional (6), as we will show, each of the other conditions implies lower semi-
continuity as well. B2-convexity is quite general, and at the same time it is concrete
(because it is a replacement condition) to the extent that proving that B2-convexity
holds is one of the easiest ways to establish that a condition on the integrands
{φuv}1≤u<v≤s implies lower semicontinuity.

For the special case φuv = cuvφ, for a given fixed, even surface energy integrand
φ, and for constants cuv > 0 satisfying the triangle inequalities (cuw ≤ cuv + cvw),
Morgan [1997] uses the max-flow/min-cut theorem from graph theory to show that
B2-convexity is equivalent to lower semicontinuity of (6).

Remark 12. B2-convexity arose when F. Morgan observed (personal communi-
cation) that the author was using more restrictive conditions in order to make a
certain replacement construction (the reduction to two crystals in a key step, with-
out increase of energy) work, in the lower semicontinuity proof from [Caraballo
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1997]. He suggested making the condition itself be that the replacement construc-
tion works, and he named that condition B2-convexity [Morgan 1997].

3.2. A local property of lower semicontinuity. The following theorem, roughly
speaking, shows that if lower semicontinuity holds locally then it holds in general.
More precisely, if lower semicontinuity fails then it fails by some percentage (as
defined in the theorem statement), and that implies it must fail by at least that
percentage in some fixed, closed ball. This powerful result will allow us to work
locally in a fixed closed ball when we prove that B2-convexity implies surface
energy is lower semicontinuous.

Theorem 13. Suppose P = K1..s ∈ Ps , and Pj = K1..s, j ∈ Ps for each j =
1, 2, 3, . . . , and set E = SE(P) and E j = SE(Pj ). Suppose lower semicontinuity
fails, so that E − lim inf j→∞ E j > 0, and let

(9) η =
E − lim inf j→∞ E j

E
× 100 ∈ (0, 100]

denote the percentage by which lower semicontinuity fails. Let {Bk
}
∞

1 be a count-
able, disjointed collection of closed balls in Rn such that

E =
∞∑

k=1

E(Bk).

Then there exists a positive integer k such that lower semicontinuity fails by at least
η percent in Bk . I.e.,

(10)
E(Bk)− lim inf j→∞ E j (Bk)

E(Bk)
× 100≥ η

for some positive integer k, where E(Bk)= SE(P, Bk), and E j (Bk)= SE(Pj , Bk).

Proof. Suppose, to the contrary, that for each positive integer k lower semiconti-
nuity fails by strictly less than η percent in Bk . Then

lim inf
j→∞

E j ≥ lim inf
j→∞

( ∞∑
k=1

E j (Bk)

)
≥

∞∑
k=1

lim inf
j→∞

E j (Bk)

>

∞∑
k=1

(
1− η

100

)
E(Bk)=

(
1− η

100

)
E .

The first inequality holds since E j ≥
∑
∞

k=1 E j (Bk) for each positive integer j . The
second follows from standard real analysis, and the strict inequality is implied by
the assumption that the percentage by which lower semicontinuity fails is strictly
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less than η in each Bk . Therefore, the percentage by which lower semicontinuity
fails equals

E − lim inf j→∞ E j

E
× 100< η,

a contradiction. �

3.3. The main lower semicontinuity theorems. Here we state our main lower
semicontinuity theorems. We prove them in Sections 3.4 and 3.5, respectively.
The weak lower semicontinuity is a little surprising, since in general a collection
of integral n-currents T1, . . . , Ts−1 does not specify a polycrystal.

Theorem 14 (surface energy is strongly lower semicontinuous). Suppose the sur-
face energy density functions {φuv}1≤u<v≤s satisfy B2-convexity. Suppose Pi =

K1..s,i is a polycrystal in Ps for each i = 1, 2, 3, . . . . Suppose P = K1..s ∈ Ps . If
[Ku,i ] → [Ku] strongly as i→∞, for each u < s, then

SE(P)≤ lim inf
i→∞

SE(Pi ).

Theorem 15 (surface energy is weakly lower semicontinuous). Suppose the sur-
face energy density functions {φuv}1≤u<v≤s satisfy B2-convexity. Suppose that, for
each positive integer i , Pi = K1..s,i is a polycrystal in Ps such that the Pi satisfy

(11) sup
i

( s−1∑
u=1

M(∂[Ku,i ])

)
<∞ and diam

{⋃
i

( s−1⋃
u=1

spt[Ku,i ]

)}
<∞.

Suppose further that, for each u < s, [Ku,i ] converges weakly to an integral n-
current Tu as i →∞. Then there exists a polycrystal P = K1..s ∈ Ps such that
[Ku,i ] → [Ku] strongly as i→∞, for each u < s, and

SE(P)≤ lim inf
i→∞

SE(Pi ).

3.4. Proof of the strong lower semicontinuity theorem. For j ≥ 1, 1≤ u <v≤ s,
and B a closed ball in Rn , we will use the abbreviations Eu,v(B) = SEu,v(P, B),
E(B) = SE(P, B), E = SE(P), Eu,v

j (B) = SEu,v(Pj , B), E j (B) = SE(Pj , B),
and E j = SE(Pj ).

Suppose that lower semicontinuity fails. Then there exists a positive real number
η ∈ (0, 100] such that lower semicontinuity fails by η percent, in the sense of (9)
(see Theorem 13). Fix η, let φ0 and φ0 be as in (5), and define the constants λ> 0
and δ ∈ (0, 1) according to

(12) λ= η α(n− 1)
φ0

200
and 1− (1− δ)n−1

= η
φ0

2000φ0 .
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Let B=
⋃s

u=1 ∂Ku , and define

B′ =
⋃

1≤u<v≤s

(
0∗uv ∩ {Lebesgue points of φuv ◦ nKu }

)
.

It follows from Theorem 10 that Hn−1(B \B′)= 0. We define the index function

I :B′→
{
(u, v) : 1≤ u < v ≤ s

}
by requiring that I (x) = (I1(x), I2(x)) = (u, v) whenever x ∈ 0∗uv. This is well-
defined because of the definition of B′.

We will now define a collection F of closed balls B(x, R), satisfying all the
estimates we will need to work locally. Let F be the collection of all closed balls
B(x, R) ⊂ Rn such that x ∈ B′, Hn−1

(
∂B(x, R)∩B′

)
= 0, and 0 < R < R0(x),

where R0(x) is such that whenever x ∈ B′ and 0 < R < R0(x) the following
inequalities hold:∣∣E I1(x),I2(x)(B(x, R))−α(n− 1) Rn−1 φI1(x)I2(x)(nK I1(x)

(x))
∣∣< λ

10
Rn−1,(13)

E(B(x, R))− E I1(x),I2(x)(B(x, R)) < λ

10
Rn−1,(14)

Ln((K I1(x)4 H−(x, nK I1(x)
(x)))∩ B(x, R)

)
<

δλ

160φ0 Rn,(15)

Ln((K I2(x)4 H+
(
x, nK I1(x)

(x)
)
)∩ B(x, R)

)
<

δλ

160φ0 Rn,

Ln
(( ⋃

u∈{1,...,s}
u /∈{I1(x),I2(x)}

Ku

)
∩ B(x, R)

)
<

δλ

80φ0 Rn.(16)

Claim 1. Each point x ∈B′ is contained in at least one member of F, and

inf
{

R : B(x, R) ∈ F
}
= 0

for each x ∈B′.

Proof. That (13) is true for all sufficiently small values of R follows from con-
clusion (4) of Theorem 10, since x is a Lebesgue point of φI1(x)I2(x) ◦ nK I1(x)

.
Clearly, E(B(x, R))− E I1(x),I2(x)(B(x, R))≥ 0. Equation (14) holds for all small
enough values of R because the (n−1)-density of the I1(x)-I2(x) interface is 1
at x , and so the (n−1)-density of all of the other interfaces combined must be 0
at x . The remaining inequalities above are true for all sufficiently small values
of R because nK I1(x)

is a (measure-theoretic) unit normal vector at x , and so the
n-densities of crystals I1(x) and I2(x) are each 1

2 at x , and that means the n-
densities of all the other crystals at x must be zero. Finally, Ln(B′) = 0 implies
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that Hn−1
(
∂B(x, R)∩B′

)
= 0 for L1 almost every R > 0. It follows that F is fine

at each x ∈B′. �

We apply the Besicovitch–Federer covering theorem (Theorem 9) with µ =
Hn−1xB′ and A = B′ there to deduce that there exists a countable, disjointed
subcollection {Bk

}
∞

1 of F which covers µ-almost all of B′. We therefore have
E =

∑
∞

k=1 E(Bk). By Theorem 13, there exists a positive integer k such that
lower semicontinuity fails by at least η percent in Bk .

Notation 16. We now fix x and R, the center and radius of Bk
= B(x, R), for

the remainder of the proof. For simplicity, and without loss of generality, we will
suppose I (x) = (1, 2), so that x is on the 1-2 interface of P . For any s > 0
we abbreviate Bs = B(x, s), Us = U (x, s), and Ds = D

(
x, nK1(x), s

)
. We also

abbreviate H− = H−(x, nK1(x)), H+ = H+(x, nK1(x)), and H = H(x, nK1(x)).
For any s > 0, if the 1-2 interface inside Bs were planar, we would find the surface
energy on Ds by integrating φ12 over Ds , evaluating φ12 at the fixed vector nK1(x)
which is orthogonal to Ds . We therefore introduce the convenient notation

(17) SE(Ds)=

∫
z∈Ds

φ12(nK1(x)) dHn−1z = φ12(nK1(x))Hn−1(Ds)

= φ12(nK1(x)) α(n− 1)sn−1.

Even though x will not be on the 1-2 interface of Pj in general, since [Ku, j ]→

[Ku] in the mass norm as j→∞ for each u, (15), (16), and the triangle inequality
guarantee that we can select a positive integer N sufficiently large so that j > N
implies

Ln((K1, j 4 H−)∩ BR
)
<

δλ

80φ0 Rn,(18)

Ln((K2, j 4 H+)∩ BR
)
<

δλ

80φ)
Rn,(19)

Ln
( s⋃

u=3

(Ku, j ∩ BR)

)
<

δλ

40φ0 Rn.(20)

Fix such an N , and let j be any positive integer for which j > N . Let B j =⋃s
u=1∂Ku, j . We would now like to show that the interfaces of Pj in BR other than

the 1-2 interface can essentially be ignored, given the proper construction.

Claim 2. There exists r ∈ (R − (δ/2) R, R) such that Hn−1(B j ∩ ∂Br ) = 0 and
such that there is a polycrystal P ′j = K ′1..s, j ∈ Ps satisfying
(1) K ′u, j \ Br = Ku, j \ Br for each u = 1, . . . , s;
(2) Ur ⊂ K ′1, j ∪ K ′2, j ; i.e., P ′j consists only of crystals 1 and/or 2 in the interior of
Br ; and
(3) SE(P ′j , Br )− E j (BR)≤ (λ/10)Rn−1.



338 DAVID G. CARABALLO

Proof. Since Ln(B j )= 0, for L1-almost every r we have Hn−1(B j∩∂Br )= 0. For
any such r in the interval (R−(δ/2)R, R), B2-convexity ensures that it is possible
to replace crystals 3, 4, . . . , s of Pj in Br , using only crystals 1 and 2, so that
surface energy in the interior of Br does not increase. This procedure eliminates
every interface (in the interior of Br ) except the 1-2 interface, which is generally
altered. The resulting polycrystal may have new interfaces along ∂Br , but they
will have small surface area if we select r judiciously. Since j > N , the set of all
r ∈ (R− (δ/2)R, R) such that

(21) Hn−1
( s⋃

u=3

Ku, j ∩ ∂Br

)
≤
[
λ/(10φ0)

]
Rn−1

has L1 measure at least (δ/4)R. If not, Federer’s coarea formula [1969, 3.2] would
imply that∫ R

R−(δ/2)R
Hn−1

( s⋃
u=3

Ku, j ∩ ∂Br

)
dr ≥ δR

4
λ

10φ0 Rn−1
=

δλ

40φ0 Rn,

contradicting (20). In particular, there exists an r ∈ (R − δ/2R, R) for which
Hn−1(B j∩∂Br )=0 and (21) holds. For this r , the surface energy created along ∂Br

cannot exceed φ0 Hn−1
(⋃s

u=3 Ku, j ∩ ∂Br
)
, which in turn is at most (λ/10)Rn−1

because of (21). �

In the next claim, we will alter the 1-2 interface slightly by adding a slice current
C having small area and hence little surface energy, so as to produce a new integral
current having the same boundary as a disk. It will then be possible to make use
of the convexity of φ12 and invoke Theorem 5 to deduce that the new current has
surface energy no less than that of the disk. Since the current C has small area by
construction, we will be able to deduce that SE(P

′

j , Br ) cannot be much less than
SE(Dq).

Claim 3. There exists q ∈ (R−δR, r) for which SE(Dq)−SE(P ′j , Br )≤
λ

10
Rn−1.

Proof. Let f (z) = |z− x | whenever z ∈ Rn . Then f is Lipschitz with constant 1.
Let V = [K ′1, j ∩ Br ], W = [H− ∩ Br ], and T = V −W = t(S, θ, σ ). Whenever
q > 0, define m(q)= ‖T ‖(Uq), as in Theorem 2.

Applying Theorem 2 in turn to the currents V , W , and T , we see that for L1-
almost every q ∈ (R−δR, r) each of the conclusions of that theorem holds simul-
taneously for the currents V,W , and T . Therefore, for each such q , A= (∂V )xUq

and B = (∂W )xUq are n−1-dimensional integral currents in Rn , and we can de-
fine the slice current C = 〈T, f, q〉 (see Theorem 2(4)), which is also an (n−1)-
dimensional integral current. Theorem 2(7) implies

(22) ∂(T xUq)= (∂T )xUq +〈T, f, q〉 = (∂V )xUq − (∂W )xUq +〈T, f, q〉.
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Applying the boundary operator ∂ to the extreme equality in (22) and using linearity
gives ∂B = ∂(A+C).

x

A
B

C

Br

Bq

BR−dR

1

2

Since spt B is contained in a hyperplane (i.e., H ), we may apply Theorem 5
with T , D, and φ there replaced by A+C , B, and φ12 respectively, and make use
of the fact that surface energy is no more than φ0 times mass, to conclude that

SE(Dq)≤

∫
z∈∂K ′1, j∩Uq

φ12(nK1(z)) dHn−1z+φ0 M(C)(23)

≤ SE(P ′j , Br )+φ
0 M(C).

Now we’ll show that q can be chosen so that M(C) will be sufficiently small. By
Theorem 2(6), for L1-almost every q ∈ (R−δR, r) we have M(〈T, f, q〉)≤m′(q),
and so we can estimate

(24)
∫ r

R−δR
M(〈T, f, q〉) dq ≤

∫ r

R−δR
m′(q) dq ≤ m(r)

= ‖T ‖(Ur )≤ ‖T ‖(Rn)= M(T ).

Since r < R,

M(T )= Ln((K ′1, j 4 H−)∩ Br
)

≤ Ln((K ′1, j 4 K1, j )∩ Br
)
+Ln((K1, j 4 H−)∩ Br

)
≤ Ln

( s⋃
u=3

(Ku, j ∩ Br )

)
+Ln((K1, j 4 H−)∩ Br

)
≤

δλ

20φ0 Rn.

The last inequality follows from (18) and (20). The set of numbers q in (R−δR, r)
for which

(25) M(C)= M(〈T, f, q) >
λ

10φ0 Rn−1
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has measure strictly less than δR/2. If (25) were true for a set of points q having
measure at least δR/2, it would follow from Federer’s coarea formula [1969, 3.2]
that ∫ r

R−δR
M(〈T, f, q〉) dq >

δλ

20φ0 Rn
≥ M(T ),

contradicting (24). Therefore, q can be chosen in (R− δR, r) so as to also satisfy

M(C)≤
λ

10φ0 Rn−1.

This last inequality and (24) immediately yield

SE(Dq)− SE(P ′j , Br )≤ φ
0 M(C)≤ λ

10
Rn−1. �

We now fix q as in 3 for the remainder of the proof.

Claim 4. 0< SE(DR)− SE(Dq)≤ (λ/10)Rn−1.

Proof. Let f (x) = α(n − 1)φ12(nK1(x)). Then SE(DR) = f (x)Rn−1 and (since
R(1− δ) < q < R) we have SE(Dq) = f (x)qn−1 > f (x)Rn−1(1− δ)n−1. Using
(12), we get

SE(DR)− SE(Dq) < f (x)Rn−1(1− (1− δ)n−1)
≤ φ0 α(n− 1) Rn−1 ηφ0

2000φ0 =
λ

10
Rn−1. �

Claim 5.
∣∣E1,2(BR)− SE(DR)

∣∣< (λ/10)Rn−1.

Proof: This is estimate (13) above. �

Claim 6. 0≤ E(BR)− E1,2(BR)≤ (λ/10)Rn−1.

Proof: This follows from (14)). �

Claim 7. E(BR)≥
1
2 SE(DR).

Proof: Claims 5 and 6 give

SE(DR)− E(BR)=
(
SE(DR)− E1,2(BR)

)
+
(
E1,2(BR)− E(BR)

)
<
λ

10
Rn−1

≤
1

20φ0 α(n− 1)Rn−1 < 1
2 SE(DR),

as needed. �

Claim 8. E j (BR)≥ E(BR)− (λ/2)Rn−1.

Proof: This follows by adding the inequalities in Claims 2, 3, 4, 5, and 6. �

Claim 9. There exists ε > 0 such that for each j > N we have

E j (BR)≥ E(BR)−
(
(η/100)E(BR)− ε

)
.
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Proof. Define ε so that (400/η)ε = φ0 α(n− 1) Rn−1. Claim 7 gives

4E(BR)≥ 2SE(DR)≥ 2φ0 α(n− 1)Rn−1
= (400/η)ε+φ0 α(n− 1)Rn−1,

and so (η/100)E(BR)− ε ≥ (η/400)φ0 α(n − 1)Rn−1
= (λ/2)Rn−1. The result

now follows from 8. �

For convenience, we state the following elementary lemma from real analysis:

Lemma 17. Suppose {x j } is a sequence of real numbers for which lim inf j→∞ x j >

−∞, and a ∈ (−∞,∞). Then lim inf j→∞ x j > a if and only if ∃ ε > 0 such that
∃ N > 0 with the property that for all j > N we have x j ≥ a+ ε.

Claim 10. E ≤ lim inf j→∞ E j .

Proof. Letting x j = E j (BR) and a= (1−η/100)E(BR), 9 implies there exist ε > 0
and N > 0 such that for all j > N we have x j ≥ a+ ε. Lemma 17 implies that

(26) lim inf
j→∞

E j (BR) > (1− η/100)E(BR).

Suppose our claim is false. Then lower semicontinuity fails by η percent for some
η ∈ (0, 100]. Theorem 13 then implies that lower semicontinuity fails by at least
η percent inside BR , so that

E(BR)− lim inf j→∞ E j (BR)

E(BR)
× 100≥ η,

which contradicts (26). �

3.5. Proof of the weak lower semicontinuity theorem. Suppose 1 ≤ u < s. For
each ϕ ∈ Dn , we are given that [Ku,i ](ϕ) → Tu(ϕ), as i → ∞. Equation (11)
implies

sup
i

M(∂[Ku,i ])≤ sup
i

( s−1∑
u=1

M(∂[Ku,i ])

)
<∞.

The isoperimetric inequality [Almgren 1986b; Almgren et al. 1993, 3.1.7] gives
an upper bound for M([Ku,i ]) in terms of M(∂[Ku,i ])

n/(n−1), and so

sup
i
(M([Ku,i ])+M(∂[Ku,i ])) <∞.

As noted in Section 2.2, it follows that the weak convergence of [Ku,i ] to Tu is
equivalent to flat convergence of [Ku,i ] to Tu [Simon 1983, 31.2]. Since, addition-
ally, these are n-dimensional integral currents in Rn, we have mass convergence
as well [Almgren et al. 1993, 3.1.5]. Since M([Ku,i ] − Tu)→ 0, there exists a
Ku ∈ C such that Tu = [Ku]. Repeating the construction above for each 1≤ u < s
and defining Ks = Rn

\ (K1∪ · · · ∪ Ks−1), we obtain a polycrystal P = K1..s ∈Ps
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such that [Ku,i ]→ [Ku] strongly as i→∞, for each u < s. Lower semicontinuity
of surface energy now follows from Theorem 14. �

4. Appendix: Restrictions on the integrands

In this appendix we will briefly discuss several sets of conditions, on the surface
energy density functions {φuv}1≤u<v≤s , which are mentioned in the Introduction
and in Section 3.1. We will also state some relations among the conditions.

In [Almgren 1976] Chapter VI, F. Almgren considered partitions of Rn mini-
mizing surface energy subject to volume constraints. It was the first work of its
kind in such a general and rigorous setting. His surface energy density functions
were allowed to depend on position, not just orientation. However, each was a
constant multiple of a fixed norm φ of class 1: in our notation, φuv = cuvφ for
positive constants cuv (u 6= v). The constants cuv were further restricted so as
to satisfy a condition, called partitioning regularity, which ensures that for any
polycrystal P = K1..s any given crystal Ku may be renamed, by adding it to Kv

for some judiciously chosen v 6= u, in such a way as to decrease surface energy.
This condition sufficed for both lower semicontinuity and regularity and was more
restrictive than necessary for lower semicontinuity alone.

In [Caraballo 2008], we introduced a related condition which does not require
smoothness and which does not require that the φuv’s all be multiples of a fixed φ.
However, in this condition and in all other conditions on the integrands {φuv} in
this paper, including B2-convexity, the functions φuv depend on orientation only
and not on position.

Definition 18. A family of integrands {φuv}1≤u<v≤s satisfies A-convexity if, for
any K1..s ∈Ps and for each u for which Ln(Ku) > 0, there exists a v 6= u such that
Ln(Kv) > 0, and such that SE(Pu,v) ≤ SE(K1..s), where Pu,v is the polycrystal
corresponding to the partition {L1, L2, . . . , Ls} of Rn , where Lu =∅, Lv = Kv ∪

Ku , and Lw = Kw, if w /∈ {u, v}.

I.e., the integrands {φuv} satisfy A-convexity if any non-trivial region u may
be added to a judiciously chosen non-trivial region v without increasing surface
energy. A-convexity is clearly implied by the restriction of Almgren’s condition to
the case where the integrands depend only on orientation. A-convexity is sufficient
but not necessary for lower semicontinuity (see [Caraballo 2010]).

More than a decade after Almgren’s seminal work [Almgren 1976], but prior to
all other work we cite on lower semicontinuity of surface energy in this setting, Am-
brosio and Braides gave the first necessary and sufficient condition for strong lower
semicontinuity of the surface energy functional (1), BV-ellipticity (see [Ambrosio
and Braides 1990b] and [Ambrosio et al. 2000]). Let K ∗ = {K1, K2, . . . , Ks}

denote a partition of Rn into Ln-measurable subsets of Rn (not necessarily bounded
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or unbounded) having locally finite perimeter. If U is a bounded, open subset of
Rn we can define the surface energy of K ∗ in U in the obvious way:

(27) SE(K ∗,U )=
∑

1≤u<v≤s

∫
p∈U∩∂Ku∩∂Kv

φuv(nKu (p)) dHn−1 p.

Definition 19. A family of integrands {φuv}1≤u<v≤s is said to satisfy BV-ellipticity
if SE(K ∗, Q)≥ φuv(w) whenever
a) 1≤ u < v ≤ s,
b) w ∈ Rn is a unit vector,
c) Q is an open unit cube in Rn , centered at the origin and having all faces parallel
or perpendicular to w, and
d) K ∗ is a partition of Rn , as above, with

⋃
h /∈{u,v} Kh b Q, H−(0, w) \ Q ⊂ Ku ,

and H+(0, w) \ Q ⊂ Kv.

If
⋃

h /∈{u,v}Kh=n ∅, Ku=n H−(0, w), and Kv=n H+(0, w), then SE(K ∗, Q)=
φuv(w). Thus, we see that, when BV-ellipticity holds, bounded perturbations of
a planar interface, possibly involving other regions, are never cheaper than the
original planar interface.

(B)-convexity and joint convexity were also introduced in [Ambrosio et al. 2000;
Ambrosio and Braides 1990b], and each was shown to be sufficient for strong lower
semicontinuity of the surface energy functional (1).

Definition 20. A family of integrands {φuv}1≤u<v≤s satisfies (B)-convexity if, for
any K1..s ∈ Ps and for each u for which Ln(Ku) > 0, region u of K1..s may be
replaced by some configuration involving the remaining regions in K1..s in such a
way that the resulting polycrystal has surface energy not exceeding SE(K1..s).

With (B)-convexity, we can remove any single crystal and allow the remaining
crystals to flow into the space it formerly occupied, in such a way that surface
energy does not increase.

Definition 21. A family of integrands {φuv}1≤u<v≤s satisfies joint convexity if

φuv(w)= sup
z∈{1,2,3,... }

〈
gz(u)− gz(v), w

〉
whenever 1≤ u < v ≤ s, w ∈ Rn

for some sequence
{
g1( · ), g2( · ), g3( · ), . . .

}
of functions from {1, 2, . . . , s} into

Rn .

A very basic condition, necessary for the lower semicontinuity of the surface
energy functional (1), is the following.
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Definition 22. A family of integrands {φuv}1≤u<v≤s satisfies the triangle inequal-
ities if, when we extend it to a family {φuv}u,v∈{1,2,...,s} using the conventions

φ j i (w)= φi j (−w) for all w ∈ Rn, if 1≤ i < j ≤ s,(28)

φi i (w)= 0 for all w ∈ Rn, for each i ∈ {1, 2, . . . , s},(29)

we have

(30) φi j (w)≤ φik(w)+φk j (w) whenever i, j, k ∈ {1, 2, . . . , s}, w ∈ Rn.

The triangle inequalities are necessary for lower semicontinuity of surface en-
ergy since otherwise two planar interfaces could merge, resulting in a sudden in-
crease in surface energy. When s ≤ 3 they imply joint convexity and hence are also
sufficient for lower semicontinuity [Ambrosio and Braides 1990b]. When s > 3,
they are not sufficient for lower semicontinuity [Caraballo 2009].

Definition 23 [Caraballo 1997]. A family of integrands {φuv}1≤u<v≤s is said to
satisfy LSC1 if, for any K1..s ∈ Ps and for each pair (u, v) with u 6= v,

min
(
SE(Pu), SE(Pv)

)
≤ SE(K1..s),

where Pu is the polycrystal corresponding to the partition {Ku ∪
⋃

z /∈{u,v} Kz, Kv}

of Rn into two sets, and Pv the one corresponding to the partition {Ku, Kv ∪⋃
z /∈{u,v} Kz} of Rn into two sets.

I.e., this condition holds provided for any pair u and v it is possible to replace
all of the other regions with just u, or all of the others with just v, in such a way
that surface energy does not increase. We can generalize this condition by allowing
replacements in which some regions are replaced by u and others by v:

Definition 24. A family of integrands {φuv}1≤u<v≤s satisfies A2-convexity if, for
any K1..s ∈Ps and for each pair (u, v)with u 6=v, Ln(Ku)>0, and Ln(Kv)>0, the
remaining regions of K1..s may be renamed, in each case to either u or v, in such
a way that the resulting polycrystal has surface energy not exceeding SE(K1..s).

The even weaker condition B2-convexity arises by eliminating the requirement
that a given region must be renamed using just u or just v.

Definition 25 (cf. [Caraballo 1997; 2008]). A family of integrands {φuv}1≤u<v≤s

is said to be pointwise within a factor of λ (0 < λ < ∞) if, when we extend it
to a family {φuv}u,v∈{1,2,...,s} using the conventions (28) and (29), the following
condition holds for each unit vector w ∈ Rn:

sup{φuv(w) : 1≤ u 6= v ≤ s}
inf{φuv(w) : 1≤ u 6= v ≤ s}

≤ λ.

Definition 26 (cf. [Caraballo 1997; 2008]). A family of integrands {φuv}1≤u<v≤s

satisfies LSC3 if it is pointwise within a factor of 2.
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LSC3 places restrictions on each pair of integrands. It turns out that it suffices
to control the ratios of only certain pairs of the φuv’s. Thus, we have the following
definition from [Caraballo 2008]:

Definition 27. A family of integrands {φuv}1≤u<v≤s is said to be directionally con-
trolled if, when we extend it to a family {φuv}u,v∈{1,2,...,s} using the conventions (28)
and (29), we have

φi j (w)≤ 2φik(w)

whenever i, j ∈ {1, 2, . . . , s}, k ∈ {1, . . . , s} \ {i, j}, and w ∈ Rn .

LSC3 implies directional control; however, examples show the converse to be
false. Here are several additional relations among the various restrictions on the
integrands {φuv}1≤u<v≤s . For more results and for proofs, see the various papers
cited in Section 3.1.

Theorem 28. (1) A-convexity⇒ A2-convexity⇒ B2-convexity.

(2) A-convexity⇒ (B)-convexity⇒ B2-convexity.

(3) LSC3⇒ directional control⇒ A2-convexity⇒ B2-convexity.

(4) LSC3⇒ LSC1⇒ A2-convexity⇒ B2-convexity.

Proof. (1) is [Caraballo 2008, Theorem 3.13(a)]. (2) is [Caraballo 2008, Theorem
3.13(b)]. (3) is [Caraballo 2008, Theorem 3.14]. The first assertion in (4) is part
of [Caraballo 1997, Theorem 10]. That LSC1 implies A2-convexity follows im-
mediately from the definitions. �

Since BV-ellipticity is equivalent to lower semicontinuity of the surface energy
functional (1), it follows that B2-convexity (and hence each of the conditions which
implies it) implies BV-ellipticity, which in turn implies the triangle inequalities.
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Tokyo, 1995. MR 98g:73044 Zbl 0904.73045

[Ambrosio et al. 2000] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation
and free discontinuity problems, Oxford University Press, New York, 2000. MR 2003a:49002
Zbl 0957.49001

[Ambrosio et al. 2001] L. Ambrosio, V. Caselles, S. Masnou, and J.-M. Morel, “Connected com-
ponents of sets of finite perimeter and applications to image processing”, J. Eur. Math. Soc. 3:1
(2001), 39–92. MR 2002g:49072 Zbl 0981.49024

[Ambrosio et al. 2003] L. Ambrosio, N. Fusco, and J. E. Hutchinson, “Higher integrability of the
gradient and dimension of the singular set for minimisers of the Mumford–Shah functional”, Calc.
Var. Partial Differential Equations 16:2 (2003), 187–215. MR 2004a:49017 Zbl 1047.49015

[Aubert and Kornprobst 2002] G. Aubert and P. Kornprobst, Mathematical problems in image pro-
cessing: partial differential equations and the calculus of variations, Applied Mathematical Sci-
ences 147, Springer, New York, 2002. MR 2002m:49001 Zbl 1109.35002

[Bellettini et al. 2002] G. Bellettini, V. Caselles, and M. Novaga, “The total variation flow in RN ”,
J. Differential Equations 184:2 (2002), 475–525. MR 2003g:35105 Zbl 1036.35099

[Bellettini et al. 2006] G. Bellettini, M. Chermisi, and M. Novaga, “Crystalline curvature flow of
planar networks”, Interfaces Free Bound. 8:4 (2006), 481–521. MR 2008d:74049 Zbl 1103.74017

[Braides 1998] A. Braides, Approximation of free-discontinuity problems, Lecture Notes in Mathe-
matics 1694, Springer, Berlin, 1998. MR 99j:49001 Zbl 0909.49001

[Brook et al. 2003] A. Brook, R. Kimmel, and N. A. Sochen, “Variational restoration and edge
detection for color images”, J. Math. Imaging Vision 18:3 (2003), 247–268. MR 2004c:68133
Zbl 1020.68079

[Burago and Zalgaller 1988] Y. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren
der Mathematischen Wissenschaften 285, Springer, Berlin, 1988. MR 89b:52020 Zbl 0633.53002

[Caraballo 1997] D. G. Caraballo, A variational scheme for the evolution of polycrystals by curva-
ture, thesis, Princeton University, 1997, Available at http://tinyurl.com/Caraballo-1997-PhD-thesis.
MR 2695091

[Caraballo 2008] D. G. Caraballo, “Crystals and polycrystals in Rn : lower semicontinuity and exis-
tence”, J. Geom. Anal. 18:1 (2008), 68–88. MR 2009b:49032 Zbl 1191.49011

http://dx.doi.org/10.1512/iumj.1986.35.35028
http://www.ams.org/mathscinet-getitem?mr=88c:49032
http://www.emis.de/cgi-bin/MATH-item?0585.49030
http://www.ams.org/mathscinet-getitem?mr=99e:49052
http://www.emis.de/cgi-bin/MATH-item?1017.49502
http://dx.doi.org/10.1137/0331020
http://dx.doi.org/10.1137/0331020
http://www.ams.org/mathscinet-getitem?mr=94h:58067
http://www.emis.de/cgi-bin/MATH-item?0783.35002
http://www.ams.org/mathscinet-getitem?mr=91j:49015
http://www.emis.de/cgi-bin/MATH-item?0676.49028
http://www.ams.org/mathscinet-getitem?mr=91j:49016
http://www.emis.de/cgi-bin/MATH-item?0676.49029
http://www.ams.org/mathscinet-getitem?mr=98g:73044
http://www.emis.de/cgi-bin/MATH-item?0904.73045
http://www.ams.org/mathscinet-getitem?mr=2003a:49002
http://www.emis.de/cgi-bin/MATH-item?0957.49001
http://dx.doi.org/10.1007/PL00011302
http://dx.doi.org/10.1007/PL00011302
http://www.ams.org/mathscinet-getitem?mr=2002g:49072
http://www.emis.de/cgi-bin/MATH-item?0981.49024
http://dx.doi.org/10.1007/s005260100148
http://dx.doi.org/10.1007/s005260100148
http://www.ams.org/mathscinet-getitem?mr=2004a:49017
http://www.emis.de/cgi-bin/MATH-item?1047.49015
http://www.ams.org/mathscinet-getitem?mr=2002m:49001
http://www.emis.de/cgi-bin/MATH-item?1109.35002
http://dx.doi.org/10.1006/jdeq.2001.4150
http://www.ams.org/mathscinet-getitem?mr=2003g:35105
http://www.emis.de/cgi-bin/MATH-item?1036.35099
http://dx.doi.org/10.4171/IFB/152
http://dx.doi.org/10.4171/IFB/152
http://www.ams.org/mathscinet-getitem?mr=2008d:74049
http://www.emis.de/cgi-bin/MATH-item?1103.74017
http://www.ams.org/mathscinet-getitem?mr=99j:49001
http://www.emis.de/cgi-bin/MATH-item?0909.49001
http://dx.doi.org/10.1023/A:1022895410391
http://dx.doi.org/10.1023/A:1022895410391
http://www.ams.org/mathscinet-getitem?mr=2004c:68133
http://www.emis.de/cgi-bin/MATH-item?1020.68079
http://www.ams.org/mathscinet-getitem?mr=89b:52020
http://www.emis.de/cgi-bin/MATH-item?0633.53002
http://tinyurl.com/Caraballo-1997-PhD-thesis
http://tinyurl.com/Caraballo-1997-PhD-thesis
http://www.ams.org/mathscinet-getitem?mr=2695091
http://dx.doi.org/10.1007/s12220-007-9006-7
http://dx.doi.org/10.1007/s12220-007-9006-7
http://www.ams.org/mathscinet-getitem?mr=2009b:49032
http://www.emis.de/cgi-bin/MATH-item?1191.49011


B2-CONVEXITY AND LOWER SEMICONTINUITY OF PARTITIONS 347

[Caraballo 2009] D. G. Caraballo, “The triangle inequalities and lower semi-continuity of surface
energy of partitions”, Proc. Roy. Soc. Edinburgh Sect. A 139:3 (2009), 449–457. MR 2010f:74006
Zbl 1168.49040

[Caraballo 2010] D. G. Caraballo, “B2-convexity and surface energy of space partitions”, J. Math.
Pures Appl. (9) 94:1 (2010), 58–67. MR 2011f:49067 Zbl 1209.49011

[Evans and Gariepy 1992] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of
functions, CRC Press, Boca Raton, FL, 1992. MR 93f:28001 Zbl 0804.28001

[Federer 1969] H. Federer, Geometric measure theory, Grundlehren der mathematischen Wissen-
schaften 153, Springer, New York, 1969. MR 41 #1976 Zbl 0176.00801

[Federer and Fleming 1960] H. Federer and W. H. Fleming, “Normal and integral currents”, Ann. of
Math. (2) 72:3 (1960), 458–520. MR 23 #A588 Zbl 0187.31301

[Giusti 1984] E. Giusti, Minimal surfaces and functions of bounded variation, Monographs in Math-
ematics 80, Birkhäuser, Basel, 1984. MR 87a:58041 Zbl 0545.49018

[Gurtin 1993] M. E. Gurtin, Thermomechanics of evolving phase boundaries in the plane, Oxford
University Press, New York, 1993. MR 97k:73001 Zbl 0787.73004

[Gurtin et al. 1986] M. E. Gurtin, W. O. Williams, and W. P. Ziemer, “Geometric measure theory
and the axioms of continuum thermodynamics”, Arch. Rational Mech. Anal. 92:1 (1986), 1–22.
MR 87e:80006 Zbl 0599.73002

[Hardt and Simon 1986] R. Hardt and L. Simon, Seminar on geometric measure theory, DMV Sem-
inar 7, Birkhäuser, Basel, 1986. MR 89c:49031 Zbl 0601.49029

[Krantz and Parks 1999] S. G. Krantz and H. R. Parks, The geometry of domains in space, Birkhäuser,
Boston, MA, 1999. MR 2000m:28005 Zbl 0929.26001

[Krantz and Parks 2008] S. G. Krantz and H. R. Parks, Geometric integration theory, Birkhäuser,
Boston, MA, 2008. MR 2009m:49075 Zbl 1149.28001

[Mattila 1995] P. Mattila, Geometry of sets and measures in Euclidean spaces: fractals and rectifi-
ability, Cambridge Studies in Advanced Mathematics 44, Cambridge University Press, Cambridge,
1995. MR 96h:28006 Zbl 0819.28004

[Morgan 1997] F. Morgan, “Lower semicontinuity of energy clusters”, Proc. Roy. Soc. Edinburgh
Sect. A 127:4 (1997), 819–822. MR 98e:49033 Zbl 0886.49016

[Morgan 1998] F. Morgan, “Immiscible fluid clusters in R2 and R3”, Michigan Math. J. 45:3 (1998),
441–450. MR 99k:49093 Zbl 0967.49026

[Morgan 2009] F. Morgan, Geometric measure theory: a beginner’s guide, 4th ed., Elsevier/Aca-
demic Press, Amsterdam, 2009. MR 2009i:49001 Zbl 1179.49050

[Morrey 1952] C. B. Morrey, Jr., “Quasi-convexity and the lower semicontinuity of multiple inte-
grals”, Pacific J. Math. 2:1 (1952), 25–53. MR 14,992a Zbl 0046.10803

[Mumford and Shah 1989] D. Mumford and J. Shah, “Optimal approximations by piecewise smooth
functions and associated variational problems”, Comm. Pure Appl. Math. 42:5 (1989), 577–685.
MR 90g:49033 Zbl 0691.49036

[Osher and Fedkiw 2001] S. Osher and R. P. Fedkiw, “Level set methods: an overview and some
recent results”, J. Comput. Phys. 169:2 (2001), 463–502. MR 2002c:65255 Zbl 0988.65093

[Rham 1955] G. de Rham, Variétés différentiables: formes, courants, formes harmoniques, Ac-
tualités Sci. Ind./Publ. Inst. Math. Univ. Nancago 1222/III, Hermann, Paris, 1955. MR 16,957b
Zbl 0065.32401

http://dx.doi.org/10.1017/S0308210506000837
http://dx.doi.org/10.1017/S0308210506000837
http://www.ams.org/mathscinet-getitem?mr=2010f:74006
http://www.emis.de/cgi-bin/MATH-item?1168.49040
http://dx.doi.org/10.1016/j.matpur.2010.02.003
http://www.ams.org/mathscinet-getitem?mr=2011f:49067
http://www.emis.de/cgi-bin/MATH-item?1209.49011
http://www.ams.org/mathscinet-getitem?mr=93f:28001
http://www.emis.de/cgi-bin/MATH-item?0804.28001
http://www.ams.org/mathscinet-getitem?mr=41:1976
http://www.emis.de/cgi-bin/MATH-item?0176.00801
http://dx.doi.org/10.2307/1970227
http://www.ams.org/mathscinet-getitem?mr=23:A588
http://www.emis.de/cgi-bin/MATH-item?0187.31301
http://www.ams.org/mathscinet-getitem?mr=87a:58041
http://www.emis.de/cgi-bin/MATH-item?0545.49018
http://www.ams.org/mathscinet-getitem?mr=97k:73001
http://www.emis.de/cgi-bin/MATH-item?0787.73004
http://dx.doi.org/10.1007/BF00250730
http://dx.doi.org/10.1007/BF00250730
http://www.ams.org/mathscinet-getitem?mr=87e:80006
http://www.emis.de/cgi-bin/MATH-item?0599.73002
http://www.ams.org/mathscinet-getitem?mr=89c:49031
http://www.emis.de/cgi-bin/MATH-item?0601.49029
http://www.ams.org/mathscinet-getitem?mr=2000m:28005
http://www.emis.de/cgi-bin/MATH-item?0929.26001
http://dx.doi.org/10.1007/978-0-8176-4679-0
http://www.ams.org/mathscinet-getitem?mr=2009m:49075
http://www.emis.de/cgi-bin/MATH-item?1149.28001
http://www.ams.org/mathscinet-getitem?mr=96h:28006
http://www.emis.de/cgi-bin/MATH-item?0819.28004
http://www.ams.org/mathscinet-getitem?mr=98e:49033
http://www.emis.de/cgi-bin/MATH-item?0886.49016
http://dx.doi.org/10.1307/mmj/1030132292
http://www.ams.org/mathscinet-getitem?mr=99k:49093
http://www.emis.de/cgi-bin/MATH-item?0967.49026
http://www.ams.org/mathscinet-getitem?mr=2009i:49001
http://www.emis.de/cgi-bin/MATH-item?1179.49050
http://projecteuclid.org/euclid.pjm/1103051941
http://projecteuclid.org/euclid.pjm/1103051941
http://www.ams.org/mathscinet-getitem?mr=14,992a
http://www.emis.de/cgi-bin/MATH-item?0046.10803
http://dx.doi.org/10.1002/cpa.3160420503
http://dx.doi.org/10.1002/cpa.3160420503
http://www.ams.org/mathscinet-getitem?mr=90g:49033
http://www.emis.de/cgi-bin/MATH-item?0691.49036
http://dx.doi.org/10.1006/jcph.2000.6636
http://dx.doi.org/10.1006/jcph.2000.6636
http://www.ams.org/mathscinet-getitem?mr=2002c:65255
http://www.emis.de/cgi-bin/MATH-item?0988.65093
http://www.ams.org/mathscinet-getitem?mr=16,957b
http://www.emis.de/cgi-bin/MATH-item?0065.32401


348 DAVID G. CARABALLO

[Sethian 1999] J. A. Sethian, Level set methods and fast marching methods: evolving interfaces in
computational geometry, fluid mechanics, computer vision, and materials science, 2nd ed., Cam-
bridge Monographs on Applied and Computational Mathematics 3, Cambridge University Press,
Cambridge, 1999. MR 2000c:65015 Zbl 0973.76003

[Simon 1983] L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for
Mathematical Analysis, Australian National University 3, Australian National University Centre
for Mathematical Analysis, Canberra, 1983. MR 87a:49001 Zbl 0546.49019

[Taylor 1978] J. E. Taylor, “Crystalline variational problems”, Bull. Amer. Math. Soc. 84:4 (1978),
568–588. MR 58 #12649 Zbl 0392.49022

[Taylor 1993] J. E. Taylor, “Motion of curves by crystalline curvature, including triple junctions and
boundary points”, pp. 417–438 in Differential geometry: partial differential equations on manifolds
(Los Angeles, CA, 1990), edited by R. Greene and S.-T. Yau, Proc. Sympos. Pure Math. 54, AMS,
Providence, RI, 1993. MR 94c:53012 Zbl 0823.49028

[Taylor 1999] J. E. Taylor, “A variational approach to crystalline triple-junction motion”, J. Statist.
Phys. 95:5-6 (1999), 1221–1244. MR 2000i:74073 Zbl 0952.74015

[Taylor 2003] J. E. Taylor, “Some mathematical challenges in materials science”, Bull. Amer. Math.
Soc. (N.S.) 40:1 (2003), 69–87. MR 2004h:74064 Zbl 1158.74438

[White 1996] B. White, “Existence of least-energy configurations of immiscible fluids”, J. Geom.
Anal. 6:1 (1996), 151–161. MR 97e:49038 Zbl 0853.49030

Received July 27, 2009. Revised August 6, 2010.

DAVID G. CARABALLO

DEPARTMENT OF MATHEMATICS

GEORGETOWN UNIVERSITY

ST. MARY’S HALL, 3RD FLOOR

GEORGETOWN UNIVERSITY

WASHINGTON, DC 20057-1233
UNITED STATES

dgc3@georgetown.edu

http://www.ams.org/mathscinet-getitem?mr=2000c:65015
http://www.emis.de/cgi-bin/MATH-item?0973.76003
http://www.ams.org/mathscinet-getitem?mr=87a:49001
http://www.emis.de/cgi-bin/MATH-item?0546.49019
http://dx.doi.org/10.1090/S0002-9904-1978-14499-1
http://www.ams.org/mathscinet-getitem?mr=58:12649
http://www.emis.de/cgi-bin/MATH-item?0392.49022
http://www.ams.org/mathscinet-getitem?mr=94c:53012
http://www.emis.de/cgi-bin/MATH-item?0823.49028
http://dx.doi.org/10.1023/A:1004523005442
http://www.ams.org/mathscinet-getitem?mr=2000i:74073
http://www.emis.de/cgi-bin/MATH-item?0952.74015
http://dx.doi.org/10.1090/S0273-0979-02-00967-9
http://www.ams.org/mathscinet-getitem?mr=2004h:74064
http://www.emis.de/cgi-bin/MATH-item?1158.74438
http://dx.doi.org/10.1007/BF02921571
http://www.ams.org/mathscinet-getitem?mr=97e:49038
http://www.emis.de/cgi-bin/MATH-item?0853.49030
mailto:dgc3@georgetown.edu


PACIFIC JOURNAL OF MATHEMATICS
http://pacificmath.org

Founded in 1951 by
E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Darren Long
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

long@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Alexander Merkurjev
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

merkurev@math.ucla.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Jonathan Rogawski
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

jonr@math.ucla.edu

PRODUCTION
pacific@math.berkeley.edu

Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or pacificmath.org for submission instructions.

The subscription price for 2011 is US $420/year for the electronic version, and $485/year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of
Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company,
11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt
MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans
Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA
94704-0163.

PJM peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS
at the University of California, Berkeley 94720-3840

A NON-PROFIT CORPORATION
Typeset in LATEX

Copyright ©2011 by Pacific Journal of Mathematics

http://pacificmath.org/
mailto:chari@math.ucr.edu
mailto:finn@math.stanford.edu
mailto:liu@math.ucla.edu
mailto:pacific@math.ucla.edu
mailto:long@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:merkurev@math.ucla.edu
mailto:popa@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:jonr@math.ucla.edu
mailto:pacific@math.berkeley.edu
http://pacificmath.org/
http://www.periodicals.com/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.emis.de/ZMATH/
http://www.inist.fr/PRODUITS/pascal.php
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/


PACIFIC JOURNAL OF MATHEMATICS

Volume 253 No. 2 October 2011

257Fusion rules on a parametrized series of graphs
MARTA ASAEDA and UFFE HAAGERUP

289Group gradings on restricted Cartan-type Lie algebras
YURI BAHTURIN and MIKHAIL KOCHETOV

321B2-convexity implies strong and weak lower semicontinuity of partitions
of Rn

DAVID G. CARABALLO

349Testing the functional equation of a high-degree Euler product
DAVID W. FARMER, NATHAN C. RYAN and RALF SCHMIDT

367Asymptotic structure of a Leray solution to the Navier–Stokes flow around a
rotating body

REINHARD FARWIG, GIOVANNI P. GALDI and MADS KYED

383Type II almost-homogeneous manifolds of cohomogeneity one
DANIEL GUAN

423Cell decompositions of Teichmüller spaces of surfaces with boundary
REN GUO and FENG LUO

439A system of third-order differential operators conformally invariant under
sl(3, C) and so(8, C)

TOSHIHISA KUBO

455Axial symmetry and regularity of solutions to an integral equation in a
half-space

GUOZHEN LU and JIUYI ZHU

475Braiding knots in contact 3-manifolds
ELENA PAVELESCU

489Gradient estimates for positive solutions of the heat equation under
geometric flow

JUN SUN

Pacific
JournalofM

athem
atics

2011
Vol.253,N

o.2


	1. Introduction
	2. Crystals and polycrystals
	2.1. Basic notation and sets of finite perimeter
	2.2. Integral currents
	2.3. Crystals
	2.4. Surface energy integrands
	2.5. Polycrystals and interfaces between crystals
	2.6. Surface energy of a polycrystal
	2.7. A Lebesgue point theorem for partitions

	3. Lower semicontinuity of surface energy
	3.1. Restrictions on the integrands
	3.2. A local property of lower semicontinuity
	3.3. The main lower semicontinuity theorems
	3.4. Proof of the strong lower semicontinuity theorem
	3.5. Proof of the weak lower semicontinuity theorem

	4. Appendix: Restrictions on the integrands
	Acknowledgements
	References
	
	

