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We establish first- and second-order gradient estimates for positive solu-
tions of the heat equations under general geometric flows. Our results gen-
eralize the recent work of S. Liu, who established similar results for the
Ricci flow. Both results can also be considered as the generalization of P. Li,
S. T. Yau, and J. Li’s gradient estimates under geometric flow setting. We
also give an application to the mean curvature flow.

1. Introduction

Starting with the pioneering work of P. Li and S. T. Yau [1986], gradient esti-
mates are also called differential Harnack inequalities, because we can obtain the
classical Harnack inequality after integrating along the space-time curve. They
are very powerful tools in geometric analysis. For example, R. Hamilton [1993;
1995b] established differential Harnack inequalities for the scalar curvature along
the Ricci flow and for the mean curvature along the mean curvature flow. Both
have important applications in the singularity analysis.

In Perelman’s breakthrough work [2002] on the Poincaré conjecture and the
geometrization conjecture, an important role was played by a differential Harnack
inequality. Since then, there have been many works on gradient estimates along the
Ricci flow or the conjugate Ricci flow for the solution of the heat equation or the
conjugate heat equation; examples include [Cao 2008; Cao and Hamilton 2009;
Kuang and Zhang 2008; Zhang 2006].

Under some curvature constraints, Guenther [2002] has established gradient es-
timates for positive solutions of the heat equation under general geometric flow
on a closed manifold. Using this result, she derived a Harnack-type inequality
and found a lower bound for the heat kernel under Ricci flow. As mentioned in
[Liu 2009] (see also Section 4 of this paper), we can weaken the assumption of
Guenther’s results by removing the bound on the gradient of scalar curvature when
restricting to the Ricci flow case. We can also obtain a local gradient estimate for
complete case.
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While most of the works deal with the first-order case, higher-order gradient es-
timates have their own interest. Indeed, they are closely related to the boundedness
of the Riesz transform and the Sobolev inequality. J. Li [1991] obtained second-
order gradient estimates for heat kernels on complete noncompact Riemannian
manifolds. In [Li 1994], he used the boundedness of Riesz transform to prove the
Sobolev inequality on Riemannian manifolds with some constraints.

S. Liu [2009] obtained the first and the second order gradient estimates for posi-
tive solutions of the heat equations under Ricci flow. His work generalized [Li and
Yau 1986] and [Li 1991].

In this paper, we generalize Liu’s work to general geometric flow. Of course,
we need impose stronger conditions on the flow and the curvature. Compared to
general geometric flow, there are two advantages to the Ricci flow: the contracted
second Bianchi identity, which gives a nice expression for the commuting formula
(Section 4), and the fact that the Ricci curvature arises when we use the Bochner
formula to compute the Laplacian of |∇u|2. Sometimes, the Ricci curvature will
be canceled with the time derivative of the metric under the Ricci flow.

K. Ecker, D. Knopf, L. Ni and P. Topping [Ecker et al. 2008] recently obtained a
local gradient estimate for bounded positive solution of the conjugate heat equation
for general geometric flow.

Our paper is organized as follows: We prove first-order gradient estimates in
Section 2 and second-order gradient estimates in Section 3. We give two applica-
tions to the Ricci flow and the mean curvature flow in Section 4.

2. First-order gradient estimates

For a function f on M ×[0, T ], where T is a positive constant, we write

ft = ∂t f =
∂ f (x, t)
∂t

.

Theorem 1 (gradient estimate: local version). Let (M, g(t)) be a smooth one-
parameter family of complete Riemannian manifolds evolving by

(2-1)
∂

∂t
g = 2h,

for t in some time interval [0, T ]. Let M be complete under the initial metric g(0).
Given x0 ∈ M and R > 0, let u be a positive solution to the equation

(1− ∂t)u(x, t)= 0

in the cube Q2R,T := {(x, t) | d(x, x0, t) ≤ 2R, 0 ≤ t ≤ T }. Suppose that there
exist constants K1, K2, K3, K4 ≥ 0 such that

Ric≥−K1g, −K2g ≤ h ≤ K3g, |∇h| ≤ K4,
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on Q2R,T . Then for (x, t) ∈ Q R,T , we have

(2-2)
|∇u(x, t)|2

u2(x, t)
−α

ut(x, t)
u(x, t)

≤ C
(

K1+ K2+ K3+ K4+
√

K4+
1
t
+

1
R2

)
for any α > 1, where C depends on n, α only.

More explicitly, we have

(2-3)
|∇u(x, t)|2

u2(x, t)
−α

ut(x, t)
u(x, t)

≤
nα2

t
+

Cα2

R2

(
R
√

K1+
α2

α−1

)
+Cα2K2

+
nα2

α−1
(K1+ (α−1)K3+ K4)+ nα2(K2+ K3+

√
2K4),

for any α > 1, where C depends only on n.

Remark 2. When h = −Ric, (2-1) is the Ricci flow equation. In this case our
results reduce to [Liu 2009]. Note that for Ricci flow the assumption |∇ Ric | ≤ K4

is not needed because of the contracted second Bianchi identity (see Section 4).

As in [Li and Yau 1986], let f = log u; then

(2-4) (1− ∂t) f =−|∇ f |2.

Set

F = t
(
|∇u(x, t)|2

u2(x, t)
−α

ut(x, t)
u(x, t)

)
= t (|∇ f |2−α ft).

To prepare the ground for the proof of the theorem we need some lemmas.

Lemma 3. Suppose the metric evolves by (2-1). Then, for any smooth function f ,
we have

∂

∂t
|∇ f |2 =−2h(∇ f,∇ f )+ 2〈∇ f,∇ ft 〉

and

(2-5)
∂

∂t
1 f =1

∂

∂t
f − 2〈h,∇2 f 〉− 2〈div h− 1

2∇(trg h),∇ f 〉.

Here, div h is the divergence of h.

Proof. To prove the first equation, write

∂

∂t
|∇ f |2 =

∂

∂t

(
gi j ∂ f
∂xi

∂ f
∂x j

)
=−2h(∇ f,∇ f )+ 2〈∇ f,∇ ft 〉.

For the second, recall that

∂

∂t
0k

i j = gkl
{∇i h jl +∇ j hil −∇lhi j }.
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Thus,

∂

∂t
1 f =

∂

∂t

{
gi j
(
∂2 f
∂xi∂x j

−0k
i j
∂ f
∂xk

)}
=−2hi j

(
∂2 f
∂xi∂x j

−0k
i j
∂ f
∂xk

)
+1

∂ f
∂t
− gi j

(
∂

∂t
0k

i j

)
∂ f
∂xk

=−2〈h,∇2 f 〉+1
∂ f
∂t
− gi j gkl

{∇i h jl +∇ j hil −∇lhi j }∇k f

=1
∂ f
∂t
− 2〈h,∇2 f 〉− 2gkl

{gi j
∇i h jl −

1
2
∇l(trg h)}∇k f

=1
∂

∂t
f − 2〈h,∇2 f 〉− 2〈div h−

1
2
∇(trg h),∇ f 〉. �

Lemma 4. Suppose (M, g(t)) satisfies the hypotheses of Theorem 1. We have

(1− ∂t)F ≥−2〈∇ f,∇F〉+ t
n
(|∇ f |2− ft)

2
− (|∇ f |2−α ft)

− 2(K1+ (α−1)K3)t |∇ f |2− 3
√

nαK4t |∇ f | −α2nt (K2+ K3)
2.

Proof. For a given time t , choose {x1, x2, . . . , xn} to be a normal coordinate sys-
tem at a fixed point. Subscripts i, j will denote covariant derivatives in the xi , x j

directions. We will compute at the fixed point.
Using the Bochner formula, (2-4) and Lemma 3, we calculate

1F = t
(
2|∇2 f |2+ 2 Ric(∇ f,∇ f )+ 2〈∇ f,∇1 f 〉−α1( ft)

)
= t

(
2|∇2 f |2+ 2 Ric(∇ f,∇ f )+ 2〈∇ f,∇( ft − |∇ f |2)〉

)
−αt

(
(1 f )t + 2〈h,∇2 f 〉+ 2〈div h− 1

2∇(trg h),∇ f 〉
)

=−2〈∇ f,∇F〉+ 2t (|∇2 f |2+Ric(∇ f,∇ f )+ (1−α)h(∇ f,∇ f )

−α〈h,∇2 f 〉−α〈div h− 1
2∇(trg h),∇ f 〉)+ t (|∇ f |2)t −αt ft t .

On the other hand, we have

Ft = (|∇ f |2−α ft)+ t
(
(|∇ f |2)t −α ft t

)
.

Therefore, we arrive at

(1− ∂t)F =−2〈∇ f,∇F〉+ 2t (|∇2 f |2+Ric(∇ f,∇ f )+ (1−α)h(∇ f,∇ f )

−α〈h,∇2 f 〉−α〈div h− 1
2∇(trg h),∇ f 〉)− (|∇ f |2−α ft).

By our assumption, we have

−(K2+ K3)g ≤ h ≤ (K2+ K3),
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which implies that

|h|2 ≤ (K2+ K3)
2
|g|2 = n(K2+ K3)

2.

Applying those bounds and Young’s inequality yields

|α〈h,∇2 f 〉| ≤ 1
2 |∇

2 f |2+ 1
2α

2
|h|2 ≤ 1

2 |∇
2 f |2+ 1

2α
2n(K2+ K3)

2.

On the other hand,

|div h− 1
2∇(trg h)| = |gi j

∇i h jl −
1
2 gi j
∇lhi j | ≤

3
2 |g||∇h| ≤ 3

2

√
nK4.

We conclude by our assumptions that

(1− ∂t)F ≥−2〈∇ f,∇F〉+ t |∇2 f |2− (|∇ f |2−α ft)

− 2(K1+ (α−1)K3)t |∇ f |2− 3
√

nαK4t |∇ f | −α2nt (K2+ K3)
2.

Finally, with the help of the inequality

|∇
2 f |2 ≥ 1

n
(tr∇2 f )2 = 1

n
(1 f )2 = 1

n
(|∇ f |2− ft)

2,

we complete the proof of the lemma. �

Proof of Theorem 1. By our assumption of the bounds of h and the evolution of the
metric, we know that g(t) is uniformly equivalent to the initial metric g(0), that is,

e−2K2T g(0)≤ g(t)≤ e2K3T g(0).

Thus we know that (M, g(t)) is also complete for t ∈ [0, T ].
Now let ψ(r) be a C2 function on [0,+∞) such that

ψ(r)=
{

1 if r ∈ [0, 1],
0 if r ∈ [2,+∞),

(2-6)

0≤ ψ(r)≤ 1, ψ ′(r)≤ 0, ψ ′′(r)≥−C,
|ψ ′(r)|2

ψ(r)
≤ C,(2-7)

where C is an absolute constant. Define

ϕ(x, t)= ϕ(d(x, x0, t))= ψ
(

d(x, x0, t)
R

)
= ψ

(
ρ(x, t)

R

)
,

where ρ(x, t) = d(x, x0, t). For the purpose of applying the maximum principle,
the argument of [Calabi 1958] allows us to assume that the function ϕ(x, t), with
support in Q2R,T , is C2 at the maximum point.

For any 0 < T1 ≤ T , let (x1, t1) be the point in Q2R,T1 , at which ϕF achieves
its maximum value. We can assume that this value is positive, because in the other
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case the proof is trivial. As F(x, 0) = 0, we know that t1 > 0. Then at the point
(x1, t1), we have

(2-8) ∇(ϕF)= F∇ϕ+ϕ∇F = 0, 1(ϕF)≤ 0,
∂

∂t
(ϕF)≥ 0.

Therefore,

(2-9) 0≥ (1− ∂t)(ϕF)= (1ϕ)F −ϕt F +ϕ(1− ∂t)F + 2∇ϕ · ∇F.

Using the Laplacian comparison theorem, we have

1ϕ = ψ ′
1ρ

R
+ψ ′′

|∇ρ|2

R2 ≥−
C
R2 −

C
R

√
K1.

Furthermore, we have

|∇ϕ|2

ϕ
=
(ψ ′)2

ψ

|∇ρ|2

R2 ≤
C
R2 .

By our assumption, F(x1, t1) > 0. By the evolution formula of the geodesic length
under geometric flow [Hamilton 1995a], we calculate at the point (x1, t1)

−ϕt F =−ψ ′
(
ρ

R

) 1
R

dρ
dt

F =−ψ ′
(
ρ

R

) 1
R

∫
γt1

h(S, S) ds F

≥ ψ ′
(
ρ

R

) 1
R

K2ρ F ≥−
√

C K2 F,

where γt1 is the geodesic connecting x and x0 under the metric g(t1), S is the unite
tangent vector to γt1 and ds is the element of arc length. Substituting the three
inequalities above into (2-9) and using (2-8), we obtain

0≥
(
−

C
R2 −

C
R

√
K1

)
F −
√

C K2 F +ϕ(1− ∂t)F.

Applying Lemma 4 and Young’s inequality to this inequality yields

(2-10) 0≥
(
−

C
R2 −

C
R

√
K1

)
F−
√

C K2 F−2

√
C

R
√
ϕ|∇ f |F+

t1
n
ϕ(|∇ f |2− ft)

2

−ϕ(|∇ f |2−α ft)− 2(K1+ (α−1)K3+ K4)ϕt1|∇ f |2

−α2nt1ϕ[(K2+ K3)
2
+ 2K4].

Multiplying through by ϕt1 and setting y=ϕ|∇ f |2 and z=ϕ ft , (2-10) becomes

(2-11) 0≥ t1

(
−

C
R2 −

C
R

√
K1

)
(ϕF)−

√
C K2t1(ϕF)− 2

√
C

R
t2
1 y1/2(y−αz)

+
t2
1

n
(y−z)2−ϕ2 F−2(K1+(α−1)K3+K4)t2

1 y−α2nt2
1ϕ

2
[(K2+K3)

2
+2K4].
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Using the inequality ax2
− bx ≥−b2/(4a), valid for a, b > 0, one obtains

t2
1

n
(y− z)2− 2

√
C

R
t2
1 y1/2(y−αz)− 2(K1+ (α−1)K3+ K4)t2

1 y

=
t2
1

n

[
1
α2 (y−αz)2+

(
α−1
α

)2
y2
− 2n(K1+ (α−1)K3+ K4)y

+

(
2
α−1
α2 y−

2n
√

C
R

y1/2
)
(y−αz)

]
≥

t2
1

n

[
1
α2 (y−αz)2−

α2n2(K1+ (α−1)K3+ K4)
2

(α−1)2
−

α2n2C
2(α−1)R2 (y−αz)

]
.

Hence (2-11) becomes

1
nα2 (ϕF)2− (ϕF)

(
1+

C
R2 t1+

C
R

√
K1t1+

Cnα2t1
2(α−1)R2 +

√
C K2t1

)
−

(
n(K1+ (α−1)K3+ K4)

2α2t2
1

(α−1)2
+ t2

1α
2nϕ2
[(K2+ K3)

2
+ 2K4]

)
≤ 0.

We apply the quadratic formula and then arrive at

ϕF(x1, t1)≤ nα2
+

Cnα2

R2

(
R
√

K1+
α2

α−1

)
t1+
√

Cnα2K2t1

+
nα2t1
α−1

(K1+ (α−1)K3+ K4)+ n(K2+ K3+
√

2K4)α
2t1.

If d(x, x0, T1) < R, we have ϕ(x, T1)= 1. Then

F(x, T1)= T1(|∇ f |2−α ft)≤ ϕF(x1, t1)

≤ nα2
+

Cnα2

R2

(
R
√

K1+
α2

α−1

)
T1+
√

Cnα2K2T1

+
nα2T1

α−1
(K1+ (α−1)K3+ K4)+ n(K2+ K3+

√
2K4)α

2T1.

As T1 is arbitrary, we obtain the result. �

From the local result above, we get a global one:

Corollary 5. Let (M, g(0)) be a complete noncompact Riemannian manifold with-
out boundary, and let g(t) evolves by (2-1) for t ∈ [0, T ] and satisfy

Ric≥−K1g, −K2g ≤ h ≤ K3g, |∇h| ≤ K4.

If u is a positive solution to the equation (1 − ∂t)u(x, t) = 0, then for (x, t) ∈
M × (0, T ], we have
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(2-12)
|∇u(x, t)|2

u2(x, t)
−α

ut(x, t)
u(x, t)

≤
nα2

t
+C

(
K1+ K2+ K3+ K4+

√
K4
)
,

for any α > 1, where C depends only on n, α.

Proof. By the uniform equivalence of g(t), we know that (M, g(t)) is complete
noncompact for t ∈ [0, T ]. Letting R→+∞ in (2-3) completes the proof. �

Using Lemma 3, we can also derive a similar gradient estimate on a closed
Riemannian manifold.

Theorem 6. Let (M, g(t)) be a closed Riemannian manifold, where g(t) evolves
by (2-1) for t ∈ [0, T ] and satisfies

Ric≥−K1g, −K2g ≤ h ≤ K3g, |∇h| ≤ K4.

If u is a positive solution to the equation (1 − ∂t)u(x, t) = 0, then for (x, t) ∈
M × (0, T ], we have

(2-13)
|∇u(x, t)|2

u2(x, t)
−α

ut(x, t)
u(x, t)

≤
nα2

t
+

nα2

α−1
(K1+ (α−1)K3+ K4)+ nα2(K2+ K3+

√
2K4),

for any α > 1, where C depends only on n, α.

Proof. We use the same symbols F, f as above. Set

F̄(x, t)= F(x, t)−
nα2

α−1
(K1+ (α−1)K3+ K4) t − nα2(K2+ K3+

√
2K4)t.

If F̄(x, t)≤ nα2 for any (x, t) ∈ M × (0, T ], the proof is complete.
If (2-13) doesn’t hold, then at the maximal point (x0, t0) of F̄(x, t), we have

F̄(x0, t0) > nα2.

Since F̄(x, 0)=0, we know that t0>0 here. Then applying the maximum principle,
we have at the point (x0, t0),

∇ F̄(x0, t0)= 0, 1F̄(x0, t0)≤ 0,
∂

∂t
F̄(x0, t0)≥ 0.

Therefore we obtain
0≥ (1− ∂t)F̄ ≥ (1− ∂t)F.

Using Lemma 4 and the fact that

(|∇ f |2− ft)
2
=

( 1
α
(|∇ f |2−α ft)+

α−1
α
|∇ f |2

)2

=
1
α2

(F
t0

)2
+ 2α−1

α2 |∇ f |2
(F

t0

)
+
(α−1)2

α2 |∇ f |4,
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we get that

0≥
t0

nα2

(F
t0

)2
−

(F
t0

)
−

nα2

(α−1)2
(K1+ (α−1)K3+ K4)

2t0

− nα2((K2+ K3)
2
+ 2K4

)
t0+

2t0
n
α−1
α2 |∇ f |2

F
t0
.

Since

F
t0
=

F̄
t0
+

nα2

α−1
(K1+ (α−1)K3+ K4)+ nα2(K2+ K3+

√
2K4) > 0,

we get

t0
nα2

(F
t0

)
−

F
t0
−

nα2

(α−1)2
(K1+(α−1)K3+K4)

2t0−nα2((K2+K3)
2
+2K4

)
t0≤ 0.

Solving this quadratic inequality yields

F
t0
≤

nα2

t0
+

nα2

α−1
(K1+ (α−1)K3+ K4)+ nα2(K2+ K3+

√
2K4).

This implies that F̄(x0, t0)≤ nα2, in contradiction with our assumption. So (2-13)
holds. �

Remark 7. In Corollary 5 and Theorem 9, if K1 = K4 = 0, we can let α→ 1.

Integrating the gradient estimate in space-time as in [Li and Yau 1986] or [Guen-
ther 2002], we can derive the following Harnack-type inequality.

Corollary 8. Let (M, g(0)) be a complete noncompact Riemannian manifold with-
out boundary or a closed Riemannian manifold. Assume g(t) evolves by (2-1) for
t ∈ [0, T ] and satisfies

Ric≥−K1g, −K2g ≤ h ≤ K3g, |∇h| ≤ K4.

If u is a positive solution to the equation (1− ∂t)u(x, t) = 0, then for any pair of
points (x, t1), (y, t2) in M × (0, T ] such that t1 < t2 we have

u(x, t1)≤ u(y, t2)
(

t2
t1

)2nε

exp
(

ε3

2(t2− t1)
+C

t2− t1
2ε

K
)
, for any ε > 1

2 ,

where K = K1+ K2+ K3+ K4+
√

K4, the constant C depends only on n and ε,
and

3= inf
γ

∫ 1

0
|γ ′(s)|2σ(s) ds

is the infimum over smooth curves γ joining y to x (γ (0) = y, γ (1) = x) of the
averaged square velocity of γ measured at time σ(s)= (1− s)t2+ st1.
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Proof. The gradient estimates in Corollary 8 and Theorem 9 can both be written as

|∇u(x, t)|2

u2(x, t)
−α

ut(x, t)
u(x, t)

≤
nα2

t
+Cn,αK .

Fix ε > 1
2 , take any curve γ satisfying the assumption and set

l(s)= ln u(γ (s),σ (s)).

Then l(0)= ln u(y, t2) and l(1)= ln u(x, t1). Direct calculation shows that

∂l(s)
∂s
= (t2− t1)

(
∇u
u
γ ′(s)
t2− t1

−
ut

u

)
≤
ε|γ ′(s)|2σ
2(t2− t1)

+
t2− t1

2ε

(
C K +

4ε2n
σ(s)

)
.

Integrating this inequality over γ (s), we have

(2-14) ln
u(x, t1)
u(y, t2)

=

∫ 1

0

∂l(s)
∂s

ds ≤
∫ 1

0

ε|γ ′(s)|2σ
2(t2− t1)

ds+C
t2− t1

2ε
K + 2εn ln

t2
t1
,

which implies the corollary. �

3. Second-order gradient estimates

In this section we derive the second order gradient estimate for the positive solution
of the heat equation along a general geometric flow, which generalizes the results
in [Li 1991; Liu 2009].

Theorem 9. Let g(t) be a solution to (2-1) on a Riemannian manifold Mn for t
in some time interval [0, T ]. Assume that (M, g(0)) is a complete noncompact
manifold without boundary. Suppose that (M, g(t)) satisfies

|Rm | ≤ k1, |∇ Rm | ≤ k2, −k3g ≤ h ≤ k3g, |∇h| ≤ k4,

for some nonnegative constants k1, k2, k3, k4. Let u be a positive solution to the
equation (1−∂t)u(x, t)= 0. Then, for any (x, t)∈M×(0, T ] and α > 1, we have

|∇
2u(x, t)|
u(x, t)

+α
|∇u(x, t)|2

u2(x, t)
− 5α

ut(x, t)
u(x, t)

≤ C
(

k1+ k2/3
2 + k3+ k4+

√
k4+

1
t

)
,

where C depends only on n and α.

Before proving the theorem, we need a lemma. Set

F(x, y, t)= t F1 = t
(
|∇

2u(x, t)|
u(x, t)

+α
|∇u(x, t)|2

u2(x, t)
−β

ut(x, t)
u(x, t)

)
,

where β is a constant to be fixed.
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Lemma 10. Suppose (M, g(t)) satisfies the hypotheses of Theorem 9. Then for
sufficiently small δ > 0, γ − 1> 0, and ε > 0, we have, with β = 5α,

(1− ∂t)F ≥−2〈∇F,∇ log u〉+
δα

t
F2
+ 2δαβF

ut

u
− 2δα2 F

|∇u|2

u2

−C(k1+ k3)F −
C(k1+ k3)

2

4(γ − 1)2
t − εnk2

3βt −
F
t

−
2(n− 1)2

δα
(k1+ k3)

2t −
Cβ4/3

δ1/3α
k4/3

4 t −
C

δ1/3α
(k2+ k4)

4/3t

− 2Ct
(

4δα3
+

δ

2α(1−δ)2

)(
1
t
+ k1+ k3+ k4+

√
k4

)2

,

where C depends on n and α.

Proof. As in the proof of Lemma 4, choose {x1, x2, . . . , xn} to be a normal coor-
dinate system at a fixed point. Subscript i, j, k will denote covariant derivatives in
the xi , x j , xk directions.

We will first calculate the evolution equation for F1 and divide it into three parts.
In the calculation, we will use the following formula a few times:

(3-1) (1− ∂t)
f
g
=

1
g
(1− ∂t) f − f

g2 (1− ∂t)g−
2
g

〈
∇

f
g
,∇g

〉
.

Part 1. We first calculate a parabolic inequality for |∇2u|/u.
Using (3-1) and the fact that (1− ∂t)u = 0, we obtain that

(1− ∂t)

(
|∇

2u|
u

)
=−2

〈
∇
|∇

2u|
u

,∇u
〉
+

1
u
(1− ∂t)|∇

2u|.

Note that
1|∇2u|2 = 2|∇2u|1|∇2u| + 2

∣∣∇|∇2u|
∣∣2

and
1|∇2u|2 =

∑
i jk

(u2
i j )kk = 2|∇3u|2+ 2

∑
i jk

ui j ui jkk .

We get that

1|∇2u| =
|∇

3u|2+
∑

i jk ui j ui jkk −
∣∣∇|∇2u|

∣∣2
|∇2u|

≥

∑
i jk ui j ui jkk

|∇2u|
.

Here we have used the fact that |∇3u| ≥
∣∣∇|∇2u|

∣∣.
The Ricci identity gives

ui jkk =

ukki j +
∑

l

Rk jkl,i ul +
∑

l

Rki jl,kul +
∑

l

Rkiklul j +
∑

l

Rk jkluli + 2
∑

l

Rki jlukl .
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By our assumption on the curvature, we have

1|∇2u| ≥
〈∇

2u,∇2(1u)〉
|∇2u|

−Ck1|∇
2u| −Ck2|∇u|.

Noting that the metric evolves by (2-1), we have

∂

∂t
∇i∇ j u =

∂

∂t

(
∂2u
∂xi∂x j

−0
p
i j
∂u
∂x p

)
=∇i∇ j ut −

(
∂

∂t
0

p
i j

)
∇pu

=∇i∇ j ut − (∇i h j p +∇ j hi p −∇phi j )∇pu.

This leads to

∂t(|∇
2u|2)=

∂

∂t
(gik g jl

∇i∇ j u∇k∇lu)

=−4hik
∇i∇ j u∇k∇ j u+ 2〈∇i∇ j ut ,∇i∇ j u〉

− 2(∇i h j p +∇ j hi p −∇phi j )∇pu∇i∇ j u,

∂t |∇
2u| ≥

〈∇
2u,∇2(∂t u)〉
|∇2u|

−Ck3|∇
2u| −Ck4|∇u|.

Combining together all of the above, we conclude that

(3-2) (1− ∂t)

(
|∇

2u|
u

)
≥−2

〈
∇

(
|∇

2u|
u

)
,∇ log u

〉
−C(k1+ k3)

|∇
2u|
u
−C(k2+ k4)

|∇u|
u
.

Part 2. We next calculate a parabolic inequality for |∇u|2/u2. Using (3-1) and the
fact that (1− ∂t)u = 0, we obtain

(1− ∂t)

(
|∇u|2

u2

)
=−2

〈
∇

(
|∇u|2

u2

)
,∇ log u

〉
+
(1− ∂t)|∇u|2

u2 + 2
|∇u|4

u4 −
2
u3 〈∇|∇u|2,∇u〉.

Using Bochner’s formula and Lemma 3, we obtain

(1− ∂t)|∇u|2 = 2|∇2u|2+ 2 Ric(∇u,∇u)+ 2h(∇u,∇u).
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Therefore,

(1− ∂t)

(
|∇u|2

u2

)
≥−2〈∇

(
|∇u|2

u2

)
,∇ log u〉+ 2

|∇
2u|2

u2 + 2
|∇u|4

u4

−
4
u3 |∇

2u| |∇u|2+
2
u2 (Ric+h)(∇u,∇u)

≥−2〈∇
(
|∇u|2

u2

)
,∇ log u〉+2δ

|∇
2u|2

u2 −
2δ

1−δ
|∇u|4

u4 −2(n−1)(k1+k3)
|∇u|2

u2 .

Here we have used Young’s inequality to obtain

4
u3 |∇

2u| |∇u|2 ≤ 2(1−δ)
|∇

2u|2

u2 +
2

1−δ
|∇u|4

u4 .

Thus we have

(3-3) (1− ∂t)

(
α
|∇u|2

u2

)
≥−2

〈
∇

(
α
|∇u|2

u2

)
,∇ log u

〉
+2δα

|∇
2u|2

u2 −
2δα
1−δ
|∇u|4

u4 − 2(n− 1)(k1+ k3)α
|∇u|2

u2 .

Part 3. Finally, using (3-1) and Lemma 3, we get, for any ε > 0,

(1− ∂t)
(ut

u

)
=
(1−∂t)ut

u
− 2

〈
∇

(ut
u

)
,∇ log u

〉
=

1
u
[(1u)t + 2〈h,∇2u〉+ 2〈div h− 1

2∇(trg h),∇u〉− ut t ] − 2
〈
∇

(ut
u

)
,∇ log u

〉
=−2

〈
∇

(ut
u

)
,∇ log u

〉
+

2
u
〈h,∇2u〉+ 2

u
〈div h− 1

2∇(trg h),∇u〉

≤ −2
〈
∇

(ut
u

)
,∇ log u

〉
+ 2
√

nk3
|∇

2u|
u
+ 3
√

nk4
|∇u|

u

≤−2
〈
∇

(ut
u

)
,∇ log u

〉
+

1
ε

|∇
2u|2

u2 + εnk2
3 + 3
√

nk4
|∇u|

u
.

Therefore, we have

(3-4) (1− ∂t)
(
−β

ut
u

)
≥−2

〈
∇

(
−β

ut
u

)
,∇ log u

〉
−
β

ε

|∇
2u|2

u2 − εnk2
3β − 3

√
nk4β
|∇u|

u
.
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Combining the results from parts 1, 2, and 3, we obtain that for any 0 < δ < 1
and ε > 0,

(3-5) (1− ∂t)F1 ≥−2〈∇F1,∇ log u〉−C(k1+ k3)
|∇

2u|
u
+

(
δα−

β

ε

)
|∇

2u|2

u2

+ δα
|∇

2u|2

u2 −
2δα
1−δ
|∇u|4

u4 − 2(n− 1)(k1+ k3)α
|∇u|2

u2

− 3
√

nk4β
|∇u|

u
− εnk2

3β −C(k2+ k4)
|∇u|

u
.

By the definition of F1, we have

(3-6)
|∇

2u|
u
≤ F1+β

ut

u
,

and

|∇
2u|2

u2 =

(
F1−α

|∇u|2

u2 +β
ut

u

)2

(3-7)

= F2
1 +α

2 |∇u|4

u4 +β
2 u2

t

u2 + 2βF1
ut

u
− 2αF1

|∇u|2

u2 − 2αβ
|∇u|2

u2

ut

u
.

Inserting (3-6) and (3-7) into (3-5) and applying Young’s inequality, we arrive at

(3-8) (1− ∂t)F1 ≥−2〈∇F1,∇ log u〉−C(k1+ k3)F1−
C(k1+ k3)

2

4(γ − 1)2

+
[ 1

2δαβ
2
−Cβ2(γ − 1)2

] u2
t

u2 +

(
δα−

β

ε

)
|∇

2u|2

u2

−

(
4δα3
+

δ

2α(1−δ)2

)
|∇u|4

u4 + δαF2
1 + 2δαβF1

ut

u

− 2δα2 F1
|∇u|2

u2 − εnk2
3β −

2(n− 1)2

δα
(k1+ k3)

2

−
Cβ4/3

δ1/3α
k4/3

4 −
C

δ1/3α
(k2+ k4)

4/3,

for any γ − 1> 0.
Using the inequality

(
|∇u|2

u2

)2

≤ 2
(
|∇u|2

u2 − γ
ut

u

)2

+ 2γ 2 u2
t

u2 ,
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we calculate[ 1
2δαβ

2
−Cβ2(γ − 1)2

] u2
t

u2 −

(
4δα3
+

δ

2α(1−δ)2

)(
|∇u|2

u2

)2

≥

[
1
2δαβ

2
− 2γ 2

(
4δα3
+

δ

2α(1−δ)2

)
−Cβ2(γ − 1)2

]
u2

t

u2

− 2
(

4δα3
+

δ

2α(1−δ)2

)(
|∇u|2

u2 − γ
ut

u

)2

.

Setting β = 5α, we check that

1
2δαβ

2
− 2γ 2

(
4δα3
+

δ

2α(1−δ)2

)
−Cβ2(γ − 1)2

= 8δα3( 25
16 − γ

2)
−

δ

α(1−δ)2
γ 2
−Cβ2(γ − 1)2,

which is nonnegative when δ > 0, γ − 1> 0 are sufficiently small.
Now we take ε ≥ 5/δ such that δα−β/ε ≥ 0. Then (3-8) becomes

(1− ∂t)F1 ≥−2〈∇F1,∇ log u〉−C(k1+ k3)F1−
C(k1+ k3)

2

4(γ − 1)2

− 2
(

4δα3
+

δ

2α(1−δ)2

)(
|∇u|2

u2 − γ
ut

u

)2

+ δαF2
1

+ 2δαβF1
ut

u
− 2δα2 F1

|∇u|2

u2 − εnk2
3β −

2(n− 1)2

δα
(k1+ k3)

2

−
Cβ4/3

δ1/3α
k4/3

4 −
C

δ1/3α
(k2+ k4)

4/3.

Applying Corollary 5 and noting that

(3-9) (1− ∂t)F = t (1− ∂t)F1− F1,

we complete the proof of the lemma. �

Proof of Theorem 9. As in the proof of Theorem 1, we see that (M, g(t)) is com-
plete for t ∈ [0, T ]. Let ρ(x, t)= d(x, x0, t) and

ϕ(x, t)= ψ
(
ρ(x, t)

R

)
.

Set
ϕF(x, t) := ψ

(
ρ(x, t)

R

)
F(x, t),

where (x, t)∈Q2R,T . Suppose (x1, t1) is the point where ϕF achieves its maximum
in Q2R,T1 , where 0< T1 ≤ T .
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If |∇2u(x1, t1)| = 0, Corollary 5 yields

(3-10) (ϕF)(x1, t1)=ϕt1

(
α
|∇u|2

u2 −β
ut

u

)
≤Cn,α,β

(
(k1+k3+k4+

√
k4)t1+1

)
,

which implies the result.
Using arguments from [Calabi 1958; Li 1991], we can assume ϕF to be smooth

at (x1, t1) and ϕF(x1, t1) > 0.
As in the proof of Theorem 1, using Lemma 10, we obtain at the point (x1, t1)

(3-11) 0≥ (1− ∂t)(ϕF)

≥

(
−

C
R2 −

C
R

√
k1

)
F −Ck1 F +ϕ(1− ∂t)F

≥

(
−

C
R2 −

C
R

√
k1

)
F −Ck1 F −

F |∇ϕ|2

2sϕ
− 2Fsϕ

|∇u|2

u2

+
δα

t1
ϕF2
+ 2δαβϕF

ut

u
− 2δα2ϕF

|∇u|2

u2 −C(k1+ k3)ϕF

−
C(k1+ k3)

2

4(γ − 1)2
ϕt1− εnk2

3βϕt1−
ϕF
t1
−

2(n− 1)2

δα
(k1+ k3)

2ϕt1

−
Cβ4/3

δ1/3α
k4/3

4 ϕt1−
C

δ1/3α
(k2+ k4)

4/3ϕt1

− 2Cϕt1

(
4δα3
+

δ

2α(1−δ)2

)( 1
t1
+ k1+ k3+ k4+

√
k4

)2
.

Using Corollary 5, we have

2δαβϕF
ut

u
− 2δα2ϕF

|∇u|2

u2 − 2Fsϕ
|∇u|2

u2

≥ (2δαβ − 2sγ − 2δα2γ )ϕF
ut

u
−C(2δα2

+ 2s)ϕF
( 1

t1
+ k1+ k3+ k4+

√
k4

)
.

Observe that 2δαβ−2sγ −2δα2γ = 0 when we set s = δα2
( 5
γ
− 1

)
. Then (3-11)

becomes

(3-12) 0≥
δα

t1
ϕF2
−ϕFC(2s+ 2δα2)

( 1
t1
+ k1+ k3+ k4+

√
k4

)
+

(
−

C
R2 −

C
R

√
k1

)
F −

C F
2s R2 −Ck1 F −C(k1+ k3)ϕF −

ϕF
t1

−
C(k1+ k3)

2

4(γ − 1)2
ϕt1− εnk2

3βϕt1−
2(n− 1)2

δα
(k1+ k3)

2ϕt1−
Cβ4/3

δ1/3α

− 2Cϕt1

(
4δα3
+

δ

2α(1−δ)2

)( 1
t1
+ k1+ k3+ k4+

√
k4

)2
.
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Multiplying through by ϕt1 and using 0≤ ϕ ≤ 1, we have

0≥ δα(ϕF)2− (ϕF)
(( C

R2 +
C
R

√
k1

)
t1+

10Cδα2

γ

( 1
t1
+ k1+ k3+ k4+

√
k4

)
t1

)
− (ϕF)

(
Ct1

2δα2
( 5
γ
− 1

)
R2
+ (1+C(k1+ k3)t1)

)
−

C(k1+ k3)
2

4(γ − 1)2
t2
1 − εnk2

3βt2
1

−
2(n− 1)2

δα
(k1+ k3)

2t2
1 −

Cβ4/3

δ1/3α
k4/3

4 t2
1 −

C
δ1/3α

(k2+ k4)
4/3t2

1

− 2C
(

4δα3
+

δ

2α(1−δ)2

)( 1
t1
+ k1+ k3+ k4+

√
k4

)2
t2
1 .

Solving this quadratic inequality, one obtains

ϕF(x1, t1)≤ C
(

1+ (k1+ k2/3
2 + k3+ k4+

√
k4)t1+

1
R2 t1

)
.

By a similar argument as that in the proof of Theorem 1, we conclude in Q R,T ,

F1(x, t)≤ C
(

k1+ k2/3
2 + k3+ k4+

√
k4+

1
t
+

1
R2

)
.

where C depends on n and α. Because M is noncompact, we can let R→+∞.
This completes the proof of Theorem 9. �

4. Applications to Ricci flow and mean curvature flow

In this section, we apply our results to the special cases of the Ricci flow and the
mean curvature flow.

4.1. The Ricci flow. When h =−Ric, (2-1) is the Ricci flow equation introduced
in [Hamilton 1982]. In this situation our results reduced to those in [Liu 2009].
In this case our results in Section 2 do not need the assumption |∇ Ric | ≤ K4,
because of the second contracted Bianchi identity. Indeed, checking the proof of
Theorem 1 carefully, we find that we need the bound on |∇h| because we want to
control the term

div h− 1
2∇(trg h)

in (2-5). But the contracted second Bianchi identity says that when h =−Ric,

div Ric− 1
2∇R = 0.

Now (2-5) becomes
∂

∂t
1 f =1

∂

∂t
f + 2〈Ric,∇2 f 〉.
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4.2. The mean curvature flow. Let M be an n-dimensional closed smooth sub-
manifold in N n+p. Given an embedding F0 :M→ N , we consider a one-parameter
family of smooth maps Ft = F( · , t) : M → N n+p with corresponding images
Mt = Ft(M), where F satisfies the mean curvature flow equation

(4-1) d
dt

F(x, t)= H(x, t), F(x, 0)= F0(x).

Here H(x, t) is the mean curvature vector of Mt = Ft(M) at F(x, t) in N .
It is easy to check (or see [Huisken 1984; Chen and Li 2001]) that the induced

metric on Mt evolves by
∂

∂t
gi j =−2HαAαi j ,

where {Aαi j } is the second fundamental form of Mt in N . In this case, the tensor h
in (2-1) becomes

(4-2) hi j =−HαAαi j .

In this section, we will always assume that

|KN | + |∇KN | + |∇
2KN | ≤ L ,

for some constant L . Here, KN is the curvature tensor of N .
Using the evolution of the second fundamental form and the standard maximum

principle, we can obtain a derivative estimate:

Proposition 11. Let {Mt }0≤t≤T be a closed smooth solution of mean curvature
flow in a Riemannian manifold N. Suppose that there exist constants 30 and 31

such that
|A| ≤30 on M ×[0, T ],

|∇A| ≤31 on M0.

Then there is a constant K depending only on n, 30, 31 and L such that

|∇A| ≤ K on M ×[0, T ].

Remark 12. Another version of derivative estimate for the second fundamental
form along the mean curvature flow, similar to the derivative estimate along the
Ricci flow given in [Shi 1989], is proved in [Han and Sun 2012].

Proof of Proposition 11. Our proof follows [Huisken 1990]. Ci will denote various
constants depending only on n, 30 and L . By our assumption and the evolution
equations of the second fundamental form and its derivative [Han and Sun 2012,
Corollary 3.5], we have

(4-3)
(
∂

∂t
−1

)
|A|2 ≤−2|∇A|2+C1
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and

(4-4)
(
∂

∂t
−1

)
|∇A|2 ≤−2|∇2 A|2+C2(|∇A|2+ 1).

Therefore,

(4-5)
(
∂

∂t
−1

)(
|∇A|2+C2|A|2

)
≤−C2

(
|∇A|2+C2|A|2

)
+C3.

As Mt is closed for each t , we obtain by the maximum principle that(
|∇A|2+C2|A|2

)
(x, t)≤ e−C2t sup

M0

(
|∇A|2+C2|A|2

)
+

C3

C2
(1− e−C2t)≤ K ,

where K depends on n, 30, 31 and L . This proves the proposition. �

Theorem 13. Let {Mt }0≤t≤T be a closed smooth solution of mean curvature flow
in a Riemannian manifold N. Suppose that there exist constants 30 and 31 such
that

|A| ≤30 on M ×[0, T ],

|∇A| ≤31 on M0.

If u is a positive solution to the equation (1 − ∂t)u(x, t) = 0, then for (x, t) ∈
M × (0, T ], we have

|∇u(x, t)|2

u2(x, t)
−α

ut(x, t)
u(x, t)

≤
nα2

t
+C K ,

for any α > 1. Here C depends on n, α only and K depends 30, 31 and L.

Proof. During the proof of this theorem, the constant K will denote a constant
depending only on 30, 31 and L which may vary from one line to the next.

By Proposition 11 and (4-2), we see that |h| ≤ K and |∇h| ≤ K . On the other
hand, using the Gauss equation, we have

Ri jkl − Ki jkl = Aαik Aαjl − Aαil Aαjk,

where Ki jkl is the curvature tensor on N . Hence our assumption and Proposition 11
imply that |Rm| ≤ K and |∇Rm| ≤ K . This shows that all the assumptions of
Theorem 6 are satisfied, and the conclusion follows. �

Remark 14. K. Smoczyk [1999] proved a similar gradient estimate for the positive
solution of the heat equation along the Lagrangian mean curvature flow, and ob-
tained a Harnack inequality for the Lagrangian angle. Indeed, under the Lagrangian
mean curvature flow, the Lagrangian angle evolves by (1− ∂t)θ = 0.

Next we deal with the complete noncompact case.
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Proposition 15. Let {Mt }0≤t≤T be a smooth solution of mean curvature flow in a
Riemannian manifold N. Assume that M0 is complete noncompact without bound-
ary. Suppose that there exist two constants 30 and 31 such that

|A| ≤30 on M ×[0, T ],

|∇A| ≤31 on M0.

Then there is a constant K depending only on n, 30, 31 and L such that

|∇A| ≤ K on M ×[0, T ].

Proof. Recall that in the proof of Proposition 11, we obtained(
∂

∂t
−1

)(
|∇A|2+C2|A|2

)
≤−C2

(
|∇A|2+C2|A|2

)
+C3.

Set F = |∇A|2+C2|A|2. Then

(4-6) (1−
∂

∂t
)F ≥ C2 F −C3.

Let Q R,T and ϕ be defined as in the proof of Theorem 1. We consider ϕF . Suppose

(ϕF)(x1, t1)= sup
M×[0,T ]

(ϕF).

Then (x1, t1) ∈ Q2R,T . We consider two cases.
• If t1=0, then (ϕF)(x, t)≤ (ϕF)(x1, 0)≤ F(x1, 0)≤ supM0

F ≤31+C230≤ K .
In particular, for any (x, t) ∈ Q R,T , we have

F(x, t)≤ K .

• If, on the contrary, t1 > 0, the maximum principle gives(
1−

∂

∂t

)
(ϕF)(x1, t1)≤ 0.

By the Gauss equation and our assumption, the Ricci curvature is bounded. Simi-
larly to the proof of Theorem 1 and using (4-6), we get that, at (x1, t1),

0≥
(
1−

∂

∂t

)
(ϕF)(x1, t1)≥−

C
R2 −

C
√

K
R
+C2ϕF −C3.

Thus we obtain that

(ϕF)(x1, t1)≤
C3

C2
+

C
C2 R2 +

C
√

K
C2 R

.

In particular, for any (x, t) ∈ Q R,T , we have

F(x, t)≤
C3

C2
+

C
C2 R2 +

C
√

K
C2 R

.
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Combining the two cases above and letting R →∞ we get F(x, t) ≤ K , for
some constant K depends on n, 30, 31 and L . This proves the proposition. �

Arguing as in the proof of Theorem 13 and using Corollary 5 and Theorem 9,
we obtain

Theorem 16. Let {Mt }0≤t≤T be a smooth solution of mean curvature flow in a Rie-
mannian manifold N. Assume that M0 is complete noncompact without boundary.
Suppose that there exist two constants 30 and 31 such that

|A| ≤30 on M ×[0, T ],

|∇A| ≤31 on M0.

If u is a positive solution to the equation (1 − ∂t)u(x, t) = 0, then for (x, t) ∈
M × (0, T ] we have

|∇u(x, t)|2

u2(x, t)
−α

ut(x, t)
u(x, t)

≤
nα2

t
+C K

and
|∇

2u(x, t)|
u(x, t)

+α
|∇u(x, t)|2

u2(x, t)
− 5α

ut(x, t)
u(x, t)

≤ C
(

K + 1
t

)
,

for any α > 1. Here C depends only on n, α and K depends on n, 30, 31 and L.
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