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CURVATURES OF SPHERES IN HILBERT GEOMETRY

ALEXANDER BORISENKO AND EUGENE OLIN

We prove that the normal curvatures of hyperspheres, the Rund curvature,
and the Finsler curvature of circles in Hilbert geometry tend to 1 as the radii
tend to infinity.

1. Introduction

A smooth connected manifold Mn is called a Finsler manifold [Bao et al. 2000]
if there is a smooth positively homogeneous function F : TMn

→ [0,∞) on the
coordinates in tangent spaces such that the symmetric bilinear form

gy(u, v)= gi j (x, y)uiv j
: Tx Mn

× Tx Mn
→ R

is positively definite for each pair (x, y)∈TMn , where gi j (x, y)= 1
2 [F

2(x, y)]yi y j .
Consider a bounded open convex domain U in Rn with the Euclidean norm ‖ · ‖,

and let ∂U be a C3 hypersurface with positive normal curvatures. For a point x ∈U
and a tangent vector y ∈ TxU =Rn , let x− and x+ be the intersection points of the
rays x +R−y and x +R+y with absolute ∂U . Then the Hilbert metric is defined
as follows:

(1) F(x, y)= 1
2(2(x, y)+2(x,−y)),

where
2(x, y)= ‖y‖ 1

‖x−x+‖
, 2(x,−y)= ‖y‖ 1

‖x−x−‖

are called the Funk metrics on U .
Hilbert geometries are the generalizations of Klein’s model of the hyperbolic

geometry. Hilbert geometries are also Finsler spaces of constant negative flag
curvature −1 [Bao et al. 2000]. The Hilbert metric is invariant under projective
transformations of Rn leaving U bounded.

B. Colbois and P. Verovic [2002] proved that the Hilbert metric is asymptotically
Riemannian at infinity. That means that in a given Hilbert geometry the unit sphere
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of the norm F(x, · ) approaches the ellipsoid in C0 topology as the point x tends
to ∂U .

Unlike the Riemannian geometry, in the Finsler geometry there are several def-
initions of the curvature of a curve.

The normal curvature of a hypersurface in a Finsler space is defined as follows
[Shen 2001]. Let ϕ :N→Mn be a hypersurface in a Finsler manifold Mn . A vector
n ∈ Tϕ(x)Mn is called a normal vector to N at the point x ∈ N if gn(y, n)= 0 for
all y ∈ Tx N . The normal curvature kn at the point x ∈ N in a direction y ∈ Tx N
is defined as

(2) kn = gn(∇ċ(s)ċ(s)|s=0, n),

where ċ(0) = y, c(s) is a geodesic in the induced connection on N , and n is the
chosen unit normal vector.

For a curve c(s) parametrized by its arc length in Mn , it is possible to define
two more curvatures.

The Finsler curvature of c(s) [Finsler 1951; Rund 1959] is defined as

(3) kF (c(s))=
√

gċ(s)(∇ċ(s)ċ(s),∇ċ(s)ċ(s)).

The Rund curvature of c(s) [Rund 1959] is defined as

(4) kR(c(s))=
√

g∇ċ(s)ċ(s)(∇ċ(s)ċ(s),∇ċ(s)ċ(s)).

It is well-known that the normal curvatures of hyperspheres in the hyperbolic
space Hn are equal to coth(r) and tend to 1 as the radius r tends to infinity. We
prove the same property for the Hilbert geometry.

Theorem 1.1. The normal curvature, the Rund curvature, and the Finsler curva-
ture of the circles centered at the same point in the 2-dimensional Hilbert geometry
tend to 1 as their radii tend to infinity, uniformly at the point of the circle.

Theorem 1.2. The normal curvatures of the hyperspheres centered at the same
point tend to 1 as their radii tend to infinity, uniformly at the point of the hyper-
sphere and in the tangent vector at this point of the hypersphere.

This can be interpreted as meaning that the Hilbert metric tends to the Riemann-
ian metric of the hyperbolic space in C2-topology.

2. The choice of the coordinate system

Consider the Hilbert geometry based on a two-dimensional domain U in the Eu-
clidean plane. Fix a point o in the domain U and a point p ∈ ∂U . Since ∂U is a
convex curve, it admits the polar representation ω(ϕ) from the point o such that
the point p corresponds to ϕ = 0.
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Choose the coordinate system on the plane with the origin O at the point p; let
the axis x2 be orthogonal to ∂U at p, x1 be tangent to ∂U at p, and U −{p} lie in
the half-plane x2 > 0.

In this section we will construct a projective transformation P of the plane that
sends U to Û and has the following properties:

(1) P(p)= p.

(2) The vector u = (0, 1) is orthogonal to ∂Û at the point p.

(3) The tangent line to ∂Û at the point p is parallel to the tangent line to ∂Û at
the point corresponding to ϕ = π .

(4) ∂Û is the graph of the function x2= f̂ (x1) such that f̂ (0)= 0, f̂ ′(0)= 0, and
f̂ ′′(0)= 1

2 in the neighborhood of p.

We are going to give the explicit expression for this transformation and show
that after this transformation the curvature of ∂Û and the derivatives of f remain
uniformly bounded.

The next lemma gives the upper bound on the angle between the radial and
normal direction to the convex curve.

Lemma 2.1 [Borisenko 2002]. Let γ be a closed embedded curve in the Euclidean
plane whose curvature is greater than or equal to k. Let o be a point in the interior
of the set bounded by γ , ω0 the distance from o to γ , and ϕ the angle between the
outer normal vector at the point p ∈ γ and the vector op. Then

(5) cos 6 (um, N (m))> ω0k.

Denote by k and K the minimum and maximum of the curvatures of ∂U . Also,
ω0 =minϕ ω(ϕ), ω1 =maxϕ ω(ϕ).

Let the length of the chord of U in the direction u equal H , the distance from o
to the origin equal ωu , ω0 6 ωu 6 ω1, and the angle between u and x2 equal α.

Step 1. Construct an affine transformation that makes the vector
−→

oO parallel to
x2. This transformation sends the points (0, 0) and (1, 0) to themselves, the point
(H sinα, H cosα) ∈ ∂U to the point (0, H), and has the expression:

(6) x̃1 = x1− tanαx2, x̃2 =
x2

cosα
.

Denote the image of U as Ũ . The point o now has the coordinates (0, ωu).
Denote by k̃ the minimum of the curvature of ∂Ũ in the (x̃1, x̃2) coordinate sys-
tem, and by ω̃0 denote the distance from the point (0, ωu) to ∂Ũ . Note that the
eigenvalues of the transformation (6) are equal to 1 and 1/cosα. Hence

(7) ω0 6 ω̃0 6 1
cosα

ω0.
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Lemma 2.1 then implies that the curvature of ∂Ũ remains bounded and separated
from zero.

Step 2. Construct the transformation such that the tangent line

x̃2 =− tanβ x̃1+ H

to ∂Ũ at the point (0, H) will be parallel to the axis x̃1, where β is the angle
between x̃2 and the normal vector to ∂Ũ at (0, H). This transformation has the
expression

(8) x̄1 =
H x̃1

H − tanβ x̃1
, x̄2 =

H x̃2

H − tanβ x̃1
.

Denote the image of Ũ as Ū .
We can estimate the angle | tanβ|. Using Lemma 2.1, we have

(9) 0 6 | tanβ|6

√
1

(k̃2ω̃2
0)
− 1.

Estimate the curvature ∂Ū . Let the curve ∂Ũ be given in the parametric form
r(t)= (x̃1(t), x̃2(t)). Then ∂Ū has the parametrization

r̄(t)=
Hr(t)

H − tanβ x̃1(t)
.

Differentiating leads to

r̄ ′(t)=
Hr ′(t)

H − tanβ x̃1(t)
+

Hr(t) tanβ x̃ ′1(t)
(H − tanβ x̃1(t))2

,

r̄ ′′(t)=
2H tanβr ′(t)x̃ ′1(t)
(H − tanβ x̃1(t))2

+
2Hr(t) tan2 β x̃ ′1(t)

2

(H − tanβ x̃1(t))3

+
Hr ′′(t)

H − tanβ x̃1(t)
+

Hr(t) tanβ x̃ ′′1 (t)
(H − tanβ x̃1(t))2

.

The strict convexity of ∂Ũ implies that H − tanβ x̃1(t)> const > 0 for each t .
This and the compactness argument leads to the maximum of the curvature of ∂Ū
being bounded from above for some constant.

If the curve ∂Ũ is the graph x̃2= f (x̃1) and f (0)= f ′(0)= 0, then its curvature
at the point (0, 0) after the transformation (8) will not change. Indeed,

x̃ ′1(t)
2
+ x̃ ′2(t)

2

=

(
Ht tanβ

(H − t tanβ)2
+

H
H − t tanβ

)2

+

(
H tanβ f (t)
(H − t tanβ)2

+
H f ′(t)

H − t tanβ

)2

,
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x̃ ′1(t)x̃
′′

2 (t)−x̃ ′′1 (t)x̃
′

2(t)

=−

(
2Ht tan2 β

(H−t tanβ)3
+

2H tanβ
(H−t tanβ)2

)(
H tanβ f (t)
(H−t tanβ)2

+
H f ′(t)

H−t tanβ

)
+

(
Ht tanβ

(H−t tanβ)2
+

H
H−t tanβ

)(
2H tan2 β f (t)
(H−t tanβ)3

+
2H tanβ f ′(t)
(H−t tanβ)2

+
H f ′′(t)

H−t tanβ

)
.

We obtain the claim after substituting the equalities f (0) = f ′(0) = 0. So the
curvature of ∂Ū at the origin is still separated from zero.

Step 3. Construct a transformation such that the distance from (0, ωu) to the origin
is equal to 1 and the curvature of ∂Ū at the origin is equal to 1

2 . This transformation
has the expression:

(10) x̂1 =
x̄1

ωu
, x̂2 =

x̄2

2ω2
u k̄(0)

.

Denote the image of Ū as Û . It is obvious that the curvature of ∂Û remains
bounded.

The announced transformation P is the composition of the transformations (6),
(8), and (10), and the following proposition holds:

Proposition 2.2. There exists a constant C0 depending on U such that the curva-
ture of P(∂U ) is bounded from above by C0.

Let ∂U be the graph of the function x2 = f (x1) in the initial coordinate system.
After the transformation P, P(∂U ) can be considered the graph of the function
x2 = f̂ (x1) such that f̂ (0) = 0, f̂ ′(0) = 0, and f̂ ′′(0) = 1

2 in the neighborhood
of p.

Finally, estimate the third derivative f̂ ′′′(0). Evidently, under the affine transfor-
mations (6) and (10) the third derivative remains bounded. We only need to control
f ′′′(0) at Step 2.

So let the curve ∂Ũ be the graph x̃2= f̃ (x̃1) and after the transformation (8) we
obtain the graph f̄ . The rules for differentiation lead to

(11) f̄ ′′′(0)= f̃ ′′′(0)−
tanβ k̃(0)

H
.

As ∂U is the compact curve, we obtain:

Proposition 2.3. There exist constants C1, C2 depending on U , such that

C1 6 f̂ ′′′(0)6 C2.

Analogously we can estimate all higher derivatives.
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The Hilbert metrics for the domains U and Û are isometric. Therefore, without
loss of generality, we will consider the Hilbert metric for the domain Û and will
denote Û by U .

3. Series expansions for the metric tensor of the Hilbert metric

From the decomposition of the Hilbert metric through the Funk metrics (1), we
conclude

gi j (x, y)= F(x, y)Fyi y j (x, y)+Fyi (x, y)Fy j (x, y)

=
1
2 F(x, y)(2yi y j (x, y)+2yi y j (x,−y))

+
1
4(2yi (x, y)−2yi (x,−y))(2y j (x, y)−2y j (x,−y)).

Okada’s lemma [Shen 2001] for Funk metrics gives the expression of the deriva-
tives of 2(x, y) with respect to the coordinates on tangent spaces through the
derivatives with respect to the coordinates on U :

2(x, y)xk =2(x, y)2(x, y)yk .

Using this lemma, we can write:

(12) gi j (x, y)= 1
2 F(x, y)

2x i x j (x, y)2(x, y)− 22xi (x, y)2x j (x, y)
2(x, y)3

+
1
2 F(x, y)

2x i x j (x,−y)2(x,−y)− 22xi (x,−y)2x j (x,−y)
2(x,−y)3

+
1
4

(
2x i (x, y)
2(x, y)

−
2x i (x,−y)
2(x,−y)

)(
2x j (x, y)
2(x, y)

−
2x j (x,−y)
2(x,−y)

)
.

For convenience we will use lower indices xi for coordinates. Let F(x1,x2,y1,y2)

be a two-dimensional Hilbert metric and 2(x1, x2, y1, y2) the corresponding Funk
metric. Assume that the point (x1, x2) is sufficiently close to ∂U . Then we can
express ∂U as the graph x2= f (x1) such that f (0)= 0, f ′(0)= 0, and f ′′(0)= 1

2 .
Consider a point (x1, x2) above the graph x2 = f (x1). Denote by r(x1, x2, y1, y2)

the distance between the point (x1, x2) and the intersection point of the line passing
trough (x1, x2) in the direction (y1, y2) with the curve x2 = f (x1). Then

(13) 2(x1, x2, y1, y2)=

√
y2

1 + y2
2 r(x1, x2, y1, y2)

−1.

Now we obtain the derivatives of r(x1, x2, y1, y2) on x1, x2. The parameter
t (x1, x2, y1, y2) corresponding to the intersection points of the curve x2 = f (x1)

with the line

x1(t)= x1+ t y1, x2(t)= x2+ t y2
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satisfies the functional equation

(14) x2+ t y2 = f (x1+ t (x1, x2, y1, y2)y1).

Differentiate (14) on x1, x2:

(15) tx1 y2 = f ′(x1+ t y1)(1+ tx1 y1), 1+ tx2 y2 = f ′(x1+ t y1)tx2 y1.

We obtain the explicit expressions for tx1 , tx2 :

(16) tx1 =
f ′(x1+ t y1)

y2− y1 f ′(x1+ t y1)
, tx2 =

1
y1 f ′(x1+t y1)−y2

.

Differentiating (15) leads to

(17)

y2tx1x1 = f ′′(x1+ t y1)(1+ y1tx1)
2
+ f ′(x1+ t y1)y1tx1x1,

y2tx1x2 = f ′′(x1+ t y1)(1+ y1tx1)y2tx2 + f ′(x1+ t y1)y1tx1x2,

y2tx2x2 = f ′′(x1+ t y1)(y1tx2)
2
+ f ′(x1+ t y1)y1tx2x2 .

We obtain the expressions for the second derivatives of t :

(18)

tx1x1 =
f ′′(x1+ t y1)(1+ y1tx1)

2

y2− y1 f ′(x1+ t y1)
,

tx1x2 =
f ′′(x1+ t y1)(1+ y1tx1)y1tx2

y2− y1 f ′(x1+ t y1)
,

tx2x2 =
f ′′(x1+ t y1)(y1tx2)

2

y2− y1 f ′(x1+ t y1)
.

We need the derivatives of r(x1, x2, y1, y2). By definition,

r(x1, x2, y1, y2)=

√
(y1t)2+ (y2t)2 =

√
y2

1 + y2
2 t (x1, x2, y1, y2).

Hence rxk = txk and rxk xl = txk xl .
Now it is possible to calculate the derivatives of the Funk metric. Formula (13)

implies

(19) 2xk =−

√
y2

1 + y2
2

rxk

r2 .

After differentiating (19), we obtain

(20) 2xk xl =−

√
y2

1 + y2
2

rxk xl r
2
− 2rrxl rxk

r4 =

√
y2

1 + y2
2 (22

3rxk rxl −2
2rxk xl ).

Finally, from (12) it is possible to obtain the coefficients of the metric tensor. We
will need the values of gi j (x1, x2, y1, y2) at the points (x1, x2)= (0, x2).
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3.1. Expansions for gi j (0, x2, 1, 0). Note that the strict convexity of ∂U implies
that f ′(t (x1, x2)) 6= 0 for t (x1, x2) 6= 0. Then from (16) we deduce

tx1(0, x2, 1, 0)=−1,(21)

tx2(0, x2, 1, 0)= 1
f ′(t (0, x2, 1, 0))

,(22)

and from (18)

tx1x1(0, x2, 1, 0)= tx1x2(0, x2, 1, 0)= 0,(23)

tx2x2(0, x2, 1, 0)=−
f ′′(t (0, x2, 1, 0))
f ′(t (0, x2, 1, 0))3

.(24)

Expanding the functional equation (14) in a power series with respect to t as x2→0,
we find the expansions of t (0, x2, 1, 0).

(25) x2 =
1
4 t2
+

1
6 f ′′′(0)t3

+ O(t4).

We will find t in expanded form

(26) t = A+ B
√

x2+Cx2+ Dx3/2
2 + O(x2

2)

After substituting (26) into (25) and transposing all members in the left side, we
obtain the following system of equations:

(27) 3A2
+ 2A3 f ′′′(0)+ (6AB+ 6A2 f ′′′(0)B)

√
x2

+ (−12+ 3B2
+ 6A f ′′′(0)B2

+ 6AC + 6A2 f ′′′(0)C)x2+ (2 f ′′′(0)B2

+ 6BC + 12A f ′′′(0)BC + 6AD+ 6A2 f ′′′(0)D)x3/2
2 + O(x2

2)= 0.

Choose the coefficients A, B, C , and D so that the left side of (27) is O(x2
2).

Equating the coefficients under the powers of x2 to zero we obtain two expansions
for t which correspond to the directions (1, 0) and (−1, 0).

(28) t (0, x2,±1, 0)=±2
√

x2−
4
3 f ′′′(0)x2+ O(x2

2).

In our case r = t , so we get

(29) r(0, x2, 1, 0)= 2
√

x2−
4
3 f ′′′(0)x2+ O(x2

2).

Later on, all power series will be considered in the neighborhood of 0. The series
expansion for the metric F is
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F(0, x2, 1, 0)= 1
2

(
1

r(0, x2, 1, 0)
+

1
r(0, x2,−1, 0)

)
=

1
2

(
1

2
√

x2−
4
3 f ′′′(0)x2+O(x2

2)
+

1
2
√

x2+
4
3 f ′′′(0)x2+O(x2

2)

)
=

9
√

x2(18−8 f ′′′(0)2x2)+O(x3/2
2 )

.

F(0, x2, 1, 0)= 1
2
√

x2
+

2 f ′′′(0)2

9
√

x2+ O(x3/2
2 ).(30)

We will also need the difference:

(31) 2(0, x2, 1, 0)−2(0, x2,−1, 0)= 1
r(0, x2, 1, 0)

−
1

r(0, x2,−1, 0)

=
−6 f ′′′(0)+ O(x2)

4 f ′′′(0)2x2− 9+ O(x3/2
2 )

=
2
3 f ′′′(0)+ O(x2).

From (21), using rxk = txk , we get

(32) rx1(0, x2, 1, 0)=−1.

Expand the denominator of (22) with respect to t :

rx2(0, x2, 1, 0)= 1
f ′(t (0, x2, 1, 0)

=
1

f ′′(0)t (0, x2, 1, 0)+ 1
2 f ′′′(0)t (0, x2, 1, 0)2+O(t (0, x2, 1, 0)3)

.

Using the fact that f ′(0) = 0 and f ′′(0) = 1
2 and substituting the value of t from

(28), we obtain

rx2(0, x2, 1, 0)= 1
1
2(2
√

x2−
4
3 f ′′′(0)x2)+

1
2 f ′′′(0)(2

√
x2−

4
3 f ′′′(0)x2)2+O(x2

2)
.

rx2(0, x2,−1, 0) is analogous. Finally,

(33) rx2(0, x2, 1, 0)= 1
√

x2
−

4 f ′′′(0)
3
+

40 f ′′′(0)2

9
√

x2+ O(x2).

The second derivative has the form rxk xl = txk xl . From (23) we obtain

(34) rx1x1(0, x2, 1, 0)= rx1x2(0, x2, 1, 0)= 0.

And (24) implies

rx2x2(0, x2, 1, 0)=−
f ′′(t (0, x2, 1, 0))
f ′(t (0, x2, 1, 0))3

.
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We now expand the numerator and denominator in a series with respect to t and
use f ′(0)= 0, f ′′(0)= 1

2 , and (28):

rx2x2(0, x2, 1, 0)

=−

1
2 + f ′′′(0)t (0, x2, 1, 0)+ 1

2 f (4)(0)t (0, x2, 1, 0)2+ O(t3)(
f ′′(0)t (0, x2, 1, 0)+ 1

2 f ′′′(0)t (0, x2, 1, 0)2+ O(t (0, x2, 1, 0)3)
)3

=
−

1
2 − 2 f ′′′(0)

√
x2+ (

4
3 f ′′′(0)2− 4 f (4)(0))x2+

16
3 f ′′′(0) f (4)(0)x3/2

2 + O(x2
2)

x3/2
2 + 4 f ′′′(0)x2

2 + O(x5/2
2 )

Thus

(35) rx2x2(0, x2, 1, 0)=− 1
2x3/2

2

−
2 f (4)(0)
√

x2
+ O(1).

From (19), (29), (32) we find that

2x1(0, x2, 1, 0)=
1(

2
√

x2−
4
3 f ′′′(0)x2+ O(x2

2)
)2 .

Analogously, acting for the vector (−1, 0), we get

(36) 2x1(0, x2,±1, 0)=± 1
4x2
+

f ′′′(0)
3
√

x2
+ O(1).

From (29) and (33) we deduce

2x2(0, x2, 1, 0)=−
1/
√

x2− 4 f ′′′(0)/3+ (40 f ′′′(0)/9)
√

x2+ O(x2)(
2
√

x2−
4
3 f ′′′(0)x2+ O(x2

2)
)2 ,

and finally,

(37) 2x2(0, x2,±1, 0)=− 1
4x3/2

2

−
f ′′′(0)2
√

x2
+ O(1).

Using the formulae (20), (29), (33), and (35), we obtain the expression for the
second derivatives of the Funk metric:

(38) 2x2x2(0, x2,±1, 0)= 3
8x5/2

2

+
13 f ′′′(0)2+ 3 f (4)(0)

6x3/2
2

+ O
( 1

x2

)
.

Finally we can estimate the metric coefficients. From (13), (29), and (36) we
get

(39)
2x1(0, x2, 1, 0)
2(0, x2, 1, 0)

−
2x1(0, x2,−1, 0)
2(0, x2,−1, 0)

=
1
√

x2
+

4 f ′′′(0)2

9
√

x2+ O(x3/2
2 ).



CURVATURES OF SPHERES IN HILBERT GEOMETRY 267

It follows from (13), (29), and (37) that

(40)
2x2(0, x2, 1, 0)
2(0, x2, 1, 0)

−
2x2(0, x2,−1, 0)
2(0, x2,−1, 0)

=
2 f ′′′(0)
3
√

x2
+ O(1).

Note that

(41) 2x1x1(0, x2,±1, 0)2(0, x2,±1, 0)− 22x1(0, x2,±1, 0)2x1(0, x2,±1, 0)

= (223rx1rx1 −2
2rx1x1)2− 222rx12

2rx1 = 0,

since rx1x1 = 0, and analogously

(42) 2x1x2(0, x2,±1, 0)2(0, x2,±1, 0)− 22x1(0, x2,±1, 0)2x2(0, x2,±1, 0)

= 0.

Then from (13), (29), (37), and (38) we get

(43)
2x2x2(0, x2,±1, 0)2(0, x2,±1, 0)− 22x2(0, x2,±1, 0)2x2(0, x2,±1, 0)

2(0, x2,±1, 0)3

=
1

2x3/2
2

+
2 f (4)(0)
√

x2
+ O(1).

Finally, using (30), (12), (39), (40), (41), (42), and (43), we obtain the series ex-
pansions of the metric tensor of the Hilbert metric.

(44)

g11(0, x2, 1, 0)= 1
4x2
+ O(1),

g12(0, x2, 1, 0)=
f ′′′(0)
6x2

+ O(1),

g22(0, x2, 1, 0)= 1
4x2

2
+

2 f ′′′(0)2+ 9 f (4)(0)
18x2

+ O(1).

3.2. Expansions for gi j (0, x2, 0, 1). The formulae in (16) imply that, at (0, x2),

tx1(0, x2, 0,±1)= 0,

tx2(0, x2, 0,±1)=−1,

tx1x2(0, x2, 0,±1)= tx2x2(0, x2, 0,±1)= 0.

Note that the functions t (0, x2, 0,±1) have the representations

t (0, x2, 0,−1)=−x2, t (0, x2, 0, 1)= H − x2.

Here H denotes the length of the chord of ∂U in the direction (0, 1). Then

2(0, x2, 0,−1)= 1
x2
, 2(0, x2, 0, 1)= 1

H−x2
.
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Consequently,

(45) F(0, x2, 0, 1)= 1
2

( 1
H−x2

+
1
x2

)
=

1
2x2
+ O(1).

We can estimate the derivatives of the Funk metrics 2(0, x2, 0,±1). It follows
from (19) and (20) that

2x2(0, x2, 0,−1)= 1
x2

2
, 2x2(0, x2, 0, 1)=− 1

(H−x2)2
,(46)

2x2x2(0, x2, 0,−1)= 2
x3

2
, 2x2x2(0, x2, 0, 1)= 2

(H−x2)3
.(47)

Using (12), (46), and (47), we get the expansions:

(48)
g12(0, x2, 0, 1)= 0,

g22(0, x2, 0, 1)= 1
4

( 1
H−x2

+
1
x2

)2
=

1
4x2

2
+ O

( 1
x2

)
.

We will also need the values F(0, x2, l, 1
2).

We have
t
(
0, x2,−l,−1

2

)
=−2x2+ 2l2x2

2 + O(x3
2),

t
(
0, x2, l, 1

2

)
= L + O(x2).

Then

F
(
0, x2, l, 1

2

)
=

√
1
4 + l2

2
√

1
4 t (0, x2, l, 1

2)
2+ (lt (0, x2, l, 1

2))
2

+

√
1
4 + l2

2
√

1
4 t (0, x2,−l,−1

2)
2+ (lt (0, x2,−l,−1

2))
2

=

√
1
4 + l2

2
√

1
4 + l2

(
1

t (0, x2, l, 1
2)
−

1

t (0, x2,−l,−1
2)

)
.

Finally,

(49) F
(
0, x2, l, 1

2

)
=

1
4x2
+

1
2L
+ O(x2).

4. Proof of the theorems

The Chern–Rund covariant derivative along the curve c(t) in the Finsler space
equipped with the Hilbert metric F is given by the formula [Shen 2001]

(50) ∇c′(t)c′(t)= {c′′(t)i + (2(c(t), c′(t))−2(c(t),−c′(t))c′(t)i } ∂
∂x i .
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For calculating the normal curvature (2), the Finsler curvature (3), and the
Rund curvature (4), we need the covariant derivative ∇ċ(s)ċ(s) of the curve c(s)
parametrized by its arc length.

For a given curve c(t), we will denote by the dot the derivative with respect to
the arc length s, and by the prime the derivative with respect to t . Then let t = t (s)
be the reparametrization. We get

ċ(s)= c′(t)t ′s .

Using that s in the length parameter, we get

1= F(c(t), c′(t))t ′s .

Hence

ċ(s)=
c′(t)

F(c(t), c′(t))
.

The next step is to calculate ∇ċ(s)ċ(s).

∇ċ(s)ċ(s)=∇c′(t)/F(c(t),c′(t))
c′(t)

F(c(t), c′(t))

=
1

F(c(t), c′(t))

(
∇c′(t)

( 1
F(c(t), c′(t))

)
c′(t)+ 1

F(c(t), c′(t))
∇c′(t)c′(t)

)
.

According to [Bao et al. 2000],

∇c′(t)

( 1
F(c(t), c′(t))

)
=−

gc′(t)(∇c′(t)c′(t), c′(t))
F(c(t), c′(t))3

.

Then the derivative ∇ċ(s)ċ(s) has the form

∇ċ(s)ċ(s)=
1

F(c(t), c′(t))2

(
∇c′(t)c′(t)−

gc′(t)(∇c′(t)c′(t), c′(t))
F(c(t), c′(t))2

c′(t)
)
.

Finally, using (50), we get the formula:

(51) ∇ċ(s)ċ(s)=

c′′(t)+ c′(t)
(
2(c(t), c′(t))−2(c(t),−c′(t))−

gc′(t)(∇c′(t)c′(t), c′(t))
F(c(t), c′(t))2

)
F(c(t), c′(t))2

.

As in Section 2 fix a point o in the domain U and a point p ∈ ∂U . The curve
∂U admits the polar representation ω(ϕ) from the point o such that the point p
corresponds to ϕ = 0. According to Section 2, we assume that U satisfies the
conditions (1)–(4).
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Then one can get that ω′(0)= 0, ω(0)= 1, ω′′(0)= 1
2 , ω′(π)= 0. Set

C =
1+ω(π)
ω(π)

.

In [Borisenko and Olin 2008] the polar function ρr (u) of the hypersphere of
radius r was obtained:

(52) ρr (u)=
ω(−u)ω(u)(e2r

− 1)
ω(u)+ω(−u)e2r .

As r→∞,

(53) ω(u)− ρr (u)= ω(u)
( ω(u)
ω(−u)

+ 1
)

e−2r
+ o(e−2r ).

From (52) we get that the circle of radius r admits the parametrization

c(ϕ)=
(
ω(π −ϕ)ω(ϕ)(e2r

− 1)
ω(ϕ)+ω(π −ϕ)e2r sinϕ,

ω(π −ϕ)ω(ϕ)(e2r
− 1)

ω(ϕ)+ω(π −ϕ)e2r cosϕ
)
,

where ω(ϕ) is the polar function of ∂U .
Then

(54) c′(0)=
ω(π)(e2r

− 1)
1+ω(π)e2r (1, 0)= (1−Ce−2r

+ O(e−3r ), 0), r→∞.

The second derivative:

(55)

c′′(0)=
(e2rω(π)2(ω′′(0)− 1)−ω(π)+ω′′(π))(e2r

− 1)
(1+ e2rω(π))2

(0, 1),

c′′(0)=
(
0,−1

2 + O(e−2r )
)
, r→∞.

From (53) we get that at the point of the circle the second coordinate is

(56) x2 = ω(0)−
ω(π)ω(0)(e2r

− 1)
ω(0)+ω(π)e2r = Ce−2r

+ O(e−3r ).

Estimate the derivative ∇ċ(0)ċ(0) using the formulae (51), (31), and (56):

2(c(0), c′(0))−2(c(0),−c′(0))=2(0,Ce−2r
+ O(e−3r ), 1+ O(e−2r ), 0)

−2(0,Ce−2r
+ O(e−3r ),−1+ O(e−2r ), 0)= 2

3 f ′′′(0)+ O(e−2r ).

Therefore, formula (50) leads to

(57) ∇c′(0)c′(0)= c′′(0)+ c′(0)
(
2(c(0), c′(0))−2(c(0),−c′(0))

)
=
(2

3 f ′′′(0),− 1
2

)
+ O(e−2r ).
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Using (56) and (57) we get

gc′(0)(∇c′(0)c′(0), c′(0))
F(c(0), c′(0))2

=

2
3 f ′′′(0)g11−

1
2 g12

F(0,Ce−2r + O(e−3r ), 1+ O(e−2r ), 0)2
.

Here gi j are calculated at the point (0,Ce−2r
+ O(e−3r ), 1+ O(e−2r ), 0). After

substituting the values from (30) and (44), we obtain

gc′(0)(∇c′(0)c′(0), c′(0))
F(c(0), c′(0))2

=−
f ′′′(0)

3
+ O(e−2r ).

Therefore,

(58) ∇ċ(0)ċ(0)=
( f ′′′(0),−1

2)+ (1, 1)O(e−2r )

F(c(0), c′(0))2
.

Taking into account (30),

∇ċ(0)ċ(0)= (4 f ′′′(0),−2)e−2r
+ (1, 1)O(e−3r ).

Calculate the Rund curvature (4) using the formulae (56) and (58).

kR(r)2 = F(c(0),∇ċ(0)ċ(0))

=
F(0,Ce−2r

+ O(e−3r ),− f ′′′(0)+ O(e−2r ), 1
2 + O(e−2r ))

F(0,Ce−2r + O(e−3r ), 1−Ce−2r + O(e−3r ), 0)2
.

From (30) and (49) we get

(59) kR(r)2 = 1+C
(

2
L
−

8 f ′′′(0)2

9

)
e−2r
+ O(e−3r ).

Here L > 0 is the length of the chord ` of ∂U in the direction ( f ′′′(0),−1/2).
Proposition 2.2 gives the uniform bounds on the curvature of ∂U . Proposition 2.3
claims that the angle between the chord ` and x2 is uniformly separated from π/2.
Thus we conclude that 2/L is bounded from above.

Calculate the Finsler curvature (3) using the formulae (56) and (58).

kF (r)2 = gċ(0)(∇ċ(0)ċ(0),∇ċ(0)ċ(0))

=
f ′′′(0)2g11− f ′′′(0)g12+

1
4 g22

F(0,Ce−2r + O(e−3r ), 1−Ce−2r + O(e−3r ), 0)4
.

Here gi j are considered at the point (0,Ce−2r
+O(e−3r ), 1+O(e−2r ), 0). Finally,

from (30) and (44) we obtain that

(60) kF (r)2 = 1+C
(
−

8
9 f ′′′(0)2+ 4 f (4)(0)

)
e−2r
+ O(e−3r ).

Proposition 2.3 gives the uniform bounds on the derivatives of f . Theorem 1.1
is proved.
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Note that the normal curvature gn(∇ċ(s)ċ(s), n) of a hypersurface at the point x
depends only on the tangent vector to the curve c(s) at x [Shen 2001]. So in order
to obtain the normal curvature of the Hilbert hypersphere Sr centered at o at the
point p in the tangent direction w, we consider the normal curvature of the circle
Sr ∩5 which lies in the plane 5= span(w, −→op).

From (57) we get the normal curvature of the circle of radius r :

(61) kn(r)= gn(∇ċ(0)ċ(0), n)=
gn(c′′(0), n)

F(c(0), c′(0))2
.

Since g12(0, x2, 0, 1) = 0 by (48), it follows that the unit normal vector n to the
circle at (0, x2) is exactly

1
F(0, x2, 0, 1)

(0,−1).

Finally, taking into account (30), (56), (55), (45), and (48):

(62) kn(r)

=

1
2 g22(0,Ce−2r

+ O(e−3r ), 0, 1)

F(0,Ce−2r
+O(e−3r ),1−Ce−2r

+O(e−3r ),0)2F(0,Ce−2r
+O(e−3r ),0,1)

= 1+C
( 1

H
−

8 f ′′′(0)2

9

)
e−2r
+ O(e−3r ).

If it is the case that the Euclidean normal curvatures of the hypersurface ∂U are
bounded (k2 6 kn 6 k1) then the curvature of the curve ∂U ′ = ∂U ∩5 is bounded
as well. Consider the point x ∈ ∂U ′⊂ ∂U . Then the curvature k(x) of ∂U ′ and the
normal curvature kn(x) of ∂U are related as

k(x)=
kn(x)
cosβ

.

Here β is the angle between the radial and normal direction to ∂U at x . Using
Lemma 2.1 we find that ω0k2 6 cosβ6 1. Hence the curvature of ∂U ′ is uniformly
bounded for all y. Applying Proposition 2.2 for the Hilbert geometry based on
U ′, we get the uniformity of the series expansion (62) which ends the proof of
Theorem 1.2.
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