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ELENA PAVELESCU

We show that a transverse link in a contact structure supported by an
open book decomposition can be transversely braided, and we generalize
Markov’s theorem on when the closures of two braids represent (trans-
versely) isotopic links.

1. Introduction

Alexander [1923] proved that any knot in R3 can be braided about the z-axis.
Bennequin, in a paper [1983] that marked the start of modern contact topology
and led to the Bennequin inequality and eventually to Eliashberg’s definition of
tightness, proved the transverse case for (R3, ξstd). In this paper, we generalize
Bennequin’s result to any closed oriented 3-dimensional manifold M , by looking
at an open book decomposition for M together with its supported contact structure.
After we completed the proof of this theorem, it was brought to our attention that
the same result was independently obtained through different means by Mitsumatsu
and Mori in [Mitsumatsu 2006].

Bennequin used braid theory in R3 to show the standard contact structure was
tight. Since then, powerful analytic machinery such as holomorphic curves and
Seiberg–Witten theory has been used to prove tightness. By studying braids in
general open books, it is hoped that tight contact structures can be better under-
stood from a purely topological/combinatorial perspective. The results presented
in this paper constitute a first step in this program. While these results are purely
geometric, it would be nice to have an algebraic description of a generalized “braid
group”. In particular, one needs to define the stabilization moves with respect to
different binding components and account for the fundamental group of the page.
We will explore this algebraic perspective in a subsequent paper.

Markov [1936] gave an equivalent condition for the closures of two braids in R3

to be isotopic as links, if and only if the two braids differ by conjugations in the
braid group and positive and negative Markov moves. Orevkov and Shevchishin
[2003] proved the transversal case for (R3, ξstd). Wrinkle [2002] independently
obtained a different proof. We generalize Markov’s theorem to any closed oriented
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3-dimensional manifold. We prove the transverse case and recover the topological
case proved in [Skora 1992] and [Sundheim 1993].

In [Kawamuro and Pavelescu 2011] the braiding results presented in this paper
are used to find combinatorial self-linking formulae for null-homologous braids in
annulus open book decompositions and pants open book decompositions, extend-
ing Bennequin’s self-linking formula for a braid in the standard contact 3-sphere.

2. Contact structures and open book decompositions

Let M be a compact, oriented 3-manifold, and ξ an oriented 2-plane field on M . We
say ξ is a contact structure on M if ξ = kerα for some global 1-form α satisfying
α ∧ dα 6= 0. In this paper we assume that the manifold M is oriented and that the
contact structure ξ is oriented and positive (that is, α∧ dα > 0).

A contactomorphism between two contact manifolds (M1, ξ1) and (M2, ξ2) is a
diffeomorphism φ : M1→ M2 such that φ∗ξ1 = ξ2.

On R3, consider the two contact structures ξ1 and ξ2 given by the 1-forms α1 =

dz − y dx and α2 = dz + r2 dθ (given in cylindrical coordinates). Then (R3, ξ1)

and (R3, ξ2) are contactomorphic and we refer to both ξ1 and ξ2 as the standard
contact structure on R3, ξstd.

Theorem 2.1 (Gray’s theorem). Let {ξt }t∈[0,1] be a family of contact structures on
a manifold M that differ on a compact set C ⊂ int(M). Then there exists an isotopy
ψt : M→ M such that

(i) (ψt)∗ξ1=ξt ;

(ii) ψt is the identity outside of an open neighborhood of C.

While the proof of this result is well-known, we sketch it here as we will need
elements of it in later arguments. For more details see [Geiges 2008, p. 61].

Proof. We look for ψt as the flow of a vector field X t . If ξt = kerαt , then ψt has
to satisfy

(2-1) ψ∗t αt = λtα0

for some nonvanishing function λt : M→R. By taking the derivative with respect
to t on both sides and rearranging the terms, we get

(2-2) ψ∗t

(dαt

dt
+LX tαt

)
=

dλt

dt
α0 =

dλt

dt
1
λt
ψ∗αt .

This is equivalent to

(2-3) ψ∗t

(dαt

dt
+ d(ιX tαt)+ ιX t dαt

)
= ψ∗t (htαt)
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for
ht =

d
dt
(log λt) ◦ψ

−1
t .

If X t is chosen in ξt , then ιX tαt = 0, and (2-3) becomes

(2-4)
dαt

dt
+ ιX t dαt = htαt .

Applying (2-4) to the Reeb vector field of αt , vαt (that is, the unique vector field
vt such that αt(vt) = 1 and dαt(vt , · ) = 0), we find ht = (dαt/dt)(vαt ) and X t

given by

(2-5) ιX t dαt = htαt −
dαt

dt
.

The form dαt gives an isomorphism

0(ξt)→�1
αt
, v 7→ ιvdαt ,

where 0(ξt)={v |v∈ ξt } and�1
αt
={1-forms β |β(vt)=0}, and thus X t is uniquely

determined by (2-4). By construction, the flow of X t is the desired ψt . For the sub-
set of M where the ξt agree we choose the αt to agree. This implies that dαt/dt=0,
ht = 0 and X t = 0, and all equalities hold. �

In a contact manifold (M, ξ), an oriented arc γ ⊂ M is called transverse if for
all p ∈ γ and ξp the contact plane at p, Tpγ t ξp and Tpγ intersects ξp positively.
Also, if γ is a closed curve then it is called a transverse knot.

An open book decomposition of M is a pair (L, π ) where

• L is an oriented link in M called the binding of the open book, and

• π :M r L→ S1 is a fibration whose fiber, π−1(θ), is the interior of a compact
surface 6 ⊂ M such that ∂6 = L , for all θ ∈ S1. The surface 6 is called the
page of the open book.

Alternatively, an open book decomposition of a 3-manifold M consists of a
surface 6, with boundary, together with a diffeomorphism φ :6→6, with φ the
identity near ∂6, such that

M = (6×[0, 1]/∼)∪ f

∐
i

S1
× D2,

where (x, 1)∼ (φ(x), 0). Note that

∂(6×[0, 1]/∼)=
∐

i

T 2
i ,

with each torus T 2
i having a product structure S1

×[0, 1]/∼. Let

λi = {pt}× [0, 1]/∼, λi ∈ T 2
i .
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The gluing diffeomorphism used to construct M is defined by

f : ∂
(∐

i

S1
× D2

)
→ ∂

(∐
i

T 2
i

)
, {pt}× ∂D2

→ λi .

The map φ is called the monodromy of the open book. See [Etnyre 2006] for more
details.

Theorem 2.2 [Alexander 1920]. Every closed oriented 3-manifold has an open
book decomposition.

A contact structure ξ on M is said to be supported by an open book decomposi-
tion (6, φ) of M if ξ can be isotoped through contact structures so that there exists
a 1-form α for ξ such that

• dα is a positive area form on each page, and

• α(v) > 0 for all v ∈ T L that induce the orientation on L .

Theorem 2.3 [Thurston and Winkelnkemper 1975]. Every open book decomposi-
tion (6, φ) supports a contact structure ξφ .

We sketch this well-known proof, as we need the details in later arguments.

Proof. Let
M = (6×[0, 1]/∼)∪ f

∐
i

S1
× D2

be given as before. We first construct a contact structure on 6 × [0, 1]/ ∼, and
then we extend it in a neighborhood of the binding.

In the neighborhood N = S1
× D2 of each component of the binding, consider

coordinates (ψ, x, θ), such that (ψ, x) are coordinates on the page (with ψ the
coordinate along the binding) and dθ and π∗dθ agree, where π∗dθ is the pullback
through π : M \ L → S1 of the coordinate on S1. Let λ be a 1-form on the page
that is an element of the set (it is easy to check that this set is not empty)

S = {1-forms λ such that dλ is a volume form on 6 and

λ= (1+ x) dψ near ∂6 = L}.

On 6×[0, 1] take λ̃= (1−θ)λ+θ(φ∗λ) and consider the 1-form αK = λ̃+K dθ .
For sufficiently large K , αK is a contact form and it descends to a contact form on
6× [0, 1]/∼. To extend this form on the solid tori neighborhood of the binding,
we pull back α through the gluing map f and get

α f = K dθ − (x + ε) dψ.
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−1− ε

h g

xx

K
1

δh
δg

Figure 1. The functions h and g.

We are looking to extend this form on the entire S1
× D2 to a contact form of

the form
h(x) dψ + g(x) dθ.

This is possible if there exist functions h, g : [0, 1] → R3 such that

(i) h(x)g′(x)− h′(x)g(x) > 0 (given by the contact condition);

(ii) h(x)= 1 near x = 0, h(x)=−(x + ε) near x = 1; and

(iii) g(x)= r2 near x = 0, g(x)= K near x = 1.

The two functions h and g described in Figure 1 work for our purpose. The
conditions (ii) and (iii) are obviously satisfied, and if δh and δg are such that h(x)<
0 on [δh, 1] and g(x)= K on [δg, 1], then (i) is satisfied as long as δg < δh . �

The following correspondence, which is one of the central results in contact
geometry, relates open book decompositions and contact structures.

Theorem 2.4 [Giroux 2002]. Let M be a closed, oriented 3-manifold. Then there
is a one-to-one correspondence{

contact structures ξ on M3

up to contact isotopy

}
1−1
←→

{
open book decompositions (6, φ)
of M3 up to positive stabilization

}
.

See [Etnyre 2006] for details.

3. Braiding knots in contact 3-manifolds

In this section we generalize the following theorem:

Theorem 3.1 [Bennequin 1983]. Any transverse link K in (R3, ξstd) is transversely
isotopic to a link braided about the z-axis.



480 ELENA PAVELESCU

Let (L , π) be an open book decomposition for M . A link K ⊂ M is said to be
braided about L if K is disjoint from L and there exists a parametrization of K ,
f :
∐

S1
→M , such that if θ is the coordinate on each S1 then (d/dθ)(π ◦ f ) > 0,

for any θ . We call those arcs where this condition is not satisfied bad arcs of K .

Theorem 3.2. Suppose (L , π) is an open book decomposition for the 3-manifold
M and ξ is supported by (L , π). Let K be a transverse link in M. Then K can be
transversely isotoped to a braid.

Proof. The idea of the proof is to find a family of diffeomorphisms of M keeping
each page of the open book setwise fixed and sending the parts of the link where
the link is not braided into a neighborhood of the binding. A neighborhood of the
binding is contactomorphic to a neighborhood of the z-axis in (R3, ξstd)/z∼z+1 and
there the link can be braided, according to Theorem 3.1. What we really use is that
Theorem 3.1 works not only for links, but also for arcs with good ends.

In the neighborhood N = S1
× D2 of each component of the binding, consider

coordinates (ψ, x, θ) and let λ ∈ S as described in Theorem 2.3. On 6 × [0, 1]
take λ̃ = (1 − θ)λ + θ(φ∗λ) and consider the family of 1-forms given by αt =

λ̃− (K/t)dθ , where t ∈ [−1, 0) and K is a large constant.
This family of 1-forms descends to a family of 1-forms on 6×[0, 1]/∼ (since

φ∗(αt |6×{0}) = αt |6×{1}). Both ξ−1 = ker(α−1) and ξ are contact structures sup-
ported by (L , π), and by Giroux’s correspondence they are isotopic. Therefore,
without loss of generality, we may assume ξ = ker(α−1).

For large enough K , the family of 1-forms {αt }t is a family of contact 1-forms:

αt ∧ dαt =

(
λ̃− K 1

t
dθ
)
∧ (dλ̃)= λ̃∧ dλ̃− K 1

t
dθ ∧ dλ̃ > 0.

Note that dλ̃ is an area form on the page, while dθ vanishes on the page and
is positive on the positive normal to the page. This implies that the term that is
subtracted is always negative (t ∈ [−1, 0)), and therefore αt is a contact form for
sufficiently large K . We want to extend this family to the whole M , so we need
to patch in the solid tori neighborhood of the binding. In the neighborhood of the
binding we have αt = (1+ x) dψ − K (1/t)dθ . We pull back this family through
the map f used to glue the solid tori in the definition of the open book. With our
chosen coordinates we have

f (ψ, x, θ)= (x − 1+ ε,−ψ, θ)

and the pullback family

α f,t =−(x + ε) dψ − K 1
t

dθ.
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We are looking to extend these forms on the entire S1
× D2 to a family of the

form
ht(x) dψ + gt(x) dθ.

This is possible if there exist functions ht , gt : [0, 1]→R for t ∈ [−1, 0) such that

(i) ht(x)g′t(x)− h′t(x)gt(x) > 0, t ∈ [−1, 0) (given by the contact condition);

(ii) ht(x)= 1 near x = 0, ht(x)=−(x + ε) near x = 1; and

(iii) gt(x)= x2 near x = 0, gt(x)=−K/t near x = 1.

−1− ε

ht gt

xx

−
K
t

1

δht
δgt

Figure 2. The functions ht and gt .

The two families {ht }t∈[−1,0) and {gt }t∈[−1,0) described in Figure 2 work for our
purpose. The conditions (ii) and (iii) are satisfied for our choice of ht and gt , and if
δht and δgt are such that ht(x)< 0 for x ∈ [δht , 1] and gt(x)=−K/t for x ∈ [δgt , 1],
then (i) is satisfied as long as δgt < δht .

Denote the extended family of forms also by αt , and by ξt the family of contact
structures given by ξt = ker(αt), with t ∈ [−1, 0). By Gray’s theorem, there exists
a family of diffeomorphisms ft : M→ M such that ( ft)∗ξ−1 = ξt .

As announced, we would like to construct a family of diffeomorphisms { ft }t

that fix the pages setwise. Following the proof of Theorem 2.1, we construct { ft }t

as the flow of a vector field X t ∈ ξt , for which we have the equality (2-5).
We already know that such an X t exists, but would need it to be tangent to the

page. First notice that
dαt

dt
=

1
t2 K dθ

and choose some vector v ∈ T6 ∩ ξt . Applying both sides of (2-5) to v, we get

(3-1) dαt(X t , v)=
dαt

dt
(vαt )αt(v)−

dαt

dt
(v).
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As v ∈ ξt = ker(αt) and v has no θ -component, the last equality is equivalent to

(3-2) dαt(X t , v)= 0.

As dαt is an area form on ξt , this implies that X t and v are linearly dependent
and therefore

X t ∈ T6 ∩ ξt

(X t = 0 at singular points, where T6 and ξt coincide).
We are now looking at the singularities of X t , t ∈ [−1, 0). Because for t1 6= t2,

αt1 and αt2 differ by a multiple of dθ , the flowlines given by X t1 and X t2 on a
page 6θ coincide. Therefore, it suffices to look at the singularities of X t0 for
some t0 ∈ [−1, 0). On 6θ there are no negative elliptic singularities away from the
binding since the contact planes and the planes tangent to the page almost coincide,
as oriented plane fields (a negative elliptic singularity e would require ξe and Te6

to coincide but have different orientations). Thus, for each θ , all points on 6θ ,
except for singularities of X t0 and stable submanifolds of hyperbolic points, flow
in finite time into an arbitrarily small neighborhood of the binding. Define Sθ as
the set of points on 6θ that are either singularities of X t0 or on stable submanifolds
of hyperbolic points. Let S= ∪Sθ as θ varies from 0 to 2π .

First, note that we can arrange the monodromy map φ to fix the singularities on
the cutting page, by thinking of φ as a composition of Dehn twists away from these
points. For isolated values of θ , X t0 might exhibit connections between hyperbolic
singularities. With that said, S has a CW structure with

• as its 1-skeleton, the union of {x}×[0, 1] for singular points x , and connections
between hyperbolic singularities; and

• as its 2-skeleton, the union of stable submanifolds of hyperbolic singularities.

We want to arrange K in such a way that the bad arcs of K (where K is not
braided) are disjoint from S. Figure 3 depicts a bad arc of K . At the point p, which
lies on the bad arc, K intersects the contact plane ξp positively, and it intersects
the page negatively (the positive normal vectors to the contact plane and page are
shown by arrows). We introduce wrinkles along K as in Figure 3. See below for
the explicit definition.

K K
ξp ξp

p ∈ Sθ

p

6θ 6θ

Figure 3. Wrinkling K in order to avoid intersections with S.
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The wrinkles may increase the number of arcs where the link is not braided, but
this is fine, because these new arcs avoid S.

By general position, we may assume that K ∩ (1-skeleton of S) is empty and
that K t (2-skeleton of S) is a finite number of points. A small neighborhood
of p ∈ K t (2-skeleton of S) in 6θ is foliated by intervals (−ε, ε), in the same
way as a small disk in the xy-plane centered at (0,1,0) in (R3, ξstd). It follows
that p has a neighborhood in M that is contactomorphic to a neighborhood of
q = (0, 1, 0) in (R3, ξstd). Consider the standard (x, y, z) coordinate system in
such a neighborhood of q . The contact plane at q is given by the equation z = x .
Because at p the contact plane and the plane tangent to the page almost coincide,
we consider the plane z = (1+ ε)x at q to correspond to the plane tangent to the
page at p. We identify the bad arc of K with the segment given by

y = 1, z = (1+ ε/2)x,

for x ∈ [−δ, δ]. We call this segment W . See Figure 4. With this setting, the
wrinkle takes W to W̃ with the following properties:

(i) W̃ is given by z = (1+ 3ε/2)x , y = 1 for x ∈ (−δ/3, δ/3);

(ii) W̃ is given by z = (1+ ε/2)x , y = 1 for x ∈ [−δ,−2δ/3)∪ (2δ/3, δ]; and

(iii) dz/dx > 0 along W̃ for x ∈ (−δ, δ).

x xδ−δ

z zW

z = x

z = (1+ ε)x

z = (1+ ε
2 )x

z = x

Figure 4. Wrinkling W .

Condition (iii) ensures that the link remains transverse throughout the wrinkling.
The arc W̃ still intersects the set S at the point q ∈ W̃ , but after wrinkling this

intersection no longer sits on a bad arc.
We perform this wrinkling at each point where a bad arc of K intersects S, and

obtain a link K̃ that does not intersect S along any of its bad arcs. We now apply
the family of diffeomorphisms { ft }t∈[−1,0). Then K̃ε := fε(K̃ ) has all its bad arcs
in a neighborhood of the binding. By Theorem 3.1, there is a transverse isotopy
taking K̃ε to a braid B. This braid B is transversely isotopic to K . �
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4. Markov’s theorem in an open book decomposition

The goal of this section is to generalize the following theorem:

Theorem 4.1 [Orevkov and Shevchishin 2003]. In (R3, ξstd), two braids represent
transversely isotopic links if and only if one can pass from one braid to the other
by braid isotopies, positive Markov moves and their inverses.

A Markov move near a component of the binding L is given by the introduction of a
new loop around L , as in Figure 5. These moves are done near the binding, where
the standard coordinates apply. While a positive Markov move (and its inverse)
keeps the link transverse, a negative Markov move (and its inverse) fails to do so
(see [Bennequin 1983] for details).

vv v

v

L L

Figure 5. Positive (left) and negative (right) Markov moves.

Theorem 4.2. Let M be a 3-dimensional, closed, oriented manifold and (L , π) be
an open book decomposition for M together with its supported contact structure ξ .
Let K0 and K1 be transverse closed braid representatives of the same topological
link. Then K0 and K1 are transversely isotopic if and only if they differ by braid
isotopies and positive Markov moves and their inverses.

The topological version has been previously proven in [Skora 1992] and [Sundheim
1993]. This case immediately follows from the proof of the transverse case, as one
does not need to worry about transversality throughout the isotopy. If transversality
is not required, both positive and negative Markov moves are allowed.

Proof. The reverse implication is straightforward. An isotopy through braids is
done away from the binding. Because the contact planes almost coincide with the
planes tangent to the pages, this isotopy stays transverse with respect to the contact
structure.

The direct implication takes more work. Let K0 and K1 be transverse braid
representatives of the same topological link K , and let {Kt }t∈[0,1] be a transverse
isotopy from K0 to K1. We parametrize the isotopy by K :

∐
S1
× [0, 1] → M ,

such that Kt defined by s → K(s, t) is a parametrization of Kt , where s is the
positively oriented coordinate on each S1. Denote by A⊂M the immersed annulus
K(
∐

S1
×[0, 1]).



BRAIDING KNOTS IN CONTACT 3-MANIFOLDS 485

Let θ be the positive coordinate normal to the page. A bad zone of K is a
connected component of A where (∂/∂s)(π ◦K) ≤ 0. We denote by B the union
of all bad zones of K.

We wish to take all the bad zones of K in a neighborhood of the binding. This
way, the proof is reduced to the standard case proved in [Orevkov and Shevchishin
2003]. For this, we use the family of diffeomorphisms { ft }t∈[−1,0) constructed in
the proof of Theorem 3.2. Keeping the same notations, we want to arrange the
isotopy K in such a way that B∩S=∅.

By general position, B∩S consists of arcs l, along which ∂(π ◦K)/∂s ≤ 0, and
points at which ∂(π ◦K)/∂s ≤ 0. The arcs l are intersections of the 2-cells of S

with B, while the points are intersections of the 1-cells of S with B. We modify
the isotopy K in such a way as to replace the arc l ⊂B∩S by another arc l ′ ⊂ S,
along which ∂(π ◦K)/∂s > 0, and to eliminate the isolated points of B∩S. We
describe the process below.

Let l ⊂B∩S, and identify a small region of B containing l with the rectangle
R = [ 12 ,

3
2 ] × [0, 1] (denote by t the coordinate on the first factor) such that l is

identified with [ 12 ,
3
2 ]×{

1
2}, and let Rt := {t}×[0, 1] ⊂ R, t ∈ [ 12 ,

3
2 ]. We make the

following identifications:

• For t ∈ [ 12 ,
3
2 ], identify Rt with the segment Wt ⊂ R3 given by y = t and

z = (t + ε/2)x .

• For t ∈ [ 12 ,
3
2 ], identify the contact plane at P(t, 1

2) ∈ l with the contact plane
at (0, t, 0), that is, the plane given by z = t x .

• For t ∈ [ 12 ,
3
2 ], identify the page of the open book at (t, 1

2) ∈ l with the plane
at (0, t, 0) given by z = (t + ε)x .

With these settings, the wrinkle takes Wt to W̃t , t ∈ [12 ,
3
2 ], with the following

properties:

• W̃t is given by z = (t + 3ε/2)x , y = t for x ∈ (−δ/3, δ/3).

• W̃ is given by z = (t + ε/2)x , y = t for x ∈ [−δ,−2δ/3)∪ (2δ/3, δ].

• dz/dx > 0 along W̃t for x ∈ (−δ, δ).

See Figure 6.
We perform this wrinkling along every arc in the intersection B∩S. If two such

arcs l1 and l2 intersect each other, there exist two disjoint regions on A(l1∪l2), one
containing l1 and the other containing l2, that we can identify with rectangles R1

and R2 as above. We wrinkle along l1 and l2 separately.
The wrinkling translates to the original setup as in Figure 7. The bad zone

(colored green in Figure 7) no longer intersects S.
For an isolated point x ∈ B∩S, we pick a small bad arc l containing x on the

isotopy annulus and we do the wrinkling along l as above.
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x xδ−δ

z zWt

W̃t

z = t x

z = (t + ε)x

z = (t + ε
2 )x

z = t x

Figure 6. Wrinkling Wt .

6× θ1 6× θ0 6× θ1 6× θ0θ θ

l l ′

B B

S Sx x

Figure 7. Isotopy modification along an l arc. The new intersec-
tion arc l ′ sits outside of B (green region).

We obtain an isotopy annulus that does not intersect S along any bad arcs. �
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